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ABSTRACT 

Due to the lack of underwater navigation aids, a system capable of helping a 

submersible vehicle maintain position accuracy, permitting it to stay underwater for longer 

periods, is extremely desirable. The accuracy and reliability of the state-of-the-art 

techniques are compromised in multipath environments. In this dissertation, environments 

where multipath represents a problem are explored. A more accurate estimate for 

underwater distances by using acoustic modems and an acoustic ray tracing code to model 

the environment is proposed for real-time applications. 

To be able to establish the submersible vehicle’s position, a tracking algorithm 

relying on Kalman filtering (KF) techniques was developed to fuse all available data. The 

lack of directional information from the acoustic modems employed produced 

nonlinearities that were treated using the extended Kalman filter (EKF) and the unscented 

Kalman filter (UKF). 

The developed algorithms were initially tested using synthetic data, and the results 

showed the importance of a smoothing algorithm to produce realistic trajectories. This 

analysis also suggested that faster convergence and better behavior in the presence of 

noise was achieved by the UKF approach. Real data collected during sea trials confirmed 

the robustness of the UKF which, despite few and inconsistent measurements, was able to 

provide reliable submersible vehicle positioning. Better tracking results were also 

achieved when underwater distances were estimated by modelling the environment. 
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I. INTRODUCTION 

Parts of this chapter were previously published by IEEE [1]. 

There are several definitions for navigation. One of our favorites, which was 

translated into English, states that “navigation is the science and art of safely guiding a 

vehicle from the starting point until the final destination” [2]. The simplest approach to 

navigating at sea is based on dead reckoning, by which the current vehicle’s position is 

estimated by integrating velocity between periodic fixes, such as a global positioning 

system (GPS) or similar. The inaccuracies inherent in this process can quickly multiply, 

however, to become significant errors. 

Advances in navigational aids, in particular satellite navigation, have made course 

selection through the dead reckoning of human mariners obsolete for most purposes; 

although the prudent sea navigator still uses dead reckoning as a backup tool in case of 

failure of the more advanced systems. 

In some systems, human dead reckoning has been replaced with automatic 

(without human intervention) navigational information gathered from inertial sensors 

(gyroscopes and accelerometers); such systems are known as inertial navigation systems 

(INS). There are also hybrid systems that make use of a digital magnetic compass and a 

fusion of different sensors, or only estimates, to supply the data necessary for navigation. 

In dead reckoning systems, including the INS, errors due to sensors’ bias and 

misalignment accumulate over time and can lead to unacceptable position errors. 

Therefore, it is necessary to receive, regularly, precise position updates from external 

reliable sources, like GPS, to keep the position errors at acceptable levels.  

 

 

                                                 
 

 
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 

other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. 
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The most advanced INS for underwater navigation have a margin of error ranging 

from 0.1% to 1% of the distance travelled, without relying on external positioning 

sources. This is usually represented by what is called the circular error probability, a 

circle which is bounded by 50% probability of containing the true position [3]. From the 

experiments conducted during this work, it was found that systems relying only on digital 

magnetic compasses and speed estimates may produce errors of around 20% of circular 

error probability or even higher. 

Successful surface navigation systems have been developed that integrate GPS 

with inertial sensors, but the absence of GPS signal reception underwater makes 

navigation for manned and unmanned underwater vehicles (UUV) a more difficult task. 

By surfacing, the UUV can get a position update using its GPS, but this is impossible 

(e.g., under ice) or undesirable in many circumstances [4]. In military applications, 

surfacing can increase the chance of detection or represent a delay in the mission that is 

unacceptable. Therefore, a technique to accurately update the position of an autonomous 

system while underwater is extremely desirable. 

Different approaches to establish an underwater positioning system have been 

proposed over the years. They include short baseline (SBL), long baseline (LBL), ultra-

short baseline (USBL), GPS intelligent buoys (GIB), and some hybrid systems based on 

the previous ideas [5], [6], and [7]. All of those systems make use of acoustic travel time 

measurements to estimate the distance and, in some systems, the bearing from the 

underwater vehicle to reference points located on the surface or the sea floor. Those 

systems are reliable when the depth being explored is on the order of, or larger than, the 

horizontal distances between the assets. 

Estimation of horizontal distances in relatively shallow water is more complex, 

due mainly to the multipath nature of the propagation, wherein multiple arrivals reach the 

receiver at different times by different propagation paths. Accurately estimating the travel 

time—and, consequently, the distance—of these acoustic signals under such variable 

conditions is difficult. Some of the systems described previously are able to account for  
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the refraction of the sound waves when the sound speed profile is available, but none of 

them provides a solution to treat the distance estimation errors caused by multipath 

signals. 

In this dissertation, the relatively shallow water environments wherein accurately 

estimating multipath signals represents a navigational problem are explored. A more 

accurate estimation for the distance, based on acoustic wave travel time measurements, 

an acoustic ray tracing code to model the environment, and an iterative routine to match 

the measurements with synthetic predictions, is proposed. The algorithm is designed to 

take only a few seconds to converge to a solution, making it appropriate for real-time 

applications [1]. 

To obtain a reliable estimate of the vehicle position, the information for a number 

of sources and mathematical models must be combined so effects due to multipath, sea 

currents, and simple observation noise can be mitigated. The ability to establish the UUV 

position via a tracking algorithm relying on Kalman filtering (KF) techniques is 

developed to fuse all available information (Chapters II and V). 

The development of the tracking algorithm takes into account the characteristics 

of the measurement system. This research relies on battery-powered digital signal 

processor (DSP)-based acoustic modems, which make use of acoustic communication 

protocols to measure the acoustic wave travel time from the UUV to the reference points. 

The main characteristics of our acoustic modems are: 

1. Inability to take simultaneous measurements from different reference 

points, and 

2. No bearing (direction) is associated to the travel times measured from 

systems used in this work (though such systems are available for future 

studies).  

Those characteristics produce a non-linear measurement equation that is treated 

using two different approaches: a Taylor series linearization as in the extended Kalman 

filter (EKF), and a statistical linearization based on what are called “sigma points,” as in 

the unscented Kalman filter (UKF). Additionally, practical aspects such as smoothing and 

tuning are addressed. 
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As part of the UUV tracking model, the drift caused by the sea current was 

modeled as a random walk and is part of the state of the system. Predictions for the sea 

current from different UUVs may be transmitted, via the reference point at the surface, to 

a command ship or shore-based command center for further processing. In Chapter V, 

Section G, a consensus algorithm is presented to take advantage of this information.  

The developed algorithms are tested initially using synthetic data (Chapter VI), 

and then again using real data collected during the sea trials that took place in Monterey 

Bay in August 2015 (Chapter VII). 

This dissertation is constructed as follows. After this Introduction chapter, a 

statement of the problem and a model for the UUV are presented in Chapter II. Important 

aspects of travel time estimation are explored in Chapter III, and a technique to estimate 

distance based on travel time measurements, employing a ray tracing code, is presented 

in Chapter IV. Two tracking algorithms based on the EKF and UKF are featured in 

Chapter V, and simulations of the developed algorithms are discussed in Chapter VI. 

Results of the sea trials are provided in Chapter VII. A conclusion and recommendations 

for future work are given in Chapter VIII. 

Equation Chapter (Next) Section 1 
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II. PROBLEM STATEMENT AND UUV MODEL 

As was described in the previous chapter, underwater navigation is particularly 

challenging due to the fact that a number of navigation aids, such as GPS, are not 

available underwater. In view of this, to accurately estimate a UUV’s position at any time 

during a mission, one may rely on acoustic communication between the UUV and other 

platforms at known locations. As addressed in later chapters, a combination of acoustic 

modems with or without advanced features, such as directional sensitivity, and multiple 

surface vehicles may provide the required tracking. 

In a typical mission, a UUV is part of a network that may consist of surface 

platforms at known locations commonly provided by a GPS, bottom deployed modems 

(at known locations), and possibly other UUVs. The surface and bottom deployed assets, 

ultimately, represent reference points from which a UUV, using its acoustic modem, can 

estimate its distance and receive their coordinates (latitude, longitude, and depth), as 

shown in Figure 1. 

Due to the limited bandwidth of the underwater channel, the typical acoustic 

modem is able to communicate with only one platform at a time. Thus, it is not possible 

to take measurements of the distance between the UUV and two or more reference points 

at the same time. Additionally, we are assuming that no bearing associated with the 

distance measurement is available. 
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Figure 1.  Network of Reference Points 

The main objective of this dissertation is to improve the positioning accuracy of 

the UUV using this network of reference points. The goal is to provide sufficient tracking 

accuracy so that the UUV can stay submerged for longer missions while still maintaining 

accurate track of its position. 

The approach to solve this problem is to design an algorithm that combines all 

information available, which are the travel time measurements, the acoustic wave 

propagation model, the UUV navigation data in terms of its attitude in the water column 

(heading, pitch, depth, and speed), and the dynamic model of the UUV motion. All this 

information can be combined using KF techniques, in particular EKF and UKF, due to 

the presence of nonlinearities and non-Gaussian disturbances. The problem of modeling 

is based on the state space representation for dynamic systems as can be seen in the 

next sections. 

A. STATE SPACE REPRESENTATION OF DYNAMIC SYSTEMS 

A fundamental concept to describe the behavior of a dynamic system is the state 

of the system. The concept of state refers to a minimum set of variables (state variables) 

that fully describe the system and its response to any given set of inputs while accounting 

Ref. point #1
Unmanned Surface 
Vehicle (USV)

Ref. point #2
Command Ship

Ref. point #3
Unmanned 
Surface Vehicle 

(USV)

Ref. point #4
Bottom deployed 
modem at known 

position

Unmanned 
Underwater 
Vehicle (UUV)

GPS satellite 
constellation
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for errors due to sensor noise and model uncertainties. The set of all possible values of 

the state variables is the state space. 

The state space representation of a dynamic system is not unique and usually 

involves a time variable t and three sets of variables: 

- State variables: 1 2, , ... , nx x x  

- Input variables: 1 2, , ... , mu u u  

- Output variables: 
1 2, , ... , pz z z . 

For a continuous-time system, the description generally takes the form, in vector 

notation, of [8]  

    t tx f x,u,  (2.1) 

    t tz h x,u, , (2.2) 

where  tf x,u, and  th x,u, are vector functions with n and p components, respectively.  

Equation (2.1) is called the state equation, and Equation (2.2) is called the output 

or measurement equation. If additive noise is present in the state and measurement 

equations, we have what is called a continuous-time non-linear stochastic dynamic 

system, and Equations (2.1) and (2.2) become 

      t t t x f x,u,   (2.3) 

      t t t z h x,u,  , (2.4) 

where  t is a n-dimensional vector representing the input disturbance or process noise, 

which is also called plant noise, and  t  is a p-dimensional vector representing the 

output disturbance or measurement noise.  

If the system and measurements are linear, Equations (2.3) and (2.4) may be 

written in matrix notation as 

 

1 11 12 1 1 11 12 1 1

2 21 22 2 2 21 22 2 2

1 2 1 2

n m

n m

n n n nn n n n nm m

x a a a x b b b u

x a a a x b b b u

x a a a x b b b u

         
         
          
         
         
         

 (2.5) 

and 
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1 11 12 1 11 12 11 1

2 21 22 2 21 22 22 2

1 2 1 2

n m

n m

p p p pn p p pmn m

z h h h d d dx u

z h h h d d dx u

z h h h d d dx u

        
        
         
        
        
             

. (2.6) 

In vector notation this becomes 

          t t t t t x A x B u  (2.7) 

          t t t t t z H x D u . (2.8) 

If additive noise is present in the state and measurement equations we have what 

is called a continuous-time linear stochastic dynamic system, and Equations (2.7) and 

(2.8) become 

            t t t t t t  x A x B u   (2.9) 

            t t t t t t  z H x D u  . (2.10) 

For discrete-time stochastic non-linear dynamic systems, the state and 

measurement equations can usually be represented by first order difference equations, 

and take the form [8] 

        1 ( ) ( )k k k k   x f x g u   (2.11) 

      k k k   z h x  , (2.12) 

where the indices k and k+1 refer to sampling times kt k t   and  1 1kt k t    , 

respectively. 

Finally, for discrete-time stochastic linear dynamic systems, the state and 

measurement equations usually take the form [8] 

        1 ( ) ( )k k k k k k   x F x G u   (2.13) 

          ( )k k k k k k z H x + D u  . (2.14) 

B. UUV STATE SPACE REPRESENTATION 

In this section, a UUV state space representation is presented, considering its 

dynamics and the characteristics of the range measurement system. 

1. The State Equation 

Assuming a UUV moving through the water at depth d  moving with speed V , 

we can build a coordinate system where latitude and longitude are mapped to Cartesian 
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coordinates ( x and y ). In this case,   represents the heading,   represents the pitch, and 

d ( z axis) represents the depth of the UUV (see Figure 2). 

 

The y axis points to east and the x axis points to north. 

Figure 2.  UUV Coordinate System 

The motion of the UUV in the xy-plane can be represented by the following set of 

first order differential equations 

            cos sin xx t V t t t c t    (2.15) 

            cos cos yy t V t t t c t   , (2.16) 

where cx and cy represent the speed of the sea current in the x and y directions, 

respectively. Since we assume the current to be fairly constant in speed and direction and 

slowly varying in time and location, we have chosen to model it as a random walk [9]. 

Although it is assumed to be unknown a priori, any prior information, can be easily 

incorporated in the proposed algorithm. 

When d , V ,  , and   are known, the dynamic model in its simplest form 

becomes 

V cos()

V





y

x

z

d

UUV projection in 

xy-plane 
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 

 

 

 

 

 

 

 

 

 

    
  
  

 

0 0 1 0 1 0

sin0 0 0 1 0 1
cos

0 0 0 0 0 0 cos

0 0 0 0 0 0

x x

ty y

t t

x t x t

ty t y t
V t t

c t c t t

c t c t






      
        
         
               
          u

A Bx x

.
 (2.17) 

In vector notation, Equation (2.17) becomes 

      t t t x Ax Bu . (2.18) 

As we are only interested in knowing the state of the system at a discrete set of times 

(sampling times), Equation (2.18) is discretized by the following procedure. 

Performing a first order Taylor series expansion yields 

      t t t t t   x x + x ; (2.19) 

substituting (2.18) into (2.19) produces 

        t t t t t t t     x x + A x B u , (2.20) 

and rearranging Equation (2.20) results in 

        t t t t t t    
G

F

x I + A x + B u . (2.21) 

Adding noise, we may write the state equation for the stochastic discrete-time 

linear dynamic system as 

            1k k k k k k  x F x +G u  . (2.22) 

In matrix notation, Equation (2.22) becomes 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

  
  

 

 

 

 

1 1 0 0 0

sin1 0 1 0 0
cos

1 0 0 1 0 0 0 cos

1 0 0 0 1 0 0

x

y

x

y

cx x

y y c

kx k x kt k t k

kky k y kt k t k
V k k

kc k c k k

c k c k k










        
                                         

             

.(2.23)

 

2. The Measurement Equation 

In such a case that the acoustic modem does not provide bearing information, we 

have a range-only measurement, where each successful measurement represents, in the 

xy-plane, a circle of possible UUV positions (see Figure 3). 
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Figure 3.  Measurement Model in (a) yz-Plane and in (b) xy-Plane 

In Figure 3, (xr,yr,zr) are the coordinates of the reference point, (x,y,d) are the 

coordinates of the UUV, r is the horizontal range, rd is the slant range, and d is the UUV 

depth. From Figure 3b, it is noted that 

    
2 2 2

r rx x y y r    , (2.24) 

where  
22

d rr r d z    is the distance in the horizontal plane. 

Expanding and rearranging Equation (2.24) yields 

 2 2 2 2 22 2r r r rr x y x xx yy y      . (2.25) 

Equation (2.25) may be written as 

    z h ,k k k   x , (2.26) 

where 

-      
2 22z ( ) r rk r k x k y k    is the observation, which combines range 

measurements with knowledge of reference point locations;  

-               
2 2

h , 2 2r rk k x k x k x k y k y k y k     x  is a non-linear 

function.  

With the addition of noise, the measurement equation takes its final form of 

      z h ,k k k k    x . (2.27) 

It is important to note that the UUV state space representation is composed of a 

linear state equation, Equation (2.22), and a non-linear measurement equation, Equation 

rd

(xr,yr,zr) d

z

x

r
r

x

y

(x,y,d)

(xr,yr,zr)

(x,y,d)

(a)
(b)

Acoustic modem at known

position (reference point)

UUV with head

mounted modem

y

y

x
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(2.27). Note, too, that the measurement model needs only the reference point coordinates 

and horizontal distance to the UUV; this means that the reference point could be a surface 

asset able to access a GPS, a bottom deployed acoustic modem at a known location, or 

another UUV with a reliable position. 

3. UUV Model 

The complete model for the UUV dynamics and measurements (state space 

representation) is given by 

 
           

     

1

z h , ,

k k k k k k

k k k k

  

    

x F x + G u

x


 (2.28) 

where 

- The state  kx  is composed of the UUV position and sea current, in the xy-plane, 

as shown in Equation (2.23); 

- The matrices  kF  and  kG  are deterministic and known for all k, 

 

 

 

1 0 0

0 1 0

0 0 1 0

0 0 0 1

t k

t k
k

  
 

 
 
 
 

F ,   

 

 

0

0

0 0

0 0

t k

t k
k

 
 

 
 
 
 

G
; 

- The input sequence  ku is deterministic and known for all k, 

      
  
  

sin
cos

cos

k
k V k k

k






 
  

  

u ; 

-      
2 22z ( ) r rk r k x k y k    is the measurement, where ( )r k  is the horizontal 

distance from the UUV to the reference point, the parameters  rx k  and  ry k  

are the coordinates of the reference point (longitude and latitude mapped to 

Cartesian coordinates);  

-              
2 2

h , 2 2r rk k x k x k x k y k y k y k     x  is a non-linear function; 

- The noises  k and  k  are assumed to be zero mean, white (i.e., 

uncorrelated) Gaussian processes 
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   

   

   

   

T

,

T

,

T

R

0 , ,

0

k k j

k k j

E k E k

E k j

E k j

E k jj k





        

  
 

   
 

  
 

Q



 



 

where ,

1 if

0 if
k j

k j

k j



 


. The UUV model, as developed in this section, is the basis of 

the tracking algorithm developed in Chapter V. 

Equation Chapter (Next) Section 1  
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III. ACOUSTIC WAVE TRAVEL TIME ESTIMATION 

As seen in Chapter II, the measurement of distances underwater, from the UUV to 

the reference points, is an important part of the problem addressed in this dissertation. In 

this chapter and in the next, the techniques used to accomplish this task are discussed. 

Distance measurement by timing an echo is the standard procedure in radar or 

active sonar applications. A waveform, with proper time localization characteristics, is 

transmitted, and the time that it takes to receive the echo of that waveform is measured 

(two-way travel time) to estimate the distance from source to target. The first problem to 

be solved is how to estimate the travel time from measurements of an acoustic echo. 

A. CROSS-CORRELATION FUNCTION 

It is commonly accepted that the time of arrival of a known pulse can be 

determined by correlating the transmitted and received pulses [10]. This is robust in the 

presence of noise and distortion, especially when the disturbances are Gaussian. For two 

jointly wide-sense stationary random processes, the cross-correlation is defined as an 

ensemble average: 

      *

xyR E x t y t     . (3.1) 

In practice, we assume joint ergodicity so that it is computed by properly 

averaging in time. Considering two ergodic processes with finite duration T, the time-

average cross-correlation function may be calculated as 

      *

xy

1
R x t y t dt

T
 





  . (3.2) 

Now let us consider that    x t s t  represents the transmitted signal, defined in 

the interval  0, T , and  y t  represents the received signal (single echo) defined in the 

interval  A A, T   , where A T  . 

For a stationary source and target, the received signal may be modeled as being a 

delayed and attenuated version of the transmitted signal (plus noise), where   is the 
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attenuation factor. For simplicity, dispersion and other propagation effects in the received 

signal are not being considered. Then 

    Aγ ( )y t s t n t   . (3.3) 

The goal here is to estimate the received signal’s time of arrival 
A . From 

Equations (3.2) and (3.3), the time-average cross-correlation function may be written as 

        xy γ
1

AR s t s t n t dt
T





   




      . (3.4) 

Considering that signal and noise are uncorrelated and evaluating Equation (3.4) at 

A  , we obtain 

    
2

A , 

1
γ γxy avg sR s t dt P

T






  . (3.5) 

Equation (3.5) shows that the time-average cross-correlation function peaks at the 

time of arrival A  and, in this ideal scenario, with a value proportional to the transmitted 

signal’s average power [11]. Therefore, the time when the cross-correlation function 

peaks is the best estimate for the signal’s time of arrival. 

This technique is usually applied in slowly varying environments where the 

characteristics of the signal and noise remain stationary during the finite observation time 

T [12]. 

B. MATCHED FILTER 

The cross-correlation between received and transmitted signals may be easily 

implemented as a matched filter. The matched filter is an optimum filter in the sense that 

it can maximize the signal-to-noise ratio (SNR) at a designed time instant to after the 

signal’s arrival. 

The impulse response,  h t , of the matched filter is defined by the waveform to 

which the filter is matched. Following [13], the impulse response of a filter matched to 

the signal  s t , for the case of input white noise, is 

  *( ) oh t Ks t t  , (3.6) 
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where K is a constant and to is the designed instant at which the filter output will give the 

maximum SNR. In applications that involve only detecting the arrival time of a signal 

immersed in noise, the choice for to is made only to make the matched filter causal (if 

necessary); that is,  h t  must be zero for t <0. It implies that the parameter to shall be 

greater than or equal to the duration of the transmitted signal T [14].  If causality is not a 

concern in the matched filter implementation, to can be set to zero, as in the example 

shown in Figure 4. 

For completeness, the frequency response of the matched filter is 

     2* oj ft
H f KS f e


 .  (3.7) 

The matched filter output ( )y t  may be represented by the convolution integral of 

the received signal (as in Equation (3.3) and the filter impulse response [14] 

   *

A( ) γ ( ) ( )oy t s u n u s u t t du




       ,  (3.8) 

where K in Equation (3.6) was set to 1. Given that the signal and noise are uncorrelated, 

Equation (3.8) reduces to 

 
*

A( ) γ ( ) ( )oy t s u s u t t du




    . (3.9) 

Equation (3.9) may be recognized as the cross-correlation of the received signal with the 

transmitted signal lagged by to-t. The peak in the matched filter output will occur when 

A ou u t t    , which means that 
Apeak ot t   because 

 
2*

A A A( ) γ ( ) ( ) γ ( )oy t s u s u du s t dt  
 

 

      .  (3.10) 

Comparing Equation (3.5) with Equation (3.10) we can see that both give similar results. 

At this point one may conclude that the matched filter and the cross-correlation function 

are equivalent ways to estimate a signal’s time of arrival. 
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Figure 4.  Matched Filter Used to Detect Signal’s Time of Arrival, 

Designed with to=0 

Figure 4 represents the output of a matched filter designed with to=0. In this 

example, a hyperbolic frequency modulated pulse is transmitted (sweeping from 200 to 

2200 Hz, T=50 ms, TB=100) and a signal immersed in noise, SNR=3dB, is received (left 

panel, first and third plots). In an ideal no-noise scenario, the received signal arrives at 

t=0.1s (left panel, second plot). The matched filter peaks at t=0.1s for both signals (no 

noise and signal plus noise), indicating a reception at this time (right panel). 

1. The Doppler Effect 

When there is relative motion between source and target, the performance of the 

matched filter degrades. Referring to Figure 5, consider the simple case when a source in 

motion at constant velocity is transmitting a continuous wave (CW) pulse during T 

seconds, and receiving an echo from a target in motion. The relative motion causes a shift 

in the frequency of the received signal. This effect is called the Doppler effect. 
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vr = | vs || - vT |||

Target
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Figure 5.  Relative Radial Speed between Source and Target 

Defining the Doppler shift as d c Rf f f   where cf  is the frequency of the 

transmitted signal, Rf  is the frequency of the received signal, and assuming that the 

propagation speed in the medium (c) is much greather than the relative radial speed 

between source and target ( rv ) yields [15] 

 
2 r

d c

v
f f

c
  .  (3.11) 

This frequency shift may affect the system’s ability to detect the incoming signal, which 

is why it is necessary to take it into account when designing the matched filter. Especially 

in underwater applications, while the relative motion might be small compared to the 

medium propagation speed, the carrier frequency (for modulated waveforms) might be 

sufficiently high so that the frequency shift becomes relevant. 

2. Received Signal Model 

To understand the effect of Doppler shift in the received signal, let us consider a 

target moving with constant radial speed rv  away from a static source. At time t the 

target will be located at range  r t , given by 

   o rr t r v t  , (3.12) 
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where at t=0 the target will be located at range or . Assuming that the source will start 

transmitting  x t  at 0t  , the received signal (echo) at time t is 

  '( )x t x t t    . (3.13) 

As the target is moving while the signal is being reflected, the two-way travel time  t  

in Equation (3.13) is considered a function of time [16]. For simplicity, no attenuation or 

other propagation effects are being considered. 

Assuming that the propagation speed in the medium c  is constant, we can 

calculate  t  as [17]  

  
 2

2

t
t r t

c




 
  

 
. (3.14) 

Substituting Equation (3.12) into Equation (3.14) yields 

  
  2 22

2

r o r
o r

r

v t r v t
t r v t

c c v




  
    

 
. (3.15) 

Then by substituting Equation (3.15) into Equation (3.13), we obtain 

  
2 2 22

' 1o r or

r r r

r v t rv
x t x t x t

c v c v c v

    
               

. (3.16) 

From Equation (3.16), the received signal may be written as 

    ' ox t x t   , (3.17) 

where for rc v , 
2

1 rv

c
    and 

2 o
o

r

c
  .   

As represented in Equation (3.17), the Doppler effect manifests by compressing 

(or expanding) the received signal, and this is mathematically described by a scale factor 

( ) in time. Even if the transmitted signal can be considered narrowband, the effect in 

the received signal is a translation in the frequency of the carrier (Doppler shift) and an 

increase or decerease in the signal bandwidth. 

Due to the frequency mismatch between transmitted and received signals, a filter 

matched to  x t  will no longer be matched to  'x t  in Equation (3.17). This mismatch 

may cause a reduction in the peak at the matched filter output, and depending on the 



 21 

severity of the mismatch, this peak can be reduced to levels that do not permit target 

detection. 

If the relative radial speed, rv , is known or the Doppler shift can be measured, a 

filter matched to  'x t  may be constructed as 

    ( )oh t x t t  . (3.18) 

In cases where the relative radial speed is not known in advance, the classical 

approach is to have a multi-hypothesis detector, also called a “bank” of matched filters, 

tuned at different radial speeds (or Doppler shifts), where the filter that gives the highest 

output is selected (see Figure 6). This process is optimal under restricted circumstances, 

computationally intense, and time consuming. 

h1 (t)

h2 (t)

hn (t)

r (t) yr (t)

Select Max. 
Amplitude

· 

· 

· 

 

Figure 6.  Multi-hypothesis Detector or “Bank” of Matched Filters 

The use of such detectors can introduce serious limitations in some real-time 

underwater acoustics applications that take advantage of physically small, battery 

powered DSP-based modems [18]. In these applications, the use of a signal with a certain 

tolerance for the Doppler effect is desirable to avoid the use of complicated and time 

consuming detectors.  
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C. COMMON WAVEFORMS IN UNDERWATER ACOUSTICS 

The selection of the waveform is a complex and important task, playing an 

important role in the overall performance of distance measurements of systems 

underwater. The most common waveforms used for this task are the linear frequency 

modulated (LFM) pulse and the hyperbolic frequency modulated (HFM) pulse. 

The popularity of these signals comes from their pulse compression 

characteristics. Pulse compression allows achieving transmitted power of a relatively 

long pulse while obtaining the range resolution corresponding to a short CW pulse [19].  

These two classes of signals, are defined in subsections (a) and (b). 

a) LFM pulse [20] 

      2cos 2 for 2c px t a t f t D t t T   , (3.19) 

where  a t is a real amplitude modulating function, BpD
T


  is the phase deviation 

constant in rad/sec
2
, B is the swept bandwidth in Hz, and T is the pulse duration in 

seconds. The instantaneous frequency is defined as 

 

   21
2

2

1
.

i c p

c p

d
f t f t D t

dt

f D t






 

 

  (3.20) 

In complex notation, Equation (3.19) then becomes 

    
 22 c pj f t D t

x t a t e
 

 . (3.21) 
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This LFM pulse is defined in the interval 0 50t ms   with  B = 200Hz (TB=10). 

Figure 7.  Rectangular-Envelope (a) LFM Pulse and (b) Instantaneous Frequency 

b) HFM pulse [21] 

    
2

( ) cos ln 1 for 2ox t a t f t t T





 
   

 
, (3.22) 

where  a t is a real amplitude modulating function, o end

o end

f f

Tf f



 , of  and endf  are, 

respectively, the starting and the ending frequency in Hz, and T is the pulse duration in 

seconds. The HFM swept bandwidth is defined as  o endB f f    (+ for up sweep and – 

for down sweep). The instantaneous frequency is  

 

   
1 2

ln 1
2

.
1

i o

o

o

d
f t f t

dt

f

f t




 



 
  

 




  (3.23) 

In complex notation, Equation (3.22) then becomes 

    
 

2
ln 1 oj f t

x t a t e







 . (3.24) 
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This HFM pulse is defined in the interval 0 50t ms   with  B = 200Hz (TB=10). 

Figure 8.  Rectangular-Envelope (a) HFM Pulse and (b) Instantaneous Frequency 

The behavior of LFM pulses in the presence of Doppler will depend on the signal 

time-bandwidth (TB) product, source-target relative radial speed ( rv ), and the 

characteristic medium propagation speed ( c ). In a stationary source and target scenario, 

the nominal half-width of the main lobe in the matched filter output is 1/B [17]. The 

Doppler will cause a widening in the main lobe that is accompanied by a reduction in 

amplitude (due to conservation of energy) of the matched filter output’s peak. Depending 

on how severe the widening effect is, it will be necessary to use a “bank” of matched 

filters to permit target detection. 

The matched filter output is shown in Figure 9 for three scenarios of source-target 

relative motion: stationary, relative radial speed of 7.5 knots, and relative radial speed of 

15 knots. The transmitted waveform is a rectangular-envelope LFM pulse of 50 ms 

duration, sweeping from 9 kHz to 14 kHz (TB=250). As shown in Figure 9, when there is 

no motion, the pulse arrives at 0.1s. 
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The characteristics of the LFM pulse are: T=50ms, B=5 kHz sweeping from 9 kHz to 14 

kHz (TB=250).  

Figure 9.   Matched Filter Output Having as Input a Rectangular-Envelope LFM Pulse 

for Different Source-Target Relative Radial Speeds 

Note that the width of the main lobe increases with the increase of the radial 

speed, and the peak amplitude decreases. Note, too, that there is a temporal offset in the 

matched filter’s output peak when relative motion between source and target is present. 

Figure 9 illustrates a negative Doppler shift (source and target are receding) so the 

relative speed increases the round trip time delay estimated at the receiver. 

As demonstrated in the Appendix, the widening in the main lobe of the matched 

filter output is given by the factor  1 4 rv c TB . If  4 rv c TB  can be considered much 

smaller than unity, the widening and, consequently, the amplitude reduction in the 

matched filter output peak may be neglected, which implies  

 
4 r

c
TB

v
.  (3.25) 
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Equation (3.25) states that if the signal’s time bandwidth product is small in 

comparison with the ratio of medium sound speed over the maximum source-target 

relative radial speed, the widening effect in the matched filter output may be neglected. In 

radar and laser applications, due to the large difference between c  and
rv , LFM pulses 

can be used without issues, even for relatively large TB. However, in underwater 

acoustics, due to the relative lower sound speed propagation, the use of this signal can 

introduce limitations in the system’s ability to detect a target. 

For HFM pulses (as demonstrated in the Appendix), the main lobe in the matched 

filter output, in the presence of Doppler, is slightly different from 1/B and independent of 

 4 rv c TB . Thus, the widening and, consequently, the reduction in the matched filter 

output’s peak will not be as severe as in the LFM case, and may permit target detection 

without the use of a multi-hypothesis detector. 

The matched filter output is shown in Figure 10 for three scenarios of source-

target relative motion: stationary, relative radial speed of 7.5 knots, and relative radial 

speed of 15 knots. The transmitted waveform is a rectangular-envelope HFM pulse of 

50 ms duration, sweeping from 9 kHz to 14 kHz (TB=250), and a single echo is 

considered to be received at t=0.1s. Note that the width of the main lobe barely changes 

with the increase of the radial speed, and the peak amplitude slightly decreases. Note, too, 

that as in the LFM case, there is a temporal offset in the matched filter’s output peak 

when relative motion between source and target is present. 
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The characteristics of the HFM pulse are: T=50ms, B=5 kHz sweeping from 9 kHz to 14 

kHz (TB=250). 

Figure 10.  Matched Filter Output Having as Input a Rectangular-Envelope 

HFM Pulse for Different Source-Target Relative Radial Speeds 

As seen in Figures 9 and 10, with the use of both waveforms, the relative speed 

between source and target causes a temporal offset in the matched filter output’s peak. 

Compensation for this temporal offset should be applied to obtain a precise travel time 

measurement. 

The use of HFM pulses permits a direct compensation for this time offset by using 

a closed form expression (Appendix, Equation A.61) when the Doppler shift is known. 

Unfortunately, there is no closed form for LFM pulses. 

Due to these effects, most ranging applications in underwater acoustics use HFM 

pulses and, as will be seen in the next chapter, HFM pulses are employed in the acoustic 

modems used in this work. Equation Chapter (Next) Section 1 
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IV. RANGE ESTIMATION 

Parts of this chapter were previously published by IEEE [1].
*
 

As seen in Chapter III, the standard technique to estimate the distance to a target 

in radar or active sonar applications begins with the determination of the travel time. It 

can be done by cross-correlating the received signal (the backscattered echo) with a 

replica of the transmitted signal (or match filtering the received signal). The two-way 

travel time can then be estimated from the time lag where the peak in the cross-

correlation occurs. 

In this chapter, a technique to estimate the distance using the measured travel time 

and a ray tracing code to model the acoustic channel is addressed. To start this 

discussion, the next section provides a basic description of the ranging routine used by 

the Teledyne-Benthos acoustic modems. 

A. ACOUSTIC MODEM RANGING ROUTINE 

In this dissertation, Teledyne-Benthos ATM-900 series acoustic modems have 

been used. The modems installed in the different assets have a built-in ranging routine 

that makes use of HFM pulses to estimate the two-way travel time between modems. The 

HFM pulse used by the acoustic modems has a 50 ms duration and 5 kHz bandwidth 

(sweeping from 9 to 14 kHz). The basics of the Teledyne-Benthos built-in ranging 

routine can be described in the following manner. 

Consider a situation where two modems are separated by some distance R and 

modem-1 requests a range to modem-2, as indicated in Figure 11. 

 

 

—————————— 
_* 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. 



 30 

Modem-1

Modem-2

R

D

Modem-1 Modem-2

Bt

Et

time time

1st Transm.

“response”

 

Figure 11.  Teledyne-Benthos Ranging Routine. Adapted from [22]. 

Initially, modem-1 transmits via MFSK (multiple frequency shift keying) a utility 

package to modem-2 preceded by an HFM pulse, recording the time when the routine 

starts  Bt . The HFM pulse can be considered as a probe signal that, after matched 

filtering, provides an estimate of the channel impulse response (Section B.2.b). With the 

help of a matched filter in modem-2, the incoming signal is detected and an estimate for 

the time of arrival is made based on the highest peak in the matched filter output. 

Modem-2 then replies to the range request after a known time delay D , sending an 

MFSK message (“response”) containing the time delay (and other information unrelated 

to range estimation) preceded by an HFM pulse. Modem-1 now estimates the time of 

arrival  Et  from the highest peak in the matched filter output. From the time difference 

between Et  and Bt  (minus D ), the two-way travel time 2( )way  is estimated by modem-1 

according [22], [23] 

  2way E B Dt t    .  (4.1) 

At this point, modem-1 provides a rough estimate of the slant range R by 

multiplying the one-way travel time 
2 2m wayt  , by the characteristic sound speed of the 

medium. A more accurate technique to estimate the distance using a ray tracing code to 

model the environment is addressed in Section B.2. 

For completeness, it is worth noting the capability of the modems to compensate 

for the Doppler effect. The ability of HFM pulses to enhance target detection in the 

presence of Doppler shift was discussed in Chapter III and is demonstrated in the 
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Appendix. In addition, a closed expression for the temporal offset in the matched filter 

output due to source-target relative motion is provided. 

By measuring the Doppler shift, the temporal offset in the matched filter output 

can be compensated using a variation of Equation (A.61) of the Appendix. Teledyne-

Benthos acoustic modems have a patented algorithm that makes use of single frequency 

tonals to measure the Doppler shift and then compensate for the temporal offset in the 

matched filter output [18] without relying on a new matched filter. 

B. DISTANCE MEASUREMENT 

In an environment where the speed of propagation is approximately constant, the 

distance between source and target may be estimated by a simple multiplication between 

the characteristic propagation speed of the medium and the estimated one-way travel 

time. This is generally not the case in underwater acoustics, however, where the sound 

speed varies spatially. Even in a benign, range-independent environment, the sound speed 

is generally observed to vary with depth (see Figure 12). 

 

Figure 12.  Sound Speed Profile Measured in Monterey Bay on August 12, 2015 
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Another important characteristic in underwater acoustics is the multipath nature of 

the propagation. In a multipath environment, multiple arrivals reach the receiving 

transducer at different times by different propagation paths, causing several peaks in the 

matched filter output. A common approach is to estimate the travel time by the time of 

the highest peak, which considers that the highest peak represents the arrival with higher 

energy and, therefore, the direct path between source and target (see Section A). 

Occasionally, in a multipath environment where the horizontal distance between 

source and target is much larger than the depth of the water, the highest peak in the 

matched filter output (representing the arrival with higher energy) does not represent a 

wave traveling along the direct path. For example, the highest peak could be due to an 

arrival taking the bottom/surface bounce path, as depicted in Figure 13. An attempt to use 

the measured travel time to estimate a distance between source and target, assuming that 

it is representative of the direct path, will cause errors in the final distance estimation.  

 

In ray tracing, eigenrays are defined as rays that connect the source to a particular 

receiver location. Note that, in this example, the first group of arrivals has smaller 

amplitude than the second group. 

Figure 13.  Example Calculation of (a) Eigenray Paths and 

(b) Eigenray Times of Arrival for Omnidirectional 

Source and Receiver Using BELLHOP [24] 
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In this dissertation, an approach is developed that utilizes an efficient ray tracing 

code [24], in situ sound speed measurements, sea floor modeling, and the measured 

acoustic wave travel time to estimate the distance between the UUV and the reference 

points. The ray tracing code can then distinguish cases in which the strongest arrival is 

not representative of the direct path (or first arrival). Additionally, with information of 

the sound speed profile, the refraction of the sound waves is accounted for in the distance 

estimation. 

1. Acoustic Ray Paths 

Initial attempts at modeling sound propagation underwater were motivated by 

problems in predicting sonar performance during World War II in support of anti-

submarine warfare operations. These first models used ray tracing techniques derived 

from the wave equation [25]. 

From a historical point of view, the behavior of ray paths was studied long before 

acoustic ray theory was mathematically formalized. Ray theory originally emerged from 

optics, where it was used to understand propagation of light even before the Maxwell 

equations were known. In fact, ray paths were originally studied by Euclid (around 300 

BC) [26] and complemented by the Arabic scientist Alhazen in the tenth century, while 

Snell’s law only dates back to 1626 [27]. 

Nowadays, the research community has lost, in part, some interest in ray tracing 

codes mainly due to their inherent high frequency approximation, which in certain cases 

can lead to coarse accuracy in the results. In high frequency applications, however, ray 

tracing algorithms are very popular due to their accuracy and high processing speeds. A 

brief discussion about the high frequency approximation can be found in Section B.1.b. 

a. The Acoustic Wave Equation  

The linearized wave equation can be derived from the equation of continuity, the 

Euler equation, and the equation of state [28]. In the absence of density discontinuities, it 

takes the form 
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2

2

2 2

1
0

p
p

c t


  


. (4.2) 

Density discontinuities at interfaces can be treated separately within the context of 

reflection and transmission coefficients at boundaries. 

To obtain a time-independent wave equation (Helmholtz equation), a time 

harmonic solution for the acoustic pressure p  is assumed at the form 

   j tp p r e  , (4.3) 

where the position vector r  extends from the reference point to a certain point in the 

field. Substituting Equation (4.3) into Equation (4.2), the wave equation reduces to the 

Helmholtz equation 

      
22 0p r k r p r   , (4.4) 

where    k r c r . In this form, all of the spatially varying environmental factors that 

affect the propagation are incorporated into  k r . 

b. Mathematical Derivation 

Assuming a solution in the format of the product of an amplitude function  A r  

and a phase function  r , we may define 

      j r
p r A r e


 . (4.5) 

Substituting this into the wave equation and equating the real and imaginary parts, yields  

  
 

 

 

2
2

2 2

1 A r
r

A rc r





   , (4.6) 

and 

        22 0A r r A r r      . (4.7) 

Taking the asymptotic limit     in Equation (4.6),  we obtain 

  
 

2

2

1
r

c r
   (4.8) 
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Equation (4.8) is referred as the Eikonal equation and describes the evolution of 

the phase front in space or the ray paths (see Figure 14). Equation (4.7) is called the 

Transport equation and describes the evolution of the amplitude along the ray paths.  



Rays

Phase fronts : is constant

x

z
 

Figure 14.  Rays and Phase Fronts. Adapted from [26]. 

Instead of assuming the asymptotic limit     in Equation (4.6), a different 

argument can be made. For frequencies such that  
 

   

2

22

1A r

A r c r


, the Eikonal 

equation is achieved.  

Other authors propose a similar argument as in [28], requiring that 

 

   

2 2

2

A r

A r c r


. According to this argument, the sufficient condition to be satisfied is 

that the amplitude of the wave and the speed of sound must not change significantly over 

distances comparable to a wavelength. The result of all of the previous arguments is 

basically the same, and at this point we can just say that a high frequency approximation 

is used to obtain the Eikonal equation. 

c. Solving the Eikonal Equation 

The Eikonal equation is a first-order, nonlinear, partial differential equation that is 

usually solved by the method of characteristics [29]. The method of characteristics 
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essentially involves recognizing that   is everywhere perpendicular to the phase front 

[30]. This defines the local direction of the ray trajectories, which are everywhere 

perpendicular to the acoustics phase fronts. 

If we introduce a family of curves that describes the evolution of the phase front 

by defining them as perpendicular to the phase front everywhere, then the ray paths are 

points in space,  r s , defined by 

 
dr

c
ds

  , (4.9) 

where s is the distance along the trajectory or the arc length along the ray. The factor c is 

included in Equation (4.9) such that the tangent vector along the ray has unit length. 

It can be shown [26] that solutions to the ray paths in two dimensions satisfy a set 

of coupled, first-order differential equations of the form 

 , ,
dr dz

c c
ds ds

    (4.10) 

and 

 
2 2

1 1
, ,

d c d c

ds c r ds c z

  
   

 
 (4.11) 

that can be numerically solved by a variety of methods. Considering a trajectory in two 

dimensions  ,r z , we require as an initial condition that the rays start at the source 

position  ,o or z  and have a defined launch angle, o  (see Figure 15), where 

  
 

 
o

o

o

dz
sindz dstan

drdr cos
ds





   . (4.12) 

Substituting Equation (4.10) into Equation (4.12), we obtain  

    
 

1
,

,
o ro o o ro

o o

dz dz
sin c r z

ds c r z ds
        (4.13) 

and 

    
 

1
,

,
o ro o o ro

o o

dr dr
cos c r z

ds c r z ds
      ,  (4.14) 

which provides the initial conditions for the parameters  and  in terms of the launch 

angle and the speed of the sound at the source position. 
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Figure 15.  Rays 2D Initial Conditions 

The ray paths characterized by Equations (4.10) and (4.11), along with the initial 

conditions, describe the direction in which the phase front evolves spatially. But they do 

not describe the amplitude of the pressure field. To obtain the complete description of the 

pressure field, it is necessary to associate a phase and amplitude for each ray. 

The phase along a ray path can be determined from the Eikonal equation, 

 
2

1

c
    . (4.15) 

Substituting Equation (4.9) into Equation (4.15), we obtain 

 
2

1 1dr

c ds c
   , (4.16) 

and simplifying yields 

  
 0

1 1
'

'

s
d

s ds
ds c c s


    , (4.17) 

where  s  is the travel time along the ray and the phase is  s  . In a multipath 

environment,  s  is important to estimate the time which different arrivals reach the 

receiver, as depicted in Figure 13b. 
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d. Solving the Transport Equation 

The amplitude along a ray path is obtained by solving the Transport equation, 

which may be written as 

     2
0A r r   . (4.18) 

The solution to Equation (4.18) can be developed in terms of ray-tube areas and 

conservation of energy flux. Consider a ray propagating in range from or  to r , as 

depicted in Figure 16, a ray tube can be constructed from nearby rays passing through the 

small area oS . When the ray tube reaches r , its cross sectional area will be S . 

Integrating Equation (4.18) over the volume of the ray tube segment, applying Gauss’ 

theorem and recognizing that the rays are normal to the phase fronts and therefore vanish 

on the sides of the ray tube yields [26], [31]  

 
   

2 2

o

o

o o

A r A r
S S

c c 
  (4.19) 

and 

     o
o

o o

Sc
A r A r

c S




 . (4.20) 

Equation (4.20) implies a rising or falling amplitude as the ray tube shrinks and expands. 

r

z

o

oS

S

or r

o

L
z

r



 

Figure 16.  Geometry of a Ray Tube 
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As shown in [30], the amplitude of the field within a ray “tube” can be expressed 

as 

 

   

 

 

2

sin

sin

sin
.

sin

o o o o o
o

o o

o o o o o

o o o

r rc
A r A r

r c z

A r r rc

A r r c z

  

   

  

   



 
   

 

 (4.21) 

In terms of transmission loss (TL), 

 

2

2
10log o

o

p
TL dB re r

P

 
   

 
 

, (4.22) 

or 

       
 ,sin

, 10log 10log 10log 10log
sin

o o

o o o o o

z r zr c
TL r z

r c r

 

   

      
          

      
.   (4.23) 

The first term in Equation (4.23) represents cylindrical spreading, the second and 

third terms account for variations in the medium density and average angle of 

propagation of the ray tube. The last term shows the effects of ray spreading or 

converging, which dominates the 2D field structure.  

The equation for the evolution of the ray amplitude, Equation (4.21), reveals two 

important features in ray propagation: 

1) 0z  : when the vertical spread of the rays z  and, consequently, the 

area S tends to zero, a high intensity region is formed where all the rays in 

the tube converge to a focal point or caustic. In this region, the amplitude 

tends to infinity, which is a limitation of classical ray theory; 

2) 0z  : after passing through a caustic, z  changes sign and the 

amplitude can become complex; therefore, Equation (4.21) may be 

rewritten as  

     2
sin

sin

jN
o o o o o

o

o o

r rc
A r A r e

r c z

  

   
 . (4.24) 

The exponential term in Equation (4.24) indicates a 2  phase change at each caustic 

(N represents the number of caustics). Therefore, to obtain the correct phase of the 
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pressure field, it is necessary to keep track of the number of caustics encountered 

by the rays. 

In addition to the phase changes that occur at caustics, rays also undergo phase 

changes at reflections. For reflections from the surface (which can be treated as a 

pressure release boundary), each ray picks up a   phase shift. Reflections at the seafloor 

can become more complicated because the phase change depends upon the reflection 

angle, which can vary considerably among all the rays contributing to the field solution at 

a point. Bottom reflections are generally not treated as ideal, but contribute to some loss 

in amplitude along the ray path. The complete description of the field at a point using a 

ray approach may then be defined as [30] 

        
,

0 , ,2

1

, ,
11

sm
b m m

c m s mm

NM i ds
iN iNc s

m m n m n
nm

p x A r r e e e










  
  

 
  , (4.25) 

where 1,m M  are the number of eigenrays, 
mA  is the amplitude of the m

th
 eigenray, 

 , ,m n m nr  is the reflection coefficient (which may be complex) for circumstances in 

which the m
th

 eigenray encountered 
,b mN  bottom reflections at points 

1m nr , 
,c mN  is the 

number of caustics, and 
,s mN  is the number of surface reflections of the m

th
 eigenray. The 

actual trajectory of the eigenray is defined by the path sm. Keeping track of all of the 

various factors that determine the pressure field from ray calculations can be a 

challenging task, and is at the root of all acoustic ray tracing models. 

e. Geometric and Gaussian Beams 

In addition to caustics, the standard ray tracing method produces perfect shadow 

zones, which represent limitations of the classical theory. One way to deal with such 

artifacts is the use of geometric or Gaussian beams [26], [32], and [33]. This approach 

permits some leakage energy in the shadow zones and smooths out the caustics, 

providing a good agreement with more computationally intensive full-wave models. 

As described in [26], a beam is constructed around each ray where the amplitude 

of the beam is tapered to vary from the central ray, decaying to zero on either side. The 
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half-width  W s  of the beam is defined by the distance from the central ray where the 

beam amplitude is made to vanish. This width is chosen precisely so that the beam 

vanishes at the location of its neighboring ray. Thus, the pressure for the beam is given by 

        
, ,

j sbeam beamP s n A s s n e


 ,  (4.26) 

where  s can be the hat-shaped function (geometric beam) [32] or a Gaussian function 

(Gaussian beam) [34], respectively 

  

 

 
 

,

0

W s n
for n W s

s n W s

elsewhere



 


 



,  (4.27) 

or 

    

2

,

n

W s
s n e

 
  

  ,  (4.28) 

where 0n   represents the central ray. In this approach, the ray becomes a central ray of 

a Gaussian varying beam, Equation (4.28), or a linear varying beam, Equation (4.27), as 

depicted in Figure 17. 

 ,s n

 W s
n

1

 W s
 

Figure 17.  Geometric Beams around Each Ray. Adapted from [32]. 

f. BELLHOP Beam Tracing Model 

In this dissertation, the ray tracing code used is BELLHOP, developed by Michael 

Porter and available under GNU public license in the Ocean Acoustic Library website. 

According to [24], BELLHOP is a beam tracing model for predicting acoustic pressure 
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fields in ocean environments where several types of beams may be implemented, 

including Gaussian and hat-shaped beams, with both geometric and physics-based 

spreading laws. BELLHOP can generate a variety of outputs including transmission loss 

and eigenrays. It allows for range-dependence in the top and bottom boundaries 

(altimetry and bathymetry), as well as in the sound speed profile. Additional input files 

permit the specification of directional sources as well as geoacoustic properties for the 

bounding media. Top and bottom reflection coefficients may also be included.  

The eigenrays (amplitude and phase) represent the ideal channel impulse response 

(IR). This computation is done exactly the same way as is done for a regular ray trace. 

However, BELLHOP only saves the rays whose associated beams make a contribution to 

the specified receiver location.  

2. Matched Peak Impulse Response Processor 

In this section an algorithm that makes use of a ray tracing code to model the 

environment is developed to estimate the range between a UUV and a reference point. 

The use of a ray tracing code permits us to take into account the multipath and the 

refraction of the sound waves in the range estimation. 

a. Motivation 

Problems involving estimates of distances underwater belong to a broader class of 

source localization problems which have been extensively studied. The state-of-the-art 

approach makes use of techniques such as matched field processing [35] or matched IR 

processing [36] to estimate several acoustic parameters, including source position and 

horizontal distances from source to target. 

Those techniques involve acoustic field measurements (in the case of the matched 

field processing) or channel IR measurements (in the case of the matched IR processing), 

and acoustic propagation models to generate synthetic patterns. These synthetic patterns 

are then, iteratively, used to match the complete measured pattern. 

This approach can produce good results in estimating distances underwater but 

demands very high computational efforts and may take hours to converge. Therefore, it is 
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not suitable for use in real-time applications. In what follows, it will be shown that the 

acoustic modem’s matched filter output may be considered for estimation of the channel 

IR (measured estimation). This estimation can be emulated, generating a prediction for 

the channel IR (synthetic prediction). 

The synthetic predicted channel IR can then be used iteratively to match the 

measured estimated channel IR. However, instead of trying to match the entire time 

series, as in the traditional approach, only the arrival with the highest amplitude is 

utilized (see Section A). This algorithm shall run inside the UUV and is fast enough to 

work in real-time.  

b. Acoustic Channel IR Estimation 

In practical applications in which a single source transmits to a receiver, an 

estimate of the acoustic channel IR is obtained by transmitting a broadband pulse (like a 

chirp) from the source, which is then match filtered (or cross-correlated) at the receiver. 

Assuming that the received signal  'x t  is cross-correlated with a replica of the 

transmitted signal,  x t , such that 

      *ˆ 'h t x x t d  




  , (4.29) 

then  ĥ t  may represent an estimation for the channel IR. 

The received signal can be understood as being the result of the convolution 

between the transmitted signal and the acoustic channel complex IR plus noise (for 

simplicity, no attenuation or other propagation effects are being considered). Specifically, 

      ' ( )x h x d n     




   , (4.30) 

where  h  is the true acoustic channel IR. Substituting Equation (4.30) into (4.29) 

yields 
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 (4.31) 

If the transmitted signal autocorrelation has an impulse-like behavior, the term in 

brackets in Equation (4.31) can be approximated as [36] 

      *

xx x t d E t     




    , (4.32) 

where xE is the energy of the signal. 

Normalizing Equation (4.32) to the energy of the signal, substituting into 

Equation (4.31), and considering that signal and noise are uncorrelated, produces 

        ĥ t h t d h t   




   . (4.33) 

From Equations (4.32) and (4.33), we may conclude that when the transmitted signal 

autocorrelation approaches an impulse-like response, then the matched filter (or cross-

correlation) output provides an accurate estimate of the channel IR. 

As described in Chapter III, Section C, one of the most common waveforms used 

in underwater acoustics is the HFM pulse. The half-width of the main lobe in its 

autocorrelation is approximately 1/B (B is the swept bandwidth), which means that 

increasing the transmitted bandwidth improves the quality of the estimation for the 

channel IR. The drawback of increasing the bandwidth is that, in order to maintain the 

same SNR at the receiver, the power of the signal must be increased since noise power 

increases with bandwidth. 

c. Matched Peak IR Processor Algorithm 

Considering a single source and receiver, the formulation of the ray theory in the 

time domain permits a fast assessment of the ideal acoustic channel complex IR 

(amplitude and phase of the eigenrays), where each eigenray may be represented by a 

complex amplitude function as 

 ( ) , 1, 2 , ...ij

ii Ae i M


 A , (4.34) 
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where 
iA  is the amplitude and

i  is the phase of the i
th

 eigenray, and M is the number of 

eigenrays. Note that phase i  accounts for boundary reflections and caustics. 

A synthetic received signal may be approximated by phased addition of the 

complex amplitude associated with each eigenray, which resembles the convolution 

between the ideal channel IR and a replica of the transmitted signal. According to [26], 

Chapter 8, a synthetic received signal may be constructed as 

      
1

ˆ'
m m

M

r m I m

m

x t A x t A x t 


    , (4.35) 

where , , and
m mr I mA A   are, respectively, the real component of the complex amplitude, 

the imaginary component of the complex amplitude, and travel time of the m
th

 eigenray. 

M is the number of contributing eigenrays,  x t  is the transmitted signal, and  x̂ t  is the 

Hilbert transform of the transmitted signal. 

To emulate the signal processing made by the acoustic modems, the synthetic 

received signal must be shifted to baseband (for more efficient processing) and match 

filtered considering a baseband replica of the transmitted signal. The output of the 

matched filter will represent the synthetic channel IR. In this work, the time of the 

highest peak is defined as the predicted time, tp. 

In Section A, we have seen that the measured one-way travel time, mt , calculated 

by the Benthos acoustic modems, is based on the time of the highest peak in the matched 

filter output. The approach used here is to iteratively attempt to match (within a 

tolerance) tp with mt  by varying the horizontal distance, R, between the UUV and the 

reference point in the ray tracing code. The best estimate for R is achieved when 

m p mt t t     , where  is the assumed tolerance. 

This approach is fast enough to run on dedicated hardware in real time and is 

more accurate for estimation of range than a simple multiplication of the one-way travel 

time with the characteristic medium sound speed. Any eventual errors are small enough 

to be handled by the tracking algorithm, as is described in Chapter V.   
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The complete algorithm is depicted in Figure 18. Consider a UUV equipped with 

an acoustic modem operating in a known region (bottom properties and bathymetry are 

known), which is able to measure the sound speed of the water column. In this area, 

assume that a network of reference points is available, as described in Chapter II.  

The UUV and one of the reference points establish acoustic communication, and 

the acoustic wave travel time tm (one-way travel time) is measured. As part of this 

measurement, the UUV receives the coordinates of the reference point (latitude, 

longitude, and depth). Latitude and longitude are later used in the tracking algorithm 

(Chapter V). 

After a successful travel time measurement, the algorithm (running inside the 

UUV) starts loading into the ray tracing code (BELLHOP) the first guess for the 

horizontal distance between the UUV and the reference point ( 1500 x mR t ), having 

already pre-loaded the bottom properties, the bathymetry, and measured sound speed 

profile. Then the depth of the UUV and the depth of the reference point are loaded into 

BELLHOP. 

BELLHOP is set to give as output the complex IR (eigenray amplitudes and 

phases) of the ocean waveguide. Now, the synthetic received signal can be constructed 

according to Equation (4.35), shifted to baseband, and match filtered. The time of the 

highest peak, 
pt , is taken and compared with the measured one-way travel time, 

mt . This 

process is repeated, adjusting the horizontal distance, R, until 
pt  and mt  match within the 

tolerance set by  . 
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Figure 18.  Matched Peak IR Processing Flowchart 



48 

d. Examples of Application

During the sea trials that took place in Monterey Bay on May 20, 2015, several 

successful travel time measurements between the UUV and the command ship were 

taken. In addition, the probe signal’s matched filter output associated with each 

measurement was also recorded. 

The area of operation, the bottom properties, the sound speed profile, and the 

assumption made for the beam patterns are described as follows.  

The assets were operating in a relatively flat area, around 75 m of depth, at the 

edge of the Monterey Bay submarine canyon (see Figure 19). 

Colorbar scale in meters. 

Figure 19.  Area of Operation for May 20, 2015, and August 12, 2015, Sea Trials 

The bottom was modeled following Hamilton’s approach [37], and the sediments 

were identified as being silt clay/sand-silt-clay with the following characteristics: 

- Compressional sound speed: 1560 m/s; 

- Density: 1.6 g/cm
3
;

- Attenuation for compressional waves: 5 dB/m. 
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The sound speed profile was measured by the UUV and its average is depicted in Figure 

20. 

 

Figure 20.  Sound Speed Profile Measured by the UUV on May 20, 2015 

For the purpose of calculations in this dissertation, the acoustic modem’s 

horizontal and vertical transducer beam patterns are considered omnidirectional. This is 

known to be a simplification, and further efforts to characterize the beam patterns of the 

transducers mounted in the assets are planned. 

Example 1:  Mission-4: 20:55:10 (hh:mm:ss) GMT 

- UUV depth: 44 m 

- Command ship transducer depth: 5 m 

- Measured one-way travel time (tm): 528.13 ms 

- Slant range rough estimate (1500 x tm): 792.2 m 

- Horizontal range rough estimate: 791.2 m 

Figure 21 shows (a) the paths of the eigenrays and (b) the amplitude and time of 

arrival associated with these rays. Note that the first group of arrivals (representing the 

direct path and a surface bounce) has smaller amplitude than the second group of arrivals 

(representing a bottom bounce and surface-and-bottom bounce). This counterintuitive 
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behavior is due to the spreading of the ray tubes along their trajectories, according to the 

following explanation. 
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Figure 21.  (a) Eigenrays and (b) Ideal IR before Matched Peak IR Processing. 

Data from Example 1 

There are two rays for each arrival. Each one represents the central ray of the 

limiting tube that is contributing to the pressure field at the receiver (Sections B.1.e and 

B.1.f). These ray tubes undergo spreading and shrinking along their trajectories. The rate 

of spreading or shrinking is maximized in regions of large sound speed gradients. Note 

that in the absence of a sound speed gradient, the rays travel in straight lines and the rate 

of ray spreading is constant with range. For the sound speed in this environment, the 

sound speed gradient is primarily negative at all depths (see Figure 20), but the largest 

gradients are near the surface where the ocean temperature varies significantly with 

depth. Let us consider two situations (referring to Figure 21): 

 Those rays that arrive first follow a direct path and a nearby path that 

reflects from the surface. The entire propagation path of these rays is 

concentrated in the shallowest part of the water column where the sound 

speed gradient is maximum. Thus, the rate at which the associated ray 

tubes spread is also maximized, thereby reducing the amplitude observed 

at the receiver. 
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 The next set of ray arrivals corresponds to steeper propagation paths that 

do not remain in the upper part of the water column. Instead, most of their 

propagation path is concentrated in the lower regions of the water column 

where the sound speed gradient is significantly smaller. The result is that 

the cumulative ray tube spreading along these paths is less than the direct 

path, and consequently the contribution to the pressure field at the receiver 

is larger, despite the longer path lengths and losses at the boundaries. 

Figure 22 provides a comparison between (a) the acoustic modem matched filter 

output (measured channel IR estimation—real data) and (b) a matched filter output 

prediction, as described in Section B.2.c (predicted channel IR). To save memory, the 

modem did not record the complete matched filter output time series. For this reason, the 

time axes are different on the plots. Therefore, the time of the highest peak in Figures 

22a, 25a, and 28a should be understood as being the measured one-way travel time (tm) 

instead of what is depicted. Nevertheless, the numbers indicated on Figures 22a, 25a, and 

28a are still valid to calculate the time difference between the highest peak and the first 

arrival. 
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Figure 22.  Acoustic Modem (a) Matched Filter Output and 

(b) Matched Peak IR Algorithm Output. 

Data from Example 1 

In Section B.2.c, an algorithm to match the time of the highest peak in the 

predicted matched filter output (predicted channel IR) with the measured one-way travel 

time was developed making use of a ray tracing code to model the propagation through 

the environment. Figure 22b represents the result of this algorithm after minimizing the 
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difference between measured and predicted highest peak times. Note that the time of the 

highest peak in Figure 22b matches with the one-way travel time measured by the 

acoustic modem. 

Another important point is that there is a match between real data (Figure 22a) 

and the prediction (Figure 22b) when the time difference between the first and the highest 

peaks is compared. Probably due to noise or some kind of scattering (in the water column 

or at the boundaries), no good match in the last portion of Figure 22 (a) and Figure 22 (b) 

can be found. 

The final result depicted in Figure 23 shows that the horizontal distance estimated 

when the peaks are matched is 782.4 m, compared with the original rough estimate of 

791.2 m. The range correction provided by the algorithm is 8.8 m, in this case. 
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Figure 23.  (a) Eigenrays and (b) Ideal IR after Matched Peak IR Processing. 

Data from Example 1 

Example 2: Mission-2: 19:04:41 (hh:mm:ss) GMT 

- UUV depth: 1.5 m 

- Command ship transducer depth: 5 m 

- Measured one-way travel time (tm): 323.6 ms 

- Slant range rough estimate (1500 x tm): 485.4 m 

- Horizontal range rough estimate: 485.4 m 

Figure 24 shows (a) the eigenray paths and (b) the amplitude and time of arrival 

associated with these rays. Note that the first group of arrivals (representing the direct 
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path and a surface bounce) has greater amplitude when compared with the second group 

of arrivals (representing a surface-and-bottom bounce and surface-bottom-and-surface 

bounce). 
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Figure 24.  (a) Eigenrays and (b) Ideal IR before Matched Peak IR Processing. 

Data from Example 2 

In this case, the attenuation and bottom losses associated with the longer path 

length are the major factors that cause the smaller amplitude in the second group of 

arrivals (Figure 24b). Another interesting point is the small time (and path length) 

difference between the direct path and the surface bounce in the first group of arrivals. 

Due to this small time difference, surface interference may play an important role in the 

result presented by the matched filter output. 

As before, the time of the highest peak in Figure 25b matches with the one-way 

travel time measured by the acoustic modem, and there is a match between real data 

(Figure 25a) and the prediction (Figure 25b) when the time difference between the first 

and the highest peaks is compared. Again, probably due to noise and some kind of 

scattering, no match in the last portion of Figure 25 (a) and Figure 25 (b) can be found. 
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Figure 25.  Acoustic Modem (a) Matched Filter Output and 

(b) Matched Peak IR Algorithm Output. 

Data from Example 2 

It is interesting to note the effect of surface interference in the first group of 

arrivals. Due to the small time difference, the surfaced reflected wave (180º out of phase) 
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almost completely cancels the direct wave contribution, causing a reduction in the 

matched filter output for the first peak (see Figure 25b).  

The measured data shows similar behavior (Figure 25a) although, apparently, the 

reduction in the first peak was not as severe as predicted by the ray model. An attenuation 

in the second group of arrivals associated with the UUV and command ship transducer’s 

beam patterns may be one contributing factor for this behavior; the beam patterns were 

considered omnidirectional in all calculations. Changes in the transducer’s depth, due to 

wave motion, in both assets may also be a contributing factor, as could scattering of the 

surface reflected path. In this particular case, the UUV was at the surface in the “comms” 

position (i.e., with head tilted down and tail [the antenna] tilted up), which can be heavily 

affected by surface wave motion. The changing in depth, caused by the wave motion, 

may affect the amplitude of the arrivals. 

The final result, depicted in Figure 26, shows that the horizontal distance 

estimated when the peaks are matched is 461.7 m, compared with the original rough 

estimate of 485.4 m. In this case, the range correction provided by the algorithm 

is 23.7 m.  
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Figure 26.  (a) Eigenrays and (b) Ideal IR after Matched Peak IR Processing. 

Data from Example 2 
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Example 3: Mission-4: 20:41:06 (hh:mm:ss) GMT. 

- UUV depth: 48.2 m 

- Command ship transducer depth: 5 m 

- Measured one-way travel time (tm): 430 ms 

- Slant range rough estimate (1500 x tm): 645 m 

- Horizontal range rough estimate: 643.6 m 

Figure 27 shows (a) the eigenray paths and (b) the amplitude and time of arrival 

associated with these rays. Note that the first group of arrivals (representing the direct 

path and a surface bounce) has smaller amplitude when compared with the second group 

of arrivals (representing a bottom bounce and surface-and-bottom bounce). Again, this is 

due to the spreading of the ray tubes along their trajectories. 
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Figure 27.  (a) Eigenrays and (b) Ideal IR before Matched Peak IR Processing. 

Data from Example 3 

As in the previous examples, the time of the highest peak in Figure 28b matches 

with the one-way travel time measured by the acoustic modem, and there is a match 

between real data (Figure 28a) and the prediction (Figure 28b) when the time difference 

between the first and second peaks is compared. Again, probably due to noise and some 

kind of scattering, it is hard to find a good match in the last portion of Figure 28 (a) and 

Figure 28 (b). 
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Figure 28.  Acoustic Modem (a) Matched Filter Output and 

(b) Matched Peak IR Algorithm Output. 

Data from Example 3 

In Figure 27, the second group of arrivals (representing a bottom bounce and 

surface-and-bottom bounce) has higher amplitude than the first group of arrivals 

(representing the direct path and a surface bounce). However, Figure 28b indicates that 
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the interference between arrivals produced the opposite effect, and the first group 

of arrivals produces the highest IR peak. This effect was confirmed in the real data 

(Figure 28a).  

Also observable in the Figure 28 plots is a mismatch of the amplitude difference 

between the first and second arrival groups in the real data compared with the prediction. 

This mismatch could be associated with the transducer beam patterns on the UUV and 

command ship, surface scattering, or unknown environmental effects. 

The final result, depicted in Figure 29, shows that the horizontal distance 

estimated when the peaks are matched is 642.2 m, compared with the original rough 

estimate of 643.6 m. The range correction provided by the algorithm is only 1.4 m. This 

small difference simply accounts for the refraction of the sound waves (rays bending 

versus straight line propagation), since it is this first arrival that provides the highest peak 

in the matched filter output. 
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Figure 29.  (a) Eigenrays and (b) Ideal IR after Matched Peak IR Processing. 

Data from Example 3 

To claim any improvement associated with the method developed in this chapter, 

we use the horizontal distances estimated when the peaks are matched and roughly 

estimated as inputs for the tracking algorithm, as developed in Chapter V, and the results 

are compared in Chapter VII.Equation Chapter (Next) Section 1 
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V. THE TRACKING ALGORITHM 

Parts of this chapter were previously published by IEEE [1]. 

As defined in [38], “estimation is the process of inferring the value of a quantity 

of interest from indirect, inaccurate and uncertain observations,” and “tracking is the 

estimation of the state of a moving object that can be done using one or more sensors at 

known locations.” The Kalman filter, in all its variations, is one of the most widely used 

methods for tracking and estimation. 

In this chapter, a tracking algorithm based on the KF is developed for a UUV. 

Due to non-linearities in the measurement equation two approaches are taken, first using 

the EKF and then using the UKF. The advantages and disadvantages of both approaches 

are highlighted. Additionally, tuning and smoothing algorithms are discussed and, as sea 

current is part of the UUV state representation, a consensus algorithm to take advantage 

of these predictions from different UUVs is developed. 

A. KALMAN FILTER 

The KF [39] can be seen as an optimal state estimator for discrete-time linear 

stochastic dynamic systems for which state space representation is given by Equations 

(2.13) and (2.14). KF is the optimal minimum mean square error estimator when all the 

noises entering the system (including the initial state error) are Gaussian. If these random 

variables are not Gaussian, KF is still the best (minimum error variance) linear state 

estimator [38]. 
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KF is a recursive filter composed of two steps: 

 Prediction: the state of the system is predicted according to the state 

equation, given the previous updated state estimate; 

 Measurement update: prediction is updated given a measurement collected 

at this time step. 

Derivations of the KF equations can be found in [9], [38] and are not presented in this 

dissertation. 

a) System model and initial assumptions 

The state and measurement equations for a discrete-time linear stochastic dynamic 

system, as previously stated in Equations (2.13) and (2.14), are 
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where, for simplicity, D in Equation (2.14) was set to zero, and F, G, u, and H are 

deterministic sequences assumed to be known for all k. The noises  k and  k  are 

assumed to be zero mean, white (i.e., uncorrelated) Gaussian processes, such that 
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  (5.2) 

At each step (k), the state estimate and error covariance matrix is determined by a 

sequence of well-defined prediction and measurement updates (also called correction), as 

follows: 

b) Prediction 
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where  ˆ k kx  is the last updated state estimate and  k kP  is the covariance matrix 

associated with this estimate. 

c) Measurement update: 
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where 

 
1kK  is called the Kalman Gain matrix; 

  ˆ 1 1k k x  is the updated state and  1 1k k P  is the covariance matrix 

associated with the updated state; 

  1k z  is the measurement. If no measurement is available at this step, just set 

   ˆ ˆ1 1  1k k k k   x x  and    1 1 1k k k k   P P , ignoring step (c). 

B. EXTENDED KALMAN FILTER  

In many cases, dynamic systems are not linear by nature, which means that KF 

cannot be used for state estimation. In such situations, the state or the measurement 

equations can be non-linear. The most common approach makes use of Taylor series 

expansions to treat the non-linearities, giving origin to the EKF. 

a) System model and initial assumptions: 

The state and measurement equations for a discrete-time non-linear stochastic 

dynamic system, as previously stated in Equations (2.11) and (2.12), are 
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where, for simplicity,  ( )kg u  in Equation (2.11) was set to zero assuming no 

deterministic inputs, and  ( )kf x  and  k  h x  are non-linear functions. The noises 

 k and  k  are assumed to be zero mean, white (i.e., uncorrelated) Gaussian 

processes, as in Equation (5.2).  
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b) Taylor series expansion: 

In the classical approach, the non-linear functions are expanded to the first order  

around the latest estimate (second order expansions can be found in [38]), as 
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Substituting Equation (5.6) into Equation (5.5), we obtain 
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Hence, we have the linearized state and measurement equations 
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with deterministic terms 
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c) Prediction: 
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d) Measurement update: 
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where  1k z  is the measurement. If no measurement is available at this step, just set 

   ˆ ˆ1 1  1k k k k   x x  and    1 1 1k k k k   P P , ignoring step (d). 

C. UNSCENTED KALMAN FILTER 

The UKF as seen in [40], [41], and [42] is a technique that utilizes the unscented 

transform (UT) [43], [44], and can be applied in models of the form of Equation (5.5). 

Instead of using linear approximations, as EKF requires, the idea of the UT is to 

deterministically choose a fixed number of sigma points that capture the mean (state) and 

covariance of the original distribution. These sigma points are then propagated through 

the non-linearity, and the mean and covariance of the transformed variable are estimated 

from them. According to [42], UT is able to capture higher order moments when 

compared with Taylor series based approximations. 

Assuming the system model (state and measurement equations) and initial 

assumptions as in Equation (5.5), at each step (k), the general approach is along similar 

lines as the KF and the EKF, by  prediction and measurement update as follows [45]: 

a) Prediction 

 - Form sigma points: 
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where the matrix square root denotes a matrix such that 
T

P P P , n is the length of the 

state,  
i

  denotes the i
th

 column of the matrix, and   is a scaling parameter defined as 

 2 n n     . The parameters   and   determine the spread of the sigma points 

around the mean. 

 - Propagate the sigma points through the state model: 

  ( ) ( )ˆ 0,...,2 .i i

k k i n f    (5.15) 
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- Compute the predicted state and covariance: 
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where the weights ( )W m

i
and ( )W c

i
are defined as 
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and   is a parameter that can be used to incorporate prior information on the (non-

Gaussian) distribution of the state. 

b) Measurement update 

- Form the sigma points: 
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- Propagate the sigma points through the measurement model: 
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- Compute the predicted measurement mean k  , covariance of the measurement 

kS , and cross-covariance of the state and measurement, kC  : 
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 67 

- Compute the Kalman Gain and the updated state and covariance: 
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where  1k z  is the measurement. If no measurement is available at this step, just set 

   ˆ ˆ1 1  1k k k k   x x  and    1 1 1k k k k   P P , ignoring step (b). 

D. KF-BASED TRACKING ALGORITHMS 

For convenience and completeness, some equations in this section are repeated 

from Sections B and C of this chapter, and from Chapter II, Section B.3. 

1. EKF-Based UUV Tracking Algorithm 

As demonstrated in Chapter II, the UUV state space representation is composed 

by a linear state equation and a non-linear measurement equation. 

a) System model and initial assumptions: 

From Equation (2.28), the UUV state and measurement equations are 
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where 

 The matrices  kF  and  kG  are deterministic and known for all k: 
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 The input sequence  ku is a deterministic and known for all k: 
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      
2 22z ( ) r rk r k x k y k    is the measurement; 
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              
2 2

h , 2 2r rk k x k x k x k y k y k y k     x  is a non-linear function; 

 The noises  k and  k  are assumed to be zero mean, white (i.e., 

uncorrelated) Gaussian processes as in Equation (5.2). 

In the measurement, ( )r k  is the horizontal distance from the UUV to the 

reference point estimated according to Chapter IV (Section B.2.c). The coordinates of the 

reference point (longitude and latitude mapped to Cartesian coordinates) are  rx k  and 

 ry k . 

b) Taylor series expansion 
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where 
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The final result in Equation (5.24) is also known as the Jacobian matrix. 

c) Prediction 
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where  ˆ k kx  is the last updated state estimate and  k kP  is the 4x4 covariance matrix 

associated with this estimate. Modeling  k  as continuous white noise acceleration, 

according to [38], the covariance matrix kQ  takes the form 
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where q is the tuning parameter and t  is the sampling time. 

d) Measurement update 
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where  1k z  is the measurement. If no measurement is available at this step, just set 

   ˆ ˆ1 1  1k k k k   x x  and    1 1 1k k k k   P P , ignoring step (d). 

2. UKF-Based UUV Tracking Algorithm 

Assuming the system model and initial assumptions as in Equation (5.22), at each 

step (k) the following operations are performed [45]: 

a) Prediction 

 - Form sigma points: 
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where the matrix square root denotes a matrix such that 
T

P P P , n is the length of 

the state,  
i

  denotes the i
th

 column of the matrix, and   is a scaling parameter defined 

as  2 n n     . The parameters   and   determine the spread of the sigma points 

around the mean. The vector  ˆ k kx  is the last updated state estimate and  k kP  is the 

4x4 covariance matrix associated with this estimate. 

- Propagate the sigma points through the state model: 

      ( ) ( )ˆ , 0,..., 2 ,
i i

k k
k k k i n  F G u    (5.29) 

where  kF ,  kG , and  ku  are defined in Equation (5.22). 
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- Compute the predicted state and covariance: 
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where the matrix kQ is defined in Equation (5.26), and the weights ( )W m

i
and ( )W c

i
are 

defined as 
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and   is a parameter that can be used to incorporate prior information on the (non-

Gaussian) distribution of the state. 

b) Measurement update 

- Form the sigma points: 
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- Propagate the sigma points through the measurement model: 
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where            
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( )ix is the position 

in x of the i
th

 sigma point and ( )iy  is the position in y of the i
th

 sigma point. 

- Compute the predicted measurement mean k  , covariance of the measurement 

kS , and cross-covariance of the state and measurement, kC :  
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- Compute the Kalman Gain and the updated state and covariance: 
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  (5.35) 

where  z 1k   is the measurement. If no measurement is available at this step, just set 

   ˆ ˆ1 1  1k k k k   x x  and    1 1 1k k k k   P P , ignoring step (b). 

E. GENERAL OBSERVATIONS 

In this section, the advantages and disadvantages of using EKF and UKF are 

highlighted, and an alternative model considering non-additive Gaussian noise is briefly 

discussed. 

1. EKF and UKF Comparison 

As seen in Section B, EKF makes use of Taylor series expansions to treat the non-

linearities in the state space model. This approach introduces limitations in the use of this 

technique. First, the non-linearities need to be differentiable and second, higher order 

moments are not considered in the Taylor series expansion. 

As presented in Section C, instead of linear approximations, UKF makes use of 

deterministically chosen sigma points to capture the true mean and covariance of the 

states. Those points are then propagated through the non-linearities, and the mean 

(predicted state) and covariance are estimated from them. This process is also called 

statistical linearization. 
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Advantages of the UKF in comparison with EKF are: 

 Non-linearities do not need to be differentiable nor do their Jacobian 

matrices need to be calculated; 

 UKF can capture higher order moments better than EKF [42]. 

Despite these advantages, UKF requires more computing efforts due to the 

generation and propagation of the sigma points. The number of sigma points (N) is a 

function of the size of the state (n), 2 1N n  , and depending on the size of the state, the 

computational load can represent a limiting factor. 

2. Non-additive Gaussian Noise 

A different model considering non-additive Gaussian noise in the measurement 

equation can be used, and for this approach the UUV state space representation becomes 
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  (5.36) 

The differences in the presented EKF and UKF algorithms in comparison with this case 

are small and, to avoid repetition, are not be presented in this dissertation. However, they 

can be found in [45]. 

F. TUNING 

The performance of KF-based algorithms is heavily dependent on the tuning 

parameters. These parameters are often set manually at great cost of engineering time 

leading to, generally, non-optimum choices. 

In KF and EKF the tuning parameters are the covariance matrices of the 

measurement and plant noises (R and Q) only. The UKF requires, additionally, the tuning 

of three scalar parameters ( ,  , and  ) also known as hyper-parameters.  

The hyper-parameters   and   are related with the spreading of the sigma 

points, and the hyper-parameter   is related to the distribution of the filtered states. 

Some heuristics to choose these tuning parameters have been proposed [40], [41], but 

there is no consensus regarding such methods. An increasing number of authors have 
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proposed the use of optimization techniques (or optimizers) to select the hyper-

parameters [46], [47], [48], or the covariance matrices of the noises. 

In this approach, the KF-based algorithm is used to construct the objective 

function (or cost function)  f x  where, for the most comprehensive case (UKF), 

 , , , ,  x R Q  is subjected to the feasible set   such that x . The optimization 

technique will find the best vector x  over all possibilities in   that minimizes or 

maximizes the objective function.  

The objective function is not unique, and in some circumstances, the choice of the 

most suitable objective function can be very challenging. The existence of discontinuities 

and multiple local extrema on the objective function may be a problem for the optimizer. 

Using the tracking data of the KF-based algorithm, it is possible to define the 

following objective functions: 

a) Residual measurement error 

Represents the quadratic measurement error weighted by the associated 

covariance matrix. It is used when the set of measurements is reliable. The optimization 

technique should find a vector that minimizes the objective function 

       
1

ˆ ˆ( ) ( )
N T

k k kk k k k
k

f z h x S z h x


  x , (5.37) 

where kz  is the measurement at discrete time k, 
kS is the covariance matrix associated 

with this measurement, ˆ( )
k k

h x  is the nonlinear measurement equation evaluated for the 

updated state ˆ
k k

x , and N is the number of measurements available. 

b) Residual prediction error 

Represents the quadratic prediction error weighted by the associated covariance 

matrix. It is used when “ground truth” data is available. The optimization technique 

should find a vector that minimizes the objective function 

       
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ˆ ˆ
N T

k k kk k k k
k

f


  x x x P x x ,  (5.38) 
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where 
kx  is the true state at discrete time k, ˆ

k k
x  is the updated predicted state at discrete 

time k,
kP is the covariance matrix associated with this state, and N is the number of states 

available. 

c) Log-likelihood of the measurements: 

Used in Gaussian processes when the set of measurements is reliable. The 

optimization technique should find a vector that maximizes the objective function [49] 
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where kz  is the measurement at discrete time k, 
kS is the covariance matrix associated 

with this measurement, and N is the number of measurements available. 

d) Log-likelihood of the states 

Used in Gaussian processes when “ground truth” data is available. The 

optimization technique should find a vector that maximizes the objective function [49] 
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where kx  is the true state at discrete time k, 
kP is the covariance matrix associated with 

the predicted state ˆ
k k

x , and N is the number of states available. 

In all the preceding objective functions, the input data of the KF-based algorithm 

is used as training data. The quality of the resulting tuning will depend on how well the 

training data represents the situations that the filter could encounter in real applications. 

Ideally, an ample set of training data, representing different conditions (ambient noise, 

sea state, relative positioning between assets, etc.) should be available to select the tuning 

parameters. In environments where the conditions during the mission are expected to 

change significantly, the tuning would probably have to be redone. In this case, different 

sets of tuning parameters could be stored in the UUV and used accordingly.  

The selection of the optimal tuning parameters, for a given training data, involves 

several runs of the KF-based algorithm (UKF or EKF) and it can take time to converge. 

As seen in Figure 30, the process starts by initializing the tuning parameters. The UKF 
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then runs and the cost function is calculated. To be able to find the cost function’s 

extrema (minimum or maximum), the optimizer will run UKF and calculate the cost 

function for several different tuning parameters. Different techniques can be used to find 

the extrema and most popular solvers make use of variational calculus algorithms, as in 

MATLAB fmicon (constrained nonlinear minimization), or artificial intelligence 

techniques, as in the genetic algorithms or simulated annealing algorithms. 
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Figure 30.  Tuning Flow Chart for UKF 
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G. SMOOTHING 

Smoothing is a non-real-time processing that uses all measurements between t1 

and t2 to estimate the state of a system at certain time t, where 1 2t t t   [9]. It is 

particulary useful to provide realistic trajectories during the transient portions of the 

tracking and in situations where few measurements are available. 

Smoothing requires a backward iteration after the forward filtering has been 

performed resulting in  ˆ k kx ,  ˆ 1k kx ,  k kP , and  1k kP that should be stored 

[38]. The smoothing algorithm presented in this section is known as the KF fixed interval 

smoother or Rauch-Tung-Striebel smoother. 

Considering KF and EKF, for all k from k=N-1 until k=0 (N is number of 

samples) the following operations must be performed [9]: 

a) Smoother gain calculation 
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b) Smoothed state and covariance 
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For UKF additionally, during the forward filtering, the cross-covariance 1k C  

must be stored resulting in the following operations from k=N-1 until k=0 [45]: 

a) Smoother gain calculation 
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b) Smoothed state and covariance 
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H. CONSENSUS CURRENT ALGORITHM 

As shown in Chapter II, as part of the UUV tracking model, the drift caused by 

the sea current was modeled as a random walk and is part of the state of the system. 
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Predictions for the sea current from different UUVs may be transmitted via the reference 

point at the surface to a command ship or shore-based command center for further 

processing. The purpose of this section is to develop a consensus algorithm able to take 

advantage of this information. 

In the classical problem of consensus, a group of agents need to agree (or a 

solution needs to converge) upon a certain quantity of interest [50]. It is important to 

consider that some of the agents may have access to better information than others. In this 

situation, the consensus algorithm needs to be biased in favor of those with more reliable 

information [51].  

There are basically three types of networks in consensus problems: 

1. In a centralized network, the agents involved only have the ability to 

communicate with a centralized location; 

2. In a decentralized network, the agents involved only have the ability to 

communicate with each other; 

3. In a mixed network, the agents have the ability to communicate with a 

centralized location and with each other. 

Let us expand the scenario described in Chapter II (depicted in Figure 1) for a 

multi-agent (multiple UUVs) centralized network where the assets at the surface can 

share information collected from the UUVs with a shore-based command center. After a 

certain time underwater, the UUVs are able to update their position without going to the 

surface by running the KF-based algorithm. During this process, when a measurement to 

a surface asset is taken, the UUV may transmit its prediction for the sea current and 

associated uncertainty.  

This information is then transmitted, by the surface asset, to the shore command 

center using satellite communication. The command center will receive the information 

about the sea current coming from different UUVs at different times and will need to 

solve a recursive problem to find the consensus sea current (see Figure 31). 
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Figure 31.  Centralized Multi-agent Network 

The tracking algorithm, running in the UUVs, is able to make predictions for sea 

current in x and y directions, as well as predict the associated covariance. We can select 

part of the state and covariance related with the sea current to form the following 

quantities 
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where 

- c  is the sea current vector and c
P  is the associated covariance matrix;  

- 2

x  is the covariance in x, 2

y  is the covariance in y, and xy yx   is the cross-

covariance. 

Note that the covariance matrix is symmetric. An important property of 

symmetric matrices is that the eigenvalues (  ) are real and the eigenvectors (  ) are 

orthogonal to each other [52]. Eigenvalues and eigenvectors of a covariance matrix may 

be geometrically interpreted as 

- Eigenvectors are orthogonal unit vectors that represent the axis of a 

confidence ellipse for which the center is the mean (c); 

- Eigenvalues are real numbers representing the length of the ellipse axes 

(see Equation (5.46) and Figure 32).  
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ζ is a scaling factor to attribute a certain percentage to the confidence ellipse, for example, 

for a 95% confidence ellipse (considering normally distributed data) ζ = √5.991. 

Figure 32.  Ellipse Representing a Confidence Interval around the Mean c 

According to Equation (5.46)  

We can say that the eigenvector associated with the smaller eigenvalue points to 

the direction with smaller variation around the mean (or points to a more reliable region). 

From Equation (5.46) and Figure 32, the eigenvector associated with the smaller 

eigenvalue is 
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The eigenvector H  may be used to reduce the amount of data transmitted by the UUV, 

while still carrying information about the uncertainty associated with the prediction for 

the sea current. This may be done by writing 
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The UUV may now transmit only two real numbers (the angle   and the quantity 

y) instead of five real numbers as in Equation (5.45). The command center will receive y 

and H from different UUVs at different times and have to solve recursively for  c k , 

using the relationship 
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      y k k k c H . (5.49) 

Equation (5.49) may be thought of as being a measurement and the following state space 

representation may be used 
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where  kF  is the identity matrix and the noises  k and  k  are assumed to be zero 

mean, white (i.e., uncorrelated) Gaussian processes. 

The sea current  kc  in Equation (5.50) may be solved using the Kalman 

equations as shown in Section A. When the predictions for the current converge to a 

steady-state value, we have the consensus sea current (CSC). Uses for the CSC may be as 

follows:  

- the command center can use CSC in its upper level tracking algorithm; 

- CSC can be broadcasted to all UUVs to be used in their tracking 

algorithms; 

- CSC can help to decide if two UUVs have reliable position to take 

distance measurements from each other (CSC amplitude and time of the 

last position update could be the criteria); 

A complete view of the consensus algorithm is shown in Figure 33. 
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Figure 33.  Consensus Current Algorithm 
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VI. SIMULATIONS 

In this chapter, the algorithms developed in Chapter V are tested considering three 

distinct cases. The first is the ideal case where all the measurements are successful and no 

noise is present. The second case considers failure in the measurements during a certain 

portion of the UUVs mission. In the third, noise is added to the previous case. 

A scenario in which two UUVs navigating in an area where three surface assets 

are present is simulated. The surface assets, represented by Wave Gliders (WG) in 

Figure 34, have access to GPS and can share information with the shore-based command 

center via satellite as in a centralized multi-agent network, permitting evaluation of the 

consensus current algorithm. 

 

Figure 34.  Simulation Scenario 

The true trajectory of the UUVs is depicted in Figure 35. The UUVs are set to 

navigate at 1 knot in an area with a constant current of 0.5 knots at 135
o
. The starting 

point for UUV-1 is (-400m, 1400m) and for UUV-2 is (1000m, 1400m), in a Cartesian 

Iridium satellite 
constellation

GPS satellite
constellation

Shore-based
command center

Ref. Point #1
Wave Gl ider

(WG-1) Ref. Point #2
Wave Gl ider

(WG-2)

Ref. Point #3
Wave Gl ider

(WG-3)

UUV-1

UUV-2



 84 

coordinate system. For simplicity, the WGs are considered stationed at fixed positions, as 

in a perfect hovering mission. 

 

Figure 35.  UUVs True Trajectory 

A. IDEAL CASE 

In this ideal case, each UUV has a successful measurement every three minutes, 

as depicted in Figure 36. As described in Chapter II, a measurement from the UUVs to 

two or more reference points (WGs) at the same time is not possible, and no bearing 

information associated with the distance measurements is available. Therefore, in the xy-

plane, each measurement represents a circle of possible UUV positions (see Figure 37). 
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Figure 36.  Time Evolution of the Distance Measurements, Ideal Case 

0 1000 2000 3000 4000 5000 6000
-2000

0

2000

-1000

0

1000

2000

3000

4000
 

time[s]

 

Y
 a

x
is

 [
m

]

X axis [m]

WG-1 Measurement

WG-2 Measurement

WG-3 Measurement

True Trajectory UUV-1

0 1000 2000 3000 4000 5000 6000
-2000

-1000

0

1000

2000

-1000

0

1000

2000

3000

4000

5000
 

time[s]

 

Y
 a

x
is

 [
m

]

X axis [m]

WG-1 Measurement

WG-2 Measurement

WG-3 Measurement

True Trajectory UUV-2



 86 

 

Figure 37.  Distance Measurements in xy-Plane, Ideal Case 
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trajectories shows how useful the smoother is to reduce the errors during the transient 

portion of the tracking.  

Figure 40 shows the consensus current results. As UKF running in the UUVs was 

able to converge to the true current faster, the consensus current based on the UKF 

tracking has a smoother profile and converges faster than EKF.  

 

Figure 38.  Tracking Results, Ideal Case 
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Figure 39.  Error Analysis, Ideal Case 
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Figure 40.  Consensus Current, Ideal Case 
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between predictions and smoothed trajectories shows that the smoother was able to 

reduce the tracking errors during the transient portion of the tracking and during the 

period of failure in the measurements.  

Figure 45 shows the consensus current results. As in the previous case, because 

UKF running on the UUVs was able to converge to the true current faster, the consensus 

current based on UKF tracking has a smoother profile and converges faster than EKF.  

 

Figure 41.  Time Evolution of the Distance Measurements, 

Measurement Failure Case 
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Figure 42.  Distance Measurements in xy-Plane, Measurement Failure Case 
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Figure 43.  Tracking Results, Measurement Failure Case 
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Figure 44.  Error Analysis, Measurement Failure Case 

0 2000 4000 6000
0

10

20

30

40

50

60

70

time [s]

E
rr

o
r 

[m
]

UUV-1 Trajectory Errors

 

 

EKF Prediction

UKF Prediction

0 2000 4000 6000
0

2

4

6

8

10

12

14

time [s]
E

rr
o
r 

[m
]

UUV-1 Trajectory Errors

 

 

EKF Smoothed

UKF Smoothed

0 2000 4000 6000
0

10

20

30

40

50

60

70

80

90

time [s]

E
rr

o
r 

[m
]

UUV-2 Trajectory Errors

 

 
EKF Prediction

UKF Prediction

0 2000 4000 6000
0

2

4

6

8

10

12

14

time [s]

E
rr

o
r 

[m
]

UUV-2 Trajectory Errors

 

 

EKF Smoothed

UKF Smoothed



 94 

 

Figure 45.  Consensus Current, Measurement Failure Case 
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As described in Chapter IV, distances underwater are estimated using the one-way 

travel time, and the one-way travel time is estimated by the time of the highest peak in 

the modem’s matched filter output. In a multipath environment, the arrival with higher 

energy (highest peak) is not always the direct path (first group of arrivals) but is 

representative of a bottom/surface bounce arriving later. As a consequence, the distance 

is overestimated, which means that the errors associated with the distance measurements 

are always positive (biased noise). This particular characteristic is considered in the 

simulations. 

The tracking results show that both algorithms converge to the true trajectory but 

the errors are higher than in the previous cases. In Figure 47, it can be seen that UKF has 

a more stable behavior and smaller errors when compared with EKF, probably because 

UKF was able to handle the biased noise better. This result is consistent with the claim 

that UKF, by the use of sigma points, can capture the characteristics of the true 

distribution better than EKF. 

A comparison in Figure 47 between predictions and smoothed trajectories shows 

that the smoother was able to reduce the tracking errors. In Figure 48, the consensus 

current results show that the consensus based on the UKF tracking has a smoother profile 

and converges faster than EKF.  
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Figure 46.  Tracking Results, Measurement Failure Case Plus Noise 
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Figure 47.  Error Analysis, Measurement Failure Case Plus Noise 
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Figure 48.  Consensus Current, Measurement Failure Case Plus Noise 
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trajectories are depicted in Figure 49. The scenario defined was consistent with the case 

described in Section C (measurement failure plus noise). 

 

Figure 49.  True Trajectory of UUVs (Experiencing Different Currents) 

 

Figure 50.  Consensus Current, UUVs Experiencing Different Currents 
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VII. SEA TESTS 

In this chapter, the results of the sea tests that took place in Monterey Bay in 

August 2015 are presented. In a one-week sea test, two Liquid Robotics Wave Gliders 

(unmanned surface vehicles, or USVs named Mako and Tiburon) and a command ship 

(NOOA R/V Fulmar), all equipped with Teledyne-Benthos acoustic modems (ATM-900 

series) and GPS connectivity are forming a network of reference points for an Exocetus 

Coastal Glider (UUV named LG16), which is also equipped with the same type of 

acoustic modem (see Figure 51).   

The objective of the sea test was to evaluate the ability of the tools developed in 

this work (i.e., the tracking algorithm and matched peak impulse response processor) to 

track the UUV. During the sea tests, several one-hour missions were successfully 

conducted. For each mission, the UUV navigation system recorded its position 

predictions and, due to miscalibration and misalignment of its sensors and the sea current, 

errors of the order of 500 meters and above were observed between the final UUV 

predicted position and its GPS location, measured soon after it surfaced. 

During the course of the missions, several travel time measurements between the 

UUV and the reference points were successfully recorded. The travel times were 

converted to horizontal distances and supplied to the tracking algorithm for processing.  

 

Figure 51.  Sea Test Configuration 
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A. KEY ASSETS 

This section provides the basic characteristics and capabilities of the UUV and the 

Wave Gliders used in the sea trials. 

1. Exocetus Coastal Glider  

This vehicle makes use of a buoyancy engine to achieve forward motion in a saw 

tooth pattern by descending and ascending from changes in its buoyancy. There are no 

external moving parts or propeller. To maneuver, the glider has to pitch and roll its 

internal battery. It can carry a payload of 5 kg, and can reach speeds up to 2 knots. Its 

navigation system relies on a digital magnetic compass board and speed estimates based 

on the buoyancy engine dynamics. Communications capabilities include Iridium, UHF 

(Freewave radio modem), and WiFi. 

 

Figure 52.  Exocetus Coastal Glider. Source: Exocetus Autonomous Systems, 

www.exocetussystems.com   

Here at the Naval Postgraduate School the vehicle was rigged on its head with a 

syntactic foam mount for the acoustic modem as seen in Figure 53. The purpose of the 

synthetic foam mount was to offset the weight of the modem transducer to avoid 

interference with the buoyancy engine operations. 

http://www.exocetussystems.com/
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Figure 53.  Coastal Glider Rigged with Syntactic Foam Mount for Acoustic Modem 

2. Liquid Robotics Wave Glider 

This is a hybrid vehicle composed of a surface (or float) unit and an underwater 

(or sub) unit attached to each other via a tether (umbilical cable). The underwater unit is 

able to convert part of the upward and downward motion of the water column into 

forward motion by using its cantilevered wings. As waves move the system up and down, 

the underwater unit acts as a tug pulling the surface float along a predetermined course. It 

can tow up to 500 kg, and can reach speeds up to 3 knots. It has GPS connectivity and 

communications capabilities that include Iridium and WiFi. The WGs used in the sea 

tests also have an acoustic modem installed in a towfish structure, for communication 

with the UUV, as represented schematically in Figure 55. 

 

Figure 54.  Liquid Robotics Wave Glider Model SV2. Source: Liquid Robotics, 

https://www.liquid-robotics.com/     
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Figure 55.  Wave Glider Equipped with Towfish Modem. Adapted from Liquid Robotics, 

https://www.liquid-robotics.com/  

B. AREA OF OPERATION AND ENVIRONMENTAL CHARACTERISTICS 

The assets were operating in a relatively flat area around 75 m of depth at the 

edge of the Monterey Bay submarine canyon about 5 nautical miles from the shore (see 

Figure 19). Sediments in the area were identified as being silt-clay/sand-silt-clay and 

modeled as a fluid-like half-space, according to [37], with the following characteristics: 

- Compressional sound speed: 1560 m/s; 

- Density: 1.6 g/cm
3
; 

- Attenuation for compressional waves: 5dB/m.  

The sound speed profile was measured by the UUV during the tests, and its average is 

depicted in Figure 56. 

Towfish

Acoustic Modem

https://www.liquid-robotics.com/


 105 

 

Figure 56.  Average Sound Speed Profile Measured by the UUV on August 12, 2015 
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Based on the sound speed profile depicted in Figure 56, the rough estimates of the 

distances from the UUV to the reference points are calculated using a constant sound 

speed of 1465 m/s (corresponding to the sound speed associated with typical depths of 

the reference points and the UUV when the measurements were recorded). 

1. Data Collection and Sources of Errors 

Despite our efforts to minimize and account for errors in measurements, we 

identified the following main sources of errors that introduce uncertainties and may affect 

the tracking results: 

- Wave Glider GPS positions: The WGs record their GPS positions in 5-minute 

intervals. In order to establish their position at the instant of a travel time 

measurement it becomes necessary to interpolate between GPS recordings. 

- Offset between the GPS antenna and the acoustic modem: Due to the use of the tow 

fish, the GPS antenna on a WG is displaced from the acoustic modem transducer 

(see Figure 55). The estimated displacement is around 4 to 6 meters, and the sub 

unit heading can be used to apply a correction in the proper direction. 

- Sound speed profile: The sound speed profile represented in Figure 56 is the 

average of the UUV’s measurements during several dives throughout its mission 

(and extrapolated to the area depth). The actual measurements are depicted in 

Figure 57. The variability in the sound speed profile may cause errors in distance 

estimations based on the matched peak IR algorithm by affecting the amplitude of 

the arrivals. 

- Acoustic modem beam patterns: As mentioned in Chapter IV, Section B.2.d, the 

vertical and horizontal beam patterns are considered omnidirectional. To be able to 

take into account the standard transducer beam pattern, as well as the effects of 

mounting onto the UUV and tow fish bodies, the beam patterns should be measured 

when the modems are mounted in their respective structures. The omnidirectional 

assumption may cause errors in distance estimations based on the matched peak IR 

algorithm by affecting the amplitude of the arrivals. 
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Figure 57.  Sound Speed Profile as Measured by the UUV on August 12, 2015 

2. Mission-1 

Mission-1 started at 09:34:24 AM and ended at 10:36:48 AM. During this period 

of time the UUV navigation system recorded its estimated postion. Due to errors in dead 

reckoning and the sea current, an error of 1095 meters was observed between the final 

UUV predicted position and its GPS location measured soon after it surfaced (see Figure 

58). 

During the course of this mission, several travel time measurements between the 

UUV and the reference points were successfully recorded. The travel times were 

converted to horizontal distances using the algorithm described in Chapter IV, and the 

evolution of the distance measurements over time is depicted in Figure 59. 
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Figure 58.  August 12, 2015, Mission-1 

 

Figure 59.  Mission-1, Time Evolution of the Distance Measurements 

The tracking results after automatic tuning, using the distances from the UUV to 

the reference points estimated according Chapter IV, Section B.2.c, are presented in 

1000 1200 1400 1600 1800 2000 2200

2600

2800

3000

3200

3400

3600

3800

x [m]

y
 [

m
]

08/12/2015 Tests, Mission-1 - Origin Lat:36.79 Lon:-121.89

 

 

GPS Fix at the end of the mission

UUV Nav. System Predictions

Mission start

Mission end

 9:36:00 AM 10:48:00 AM
-1000

0

1000

2000

3000

1000

2000

3000

4000

5000

6000
 

08/12/2015 Tests, Mission-1 - Origin Lat:36.79 Lon:-121.89

Time

 
x [m]

y
 [

m
]

Distance from RV Fulmar to LG16

Distance from WG Mako to LG16

LG16 GPS Fix at the Beginning of the Mission

LG16 GPS Fix at the End of the Mission



 109 

Figure 60. Despite the inconsistent measurements, the automatic tuning algorithm was 

able to find the optimum parameters that provided consistent tracking.  

 

Figure 60.  Mission-1, Results after Automatic Tuning 
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As seen in Chapter V, Section G, for each prediction there is an associated 

covariance matrix, and the eigenvalues and eigenvectors of the covariance matrices may 

be used to represent confidence ellipses around the predictions. Despite some limitations 

[38], this procedure can provide good information about the uncertainty associated with 

the predicted states. 

In Figure 61, the smoothed covariance matrix associated with the last prediction 

was used to construct a confidence ellipse around it. The lengths of the main axes were 

calculated by the square root of the associated covariance matrix eigenvalues and the 

main axes’ directions were taken from the eigenvectors. The confidence ellipse major 

axis is 7 meters, and the minor is 2 meters. Despite the numbers in Table 2 indicating a 

“perfect tracking” (i.e., the last prediction matches the GPS fix), the most important result 

shown by Figure 61 is the realistic size of the confidence ellipse and the fact that the GPS 

fix is located inside this ellipse. 

 

Figure 61.  Mission-1, Confidence Ellipse at the End of the Mission 
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and y). A large R  may represent a non-reliable or, in this case, inconsistent 

measurement. As already pointed out, in Figure 59 can be seen that we have scattered 

measurements to only two of the three reference points. 

Table 1.   Mission-1, Optimum Tuning Parameters for Input Data Estimated 

According to Chapter IV, Section B.2.d  

Tuning Parameters 

  1.08x10
-1

 

  3.82 

  2.03 x10
-9

 

q [m
2
/s

3
]

a
  2.09 x10

-3
 

√R [m
2
] 4.65x10

5
 

,  , and   have no dimensions;  

 
a
 Units according to [38]. 

For this mission, tracking by dead reckoning (UUV navigation system) yielded an 

error of 1095 meters (see Figure 58). The tracking algorithm was tested and the results 

show a more reliable predicted position for the entire UUV trajectory (see Figure 60). 

When a rough estimate for the distances is used, errors around 30 meters were 

observed at the end of the mission. While this is a significant improvement over the 

UUV’s estimated position, it is based on simple straight line propagation that does not 

account for the refractive and multipath effects of the environment (Figure 62). 

When the more complete algorithm described in Chapter IV is used, the tracking 

algorithm practically eliminates the error at the end of the mission (as represented in 

Figure 61, there are uncertainties associated with this prediction). This indicates that 

correlating the measured impulse response of the channel with a ray trace prediction may 

provide an improvement in the tracking accuracy. 
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Table 2.   Mission-1, Tracking Comparison 

Mission-1 
 

Distances according 
to Chapter IV 

Distances 
roughly estimated 

Objective 
Function [m4] 0.47 3.01x108 
Error at beginning  
of the Mission [m] 0.04 5.20 
Error at end  
of the Mission [m] 0 29.7 

Total Error  [m] 0.04 34.9 

 

The row Error at beginning of the Mission on Tables 2, 4, and 6 refers to the 

difference between the first predicted position and the UUV GPS fix at the beginning of 

the mission. The row Error at end of the Mission refers to the difference between the last 

predicted position and the UUV GPS fix at the end of the mission. 

 

Figure 62.  Mission-1, Tracking Results when Processing the Distances Estimated According 
to Chapter IV and when Processing the Distances Roughly Estimated 

The sea current predicted by the tracking algorithm for this mission is 0.60 knots 
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All tide charts in this dissertation were adapted from: https://tidesandcurrents.noaa.gov/noaatide 
predictions/viewDailyPredictions.jsp?bmon=08&bday=12&byear=2015&timelength=daily&timeZ
one=2&dataUnits=1&datum=MLLW&timeUnits=2&interval=highlow&format=Submit&Stationid
=9413616. 

Figure 63.  Mission-1, Tracking, Sea Current, and Tide 

3. Mission-2 

Mission-2 started at 10:49:03 AM and ended at 11:51:38 AM. During this period 

of time the UUV navigation system recorded its estimated position. Due to errors in dead 

reckoning and the sea current, an error of 747 meters was observed between the final 

UUV predicted position and its GPS location, measured soon after it surfaced (see Figure 

64). 

During the course of this mission, travel time measurements between the UUV 

and the reference points were successfully recorded. The travel times were converted to 

horizontal distances using the algorithm described in Chapter IV, and the evolution of the 

distance measurements over time is depicted in Figure 65. 

Note, in Figure 65, that just a few measurements were recorded, but in a more 

consistent way when compared with mission-1. Another interesting point is that 

measurements to all three reference points were successfully recorded and the last one 

was taken just 2 minutes and 21 seconds before the UUV GPS fix at the end of the 

mission. Note, too, that no measurement was recorded during the first 33 minutes and 50 

seconds of this mission. 
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Figure 64.  August 12, 2015, Mission-2 

 

Figure 65.  Mission-2, Time Evolution of the Distance Measurements 
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Due to the long period without measurements (at the beginning of the mission) 

and due to the poor performance of the UUV navigation system predicting its velocity, 

the non-smoothed predictions (represented by the black curve in Figure 66b) appear to be 

significantly off track before the measurements (represented by the “jumps” on the black 

curve). But measurements to different reference points were a decisive factor in getting 

the track on the correct path. In this particular case, the smoothing algorithm proved very 

important in producing a realistic UUV trajectory. 

 

Figure 66.  Mission-2, Results after Automatic Tuning 
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In Figure 67, the smoothed covariance matrix associated with the last prediction 

was used to construct a confidence ellipse around it. The lengths of the main axes were 

calculated by the square root of the associated covariance matrix eigenvalues, and the 

main axes’ directions were taken from the eigenvectors. The confidence ellipse major 

axis is 8 meters, and the minor is 2 meters. Despite the numbers in Table 4 indicating a 

“perfect tracking” (i.e., the last prediction matches the GPS fix), the most important result 

shown in Figure 67 is the realistic size of the confidence ellipse and the fact that the GPS 

fix is located inside this ellipse. 

 

Figure 67.  Mission-2, Confidence Ellipse at the End of the Mission 
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Table 3.   Mission-2, Optimum Tuning Parameters for Input Data Estimated 

According Chapter IV, Section B.2.d  

Tuning Parameters 

  3.05x10
-1

 

  8.98x10
-2

 

  9.40x10
-3

 

q [m
2
/s

3
]
a
  1.11x10

-3
 

√R [m2] 10 

,  , and   have no dimensions; 

 
a
 Units according to [38]. 

For this mission, tracking by dead reckoning (UUV navigation system) yielded an 

error of 747 meters (see Figure 64). The tracking algorithm was tested and the results 

show a more reliable predicted position for the entire UUV trajectory (see Figure 66). 

When a rough estimate for the distances is used, errors around 39 meters were observed 

at the end of the mission. While this is a significant improvement over the UUV’s 

estimated position, it is based on simple straight line propagation that does not account 

for the refractive and multipath effects of the environment (Figure 68). 

When the more complete algorithm described in Chapter IV is used, the tracking 

algorithm produces no apparent error at the end of the mission (as represented in Figure 

67, there are uncertainties associated with this prediction). This indicates that correlating 

the measured impulse response of the channel with a ray trace prediction may provide an 

improvement in the tracking accuracy. 

Table 4.   Mission-2, Tracking Comparison 

Mission-2 

Distances according to 

Chapter IV 

Distances 

roughly estimated 

Objective 

Function [m
4
] 0.04 402 

Error at beginning  

of the Mission [m] 0.009 1.02 
Error at end  

of the Mission [m] 0.004 39.1 

Total Error  [m] 0.013 40.1 
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Figure 68.  Mission-2, Tracking Results when Processing the Distances Estimated 
According to Chapter IV and when Processing the Distances 

Roughly Estimated 

The sea current predicted by the tracking algorithm for this mission is 0.45 knots 

(i.e., the average of the smoothed predictions) and has a general direction as represented 

in Figure 69a. It is worth noting the evolution of the tide during the mission period (see 

Figure 69b). 

 

Figure 69.  Mission-2 Tracking, Sea Current, and Tide 
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4. Mission-3 

Mission-3 started at 12:05:01 PM and ended at 13:07:38 PM. During this period 

of time the UUV navigation system recorded its estimated postion. Due to errors in dead 

reckoning and the sea current, an error of 476 meters was observed between the final 

UUV predicted position and its GPS location, measured soon after it surfaced (see Figure 

70). 

During the course of this mission, travel time measurements between the UUV 

and the reference points were successfully recorded. The travel times were converted to 

horizontal distances using the algorithm described in Chapter IV, and the evolution of the 

distance measurements over time is depicted in Figure 71. 

Note the inconsistent measurement at the beginning and the lack of measurements 

just after the middle of the mission. In the last portion, however, measurements to all 

three reference points were achieved in a short period of time. The first measurement was 

not taken until 6 minutes and 15 seconds into the mission and the last one was taken 6 

minutes and 37 seconds before the UUV GPS fix at the end. 

 

Figure 70.  August 12, 2015, Mission-3 
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Figure 71.  Mission-3, Time Evolution of the Distance Measurements 

The tracking results after automatic tuning, using the distances from UUV to the 

reference points estimated as decribed in Chapter IV, Section B.2.c, are presented in 

Figure 72. Despite the reduced number of measurements and the inconsistency during 

certain portions of the mission, the automatic tuning was able to find the optimum 

parameters that produced an error of 8.6 meters at the end of the mission (note that there 

are uncertainties associated with this prediction, as shown in Figure 73).  

In Figure 73, the smoothed covariance matrix associated with the last prediction 

was used to construct a confidence ellipse around it. The lengths of the main axes were 

calculated by the square root of the associated covariance matrix eigenvalues, and the 

main axes’ directions were taken from the eigenvectors. The confidence ellipse major 

axis is 27 meters, the minor is 14.5 meters, and the GPS fix is located inside this ellipse. 

12:28:48 PM 12:57:36 PM
0

2000

4000

2000

2500

3000

3500

4000

4500

5000
 

08/12/2015 Tests, Mission-3 - Origin Lat:36.79 Lon:-121.89

Time

 

x [m]

y
 [

m
]

Distance from RV Fulmar to LG16

Distance from WG Mako to LG16

Distance from WG Tiburon to LG16

LG16 GPS Fix at the Beginning of the Mission

LG16 GPS Fix at the End of the Mission



 121 

 

Figure 72.  Mission-3, Results after Automatic Tuning 
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Figure 73.  Mission-3, Confidence Ellipse at the End of the Mission 

The optimum tuning parameters for this mission are shown in Table 5. As can be 

seen, probably due to the more consistent measurement, the parameter R  is in 

reasonable levels. 

Table 5.   Mission-3, Optimum Tuning Parameters for Input Data Estimated 

According to Chapter IV, Section B.2.d 

Tuning Parameters 

  1.42x10
-2

 

  3.41 

  1.53 x10
-3

 

q [m
2
/s

3
]

a
  1x10

-4
 

√R [m
2
] 6.7 

,  , and   have no dimensions; 

 
a
 Units according to [38]. 

For this mission, tracking by dead reckoning (UUV navigation system) yielded an 

error of 476 meters (see Figure 70). The tracking algorithm was tested and the results 

show a more reliable predicted position for the entire UUV trajectory (see Figure 72). 
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at the end of the mission. While this is a significant improvement over the UUV’s 

estimated position, it is based on simple straight line propagation that does not account 

for the refractive and multipath effects of the environment (Figure 74). 

When the more complete algorithm described in Chapter IV is used, the tracking 

algorithm produces an error of 8.6 meters at the end of the mission (as represented in 

Figure 73, there are uncertainties associated with the predictions). It’s a small 

improvement in this case but still indicates that correlating the measured impulse 

response of the channel with a ray trace prediction may provide an improvement in the 

tracking accuracy. 

Table 6.   Mission-3 Tracking Comparison 

Mission-3 

Distances according to 

Chapter IV 

Distances 

roughly estimated 

Objective Function [m
4
] 1145 1742 

Error at beginning  

of the Mission [m] 
2.45 3.10 

Error at end  

of the Mission [m] 
8.60 10.3 

Total Error  [m] 11.1 13.4 

 

Figure 74.  Mission-3, Tracking Results when Processing the Distances Estimated 

According to Chapter IV and when Processing the Distances Roughly Estimated 
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The sea current predicted by the tracking algorithm for this mission is 0.34 knots 

(i.e., the average of the smoothed predictions) and has a general direction as represented 

in Figure 75a. It is worth noting the evolution of the tide during the mission period (see 

Figure 75b). 

 

Figure 75.  Mission-3, Tracking, Sea Current, and Tide 
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Table 7.   Summary of the Corrections on the UUV’s Mission 

  
Number of 

Measurements (NM) 
Number of Measurements 

with corrections  > 5 m  (NM5) 
Ratio 

NM5/NM 
Average 

Correction [m] 

Mission-1 40 30 75.0% 9.4 

Mission-2 11 6 54.5% 7.9 

Mission-3 18 7 38.9% 4.0 

 

From Table 7, it can be seen in mission-1 that 75% of the measurements had a 

correction greater than 5 meters and the average correction was 9.4 meters. Other 

missions show smaller numbers. The reason for the difference between missions may be 

explained in the following manner. 

When the UUV is close to a reference point and operating at greater depths, the 

direct path generally produces a strong first arrival. Therefore, the algorithm may produce 

a small correction. On the other hand, when the UUV is far from the reference point and 

operating at shallow depths, the bottom bounce path dominates and a weak first arrival is 

expected. Therefore, the algorithm may produce a larger correction. 

The ratio distance from the UUV to a reference point (distance) over UUV depth 

(depth) can be used as an indicator for those situations. A smaller ratio represents a 

situation where the UUV is closer to a reference point and deep; therefore, small and less 

frequent corrections are expected. A larger ratio represents a situation where the UUV is 

farther from a reference point and shallow; therefore, larger and more frequent 

corrections are expected. 

Table 8 represents the average horizontal distance between the UUV and the 

reference points when a travel time measurement is taken, and Table 9 represents the 

average UUV depth. Based on these tables, the average ratio distance over depth can be 

calculated.  

The last column of Table 10 (supported by Tables 8 and 9) shows the ratio of the 

average distance over depth, when the travel time measurements were taken for each 

UUV mission. Mission-1 has the larger ratio, followed by mission-2 and mission-3, 

which means that larger and more frequent corrections are expected in mission-1, 
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followed by mission-2 and mission-3. This conclusion is supported by the data shown in 

Table 7. 

Table 8.   Average Horizontal Distance from the UUV to the Reference Points when 

a Travel Time Measurement is Taken 

  

Avg. Horizontal 
Distance from UUV to 
R/V Fulmar [m] (DIS) 

Avg. Horizontal 
Distance from UUV to 

WG Mako [m] (DIS) 

Avg. Horizontal 
Distance from UUV to 
WG Tiburon [m] (DIS) 

Avg. Hor. 
Dist. [m] 
(DIS_A) 

Mission-1 826 594 --- 797 

Mission-2 610 840 252 497 

Mission-3 432 628 441 504 

Table 9.   Average UUV Depth when a Travel Time Measurement is Taken 

  

Avg. UUV depth 
when a 

measurement is 
taken to R/V Fulmar 

[m] (DEPTH) 

Avg. UUV depth 
when a 

measurement is 
taken to WG Mako 

[m] (DEPTH) 

Avg. UUV depth when 
a measurement is 

taken to 
 WG Tiburon [m] 

(DEPTH) 

Avg. UUV depth 
when a 

measurement is 
taken [m] 
(DEPTH_A) 

Mission-
1 39.8 34.3 ---- 39 
Mission-
2 16.3 39.9 33.1 28.2 
Mission-
3 33.1 49.2 29.7 34.6 

Table 10.   Ratio Average Horizontal Distance to a Reference Point over Average 

UUV Depth when a Travel Time Measurement is Taken 

  
Ratio DIS / DEPTH 

for R/V Fulmar 
Ratio DIS / DEPTH for 

 WG Mako 
Ratio DIS / DEPTH for 

 WG Tiburon 
Ratio DIS_A / 

DEPTH_A  

Mission-
1 20.8 17.3 ---- 20.4 
Mission-
2 37.4 21.1 7.6 17.6 
Mission-
3 13.1 12.8 14.8 14.6 

 

In Table 11, the time between the last travel time measurement and the UUV GPS 

fix at the end of the missions is shown. As can be seen, mission-3 has the larger number. 

This larger time difference, together with the reduced number of measurements, account 
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for the larger confidence ellipse associated with the last position prediction, in 

comparison with the previous missions. 

Table 11.   Time between the Last Measurement and the UUV GPS Fix 
at the End of the Missions 

  

Time between last  
measurement and  
GPS fix [mm:ss] 

Mission-1 5:43 
Mission-2 2:21 
Mission-3 6:37 

 

2. The Tuning Parameters 

The tuning parameters for the UKF-based tracking algorithm can be divided into 

two groups. The first group is composed of the hyper-parameters ,α β , and κ , 

appearing exclusively in UKF applications. The second group, common to all KF 

applications, is composed of the matrices R and Q, representing the covariance of the 

measurement and covariance of the plant noise (also known as process noise), 

respectively.  

As can be seen in Chapter II, Equation (2.26), the measurements are scalar 

numbers, which makes R a scalar, too. The square root of the scalar R represents the 

uncertainty associated with the measurements and, in our application, it combines the 

uncertainties in the estimated horizontal distances and in the position of the reference 

points (in x and y). The structure of the covariance matrix Q is shown in Chapter V, 

Equation (5.26), where q is used for tuning. 

The hyper-parameters ,α β , and κ  are scalars numbers where α  and κ  

determine the spreading of the sigma points around the predictions (mean) and β  is used 

to incorporate prior information about the non-Gaussian distribution of the predicted 

states ( β  is set to 2 to model Gaussian distributions). 
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Table 12 shows the optimum tuning parameters for all three UUV missions. As 

can be seen, the parameters vary from mission to mission and, as expected, there is no 

one set of tuning parameters that works universally. What draws our attention are the 

large variations between missions. Those variations cannot be attributed only to changes, 

such as noise and sea state, in the environment. 

The problem solved by the tracking algorithm is, essentially, a triangulation 

problem that consists of range-only measurements not taken simultaneously. As is 

common in triangulation problems, the number of reference points, their relative 

positions with respect to the UUV, and the number of measurements all influence the 

tracking dynamics and performance. 

As seen in Figures 60a, 66a, and 72a, the relative position between assets and the 

measurement dynamics are very different when the missions are compared. Those 

differences may be considered the major factor for large variations in the tuning 

parameters, as shown in Table 12.  

Simulation shows that when the measurements are consistent and in large 

numbers, the influence of the asset’s relative position on the tuning parameters is 

reduced. In this situation the tuning parameters for different geometries tends to agree, 

which could indicate that real-time tracking is still a possibility. Although, as shown in 

this chapter, with a reduced number of measurements, post processing represents the best 

choice to reconstruct the UUV trajectory. 

Table 12.   Summary of the Tuning Parameters 

Optimum Tuning Parameters 
  Mission-1 Mission-2 Mission-3 
α  1.08x10-1 3.05x10-1 1.42x10-2 
β  3.82 8.98x10-2 3.41 
κ  2.03 x10-9 9.4x10-3 1.53x10-3 
q [m2/s3] a 2.09 x10-3 1.11x10-3 1x10-4 
√R [m2] 4.65x105 10 6.7 

,α β , and κ  have no dimensions; a Units according to [38] 
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3. Sea Current 

The tracking errors at the end of the missions, as well as the average predicted sea 

current, are presented in Table 13. As can be seen, there is a correlation between current 

and the errors, where higher currents are associated with higher errors. This problem is 

common to all underwater navigation systems that are not able to estimate or measure the 

sea current.  

Some UUVs, equipped with Doppler velocity logs, have very successful results 

measuring the sea current by tracking its motion with respect to the bottom [53]. 

Unfortunately this method does not work for deeper waters (300 m and beyond). 

Research in the area of sea current estimation and measurement is growing very fast and 

some are leaning towards KF techniques, as used in this work [54], [55].  

Table 13.   Summary of Mission Errors and Average Sea Current 

 

Approximated Distance 
Traveled (D) [m] 

Final Trajectory 
Error (E) [m] E /D 

Predicted Average 
Current [knots] 

Mission-1 1400 1095 0.78 0.60 
Mission-2 1000 747 0.75 0.45 
Mission-3 770 476 0.62 0.34 

 

a. General Direction of the Sea Current 

In an open area, where the direction of the water flow is not restricted by any 

barriers, the tidal current is rotary (i.e., clockwise in the northern hemisphere), flowing 

continuously throughout all points of the compass, with speeds usually varying during the 

tidal cycle [56]. The changes in direction and speed may be represented by arrows and 

generally have an elliptical pattern. On the other hand, in rivers or straights the current 

flows in approximately opposite directions with speed changing throughout the tidal 

cycle from zero to a maximum.   

As can be seen in Figure 19, the area of operation is not exactly open and at the 

same time is not extremely restricted as in a straight or river. Therefore, some influence 

of the canyon (due its proximity) and of the geographical shape of the bay may be 
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expected. The tracking algorithm predictions for sea current and the tide information, for 

all three missions, are summarized in Figures 76 and 77.  

In Figure 77 it can be seen that mission-1 took place on one side of the tide and 

missions 2 and 3 on the other side. The change in direction is clockwise and smooth from 

mission-2 to mission-3 (as expected for an open area), but drastic from mission-1 to 

mission-2. This drastic change in direction may be caused by the change in tide from 

flood to ebb associated with some influence of the canyon and the bay’s geographical 

shape.  

 

Figure 76.  General Direction of the Sea Current for the Three UUV Missions 

 

Figure 77.  Tide Evolution during the UUV Mission 
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b. Initialization of the Tracking Algorithm with Previous Knowledge of the 

Current 

Let us consider a situation in which a UUV has previous knowledge of the sea 

current. We could imagine the scenario described in Chapter V, Section G, where a fleet 

of UUVs is able to transmit to the Command Center (via surface assets) their predictions 

for the sea current, and the Command Center (running the consensus current algorithm) 

broadcasts back to the UUVs the CSC. As an example, let us consider the data from 

mission-2. 

When mission-2 is started, the UUV knowing the CSC, initializes its tracking 

algorithm with this information. As the first measurement did not happen until the middle 

of the mission, the initial predictions considering previous knowledge of the current may 

be improved. As can be seen in Figures 78 and 79, comparing the black and the green 

curves before the first measurement (first “jump”), the non-smoothed tracking in green is 

more consistent with the final result (smoothed trajectory in red) than the black curve 

where no previous knowledge of the current was assumed.  

For this particular case, due to the geometry involved (relative position of the 

UUV and the surface assets) and due to the limited number of measurements, the final 

result was not affected by the initial assumption for the current. In a different scenario, 

however, the initial knowledge of the current may improve the overall performance of the 

tracking algorithm or, at least, provide a faster convergence to the true trajectory. 
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Figure 78.  Tracking Considering a Previous Knowledge of the Sea Current 
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VIII. CONCLUSION 

Parts of this chapter were previously published by IEEE [1]. 

How can a UUV be kept underwater for longer periods while maintaining 

accurate positioning? This is a question that this dissertation intended to address. This 

problem arises due to the nature of underwater navigation where GPS signals (or similar) 

and other navigation aids are not available. 

Underwater navigation typically relies on automatic dead reckoning, gathering 

information from several sensors. Some systems count on lower error, expensive inertial 

sensors and others rely on simple magnetic compasses and speed estimates. Independent 

of how complex the system is, errors accumulate over time and may lead to unacceptable 

position uncertainties. Therefore, a position update from an external reliable source is a 

real necessity. 

As pointed out in the Chapter I, by surfacing, the UUV can get a position update 

using its GPS. But this can introduce delays in the UUV’s mission. Updating the UUV’s 

position while it is underwater during the course of its mission may reduce the delays, 

permitting longer missions while maintaining position accuracy. 

State-of-the-art techniques estimate a UUV’s position by measuring its distance, 

and in some systems, its bearing to a reference point (or more than one) located at the 

surface or sea floor where, generally, the reference points—as well as the UUV—are 

slow moving (or static). By measuring the travel time of an acoustic wave, a system can 

estimate the distance (and in more advanced systems the bearing, too) and the UUV 

position can be determined and updated.  

This approach is used in systems such as SBL, LBL, USBL, GIB, and some 

hybrid systems based on the previous ideas. Those systems are reliable when the depth 

                                                 
 © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for advertising 
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 
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being explored is on the order of or larger than the horizontal distances between the 

assets. 

As shown in Chapter IV, estimation of horizontal distances in relatively shallow 

water is a difficult task mainly due to the multipath nature of the propagation. Multiple 

arrivals reach the receiver at different times by different propagation paths, making it 

difficult to estimate accurately the travel time of the acoustic signals and, consequently, 

the distance. Some of the systems described earlier are able to account for the refraction 

of the sound waves when the sound speed profile is available, but none of them provides 

a solution to treat the errors caused by the multipath in their distance estimations. 

Due to their relative low cost, compact design, and reliability, we are relying on 

battery powered DSP-based acoustic modems that make use of acoustic communication 

protocols to measure the acoustic wave travel time from the UUV to the reference points 

(Chapter IV, Section A). Chapter III presents the theoretical bases for wave travel time 

measurements and the main characteristics of the waveforms used for this task were 

highlighted. 

Based on the travel times measured by the acoustic modems, we developed an 

algorithm to take into account the multipath and the refraction of the sound waves when 

estimating distances underwater (Chapter IV, Section B). This algorithm makes use of a 

ray tracing code to model the environment and an iterative routine to match 

measurements with synthetic predictions. The whole process is designed to take just a 

few seconds to converge to a solution, making it appropriate for real-time applications. 

This approach is a unique contribution of this dissertation. 

At this point, using the estimated distances and the coordinates of the reference 

points, we may establish the UUV position. To accomplish this, it was necessary to 

develop a tracking algorithm to fuse all available data (i.e., UUV navigation data, 

reference points’ coordinates, and distances from the UUV to the reference points). This 

was done using KF techniques. 

A model for the UUV based on the state space representation was developed in 

Chapter II, taking into account the two main characteristics of our acoustic modems: 
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inability to take simultaneous measurements to different reference points and lack of 

bearing (direction) measurement associated with the travel time.  

The aforementioned modem’s characteristics produce a non-linear measurement 

equation that was treated using two different approaches: a linearization by Taylor series 

expansion as in the EKF, and a statistical linearization based on what are called “sigma 

points,” as in the UKF. To produce realistic trajectories, mainly when the number of 

measurements is limited and during the transient portion of the tracking, a smoothing 

algorithm had to be used, and the equations are presented in Chapter V, Section F. 

Another important part of the tracking algorithm is the choice for the tuning 

parameters. In Chapter V, Section E, an algorithm was presented to select the optimum 

tuning parameters automatically for a given set of data (training data). This algorithm 

used the UKF (or EKF) to construct a cost function and optimization techniques to find 

the best (or optimum) set of tuning parameters that minimized (or maximized) the cost 

function. 

To account for the drift in the UUV trajectory caused by the sea current, it was 

modeled as a random walk and was part of the state of the system. In a scenario described 

as a multi-UUV centralized network (Chapter V, Section G), the predictions for the sea 

current coming from the UUVs are concentrated in the command center, where an 

algorithm processing this data tries to establish a consensus current. When the results of 

the algorithm converge, the CSC is achieved and may be used in several different ways as 

described in Chapter V, Section G. 

At this point, one can see that it was necessary to put together tools already 

available as well as to make new developments to  respond to the short, but not easy, 

question posed in the beginning of this chapter. The first test for this whole package was 

the processing of synthetic data. 

In Chapter VI a scenario in which two UUVs navigating in an area where three 

surface assets are present was emulated. The surface assets were assumed to have access 

to GPS and were able to share information with the shore-based command center via 

satellite, permitting evaluation of the consensus current algorithm. 
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Three distinct cases were simulated. The first was the ideal case in which all the 

measurements were successful, and no noise was present. The second case considered 

failure in the measurements during a certain portion of the UUV’s mission. In the third, 

noise was added to the previous case. Results showed the importance of the smoothing 

algorithm to produce realistic trajectories and highlighted that the UKF produced faster 

convergence and better behavior in the presence of noise. The consensus current 

algorithm proved converging in all three cases with faster convergence and smoother 

profiles when UKF was used.  

To validate the developed algorithms, real data collected during the sea tests that 

took place in Monterey Bay on August 2015 was processed (Chapter VII). In a one-week 

sea test, two Liquid Robotics Wave Gliders (USVs) and a command ship, all equipped 

with Teledyne-Benthos acoustic modems (ATM-900 series) and GPS connectivity, 

formed a network of reference points for an Exocetus Coastal Glider (UUV), also 

equipped with the same type of acoustic modem. On three (one-hour long) UUV 

missions, successful data was recorded. 

During the course of mission-1, 40 measurements from the UUV to the reference 

points were recorded. The measurements were taken in an inconsistent manner and to 

only two of the three reference points. After running the automatic tuning algorithm, the 

optimum value for the parameter R  was very high (see Table 1). This parameter 

combines the uncertainties associated with the distances between UUV and the reference 

points, and the uncertainties in the position of the reference points (in x and y).  

A large R  indicates a non-reliable or, in this case, inconsistent measurement. 

The geometry (i.e., the relative position between assets), the large period of time with 

measurements to only one reference point, and measurements to only two reference 

points may be causing a high R  (see Figure 59).  

In mission-2 and mission-3 fewer measurements were recorded, but they were 

recorded in a more consistent way and for all the three surface assets (see Figures 65 and 

71). That may be the cause of the reduction in the tuning parameter R  (chosen by the 

automatic tuning algorithm) to reasonable levels (see Table 12).  
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As seen in mission-1, the GPS fixes for mission-2 and mission-3, that were 

recorded as soon as the UUV surfaced, are located inside the uncertainty ellipses 

associated with the last tracking algorithm prediction. It is also worth noting that those 

ellipses have realistic dimensions (see Figures 61, 67, and 73). 

Table 12 showed the optimum tuning parameters for all three UUV missions. In 

this table, unexpected large differences between missions can be seen. Those differences 

may be primarily attributed to different geometries (i.e., the relative positioning between 

assets) and a different dynamic in the measurements (i.e., the time between 

measurements, total number of measurements, and number of reference points available). 

Simulation showed that when the measurements are consistent and in large 

numbers, the influence of the asset’s relative position on the tuning parameters is 

reduced. In this situation the tuning parameters for different geometries tends to agree, 

which could indicate that real-time tracking is still a possibility. Although with a reduced 

number of measurements, post processing represents the best choice to reconstruct the 

UUV trajectory. 

Another interesting point emerged from the predictions for the sea current. Those 

predictions for all three missions are depicted in Figure 76 (as the average of the 

smoothed predictions) as well as the evolution of the tide in Figure 77. Note that mission-

1 took place on one side of the tide and missions 2 and 3 on the other side. The drastic 

change in the direction of the current occurred from mission-1 to mission-2 (and mission-

3) may be explained by the change in tide from flood to ebb associated with some 

influence of the canyon and the bay’s geographical shape.  

Finally, to point out the possible benefits of the CSC, data from mission-2 was 

used in a scenario that simulated a broadcast of the CSC to all UUVs in a certain area. 

Results showed that previous knowledge of the current may improve the tracking, mainly 

in the portion where few measurements are available. 

Despite these promising results, improvements can be made in several parts of the 

system, including: 
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 Measuring the beam patterns of the acoustic modem’s transducers when 

they are mounted in their respective structures and including this 

measurement in the modeling of the system; 

 Improving the corrections for the displacement between the GPS antenna 

and the acoustic modem transducer on the Wave Gliders; 

 Reducing, on the Wave Gliders, the time between GPS fixes to avoid the 

use of interpolation to establish their position during the measurements; 

 Accounting for the variability in the sound speed profile measured by the 

UUV.  

Continuing with a measurement system able to provide range only, a study of the 

optimum tuning parameters for different geometries, measurement dynamics, ambient 

noise, and sea states is an interesting topic for future work. Along this line of thought, 

different trajectories taken by a mobile reference point could be explored. 

Although representing a very interesting topic, the natural evolution of this 

research points to the use of directional acoustic modems. This equipment, available off 

the shelf, is able to provide a bearing associated with the travel time and basically has the 

same dimensions and weight as the non-directional version.   

The use of directional modems may reduce the number of reference points to, in 

theory, only one. It will eliminate the influence of different geometries and measurement 

dynamics in the optimum tuning parameters, although ambient noise and sea state may 

still affect them.  

Equation Chapter (Next) Section 1 
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APPENDIX A. MATCHED FILTER OUTPUT FOR LFM AND HFM 

PULSES IN THE PRESENCE OF DOPPLER EFFECT 

The purpose of this appendix is to demonstrate how the relative motion between 

source and target can affect the matched filter output for LFM and HFM pulses. 

A. LFM PULSES 

Let us start with the evaluation of the Fourier transform of the rectangular-

envelope LFM pulse. 

1. Fourier Transform 

Let us start with the rectangular-envelope LFM pulse in complex notation 

  
 22 c pj f t D tt

x t A rect e
T

  
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where BpD
T


 , and 1

t
rect

T

 
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 
 for 2t T . The Fourier transform of  x t  is 
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Rearranging the terms in Equation (A.2), we obtain  
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To evaluate Equation (A.3) the method of stationary phase [14], [57], and [58] is 

used. The method of stationary phase is useful to make approximations for integrals with 

highly oscillatory integrands. The stationary phase point is defined such that the first time 

derivative of the phase in Equation (A.3) is set to zero,  ' 0ot  . Then the 

approximation of the integral of Equation (A.3) is [14] 
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The integrand phase and its derivatives are 
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The stationary  phase point is defined by 

 

 

 

2 2 0

.

c p o

o c

p

f f D t

t f f
D





  

 
 (A.6) 

Using the definition of pD  and defining k B T , we can write 

  
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o ct f f
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Using the definitions of  A t  and  t  from Equation (A.3) and substituting Equation 

(A.7) into Equation (A.4), we obtain 
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Equation (A.8) is the approximate Fourier transform of the rectangular-envelope LFM 

pulse by means of the stationary phase method. This result will be used next, in the 

evaluation of the matched filter output. 

2. Matched Filter Output in the Presence of Doppler Effect 

The following development is based on the methodology described by Minkoff 

[17]. Re-stating Chapter III, Equation (3.17), the Doppler transformed received signal is 

  '( ) ox t x t   , (A.9) 

where  x t  is the transmitted signal, o  is the two-way travel time, and 
2

1 rv

c
   . 

Worth noting that rv  is the relative radial speed between source and target as described in 

Chapter III, section B.1. 

The output of a filter matched to the transmitted signal  x t  is 

      **oy t x t x t    , (A.10) 

where, in Equation (3.6), to was set to zero and K to 1.  

Defining 
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Therefore 
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Using Equations (A.8) and (A.12), the matched filter output for the rectangular-

envelope LFM pulse is 
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where   is always positive. 

The exponential that contains the quadratic terms may be simplified as 
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The term that contains 2  in (A.14) may be simplified as 
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Considering that rc v  the quadratic terms in (A.15) may be ignored and the 

term 
4

1 1r
v

c
  . Rewriting (A.15) yields 
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Appling the same reasoning in 
1 




, we obtain 
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Substituting (A.16) and (A.17) into (A.14) we obtain 
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Now, for further simplification in Equation (A.25), let us assume that d
d
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Substituting (A.19) into Equation (A.13) yields 
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Rearranging the terms and rewriting Equation (A.20), we obtain 
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Equation (A.21) may be written as 
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where     1a t A f  and     1b t B f . 

Referring to Equations (A.1) and (A.8) 
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Therefore 
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Defining the following variables 
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Substituting (A.26) into (A.25) and rearranging the terms yields 
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

 
  

 
 .  (A.27) 

Solving Equation (A.27), using the Euler identity 2 sinj je e j    , and using 

 
 sin

sinc
x

x
x




  

  
2

sinc
d

c o

f
j f t

k d
o

f
b t B e B t

k

  

 

 
  

 
  

    
  

.  (A.28) 

Substituting Equations (A.24) and (A.28) into (A.22) yields 

 

 
 

2

2

4
22 '2 4' * sinc .

'

cr d
c o

c p

fv fj j f tj j f t D tc k k d
o

ft
y t A T B e e rect e e B t

T k

    
 

 
       

   
     

       
      

  (A.29) 

Taking the absolute value of Equation (A.29), we obtain 

  
 22 ' 22 ' * sinc

'

c p c
j f t D t j f t d

o

ft
y t A T B rect e e B t

T k

    
    

      
    

.  (A.30) 

Expanding Equation (A.30) in the convolution integral format results in 
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  
   

2
2 '22 ' sinc

'

c p
c

j f t u D t uj f u d
o

f t u
y t A T B e B u rect e du

k T

   


     



     
      

   
 . (A.31) 

Adding and subtracting t  in the first exponential and rearranging the exponential terms, 

we obtain 

 

       

  
 
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c
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o

f t u
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f t u
A T B e B u rect e du

k T

f
A T B B u

k

   

 



 

 

 


       



 




     
      

   

     
      

   


  







   
2

2 '

e .
'

d pj f t u D t ut u
rect du

T




     



    
  
  



 

 (A.32) 

Rewriting Equation (A.32) using the convolution representation, we arrive at 

  
22 '2 ' sinc * e

'

d pj f t D td
o

f t
y t A T B B t rect

k T


 

 
 

    
      

   
. (A.33) 

Recognizing that the exponential in Equation (A.33) will vary little over time 'T  

 ' , , 'd c p pT T f f and D D , we can write 

   2 ' sinc *
'

d
o

f t
y t A T B B t rect

k T
 

    
      

   
.  (A.34) 

It is commonly accepted that the width of the convolution of two functions is 

nominally the sum of the widths of the two functions. Defining the width of the rect 

function as R , the width of the sinc function as S , and the width of matched filter 

output as T : 

 T R S     .  (A.35) 

Since the first zero in the sinc function occurs when its argument goes to unity 

 1d
o s

f
B

k
 

 
     

 
  (A.36) 

and 

 
1 o d

s

f

B k



  
    .  (A.37) 



 145 

The term o df

k



 
  represents a partial temporal offset of the main lobe in the matched 

filter output. Therefore, the width due to the sinc function is 1 B .  

The width of the rect function is 'T , using Equation (A.24) yields  

 
4 r

R

v
T

c
  .  (A.38) 

Substituting Equation (A.37) and (A.38) into Equation (A.35), we obtain 

 

4 41 1 1

41
1 .

r r
T

r

v v
T TB

B c B c

v
TB

B c

 

 
     

 

 
  

 

  (A.39) 

From Equation (A.39) it can be seen that in a stationary source and target 

scenario, the nominal half-width of the main lobe in the matched filter output is 1 B . Due 

to the Doppler effect, there is a widening in the main lobe that will be accompanied by a 

reduction in amplitude (due to conservation of energy), as can be seen in Chapter III, 

Figure 9. Additionally, there is a temporal offset in the matched filter output’s peak that, 

for some applications, must be taken into account. 

Depending on how severe the widening effect is, it may be necessary to use a 

“bank” of filters matched to different target speeds to permit target detection. According 

to Equation (A.39) the widening in the matched filter output is given by the factor 

 1 4 rv c TB , and the range resolution is degraded by the same factor. Thus, if 

 4 1rv c TB  the widening and, consequently, the amplitude reduction in the matched 

filter output will not be extensive. Therefore, it may be written as 

 
4 r

c
TB

v
. (A.40) 

Equation (A.40) states that if the signal’s time bandwidth product is small in 

comparison with the ratio of medium sound speed over the maximum source-target radial 

speed, the widening effect in the matched filter output can be neglected. 

At this point we may go back and revisit Equation (A.20): 
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 

 
2

4
2

2
2 .

r
o

f f fv fc dj
c k k

j ftc cf f f fA T
y t rect rect e e df

B B B


 






 
   

     
  

 



    
    

   
  

Based on the previous derivation and analyzing the exponential term, we may 

conclude that: 

a) The first term (quadratic), also called the dispersive term, is responsible 

for the widening in the matched filter output; 

b) The second term is responsible for the temporal offset in the matched filter 

output. 

If we use a waveform such that the dispersive term is not present in the matched 

filter output, the widening effect as seen in the LFM pulse is not expected. With this in 

mind, next section presents the analysis for the rectangular-envelope HFM pulse. 

B. HFM PULSES 

Let us start with the evaluation of the Fourier transform of the rectangular-

envelope HFM pulse. 

1. Fourier Transform 

The rectangular-envelope HFM pulse may be represented as [21] 

  
2

( ) cos ln 1 , o end
o

o end

f ft
x t rect f t

T Tf f


 



   
     

   
, (A.41) 

where 1
t

rect
T

 
 

 
 for 2t T ; of  and endf  are, respectively, the starting and the 

ending frequency; and T is the duration of the pulse.  

In complex notation Equation (3.22) becomes 

  
 

2
ln 1 oj f tt

x t A rect e
T





 

  
 

. (A.42) 

The Fourier transform of  x t  is 

  
 

2
ln 1

2oj f t
j ftt

X f A rect e e dt
T













 
  

 
 . (A.43) 



 147 

Rearranging the terms in Equation (A.43), we obtain 

  

 

 

 

2
ln 1 2o

t

j f t ft

A t

t
X f Arect e dt

T




 



 
  

 



 
  

 
 .  (A.44) 

Applying the method of stationary phase gives us 

  
 

   4
2

"

o
j j t

o

o

X f e A t e
t


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 . (A.45) 

The integrand phase and its derivatives are 

 

   

 

 
 
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


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






  

 


 
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 (A.46) 

The stationary phase point is 

 

 
2
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1 1 1
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o o

o

o

f t ft
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f f


 





  

 
  

 

 (A.47) 

Using the definitions of  A t  and  t  from Equation (A.44) and substituting 

Equation (A.47) into Equation (A.45), we obtain 

  
 

2

24
ln1 1 1

/

o o

j

j f f f f
o

o end

f fAe
X f rect e

B f f f

 







 
  

     
  

 
. (A.48) 

Equation (A.48) is the approximate Fourier transform of the rectangular-envelope HFM 

pulse by means of the stationary phase method. This result will be used next, in the 

evaluation of the matched filter output. 
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2. Matched Filter Output in the Presence of Doppler Effect 

The following development is based on the methodology described by Minkoff 

[17]. Using Equations (A.48) and (A.12), the matched filter output for the rectangular-

envelope HFM pulse is 

  
2 12 ln

2

1 1 1 1
.

o

o

f
j f t

fo o

o end o end

f f f fA
y t rect rect e df

B f f B f f f

 
 

  


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    



    
    

   
 (A.49) 

Making the following approximations yields 
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1 1 1
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r
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o o

o end o end

v
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c

f f f f
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B f f B f f
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 

    
   

   

 (A.50) 

Using (A.50) and rearranging the terms, Equation (A.49) becomes 
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   
 . (A.51) 

Because the phase of the exponential in (A.51) is linear in f , the dispersive term is not 

present. Therefore, the widening effect in the matched filter output is not expected. 

The function 

2

1 1 o

o end

f f
rect

B f f

 
 
 

has amplitude one and width defined as follows 
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 (A.52) 

Applying the limits of the integral in Equation (A.51) yields 

  
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1 2
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end
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o

end

f

B f j f t
f

f

B f
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y t e df

f
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
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   



  . (A.53) 
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From Equation (A.53) we want to determine: 

a) The time instant when the peak in the matched filter output occurs; 

b) The width of the main lobe assuming that it has a form of sinc (x). 

Following [17], it is not necessary to evaluate explicitly Equation (A.53) to answer (a) 

and (b). 

For (a), considering that the maximum in Equation (A.53) occurs when the 

exponential goes to unity (which can be thought of as the stationary phase argument), it 

may be written as 

 
 1 1o

p

o

t
f



  


  . (A.54) 

Note that (A.54) is constant depending only on the relative radial speed between source 

and target (factor  ).  

Assuming that 
21 f is slowly varying, for (b) the zeros in the sinc (x) function 

will be, in an approximation, considered occurring at an integral number of cycles, 

leading to 

 

 
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o
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
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 
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   

   



 (A.55) 

where 1, 2, 3. . .n    

The limits of the integral in Equation (A.53) (to replace f) are 

 
 

 
2

1 2 1 2 1 2

o endo o

end end end

B f ff f

B f B f B f
 

  
. (A.56) 

Equation (A.56) may be approximated as 

 
 

2
1 2 end

B

B f
. (A.57) 

Substituting (A.57) into Equation (A.55) yields 

 
 

 
2

11

1 2
o

oend

B
t n

fB f




 

   
     

    

.  (A.58) 
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For 1n   and rearranging the terms in Equation (A.58), we can write 

 
 

2

11 1 1
1

4
o

o end

B
t

f B f




 

    
       
     

.  (A.59) 

The first term in Equation (A.59) represents the center of the main lobe in the 

matched filter output and the second represents the half-width. Since 1endB f   always, 

the width of the main lobe in the matched filter output is slightly different from 1 B and 

independent of  4 rv c TB . Thus, the widening and, consequently, the reduction in 

amplitude in the matched filter output will not be as severe as in the LFM case (see 

Chapter III, Figure 10). 

From Chapter III, Figure 10, it can be seen that with the use of an HFM pulse the 

filter is “always” matched to the target speeds, as evidenced by the small decrease in 

amplitude as Doppler errors increase, avoiding the use of a “bank” of filters. From 

Chapter III, Figure 9, for an LFM pulse there is a large decrease in amplitude as Doppler 

errors increase. In both cases there is a temporal offset in the matched filter output’s peak 

due to the relative motion between source and target. 

In cases where the relative radial speed (or Doppler shift) is known, with the use 

of HFM pulses, the time of arrival may be predicted using Equation (A.54) as in the 

following 

 
 1 1

o p

o

t
f




 


  ,  (A.60) 

where 1 2 rv c   , and pt is the matched filter output peak time. The temporal offset in 

the matched filter output is 

 
 1 1

d o p

o

t t
f




 


   . (A.61) 

Therefore, when the Doppler shift is known, Equation (A.61) permits a direct 

compensation for the time offset in the matched filter. Unfortunately there is no closed 

form expression for LFM pulses. Continuing this discussion, let us analyze a simplified 

argument regarding the widening in the matched filter output due to Doppler effect. 



 151 

C. DOPPLER-INVARIANT WAVEFORMS 

Some authors, as in [21], [59], [60], and [61], make the argument (directly or 

indirectly) that if the instantaneous frequency of the transmitted signal is merely a time 

delayed version of the instantaneous frequency of the Doppler transformed received 

signal, the widening and the amplitude reduction in the matched filter output will not be 

present, and they label a waveform with such characteristics a “Doppler–invariant” 

waveform. Therefore, for a “Doppler-invariant” waveform the following equation shall 

be satisfied 

    i i rec df t f t t  , (A.62) 

where dt  is a constant, if  is the instantaneous frequency of the transmitted signal, and 

i recf  is the instantaneous frequency of the Doppler transformed received signal. The basis 

of the preceding argument is that if Equation (A.62) is satisfied, the quadratic term in the 

matched filter output will not be present. Thus, it does not lead to the widening effects as 

previously demonstrated.  

Let us start with the LFM pulse. From Equations (A.10) and (3.19), the Doppler 

transformed received signal is 

      
2

' cos 2 c p ox t a t f t D t       
 

, (A.63) 

for which the instantaneous frequency is 
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 (A.64) 

According to Equation (3.20), the instantaneous frequency of the transmitted signal is 

  
1

i c pf t f D t


  . (A.65) 

Substituting Equations (A.64) and (A.65) into Equation (A.62), we obtain 

  2 2

1
1 1c

d

p

f
t t

D




 

 
    

 
. (A.66) 
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Because dt  is a function of time, the LFM pulse does not satisfy Equation (A.62). Thus, 

the widening effect in the matched filter output may be expected. Note that there is no 

closed form expression to calculate the time offset in the matched filter output’s peak for 

an LFM signal. 

Moving to the HFM pulse, from Equations (A.10) and (3.22), the Doppler 

transformed received signal is 

      
2

cos ln 1 o ox t a t f t


   


 
   

 
,  (A.67) 

for which the instantaneous frequency is 

 

   
1 2

ln 1
2

.
1

i rec o o

o

o

d
f t f t

dt

f

f t


  

 



 

 
   

 




  (A.68) 

According to Equation (3.23) the instantaneous frequency of the transmitted signal is 

  
1

o
i

o

f
f t

f t



.  (A.69) 

Substituting Equations (A.68) and (A.69) into Equation (A.62) yields 

 
 1 1

d

o

t
f



 


 .  (A.70) 

In Equation (A.70) dt  is constant satisfying the criteria for a “Doppler-invariant” 

waveform. Therefore, the widening effect in the matched filter output is not expected. It 

is worth noting that Equation (A.70) agrees with Equation (A.61). 

 Equation Chapter (Next) Section 1  
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APPENDIX B. OBSERVABILITY OF THE DYNAMIC MODEL 

In this appendix we address the issue of observability of the overall system. In 

particular we want to make sure that the dynamic system defined in Equation (2.17) with 

the observations, Equation (2.25), has suffient information so that both position and 

current can be estimated. 

Although the system is clearly nonlinear, it can be framed as a linear time 

invariant system with nonlinear memoryless observations. As a consequence we can use 

the standard observability test using the observability matrix. 

Basic Fact: 

It  is well known that given the state space representation of a dynamic system 

 x1where N
 




x Ax Bu
x

y Cx
, (B.1) 

the system is “observable”, i.e., the state  tx  can be estimated from ( )tu  and  ty , 

provided that the following matrix (observability matrix) 

 2

1N 

 
 
 
  
 
 
  

C

CA

CA

CA

 is full rank. (B.2) 

In our case we have the following: 

 x  represents the position of the UUV, where 
2x1x ; 

 c represents the velocity of the sea current, where 
2x1c . 

Then we can write 

 
     

      
     

x 0 I x

c 0 0 c
 . (B.3) 

a) UUV and three reference points: 

Suppose we have three reference points A
P , BP , and CP , as depicted in Figure 80, 

we may write 
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,

,

.

 

 

 

A A

B B

C C

r x P

r x P

r x P

 (B.4) 

Then  notice that 

 
2 22 2

A Br r    
A B

x P x P , (B.5) 

as    
2 2 T

   a b a b a b , Equation (B.5) becomes 

    2 2 2
T

A Br r    
A B B A

x P P P P . (B.6) 

Similarly 

    2 2 2
T

A Cr r    
A C C A

x P P P P . (B.7) 

We can write (B.6) as 

        2 21 1

2 2

T T

A Br r     B A A B B AP P x P P P P . (B.8) 

Rearranging Equation (B.8) we obtain 

      
2 22 21 1

2 2

T
T

A Br r     AB B A B Ay P P P P x , (B.9) 

similarly 

      
2 22 21 1

2 2

T
T

A Cr r     AC C A C Ay P P P P x . (B.10) 

Then the overall state space representation becomes 

 
 

 
.

T

T

     
      

     

    
    
      

B AAB

AC C A

x 0 I x

c 0 0 c

P P 0y x

y cP P 0



 (B.11) 

To construct the observability matrix, the matrix A  in Equation (B.2) may be 

written as 

 
 

  
 

0 I
A

0 0
 (B.12) 

and the matrix C as 

 
 

 

T

T

 
 
  

B A

C A

P P 0
C

P P 0
. (B.13) 
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Using Equations (B.2), (B.12), and (B.13) the observability matrix may be written 

as 

 

 

 

 

 

T

T

T

T

 
 
  

     
   

 
  

B A

C A

B A

C A

P P 0

P P 0C

CA 0 P P

0 P P

. (B.14) 

As long 
B A

P P  and 
C A

P P  are linearly independent, i.e.,  det 0  , the 

system is observable. 

 

Figure 80.  UUV and Three Reference Points 

b) UUV and two reference points: 

As observability is independent on the reference frame, let us consider a scenario 

where the origin of our coordinate system is the reference point A
P  and the line between 

A
P and the reference point BP  represents the x axis as depicted in Figure 81. 

A
P

B
P

C
P

x
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Figure 81.  UUV and Two Reference Points 

In this case we can write 

 
 

 

T

A

T

B

P 0 0

P 0 .Bx




  (B.15) 

From Figure 82 we can write 

 2 2 2

A u ur x y  , (B.16) 

and 

 
 

22 2

2 2 22 .

B u B u

u u B B u

r x x y

x x x x y

  

   
  (B.17) 

From (B.16) and (B.17) 

 2 2 2 2A B B u Br r x x x   .  (B.18) 

From Figure 81 we can write 

 cos u

A

x

r
  ,  (B.19) 

substituting (B.18) into (B.19) we may write 

 
2 2 2 2 2 2

cos acos
2 2

A B B A B B

A B A B

r r x r r x

r x r x
 

    
    

 
. (B.20) 

From Figure 81 we may write 

    tg 0 tgu u u uy x x y     . (B.21) 

 From Equations (B.18), (B.20), and (B.21) the two observations may be written as 

 

 

2 2 2

2

0 tg .

AB

A B B
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B

u u

r r x
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x y
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 

 (B.22) 
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Then the overall state space representation becomes 

 
1 0 0 0

.
0 tg 1 0 0

u

uAB

x

y

x

y

c

c





     
      

     

 
 

             
 
  

x 0 I x

c 0 0 c


 (B.23) 

 From (B.2) and (B.23) the observability matrix may be written as 

 

1 0 0 0

tg 1 0 0

0 0 1 0

0 0 tg 1





 
 

         
 

 

C

CA
 (B.24) 

As  det 0  , the system is observable. 
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