

MÁRCIO MARTINS LOBÃO

Marcadores orgânicos na interface continente-oceano: história deposicional recente na plataforma continental brasileira entre 10°S e 23°S

RIO GRANDE- RS 2019

MÁRCIO MARTINS LOBÃO

MARCADORES ORGÂNICOS NA INTERFACE CONTINENTE-OCEANO: HISTÓRIA DEPOSICIONAL RECENTE NA PLATAFORMA CONTINENTAL BRASILEIRA ENTRE 10°S E 23°S

Tese apresentada ao Programa de Pós-Graduação em Oceanografia Física, Química e Geológica – PPGOFQG da Universidade Federal do Rio Grande – FURG como requisito parcial à obtenção do título de Doutor em Oceanografia Física, Química e Geológica.

Orientador: Prof. Dr. Paulo Roberto Martins Baisch

MÁRCIO MARTINS LOBÃO

Marcadores orgânicos na interface continente-oceano: História deposicional recente na plataforma continental brasileira entre 10°S e 23°S

Tese apresentada ao Programa de Pós-Graduação em Oceanografia Física, Química e Geológica – PPGOFQG da Universidade Federal do Rio Grande - FURG como requisito parcial à obtenção do grau de Doutor em Oceanografia Física, Química e Geológica, aprovada pela comissão de avaliação abaixo assinada:

Prof. Dr. Paulo Roberto Martins Baisch (Orientador - FURG)

Profa. Dra. Ana Luiza Spadano Albuquerque (UFF) - Membro externo

Prof. Dr. Nicolai Mirlean (FURG)

Prof. Dr. Carlos Francisco Ferreira de Andrade (FURG)

Profa. Dra. Paula Dentzien Dias (FURG) - Suplente

Rio Grande, 22 de março de 2019.

AGRADECIMENTOS

É difícil agradecer a tanta gente que, de uma maneira ou de outra, contribuiu para que este trabalho fosse realizado. Espero não esquecer ninguém!

Primeiramente agradeço a toda a equipe do Laboratório de Oceanografia Operacional e Paleoceanografia – LOOP, do Departamento de Geoquímica da Universidade Federal Fluminense, tanto pelo espaço e estrutura gentilmente cedidos para a realização de parte deste estudo quanto pela simpatia e ótimo ambiente de trabalho durante todo o período em que estivemos juntos. Agradeço em especial à Professora Dra. Ana Luiza Spadano Albuquerque por ter acreditado no meu potencial de desenvolvimento ao me confiar as amostras que compuseram esta tese e pela serenidade contagiante demonstrada em todos os contatos que com ela mantive, à Doutora Bruna Borba Dias e à Professora Dra. Rut Diaz, pelo apoio e zelo na obtenção e preservação das amostras durante o embarque no navio R/V Meteor em 2016.

À Professora Dra. Maria Isabel Machado, gestora do Programa PRH-27 da ANP na FURG, pelo apoio prestado na melhoria da infraestrutura da Geoquímica do LOG, o qual propiciou a condução das extrações e fracionamentos de forma bastante otimizada, e pela preciosa orientação sempre focada na otimização do trabalho em laboratório.

Aos professores do PPGOFQG pelas pertinentes observações e sugestões relativas ao desenvolvimento desse trabalho, os quais ajudaram a melhorar a sua qualidade e possibilitaram um novo olhar sobre o mesmo. Em especial, agradeço à Professora MSc. Maria da Graça Zepka Baumgarten pela dedicação no exercício de suas atividades de docência no PPGOFQG. Você representa o verdadeiro espírito do professor! Agradeço ainda aos Professores Doutores Adriana Leonhardt, Eunice Machado, Gilberto Fillmann, Grasiela Pinho, João Nicolodi, José Henrique Muelbert Lauro Calliari, Maurício Mata, Mônica Wallner-Kersanach, Osmar Möller Júnior e Paula Dias, que foram extremamente importantes nos primeiros passos deste Engenheiro Químico na Oceanografia.

Ao meu orientador, Prof. Dr. Paulo Roberto Martins Baisch, pela oportunidade de capacitação.

Aos técnicos da FURG, por toda a dedicação nos momentos em que precisei de sua ajuda, com destaque para o Clabisnei, Secretário do PPGOFQG e Manoel, ex-Secretário do LOG, que sempre foram extremamente prestativos! Em especial, agradeço à Técnica em Educação MSc. Elisa Rosa Seus Arraché, minha quase orientadora, que nunca mediu esforços para me ajudar quando necessário. Além de amigos, juntos, nos tornamos "especialistas" em cromatografia a gás.

À empresa Perkin Elmer, fabricante do modelo de cromatógrafo a gás utilizado para as análises cromatográficas conduzidas neste trabalho: não fosse a quantidade enorme de problemas e defeitos do equipamento mantido no LOG, meu desenvolvimento na arte da cromatografia a gás não teria sido o mesmo! Engana-se quem acha que aprende com o sucesso. Se aprende muito mais quando as coisas dão errado!

Aos meus colegas de curso pelos bons momentos que passamos juntos e pelo estímulo nos momentos difíceis. Agradeço em especial o companheirismo dos colegas do setor de geoquímica do LOG André, Alexandre, Eduardo, Guilherme (Gago) e Larissa. Somos os autosuficientes da geoquímica!

Aos professores membros da Banca de Qualificação pela disponibilidade em avaliar este aluno e pelas importantes sugestões relativas ao desenvolvimento deste trabalho.

Ao Dr. Elvis França, do CRCN-NE, que gentilmente se dispôs a datar os testemunhos utilizados neste estudo depois de tantas dificuldades em obter esse dado!

Aos professores Dra. Ana Luiza Spadano Albuquerque, Dr. Nicolai Mirlean e Dr. Carlos Francisco Ferreira de Andrade, membros da Banca de Avaliação, por avaliarem este estudo.

À Marinha do Brasil, pela oportunidade de crescimento profissional e, em especial, aos colegas e amigos do Instituto de Estudos do Mar Almirante Paulo Moreira – IEAPM, pelo apoio prestado nos momentos de dificuldade durante essa jornada. Espero poder retribuir a confiança em mim depositada. Agradeço ainda à Doutora Eliane Gonzalez Rodrigues, minha diretora e meu exemplo de dedicação, pelo estímulo à realização desta empreitada e às amigas Fernanda Thomazelli e Emanuele Paganelly pelo apoio no gerenciamento do cromatógrafo.

Ao contribuinte brasileiro, tão castigado em termos de carga tributária que, mesmo sem saber, pagou por esta oportunidade de qualificação. No restante da minha carreira profissional na Marinha do Brasil, tenho o compromisso de pagar essa dívida com trabalho e dedicação, honrando a memória do Vice-Almirante Paulo de Castro Moreira da Silva, idealizador do Projeto Cabo Frio e que empresta seu nome ao IEAPM, para ajudar na melhoria da qualidade de vida e desenvolvimento tecnológico no nosso país.

Finalizando, agradeço à minha família por compreender meus momentos de ausência e stress. Em especial agradeço à minha esposa, meu porto seguro, por toda a serenidade com que me ajuda a conduzir as dificuldades da vida, e aos meus filhos Pedro José e Mariana, motivo de orgulho e cuja boa formação é meu dever e estímulo!

"Pouco conhecimento faz com que as pessoas se sintam orgulhosas. Muito conhecimento, que se sintam humildes. É assim que as espigas sem grãos erguem desdenhosamente a cabeça para o Céu, enquanto que as cheias as baixam para a terra, sua mãe."

(Leonardo da Vinci)

SUMÁRIO

LISTA DE FIGURAS	IX
LISTA DE TABELAS	XI
RESUMO	XII
ABSTRACT	XIII
1. INTRODUÇÃO	1
2. OBJETIVOS	7
2.1 – Objetivo Geral	7
2.2 – Objetivos Específicos	7
3. HIPÓTESE	8
4. ASPECTOS TEÓRICOS E REVISÃO DA LITERATURA	9
4.1 O ciclo global do carbono e sua abrangência no oceano costeiro	9
4.2 Origem da matéria orgânica nos sedimentos marinhos costeiros	11
4.3 Fatores que afetam a preservação da matéria orgânica no ambiente sedimentar	13
4.4 Compostos orgânicos como indicadores da origem da matéria orgânica	14
 4.5 Abordagem analítica aplicada à compostos orgânicos em amostras ambientais	
4.6 O registro histórico da matéria orgânica a partir de colunas sedimentares	47
5. ÁREA DE ESTUDO	51
6. MATERIAL E MÉTODOS	54
6.1 Amostragem	54
6.2 Pré-tratamento	56
 6.3 Procedimentos para extração, purificação e fracionamento dos compostos analisados 6.3.1 Preparo dos materiais e reagentes utilizados 6.3.1.1 Limpeza do material	56 57 57 57

6.3.2 Procedimento analítico para obtenção dos extratos	58
6.3.2.1 Extração	59
6.3.2.2 Fracionamento e preparo das amostras para análise	60
6.3.3 Determinação dos parâmetros de caracterização geral	61
6.3.3.1 Análise granulométrica	61
6.3.3.3 Datação	
6.3.4 Identificação e quantificação cromatográfica dos analitos	63
6.3.4.1 Hidrocarbonetos alifáticos	
6.3.4.2 Hidrocarbonetos aromáticos	
6.3.4.3 Esteroides	
6.3.5 Analises estatisticas	/ 1
7. RESULTADOS E DISCUSSÃO	73
7.1 Plataforma continental na região do Cabo Frio	73
7.1.1 Características fisiográficas da região do Cabo Frio	73
7.1.2 Granulometria	
7.1.3 Datação	76
7.1.4 Parâmetros de caracterização geral (bulk)	77
7.1.5 – Análise cromatográfica	79
7.1.5.1 Hidrocarbonetos alifáticos na PC Cabo Frio	79
7.1.5.2 Hidrocarbonetos aromáticos na PC Cabo Frio	
7.1.5.3 Biomarcadores de petroleo para elucidar a origem dos hidrocarbonetos na base do testemuni	10
BIUMIT	
7.1.5.4 Esteroides na PC Cabo Frio	89
7.1.0 Integração dos parametros considerados	93
7.2 Plataforma continental na região da foz do Rio Doce	
7.2.1 Características fisiográficas da região	
7.2.2 Granulometria	103
7.2.3 Datação	104
7.2.4 Parâmetros de caracterização geral	107
7.2.5 – Análise cromatográfica	109
7.2.5.1 Hidrocarbonetos alifáticos na PC Doce	109
7.2.5.2 Hidrocarbonetos aromáticos na PC Doce	115
7.2.5.3 Biomarcadores de petróleo para elucidar a origem dos hidrocarbonetos na base do testemun BIOMT3	ю 122
7.2.5.4 Esteróides na PC Doce	124
7.2.6 Integração dos parâmetros considerados	131
7.3 Plataforma continental na região da foz do Rio de Contas	132
7.3.1 Caracteristicas insiograficas da região	132
7.2.2 Oranurometria	134
7.2.5 Datação	135
$7.35 - \Delta$ nálise cromatográfica	130
7.3.5 - Analise cionatografica	130
7 3 5 2 Hidrocarbonetos aromáticos na PC Contas	130
7 3 5 3 Esteróides na PC Contas	1 13
7.3.6 Integração dos parâmetros considerados	152
7.4 Plataforma continental na região da foz do Rio São Francisco	153
7.4.1 Características fisiográficas da região	153
7.4.2 Granulometria	157
7.4.3 Datação	158
7.4.4 Parametros de caracterização geral	159
/.4.5 – Analise cromatografica	160
7.4.5.1 Hidrocarbonetos alifaticos na PC São Francisco	160
1.4.3.2 HIGTOCATOONELOS ATOMALICOS NA PU SAO FRANCISCO	100

7.4.5.3 Esteróides na PC São Francisco7.4.6 Integração dos parâmetros considerados	171 176
 7.5 Comparação dos resultados de cada ambiente estudado 7.5.1 Caracterização geral 7.5.2 Análise cromatográfica 	 177 177 179
8. CONCLUSÕES	185
9. REFERÊNCIAS BIBLIOGRÁFICAS	187
APÊNDICE A-1: DISTRIBUIÇÃO INDIVIDUAL DE N-ALCANOS E ISOPRENÓIDES NO TESTEMUNHO BIOMT1 – PC CABO FRIO	212
APÊNDICE A-2: TABELA DE DISTRIBUIÇÃO INDIVIDUAL DE HPAS PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT1 – PC CABO FRIO	214
APÊNDICE A-3: HISTOGRAMAS: DISTRIBUIÇÃO INDIVIDUAL DE HPAS PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT1 – PC CABO FRIO	215
APÊNDICE B-1: SÉRIE HISTÓRICA DE VAZÕES MÁXIMAS NO RIO DOCE ENTRE OS ANOS DE 1969 E 2014	217
APÊNDICE B-2: SÉRIE HISTÓRICA DE VAZÕES MÁXIMAS NO RIO DOCE ENTRE OS ANOS DE 1938 E 2014	218
APÊNDICE B-3: CRONOLOGIA-TENTATIVA NO TESTEMUNHO BIOMT3 – J DOCE	PC 219
APÊNDICE B-4: DISTRIBUIÇÃO INDIVIDUAL DE N-ALCANOS E ISOPRENÓIDES NO TESTEMUNHO BIOMT3 – PC DOCE	220
APÊNDICE B-5: TABELA DE DISTRIBUIÇÃO INDIVIDUAL DE HPAS PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT3 – PC DOCE	224
APÊNDICE B-6: HISTOGRAMAS: DISTRIBUIÇÃO INDIVIDUAL DE HPAS PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT3 – PC DOCE	226
APÊNDICE C-1: SÉRIE HISTÓRICA DE VAZÕES MÁXIMAS NO RIO DE CON ENTRE OS ANOS DE 1935 E 2013	NTAS 230
APÊNDICE C-2: DISTRIBUIÇÃO INDIVIDUAL DE N-ALCANOS E ISOPRENÓIDES NO TESTEMUNHO BIOMT6 – PC CONTAS	231
APÊNDICE C-3: TABELA DE DISTRIBUIÇÃO INDIVIDUAL DE HPAS PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT6 – PC CONTAS	234

APÊNDICE C-4: HISTOGRAMAS: DISTRIBUIÇÃO INDIVIDUAL DE HPAS	
PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT6 – PC CONTAS	236
APÊNDICE D-1: SÉRIE HISTÓRICA DE VAZÕES MÁXIMAS NO RIO SÃO	
FRANCISCO ENTRE OS ANOS DE 1931 E 2007	239
APÊNDICE D-2: DISTRIBUICÃO INDIVIDUAL DE N-ALCANOS E	
ISOPRENÓIDES NO TESTEMUNHO BIOMT7 – PC S. FRANCISCO	240
APÊNDICE D-3: TABELA DE DISTRIBUICÃO INDIVIDUAL DE HPAS	
PARENTAIS E ALQUILADOS NO TESTEMUNHO BIOMT7 – PC SÃO	
FRANCISCO	243
APÊNDICE D-4: HISTOGRAMAS: DISTRIBUICÃO INDIVIDUAL DE HPAS	
PARENTAIS E ALOUILADOS NO TESTEMUNHO BIOMT7 – PC S. FRANCISC	CO
	245

LISTA DE FIGURAS

Figura 1 – O ciclo global do carbono	10
Figura 2 – Diagrama de Hjulström	11
Figura 3 – Abordagem típica na análise de compostos orgânicos	18
Figura 4 – Valores típicos de δ^{13} C e C/N em ambientes costeiros	19
Figura 5 – Dinosterol como biomarcador de dinoflagelados .	22
Figura 6 – Estrutura molecular de esteróides e hopanóides	24
Figura 7 – Cromatogramas contendo MCNR de hidrocarbonetos	27
Figura 8 – 16 HPAS prioritários (U.S. EPA.)	32
Figura 9 – HPAs diagenéticos	35
Figura 10 – HPAs alquilados na avaliação da origem de aportes petrogênicos e pirolíticos	39
Figura 11 – Estrutura generalizada de numeração de esteróis	40
Figura 12 – Estrutura molecular do coprostanol e epicoprostanol	44
Figura 13 – O registro geoquímico por meio dos testemunhos	48
Figura 14 – Deposição do ²¹⁰ Pb _{ex}	49
Figura 15 – Mapa da área de abrangência do estudo	53
Figura 16 – Detalhamento dos pontos de amostragem	54
Figura 17 – Fluxograma de extração, fracionamento e análise das amostras	59
Figura 18 – Ressurgência costeira na região do Cabo Frio	74
Figura 19 – Resultados da análise granulométrica do testemunho BIOMT1	76
Figura 20 – Atividade do ²¹⁰ Pbex – Testemunho BIOMT1	77
Figura 21 - %COT versus profundidade e ano de deposição para o testemunho BIOMT1	78
Figura 22 – Razão C/N versus δ^{13} C para amostras selecionadas do testemunho BIOMT1	79
Figura 23 - Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT1 .	80
Figura 24 - Distribuição de n-alcanos em diferentes horizontes de profundidade - BIOMT	1 83
Figura 25 – HPAs totais ao longo do testemunho BIOMT1	85
Figura 26 – Esteranos na amostra BIOMT1-17	88
Figura 27 - Terpanos tricíclicos, tetracíclicos e pentacíclicos na amostra BIOMT1-17	89
Figura 28 – Concentrações de esteróides no testemunho BIOMT1	90
Figura 29 – Panorama do tratamento de esgotos por município e ocorrência de cianobactér	rias
na bacia do Rio Doce	98
Figura 30 – Mortandade de peixes na área do Parque Estadual do Rio Doce (BRASIL, 201	.6)
	. 101
Figura 31 – Resultados da análise granulométrica do testemunho BIOMT3	. 104
Figura 32 – Atividade do ²¹⁰ Pb _{ex} – Testemunho BIOMT3	. 105
Figura 33 – Cronologia-tentativa para o testemunho BIOM I 3	106
Figura $34 - \%$ COT versus profundidade e ano de deposição para o testemunno BIOM13	.107
Figura 35 – Razao C/N versus δ^{15} C para amostras selecionadas do testemunho BIOM I 3	.108
Figura 36 – Perfil de concentração de hidrocarbonetos alitaticos do testemunho BIOMI 3.	, 110 2
Figura 37 – Distribuição de n-alcanos em diferentes norizontes de profundidade - BIOM I.	3 114
Eisura 29. Concentração de UDAs e norilens no testemunho DIOMT?	.114
Figura 30 – Concentração de FIFAS e pertieno no testemunho BIOMI 3	120
Figura 59 – Ofigem dos HPAS no testemunno BIOM15	120
Figura 40 – Granco de superincie – concentrações de HPAs no testemunno BIOMI 3	121
Figura 41 – Esteranos na amostra $BIOWI 15-58$	123
Figura 42 – Terpanos incicicos, terraciencos e pentaciencos na amostra BIOMI 3-38	123
Figura 45 – Concentrações de esteroides no testemunho BIONI 15	124
rigura 44 – Concentrações de esteroides fecais no testemunno BIOM 13	. 128

Figura 45 – Avaliação da contaminação fecal por meio de proxies no testemunho BIOMT3 Figura 46 – Análise de Componentes Principais – Esteróides no testemunho BIOMT3......130 Figura 48 – Resultados da análise granulométrica do testemunho BIOMT6......135 Figura 50 – %COT versus profundidade e ano de deposição para o testemunho BIOMT6..137 Figura 51 – Razão C/N versus δ^{13} C para amostras selecionadas do testemunho BIOMT6...137 Figura 52 – Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT6. 138 Figura 53 – Distribuição de n-alcanos em diferentes horizontes de profundidade – BIOMT6 Figura 54 – Concentração de HPAs e perileno no testemunho BIOMT6144 Figura 55 – Concentrações de esteróides no testemunho BIOMT6148 Figura 56 – Distribuição relativa de esteróides no testemunho BIOMT6......151 Figura 57 – Bacia hidrográfica do Rio São Francisco154 Figura 58 - Resultados da análise granulométrica do testemunho BIOMT7157 Figura 60 - %COT versus profundidade e ano de deposição para o testemunho BIOMT7...159 Figura 61 - Razão C/N versus δ^{13} C para amostras selecionadas do testemunho BIOMT7....160 Figura 62 - Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT7..161 Figura 63 - Distribuição de n-alcanos em diferentes horizontes de profundidade - BIOMT7 Figura 64 - Concentração de HPAs e perileno no testemunho BIOMT7......167 Figura 65 - Concentrações de esteróides no testemunho BIOMT7......171 Figura 67 - Comparação entre os perfis estudados - hidrocarbonetos alifáticos totais......179 Figura 69 - Análise de Componentes Principais - HPAs nos testemunhos analisados......182

LISTA DE TABELAS

Tabela 1 – Propriedades físico-químicas dos HPAs definidos como prioritários pela WHO	
(1998)	.33
Tabela 2 - Proxies de HPAs utilizados, com os valores tipicamente reportados para cada for	nte
ou processo em particular (adaptado de TOBISZEWSKI & NAMIESNIK, 2012)	.38
Tabela 3 – Esteróides utilizados como traçadores em sistemas aquáticos	.46
Tabela 4 – Caracterização geral das colunas sedimentares estudadas	.55
Tabela 5 - Nomenclatura e parâmetros de identificação dos Hidrocarbonetos alifáticos	.66
Tabela 6 - Nomenclatura e parâmetros de identificação dos HPAs estudados	.68
Tabela 7 – Nomenclatura, compostos base para cálculo do FRR, tempos de retenção e íons	de
quantificação e identificação dos esteróides estudados	.72
Tabela 8 – Hidrocarbonetos alifáticos no Testemunho BIOMT1	.81
Tabela 9 - Hidrocarbonetos aromáticos no Testemunho BIOMT1	.86
Tabela 10 – Esteróides no Testemunho BIOMT1	.91
Tabela 11 - Coeficientes de correlação de Spearman - esteróis no testemunho BIOMT1	.93
Tabela 12 – Hidrocarbonetos alifáticos no Testemunho BIOMT3	112
Tabela 13 – Hidrocarbonetos aromáticos no Testemunho BIOMT31	118
Tabela 14 – Esteróides no Testemunho BIOMT3	125
Tabela 15 – Hidrocarbonetos alifáticos no Testemunho BIOMT6	140
Tabela 16 – Hidrocarbonetos aromáticos no Testemunho BIOMT61	145
Tabela 17 – Esteróides no Testemunho BIOMT6	149
Tabela 18 - Hidrocarbonetos alifáticos no Testemunho BIOMT7	163
Tabela 19 - Hidrocarbonetos aromáticos no Testemunho BIOMT7	169
Tabela 20 - Esteróides no Testemunho BIOMT7	172
Tabela 21 - Comparação dos resultados de hidrocarbonetos alifáticos com outros estudos 1	180
Tabela 23 - Comparação dos resultados de esteróides com outros estudos1	184

RESUMO

Os rios são receptores naturais de todo o tipo de substâncias advindas da atividade humana, consistindo de uma importante via de transporte de materiais terrígenos para a zona costeira. Apesar dos efeitos da diagênese sobre a matéria orgânica, os sedimentos depositados na região da sua desembocadura, podem ser utilizados como ferramentas de registro geoquímico, no intuito de determinar a história deposicional de uma dada bacia. Este estudo teve como objetivo investigar, por meio de marcadores orgânicos preservados em colunas sedimentares, a transferência de material via interface continente-oceano nas zonas de influência dos rios Doce, de Contas e São Francisco, de modo a inferir as principais fontes de contribuição natural e antropogênica para essas regiões sob uma perspectiva histórica. O estudo foi desenvolvido com a avaliação de testemunhos obtidos na plataforma continental, associados às regiões das desembocaduras desses rios, comparados entre si e com um testemunho obtido na região de ocorrência da ressurgência do Cabo Frio, sem influência fluvial significativa. A avaliação das amostras se deu por meio de abordagem multi-analítica, envolvendo a análise de isótopos estáveis de carbono e nitrogênio, carbono orgânico total, hidrocarbonetos (alifáticos e aromáticos) e esteróides a fim de inferir a influência natural e antropogênica em cada região em escala decadal. Os resultados indicam que na região da foz do Rio Doce ocorre deposição ativa, obedecendo ao regime de chuvas na região da sua bacia, com aporte continental de material natural e antropogênico. Já os testemunhos obtidos nas regiões das desembocaduras dos rios de Contas e São Francisco indicam a ocorrência de menores contribuições continentais, tanto em decorrência do clima/tamanho da bacia quanto em decorrência de construções ao longo do leito do rio, caso das barragens ao longo do Rio São Francisco, que determinam menor aporte de material terrígeno para a plataforma continental e, com isso, dificultam o estabelecimento de correlação temporal com eventuais aportes antropogênicos em suas bacias. O testemunho obtido na região do Cabo Frio, similarmente aos testemunhos obtidos das regiões dos rios de Contas e São Francisco, não indicou a ocorrência de aportes antropogênicos significativos. Embora esse testemunho tenha sido obtido em uma área pouco favorável para a determinação de compostos orgânicos, foi possível identificar períodos de intrusão mais efetiva da ACAS sobre a plataforma continental por meio das análises de n-alcanos e esteróides.

Palavras-chave: marcadores orgânicos, HPA, esteróides, hidrocarbonetos, testemunho.

ABSTRACT

Rivers are natural receptors of all kinds of substances from human activity, consisting of an important transport route of terrigenous materials to the coastal zone. Despite the effects of diagenesis on organic matter, the sediments deposited in the region of its mouth can be used as tools of geochemical recording, in order to determine the depositional history of a given basin. The objective of this study was investigate, using organic markers preserved in sediment cores, the transfer of material through the continent-ocean interface in the zones influenced by Doce, Contas and São Francisco rivers, in order to infer the main sources of natural and anthropogenic inputs to these regions from a historical perspective. This study was carried out with the evaluation of cores recovered in the continental shelf, associated with each river mouth regions, compared with a core recovered from the Cabo Frio upwelling region, without any significant fluvial influence. Evaluation of the samples was done through a multi-analytical approach, involving the analysis of carbon and nitrogen stable isotopes, total organic carbon, hydrocarbons (aliphatic and aromatic) and steroids in order to infer the natural and anthropogenic influence in each region in a decadal scale. The results indicate that off the mouth of the Doce River occurs active sediment deposition, following the raining seasons in the region of its basin, with continental input of natural and anthropogenic material. On the other hand, the evidence obtained in the regions off the mouths of Contas and São Francisco rivers indicates the occurrence of lower continental inputs, as a result of the climate/size of the basin as well as the constructions along the river bed (case of the dams along São Francisco River), which determine lower input of terrigenous material to the continental shelf and, therefore, make it difficult to establish a temporal correlation with eventual anthropogenic contributions in its basins. The core obtained off Cabo Frio upwelling region, similarly with Contas and São Francisco cores, didn't indicate occurrence of significant anthropogenic contributions. Although this core was obtained in an unfavorable area for organic compounds, it was possible to identify periods of more effective SACW intrusions over continental shelf area, using nalkanes and steroids results.

Keywords: organic markers, PAH, steroids, hydrocarbons, sediment core.

1. INTRODUÇÃO

Estima-se que mais de 97% da água contida no planeta encontra-se nos oceanos (GARRISON, 2010). A parcela restante encontra-se distribuída entre os rios, lagos, calotas polares, aquíferos subterrâneos e atmosfera. A água, em seu ciclo, transita pelos diversos ambientes continentais e, nesse caminho, lixivia os solos, transportando materiais que – em última instância – terão seu destino final nos oceanos. Os rios constituem-se, então, em um caminho preferencial para a transferência de sedimentos e poluentes de terra para os sistemas marinhos costeiros (RULLKÖTTER, 1984; WALLING, 2006).

O Homem sempre modificou o ambiente à sua volta, normalmente se estabelecendo em locais próximos a fontes de água, dado que a disponibilidade de recursos hídricos é fator crítico para a manutenção da vida. No entanto, em virtude das perturbações ambientais ocasionadas pela espécie humana, decorrentes do uso indiscriminado e ineficiente dos recursos naturais, ocorreu – ao longo dos últimos 250-300 anos – um aumento sem precedentes nas trocas de carbono e nutrientes entre a terra, a atmosfera, os corpos de água doce, as zonas costeiras e o oceano aberto (VER et al., 1999; CARLSON et al., 2001; REES, 2012; SUTTON et al., 2013; REGNIER et al., 2013), ocasionando alterações adversas nesses ecossistemas costeiros.

Os ambientes costeiros estão sendo crescentemente impactados por atividades antropogênicas (HU et al., 2009; CANUEL et al., 2012; REES, 2012). Juntos, mudanças no uso da terra, erosão dos solos, uso de fertilizantes, descarte inadequado de esgoto doméstico e industrial, queima de combustíveis fósseis, represamento e desvio de cursos de água e mudanças climáticas induzidas pelo Homem, entre outros fatores, têm modificado o aporte de materiais terrígenos ao longo do *"continuum"* aquático que conecta a água dos solos em terra ao oceano aberto, com grandes impactos nos ciclos biogeoquímicos globais (BAUER et al. 2013; REGNIER et al. 2013). Decorre que a maior parte dos contaminantes encontrados nos oceanos é oriunda de atividades em terra, como consequência direta dessas modificações nas paisagens, associadas à concentração humana em áreas costeiras (LIBES, 2009; UNEP, 2005) e próximo a cursos de água. Soma-se a isso o fato de esses impactos antropogênicos terem elevado as concentrações atmosféricas de gases-estufa, como o CO₂, a níveis alarmantes: atualmente se aceita que a maior parte das mudanças climáticas tidas como antropogênicas decorrem do aumento na concentração de CO₂ atmosférico (LIBES, 2009; REGNIER et al., 2013; BAUER et al. 2013), que pode ocasionar efeitos climáticos catastróficos no futuro.

O aporte de material orgânico oriundo dos continentes para os oceanos se dá, principalmente, pelas vias fluvial e atmosférica (ROMANKEVICH, 1984; GAGOSIAN et al.,

1987; BOULOUBASSI et al., 1997; MEDEIROS & BÍCEGO, 2004; SIMONEIT, 2006; RULLKÖTTER, 2006; LIBES, 2009). Devido às descargas fluviais variáveis e as complexas condições hidrodinâmicas e oceânicas dentro das margens costeiras, o aporte e a origem dos sedimentos e matéria orgânica de origem fluvial no ambiente sedimentar são altamente variáveis ao longo do tempo e espaço (McKEE et al., 2004; BURONE et al., 2013). Essa matéria orgânica presente nos ecossistemas marinhos costeiros está sujeita à reciclagem tanto na coluna d'água quanto nos sedimentos por meio de processos físicos, químicos e biológicos (LIBES, 2009; BIGUS et al., 2014). Neste processo que faz parte do ciclo do carbono, somente uma pequena parcela da matéria orgânica (< 1%) escapa da reciclagem na coluna d'água ou nos sedimentos ativos, sendo finalmente soterrada e preservada, passando a fazer parte do registro sedimentar (BERNER, 1989 apud HARVEY, 2006; BERNER, 2003 apud HARVEY, 2006; LIBES, 2009).

De acordo com Bianchi & Canuel (2011) e Canuel et al. (2012), os estuários são sistemas de transição bastante propícios para o estudo da matéria orgânica sedimentar, pois desempenham um papel importante como barreira geoquímica, retendo e metabolizando uma parcela significativa da matéria orgânica trazida pelos rios antes de sua exportação para o oceano costeiro, que é precipitada em contato com a água do mar, de modo que o carbono orgânico acaba se acumulando nos sedimentos. Em função da intensa ocupação dessas regiões costeiras e da proximidade desses ambientes, os estuários são regiões bastante estudadas. Com isso, normalmente as áreas da plataforma continental, mais distantes da costa, acabam sendo objeto de estudo somente em função de interesses econômicos ou governamentais.

As plataformas continentais, apesar de constituírem menos de 10% da área da superfície oceânica (CARREIRA et al., 2012; MACKENZIE et al., 2005 apud BAUER et al., 2013; LARUELLE et al., 2013), sustentam algo entre 10 e 30% da produção primária global dos oceanos (WALSH, 1988; STEIN, 1991; CARREIRA et al., 2012; MACKENZIE et al., 2005 apud BAUER et al., 2013). Similarmente aos estuários, as plataformas continentais são interfaces dinâmicas que, apesar de o carbono orgânico de origem terrestre, estuarina e marinha ser intensamente reciclado (BAUER et al. 2013), são responsáveis – em nível global – pelo aprisionamento de 30-50% do carbono inorgânico e de aproximadamente 80% do carbono orgânico nos sedimentos (HEDGES & KEIL, 1995; VER et al. 1999; MACKENZIE et al., 2005, apud BAUER et al., 2013). Nas zonas costeiras, em média, entre 25 e 50% da produção primária atinge o leito marinho enquanto somente cerca de 1% é entregue ao oceano profundo (SUESS, 1980 apud SUMIDA et al., 2005). Deste modo, conforme exposto por Bauer et al.

(2013), as plataformas continentais são desproporcionalmente importantes para os ciclos e balanços globais de carbono nos oceanos.

Conhecer a ciclagem biogeoquímica da matéria orgânica, que envolve a transformação, transporte e destino final de substâncias químicas é crítico para se entender os efeitos das mudanças ambientais naturais e induzidas pelo Homem, numa perspectiva regional e global (BIANCHI & CANUEL, 2001, 2011). O carbono orgânico aprisionado nesses sedimentos pode refletir a sua origem e os processos que ocorrem na coluna d'água, de modo que essa matéria orgânica também pode servir como ferramenta para a distinção de fenômenos naturais e antropogênicos (SUMMONS, 1993; JENG, 2007; HEIM & SCHWARZBAUER, 2013; BIGUS et al., 2014).

Como os sedimentos costeiros recebem matéria orgânica de fontes diversas, os compostos orgânicos presentes podem ser utilizados como ferramentas de registro geoquímico, sendo úteis para se determinar a história deposicional local. Mudanças nas atividades econômicas e industriais, nos combustíveis utilizados para transporte, aquecimento doméstico ou geração de energia e também restrições impostas pela legislação ambiental, por exemplo, podem ficar registradas nos perfis de concentração de hidrocarbonetos policíclicos aromáticos (HPAs), documentando a evolução histórica das emissões de uma dada região (FOAN et al., 2010). O registro de mudanças ambientais locais por meio do estudo de testemunhos de sedimentos em ambiente costeiro tem sido frequentemente relatado (ZHANG et al., 2009; HU et al., 2011; CARREIRA et al., 2012; NIENCHESKI et al., 2014; WANG et al., 2016; LOURENÇO et al., 2017; SHIRNESHAN et al., 2017; LUBECKI et al., 2019). Zhang et al. (2009) registraram a contaminação por HPAs e PCBs em um testemunho obtido no sul do Mar Amarelo. De modo similar, Hu et al. (2011), via determinação de hidrocarbonetos alifáticos e aromáticos em testemunhos obtidos no Mar de Bohai, registraram tendências históricas associadas ao desenvolvimento sócio-econômico chinês nas últimas décadas. Esses estudos demonstram que as zonas de acumulação de sedimentos ao longo da costa podem registrar o aporte de material alóctone a distâncias consideráveis de sua fonte, além de material autóctone.

Similarmente a outras regiões do mundo, no Brasil modificou-se de forma significativa os fluxos de carbono e nutrientes de terra para a margem continental em função do desmatamento, da construção de represas, do aumento no consumo de combustíveis fósseis e de diversos outros impactos decorrentes do desenvolvimento urbano e industrial, que têm modificado os aportes de matéria orgânica para a zona costeira. Segundo Reis et al. (2017), apesar do intenso uso dos recursos hídricos pelo Homem, não é incomum encontrar-se cursos d'água que não tenham sido submetidos a estudos ambientais detalhados, dificultando a avaliação da magnitude de impactos ambientais e do status da poluição nesses locais, sobretudo nos países em desenvolvimento. Ainda segundo Reis et al. (2017, op.cit), vários corpos d' água no Sudeste do Brasil apresentam redução na vazão e qualidade de suas águas devido a processos de ocupação territorial, uso desordenado de recursos hídricos, aplicação de técnicas agrícolas e/ou industrialização sem gestão ambiental adequada e, ainda, devido ao crescimento populacional. No restante do Brasil a situação não parece muito diferente.

Na costa brasileira, apesar do intenso uso que fazemos do mar, ainda há regiões que não foram submetidas a estudos que enfoquem a avaliação da qualidade da água e dos sedimentos, sobretudo quando envolvem o uso de marcadores lipídicos orgânicos que, segundo Peters et al. (2005) e Bianchi & Canuel (2011), são famílias de moléculas bastante propícias para avaliar a origem da matéria orgânica em ambiente sedimentar.

Apesar de, nos últimos anos, ter-se observado diversos estudos envolvendo o uso de marcadores orgânicos naturais e antropogênicos como proxies para investigar a origem e os processos de transformação da matéria orgânica em vários ambientes aquáticos no Brasil, os mesmos têm se focado - normalmente - em regiões estuarinas, como na Lagoa dos Patos (MEDEIROS et al., 2005; MARTINS et al., 2007) e no sistema estuarino-lagunar de Mundaú-Manguaba (SILVA et al. 2013); e nas grandes baías de nossa costa, como a da Guanabara (SANTOS et al., 2008; MAUAD et al., 2015), Paranaguá (MARTINS et al., 2010) ou de Todos os Santos (DE SOUZA et al., 2017), em função da ocupação humana e desenvolvimento industrial associados a esses locais. Tais estudos, quando conduzidos na região da plataforma continental, normalmente tem seu foco na obtenção de amostras superficiais, como os conduzidos por Oliveira et al. (2013), que estudaram biomarcadores lipídicos (esteróis, ácidos graxos e álcoois graxos) em sedimentos superficiais em transectos obtidos na região da Bacia de Campos – RJ; Lourenço et al. (2013), que estudaram hidrocarbonetos alifáticos e aromáticos, juntamente com metais-traço em sedimentos superficiais próximos à plataformas de óleo e gás localizadas na Bacia de Sergipe-Alagoas, nordeste do Brasil; Carreira et al. (2015a), que estudaram a natureza e a distribuição da matéria orgânica (esteróis e ácidos graxos) depositada em sedimentos superficiais da plataforma continental interna adjacente ao rio Paraíba do Sul, no estado do Rio de Janeiro; e Carreira et al. (2015b), que evidenciaram o aporte de esgoto sanitário na plataforma continental interna na região nordeste do Brasil, por meio das análises de biomarcadores lipídicos em amostras de sedimentos superficiais coletadas nas regiões das desembocaduras dos rios São Francisco, Vaza-Barris, Sergipe e Piauí/Real. Em tais estudos, a coleta de amostras de sedimentos superficiais impede a reconstrução histórica desses ambientes.

Poucos estudos na costa brasileira, têm se voltado para a avaliação da acumulação de marcadores orgânicos na plataforma continental, como os conduzidos por Carreira et al. (2012) que estudaram as fontes e distribuição dos marcadores lipídicos (esteróis e ácidos graxos) em um testemunho sedimentar obtido da plataforma continental, na região sudeste do Brasil, em região adjacente à Baía da Guanabara; Cruz et al. (2013) e Sanders et al. (2014), que estudaram as propriedades físicas e geoquímicas de sedimentos marinhos na plataforma continental do Sudeste, na região de ocorrência da ressurgência do Cabo Frio – RJ, com a obtenção de registros históricos de acumulação recente, aproximadamente ao longo dos últimos 100 anos; e Lourenço et al. (2017), que conduziram um estudo com amostras obtidas de quatro colunas sedimentares da região do Cabo Frio em que, além de parâmetros de caracterização geral, analisaram esteróis e hidrocarbonetos alifáticos, visando avaliar as distribuições e evolução desses marcadores nessa região do Oceano Atlântico sudoeste ao longo dos últimos 700 anos.

Seguindo-se em direção ao nordeste do país, estudos envolvendo a análise de marcadores orgânicos (seja com amostras de sedimentos superficiais ou com a obtenção de colunas sedimentares) se tornam cada vez mais escassos, de modo que pouco se conhece sobre a história dos aportes e as possíveis marcas deixadas pelo homem nessas regiões. O rompimento de uma barragem de armazenagem de rejeitos de mineração da mineradora Samarco, ocorrido em 2015 na cidade de Mariana – MG (MARTA-ALMEIDA et al., 2016; GUERRA et al., 2017; GOMES et al., 2017; HATJE et al., 2017), que espalhou rejeitos de mineração ao longo de todo o leito do rio Doce e acabou impactando até mesmo a plataforma continental, aponta para a necessidade de melhor conhecermos a nossa costa.

Nesse contexto, a presente tese de doutoramento teve como proposta estudar a história deposicional recente em alguns ambientes na região da plataforma continental brasileira, no intuito de sanar lacunas no conhecimento relativo dessas regiões e avaliar a transferência de material via interface continente-oceano numa perspectiva histórica.

Foram escolhidas como objeto de estudo quatro colunas sedimentares obtidas na plataforma continental brasileira (entre as latitudes de 10°S e 23°S), nas proximidades das desembocaduras de alguns dos mais importantes rios que desaguam nessa região do Oceano Atlântico e na região em que se dá o fenômeno de ressurgência costeira do Cabo Frio, com vistas a se ter uma visão dos aportes e influências naturais e antropogênicas à plataforma continental, baseado em famílias de marcadores orgânicos representativos desses aportes e já estudados em outras regiões do Brasil e do mundo, especificamente hidrocarbonetos alifáticos, HPAs e esteróides. Tentou-se associar os compostos detectados ao longo das colunas sedimentares à história de ocupação e usos das regiões estudadas, de modo a inferir sobre o

desenvolvimento urbano e industrial nas regiões estudadas, tendo em vista que – conforme exposto por Regnier et al. (2013) – as perturbações antropogênicas podem alterar o fluxo de carbono para os sedimentos, quando comparado aos tempos pré-industriais.

A escolha desse modelo de estudo se deu em função das diferentes características climáticas e morfológicas de cada região, associada aos usos variados das bacias de drenagem dos rios considerados (sujeitos à transferência de aportes fluviais com diferentes características para o oceano), e que apresentam carência no estudo de marcadores geoquímicos orgânicos.

A presente tese está estruturada em nove capítulos. Este primeiro capítulo apresenta a relevância do tema, com o enfoque dado ao presente estudo, bem como a estruturação do texto desenvolvido. O capítulo 2 abrange os objetivos deste estudo. O capítulo 3 apresenta a hipótese adotada para o seu desenvolvimento. O capítulo 4 consiste em uma revisão bibliográfica que trata do ciclo do carbono no oceano costeiro (4.1); origem da matéria orgânica em ambiente sedimentar (4.2); fatores que afetam a preservação da matéria orgânica no ambiente sedimentar (4.3); Compostos orgânicos como indicadores da origem da matéria orgânica (4.4); Abordagem analítica aplicada à compostos orgânicos em amostras ambientais (4.5); e o registro histórico da origem da matéria orgânica (MO) a partir de colunas sedimentares (4.6). O capítulo 5 descreve a área de estudo, com uma contextualização oceanográfica da costa brasileira e dos ambientes que foram objeto de estudo. O capítulo 6 detalha os materiais e métodos utilizados para a amostragem (6.1), pré-tratamento, (6.2) e procedimentos detalhados de tratamento e análise das amostras (6.3). O capítulo 7 apresenta os resultados da avaliação analítica dos testemunhos coletados e sua discussão para cada um dos ambientes estudados, partindo da região onde se dá a ressurgência costeira do Cabo Frio (7.1), região próxima à foz do rio Doce (7.2), região próxima à foz do rio de Contas (7.3) e região próxima à foz do rio São Francisco (7.4), juntamente com a discussão dos resultados obtidos e uma breve comparação entre os ambientes estudados e os resultados de outros estudos (7.5). O capítulo 8 apresenta as conclusões do estudo e, por fim, o capítulo 9 descreve as referências bibliográficas utilizadas. O texto conta ainda com Apêndices, onde são detalhados os resultados obtidos das análises em cada seção sedimentar estudada.

2. OBJETIVOS

2.1 - Objetivo Geral

O presente trabalho teve como objetivo geral investigar a evolução temporal dos aportes de marcadores orgânicos na plataforma continental brasileira, nas zonas de influência dos rios Doce, de Contas e São Francisco e na região em que se dá a ressurgência costeira do Cabo Frio, a fim de compreender melhor a origem e o comportamento da matéria orgânica presente nesses ambientes sedimentares, de modo a avaliar a transferência de material via interface continente-oceano sob uma perspectiva histórica.

2.2 – Objetivos Específicos

Especificamente, este estudo teve como objetivos:

- Determinar e quantificar hidrocarbonetos alifáticos, aromáticos e esteróides, além de outros marcadores, como razão isotópica do Carbono (δ^{13} C) e razão C/N, com o intuito de identificar as principais fontes de contribuição de matéria orgânica para os sedimentos;

- Identificar eventuais mudanças quali-quantitativas dos marcadores considerados ao longo das colunas sedimentares analisadas, a partir das taxas locais de acumulação de sedimentos e dos compostos analisados; e

- Comparar o aporte via interface continente-oceano da região da foz de cada um dos rios entre si e com a região de ocorrência da ressurgência costeira do Cabo Frio, à luz dos marcadores geoquímicos analisados e da cronologia determinada, buscando associar esses marcadores aos diferentes aportes naturais e antropogênicos e às características climáticas e morfológicas de cada região.

3. HIPÓTESE

A hipótese adotada para o presente estudo é a de que é possível inferir o histórico de desenvolvimento urbano e industrial nas bacias de drenagem dos rios que desaguam na plataforma continental brasileira, entre 10°S e 23°S, por meio de variações nos aportes de matéria orgânica depositada nos sedimentos da plataforma continental, apesar das diferentes características climáticas, oceanográficas e de impacto humano, possibilitando o estabelecimento de registros históricos de aportes naturais e antropogênicos a partir dos sedimentos depositados.

4. ASPECTOS TEÓRICOS E REVISÃO DA LITERATURA

O presente capítulo apresenta uma revisão da literatura em que se baseou o desenvolvimento deste estudo, conforme disposto nos itens a seguir, que tratam do ciclo do carbono no oceano costeiro (4.1); origem da matéria orgânica nos sedimentos marinhos costeiros (4.2); fatores que afetam a preservação da matéria orgânica em ambiente sedimentar (4.3); compostos orgânicos como indicadores da origem da matéria orgânica (4.4); a abordagem analítica aplicada à compostos orgânicos em amostras ambientais (4.5); e o registro histórico da matéria orgânica a partir de colunas sedimentares (4.6).

4.1 O ciclo global do carbono e sua abrangência no oceano costeiro

O ciclo global do carbono consiste em um ciclo geoquímico por meio do qual o CO_2 é fixado para formar matéria orgânica por meio da fotossíntese ou da quimiossíntese, ciclado ao longo de vários níveis tróficos na biosfera, parcialmente retido nos sedimentos e, finalmente, retorna ao seu estado original por meio da respiração ou combustão (PETERS et al., 2005). De uma forma bastante simplificada, pode-se dizer que a matéria orgânica é produzida por organismos autotróficos e é consumida/processada por organismos heterotróficos.

Esse ciclo, representado na figura 1, descreve as complexas transformações e fluxos de carbono entre os seus principais componentes (HARVEY, 2006). O carbono é armazenado e ciclado nos quatro principais reservatórios da Terra: atmosfera, litosfera, biosfera e hidrosfera (CARLSON et al. 2001), com tempos de troca e armazenamento que podem variar de segundos a alguns milhões de anos (HOUGHTON, 2003).

O ciclo do carbono na Terra pode ser dividido em duas partes: o subciclo biológico ou bioquímico começa com a fotossíntese da matéria orgânica a partir do CO₂ atmosférico ou do CO₂/bicarbonato em águas superficiais, usualmente tem meia-vida de alguns dias a dezenas de anos (dependendo da vida dos organismos), e incorpora a matéria orgânica particulada e dissolvida não viva nos corpos aquáticos (primariamente nos oceanos) e solos, juntamente com a biomassa; já o subciclo geológico ou geoquímico tem um tempo de ciclagem de milhões de anos e envolve as rochas sedimentares (KILLOPS & KILLOPS, 2005).

A pequena transferência de material do subciclo do carbono biológico para o geológico, representada pela constante deposição e soterramento da matéria orgânica nos sedimentos, é responsável por sua transformação em material fóssil (RULLKÖTTER, 2006), embora a maior

parte do carbono nas rochas sedimentares esteja armazenada na forma de carbonatos (KILLOPS & KILLOPS, 2005). Esse material fóssil, que se constitui na maior parte do carbono orgânico global, vem sendo armazenado ao longo de milhões de anos como material finamente distribuído nas rochas sedimentares sob a forma de querogênio e petróleo (KILLOPS & KILLOPS, 2005). Embora uma parcela pequena desse material esteja sendo reincorporada por meio do consumo de combustíveis fósseis, a vasta maioria desse carbono orgânico fóssil não participa ativamente do ciclo global do carbono (RULLKÖTTER, 2006; SIEGENTHALER & SARMIENTO, 1993 apud HARVEY, 2006; FAN et al., 1998 apud HARVEY, 2006).

Figura 1 - O ciclo global do carbono (HARVEY, 2006)

De acordo com Hedges & Oades (1997) a matéria orgânica nos sedimentos marinhos tende a se concentrar nas margens continentais, obedecendo a padrões que indicam os processos que controlam a sua deposição e preservação. O oceano costeiro é uma região dinâmica onde os rios, estuários, oceano, terra e atmosfera interagem (WALSH, 1988 apud BIANCHI, 2007; MANTOURA et al., 1991 apud BIANCHI, 2007; ALONGI, 1998 apud BIANCHI, 2007; WOLLAST, 1998 apud BIANCHI, 2007). A ciclagem do carbono nessa região do oceano é de extrema importância em função da complexidade dessas interações, que transferem material entre esses ambientes e promovem o sequestro da pequena parcela da matéria orgânica que, em

função de sua maior resistência à degradação, escapa do processo de reciclagem na coluna d'água ou nos sedimentos ativos e passa a fazer parte do registro sedimentar (LIBES, 2009; BERNER, 1989 apud HARVEY, 2006; BERNER, 2003 apud HARVEY, 2006). As interferências humanas em processos tais como a descarga de rios, aporte de nutrientes e alterações climáticas têm resultado em mudanças na ciclagem do carbono orgânico e inorgânico nesse ambiente (BAUER et al., 2013; REGNIER et al. 2013).

4.2 Origem da matéria orgânica nos sedimentos marinhos costeiros

Os sedimentos marinhos costeiros têm sua origem, em grande medida, no intemperismo de rochas sedimentares, ígneas e metamórficas, submetidas à erosão e transportadas para os oceanos ao longo dos sistemas fluviais (BIANCHI, 2007). Em margens continentais passivas, como é o caso da margem continental atlântica, se desenvolvem espessas sequências de rochas sedimentares, distribuídas na plataforma, talude, elevação continental e no fundo das bacias oceânicas (CALLIARI, 2015). A classificação dos sedimentos depositados se dá em função dos tamanhos das partículas transportadas e das condições de energia do ambiente. Sedimentos finos se depositam em ambientes de baixa energia, podendo ser transportados por longas distâncias até o seu destino final, em função da granulometria do sedimento e da velocidade média da corrente, conforme descrito no diagrama de Hjulström (figura 2).

Figura 2 – Diagrama de Hjulström (CALLIARI, 2015, adaptado de PINET, 1998).

Os estudos que envolvem a determinação de marcadores orgânicos em ambiente sedimentar, normalmente, têm seu foco na análise do material particulado e de depósitos de sedimentos (não perturbados) de rios, córregos, canais e lagos, bem como áreas adjacentes (WARREN et al., 2003). No continente, a precipitação de água pluvial nas áreas das bacias de drenagem dos rios, flui em direção aos seus leitos e, nesse trajeto, lixivia os solos e espaços urbanos, transportando sedimentos e matéria orgânica (nas formas dissolvida e particulada) para os corpos aquáticos. Em função de suas propriedades físico-químicas, uma fração dessa matéria orgânica acaba sendo preferencialmente adsorvida aos sedimentos, o que lhe confere maior potencial de preservação. Uma vez no rio, esse material é transportado ao longo de sua calha, em direção à foz. Nesse percurso, pode ocorrer a formação de depósitos de sedimentos em áreas de baixa energia, possibilitando a sua acumulação, mais ou menos contínua. Como os regimes de vazão normalmente são sazonais, os sedimentos formados podem ser ressuspensos e novamente depositados em outra região que se mostre novamente propícia à acumulação de sedimentos. Desse modo, muito material sedimentar é depositado ao longo dos rios, estuários e nos oceanos (SECCO et al. 2005; WESTRICH & FÖRSTNER, 2007). A maior parte deste carbono orgânico de origem terrestre é considerada relativamente refratária quando comparada ao carbono produzido pelo fitoplâncton e, portanto, tem potencial para se acumular nos sedimentos em sistemas estuarinos, deltaicos e de plataforma (BOULOUBASSI et al., 1997).

Embora o carbono orgânico seja um produto da síntese biológica, suas fontes são frequentemente vistas como uma dicotomia entre os aportes terrestres de material particulado e dissolvido (natural ou antropogênico) e a produção primária pelo fitoplâncton na coluna d'água. A produção primária algal é a maior dessas duas fontes para o sistema marinho, suplementada pelo material terrestre fornecido principalmente pelos rios (HARVEY, 2006). O aporte atmosférico, apesar de ser uma fração quantitativamente menor da perspectiva do aporte orgânico total, tem importância indireta em função do transporte de metais essenciais, necessários para crescimento do fitoplâncton (SIEFERT et al., 1999; FUNG, 2000 apud HARVEY, 2006), podendo ainda transferir matéria orgânica terrígena por longas distâncias sobre o oceano (ROMANKEVICH, 1984; GAGOSIAN et al., 1987; SIMONEIT, 2006).

Uma outra forma de classificar os aportes de matéria orgânica para o ambiente sedimentar é em termos das contribuições relativas dos vários aportes autóctones e alóctones (KILLOPS & KILLOPS, 2005; PETERS et al. 2005; BIANCHI, 2007; LIBES, 2009; LENG & LEWIS, 2017), que irão se refletir na composição química da matéria orgânica presente nesse ambiente.

O aporte autóctone consiste de matéria orgânica produzida *in situ* ou nas proximidades do local de deposição, representada principalmente por detritos associados à produção primária fitoplanctônica e dos organismos que se alimentam direta ou indiretamente do fitoplâncton. Já o aporte alóctone consiste de material associado a fontes externas, naturais ou antropogênicas, originado em outros ambientes e transportado de áreas adjacentes para o local de deposição. Inclui material derivado/remanescente de vegetais superiores, fuligem de incêndios ou poluentes diversos (KILLOPS & KILLOPS, 2005; BIANCHI, 2007).

4.3 Fatores que afetam a preservação da matéria orgânica no ambiente sedimentar

A matéria orgânica alterada diageneticamente, depositada em sedimentos marinhos recentes, é oriunda de uma combinação de vários processos físicos, químicos e biológicos que ocorrem nos sistemas aquáticos e alteram a quantidade e a composição dessa matéria orgânica antes e após a sua deposição (HENRICHS, 1992). Esses processos são determinados por fatores ambientais e por influência da ação humana (BIGUS et al., 2014).

O ambiente aquático inclui três componentes principais: água, sedimentos e material particulado em suspensão. Os processos que ocorrem na interface entre a coluna d'águasedimento e na matéria orgânica particulada (por exemplo, sorção e partição) podem determinar o destino ambiental de poluentes e demais compostos orgânicos. A adsorção da matéria orgânica aos sedimentos depende fortemente das propriedades dos compostos a serem adsorvidos (adsorvato) e dos sedimentos (adsorvente), da concentração dos compostos orgânicos, do teor de matéria orgânica dos sedimentos, pressão e temperatura (BIGUS et al. 2014). Além da adsorção, compostos hidrofóbicos também são afetados por outros processos físicos e químicos, incluindo vaporização, oxidação e redução; e biológicos, como a biodegradação e bioconcentração, que contribuem para as suas transformações. Por fim, os compostos orgânicos naturais e antropogênicos presentes nos sedimentos de fundo sofrem ainda com a ressuspensão e redeposição (BIGUS et al. 2014).

A matéria orgânica dissolvida fluvial/estuarina, incluindo os resíduos de vegetais superiores e compostos antropogênicos, por já ter sido objeto de extensa degradação no seu percurso desde a origem até o local onde se dá a sua deposição nos sedimentos, é considerada altamente resistente à degradação em ambiente marinho (BIANCHI, 2007). Nesse processo, as moléculas de compostos orgânicos mais lábeis vão sendo degradadas, de modo que ocorre um enriquecimento proporcional em compostos orgânicos mais resistentes à degradação, como

algumas famílias de lipídios, hidrocarbonetos e compostos xenobióticos, por exemplo. Já a matéria orgânica autóctone, por ter sido recém produzida por meio do metabolismo dos organismos da cadeia trófica marinha, apresenta em sua composição famílias de compostos orgânicos altamente suscetíveis a alterações diagenéticas, de modo que boa parte desse material é reciclada (KILLOPS & KILLOPS, 2005).

A eficiência de soterramento do carbono orgânico é maior em colunas d'água mais rasas e em locais onde ocorre uma taxa elevada de acumulação de sedimentos (SMOAK et al., 1999), sendo substancialmente maior nos sedimentos das margens continentais do que em ambientes de mar profundo (WAKEHAM & CANUEL, 2005). Uma maior taxa de acumulação possibilita menor tempo de contato do carbono orgânico com o oxigênio dissolvido na coluna d'água e, assim, ocorre maior preservação da matéria orgânica.

A preservação da matéria orgânica em ambiente sedimentar depende, então, de fatores diversos como a produtividade primária local, a taxa de sedimentação, o teor de oxigênio das águas de fundo e a composição da matéria orgânica, entre outros (HEDGES & KEIL, 1995; WAKEHAM & CANUEL, 2005; BIANCHI, 2007; LIBES, 2009; BARCELLOS & FURTADO, 1999 apud CRUZ et al., 2013) que estão inter-relacionados.

4.4 Compostos orgânicos como indicadores da origem da matéria orgânica

Em geral, a matéria orgânica presente em ambiente costeiro ou estuarino é derivada de múltiplas fontes. Grande parte da matéria orgânica nos sedimentos consiste em macromoléculas de origem e composição incertas, resistentes à decomposição (HENRICHS, 1992). Devido à grande diversidade de fontes e à mistura dinâmica que ocorre nos sistemas estuarinos, continua sendo um desafio significativo determinar a importância relativa desses aportes para o ciclo biogeoquímico na coluna de água e nos sedimentos ao longo dessa interface entre o continente e o oceano, representada pelo oceano costeiro (BIANCHI, 2007). A variabilidade temporal e espacial dos aportes de matéria orgânica aumenta ainda mais a complexidade na compreensão desses ambientes.

Desde a década de 1960 a contaminação do ambiente aquático tem sido intensamente estudada, juntamente com estudos geoquímicos diversos que buscam estabelecer a origem da matéria orgânica e os processos que ocorrem nesses ambientes (BIANCHI & CANUEL, 2011). Com o desenvolvimento de técnicas analíticas mais sensíveis, propícias para a análise de substâncias em nível de traços, ao longo das últimas décadas, houve melhorias significativas

em nossa capacidade de distinguir entre fontes de matéria orgânica em ambiente costeiro, usando ferramentas diversas, como análise elementar, isotópica e de marcadores geoquímicos (BIANCHI, 2007).

Dentre as famílias de compostos orgânicos geoquimicamente significativas encontramse os carboidratos, aminoácidos, proteínas e lipídios (KILLOPS & KILLOPS, 2005). Podem ocorrer ainda biomacromoléculas e biopolímeros com maior ou menor potencial de preservação. Dentre essas famílias, algumas não são diretamente analisáveis pelas técnicas analíticas mais comuns, como as substâncias húmicas. Outras, em que pese o fato de serem preservadas no registro sedimentar, o que permitiria sua análise e integração temporal, não são suficientemente específicas para que possam ser utilizadas para o estudo da origem da matéria orgânica em ambiente sedimentar. Conforme exposto por Eganhouse (1997), a especificidade de fonte e o comportamento conservativo são dois requisitos importantes na escolha das famílias de compostos a serem utilizadas em estudos de geoquímica da matéria orgânica. Diferente de outras famílias de compostos, os lipídios – em geral – atendem a esses requisitos.

Os sedimentos depositados nos estuários e regiões costeiras incorporam uma grande variedade de constituintes lipídicos refletindo as contribuições da matéria orgânica terrestre transportada pelo rio misturada à matéria orgânica marinha de espécies costeiras de fitoplâncton, bactérias e outros organismos (PANCOST & BOOT, 2004; BIANCHI E CANUEL 2011). Mudanças na composição fitoplanctônica, por exemplo, refletem mudanças ambientais. Portanto, o uso de lipídios para avaliar a sua composição ao longo do tempo é uma ferramenta potencialmente interessante para a pesquisa paleoclimática, possibilitando o registro das condições ambientais atuais ou pregressas (SERRAZANETTI et al., 2006).

Os lipídios são moléculas que tem função estrutural nas células e compõem as membranas lipídicas, que fazem a interface entre os ambientes intracelular e extracelular (PETERS et al., 2005). São moléculas bastante resistentes à degradação, apesar de estarem sujeitas à hidrólise. Alguns lipídios parecem ser mais resistentes à degradação do que proteínas e carboidratos, podendo sobreviver à diagênese com pequenas alterações. Os componentes lipídicos menos solúveis tendem a exibir maior inibição à entrada de enzimas hidrolíticas e, assim, são os mais estáveis em relação à biodegradação (KILLOPS & KILLOPS, 2005).

A família dos compostos lipídicos inclui ácidos graxos, ceras, pigmentos, esteróides e hopanóides, bem como substâncias biossinteticamente relacionadas a esses compostos. No entanto, constituem menos de 10% do carbono orgânico total (COT) em amostras ambientais (XING et al., 2011). Os lipídios são considerados a principal fonte para muitos compostos presentes nos petróleos, incluindo os biomarcadores mais comumente utilizados (PETERS et

al., 2005) e vêm sendo utilizados em uma infinidade de estudos, como os conduzidos por Readman et al. (2002), Medeiros et al. (2005), Readman et al. (2005), Jeng et al. (2007), Martins et al. (2007), Zhang et al. (2009), Martins et al. (2010), Lobão et al. (2010), Hu et al. (2011), Carreira et al. (2012), Lourenço et al. (2013), Silva et al. (2013), Carreira et al. (2015a), Carreira et al. (2015b), Carreira et al. (2016), Wang et al. (2016), De Souza et al. (2017), Lourenço et al. (2017), Shirneshan et al. (2017) e Chen et al. (2017a), entre outros.

A fração lipídica extraível da matéria orgânica terrígena é tipicamente caracterizada pela presença de compostos sintetizados por vegetais superiores, incluindo componentes de ceras epicuticulares das folhas (por exemplo, n-alcanos de cadeia longa, n-alcanóis, triterpenóides), cutina e suberina (por exemplo, ácidos graxos hidroxilados e ácidos dicarboxílicos, originalmente presentes como ésteres), e constituintes de paredes celulares (incluindo esteróides e triterpenóides). Já a matéria orgânica aquática é derivada de fitoplâncton planctônico e bentônico, animais aquáticos, bactérias e archaea e normalmente contém esteróides altamente ramificados e glicerol dialquil glicerol tetra-ésteres (GDGTs), mas também compostos mais lábeis, tais como ácidos graxos poli-insaturados (PUFA), clorofilas e carotenoides (VOLKMAN & SMITTENBERG, 2017), cujas proporções relativas podem fornecer estimativas de diferentes aportes de matéria orgânica. Junto a esses compostos encontram-se também aqueles oriundos da ação humana, introduzidos intencional ou inadvertidamente no ambiente (PETERS et al., 2005; BIANCHI & CANUEL, 2011).

Muitos compostos antropogênicos também são geoquimicamente estáveis, de modo que os impactos ambientais ocasionados ao meio ambiente resultam da sua persistência, bioacumulação e biomagnificação em organismos vivos, como é o caso das dioxinas e compostos similares (BIANCHI & CANUEL, 2011). Geralmente, estão presentes no ambiente em concentrações residuais, mas seu impacto em humanos e organismos aquáticos é muitas vezes desproporcional à sua concentração devido à sua natureza tóxica, teratogênica ou carcinogênica (BIANCHI & CANUEL, 2011). Compostos poluentes de elevada persistência em meio ambiente são conhecidos como poluentes orgânicos persistentes (POPs).

Desde a 2^a Guerra Mundial tem havido um acréscimo significativo em termos de variedade, quantidade e aplicação de compostos xenobióticos persistentes (KILLOPS & KILLOPS, 2005; BIANCHI & CANUEL, 2011), como ftalatos, PCBs, BFRs (retardantes de chama bromados), entre outras famílias de compostos que podem ter efeitos adversos à saúde. Como esses compostos não tem origem natural, sua presença nos sedimentos é evidência inequívoca de poluição (KILLOPS & KILLOPS, 2005). Outros compostos, como dioxinas,

furanos e HPAs, originados a partir da combustão da matéria orgânica (LIMA et al., 2005), também evidenciam o aporte alóctone e antropogênico de matéria orgânica. De acordo com Van Leeuwen & De Boer (2008), embora a produção da maioria dos POPs tenha cessado há mais de 20 anos, ainda são encontrados níveis consideráveis desses poluentes no meio ambiente.

Muitos compostos orgânicos naturais e sintéticos, como o coprostanol, produtos de cuidado pessoal e surfactantes sintéticos, não são considerados poluentes, mas também são introduzidos no ambiente como resultado da atividade humana. O coprostanol pode ser considerado um indicador de origem tanto biogênica natural (a partir do trato intestinal de mamíferos diversos) quanto antropogênica (em virtude de ser um indicador inequívoco de aporte de esgoto sanitário) (EGANHOUSE, 1997; PETERS et al., 2005; READMAN et al., 2005; MARTINS et al., 2007; CARREIRA et al., 2015b).

4.5 Abordagem analítica aplicada à compostos orgânicos em amostras ambientais

A análise de compostos orgânicos comumente adota uma abordagem multi-analítica, como a descrita por Bianchi & Canuel (2011), figura 3. Nesse tipo de estudo a informação e a especificidade são crescentes com a redução da fração de matéria orgânica utilizada, ao mesmo tempo em que aumentam a complexidade das técnicas analíticas e o custo operacional.

Esta abordagem utiliza diferentes técnicas analíticas em função do tipo de informação a ser obtido. Uma abordagem operacional bastante utilizada para a caracterização geoquímica geral dessa matéria orgânica é a determinação dos teores de carbono orgânico total (%COT), nitrogênio total (%NT) e razão COT/NT (C/N), juntamente com dados da razão de isótopos estáveis de carbono (δ^{13} C) e nitrogênio (δ^{15} N), como forma de inferir a origem da matéria orgânica a partir do desenvolvimento de proxies (LIBES, 2009; BIANCHI & CANUEL, 2011). Num aprofundamento analítico são utilizadas outras ferramentas, como a cromatografia, para análise de moléculas que sejam resistentes à degradação e que estejam presentes, mesmo em menores concentrações. Os lipídios, como os terpenóides (hopanóides, e esteróides, por exemplo), entre outras famílias de compostos orgânicos naturais e antropogênicos, cujas estruturas moleculares são relativamente resistentes às alterações diagenéticas, podem ser utilizados para se obter informações mais específicas acerca da origem dessa matéria orgânica e os processos que levaram à sua formação (LIBES, 2009).

Figura 3 – Abordagem típica na análise de compostos orgânicos (adaptado de Bianchi & Canuel, 2011)

A escolha das técnicas analíticas depende tanto dos objetivos a serem atingidos quanto de questões de logística, tendo em vista que diferentes proxies podem oferecer a mesma informação geoquímica enquanto outros apresentam baixa especificidade (HARVEY, 2006; LIBES, 2009). Este estudo teve seu foco na utilização de parâmetros de caracterização geral (matéria bruta) e em marcadores geoquímicos de origem da matéria orgânica, em amostras de sedimentos obtidas na costa brasileira, com foco na determinação de hidrocarbonetos alifáticos, hidrocarbonetos aromáticos e esteróides, detalhados nos itens a seguir.

4.5.1 Parâmetros de caracterização geral da matéria orgânica

Apesar da baixa especificidade, algumas das análises mais utilizadas em geoquímica orgânica são as de caracterização geral dos teores de carbono orgânico total (COT) e de nitrogênio total (NT), que juntas possibilitam calcular a razão COT/NT (ou razão C/N), cujo resultado – associado à razão isotópica do carbono (δ^{13} C) – possibilita caracterizar as fontes autóctones e alóctones de matéria orgânica (LAMB et al., 2006). Tais parâmetros possibilitam avaliar a matéria orgânica como um todo, em virtude de nem todas as famílias de compostos serem caracterizáveis pelas técnicas analíticas disponíveis (KILLOPS & KILLOPS, 2005).

A determinação desses parâmetros se presta tanto como uma caracterização inicial da matéria orgânica bruta quanto para caracterizar eventuais mudanças ambientais (LENG & LEWIS, 2017). Normalmente os resultados da determinação da razão C/N e da δ^{13} C da matéria orgânica dentro dos sedimentos são interpretados juntos, pois fornecem informações ambientais ou paleoambientais complementares. A caracterização da δ^{13} C pode permitir a reconstrução do tipo de habitat da matéria orgânica em função das variações de composição isotópica das diferentes fontes (MEGENS et al., 2002). A razão C/N pode fornecer informações sobre a origem do carbono depositado, tanto em termos de tipo predominante de vegetação quanto em termos do seu habitat. As diferentes fontes de matéria orgânica possuem diferentes assinaturas isotópicas. A δ^{13} C da vegetação aquática é função da proporção de CO₂ para HCO₃⁻. A vegetação marinha tende a utilizar HCO₃⁻ (que tem δ^{13} C mais elevado), enquanto a vegetação de origem terrígena é a sua via fotossintética: plantas de metabolismo C3 têm menor δ^{13} C do que as de metabolismo C4.

Lamb et al. (2006), compilaram dados de diversos estudos que associam os resultados típicos das análises de C/N versus δ^{13} C para diversos ambientes costeiros (figura 4), possibilitando o enquadramento de ambientes estudados em função dos resultados das análises desses parâmetros.

Figura 4 – Valores típicos de δ^{13} C e C/N em ambientes costeiros (LAMB et al., 2006)

Plantas terrestres que utilizam a via fotossintética C3 constituem cerca de 90% de todas as plantas, e possuem δ^{13} C entre -32‰ e -21‰ (DEINES, 1980 apud LAMB et al., 2006) enquanto a vegetação aquática de água doce tipicamente varia entre -50‰ a -11‰ (OSMOND et al., 1981, KEELEY & SANDQUIST, 1992 apud LAMB et al., 2006). A matéria orgânica marinha de origem autóctone, composta de bactérias e algas, tipicamente apresenta C/N baixo, entre 4 e 10. Já valores de C/N superiores a 12 são característicos da matéria orgânica terrígena, produzida principalmente por plantas vasculares terrestres (HEDGES & OADES, 1997; MEYERS, 1994 e TYSON, 1995 apud LAMB et al., 2006). A distinção entre essas fontes se dá em função da ausência de celulose em algas e na sua abundância em plantas vasculares, além do conteúdo proteico bastante elevado nas algas. O aumento da razão C/N ao longo de uma coluna sedimentar também pode indicar a perda preferencial de nitrogênio durante a diagênese (MACKO et al. 1993).

Weijers et al. (2009) utilizaram um modelo de mistura binário para estimar a percentagem de matéria orgânica terrígena em sedimentos marinhos. Tais autores consideraram que a matéria orgânica 100% terrígena apresenta δ^{13} C média de -26,7% para o estuário do Rio do Congo (em estudo anterior Schefuß et al., 2004, haviam determinado que, para o Rio do Congo, a δ^{13} C variava entre -26,4% e -26,9%) enquanto a matéria orgânica 100% marinha apresenta δ^{13} C de -20% (valores médios globais, conforme Hedges & Oades, 1997). Mais recentemente, Xing et al. (2014) e Chen et al. (2017b) associaram a origem da matéria orgânica sedimentar para os sedimentos depositados no sul do Mar Amarelo de modo similar, considerando que a δ^{13} C para a matéria orgânica terrígena é de -26,5% (valores médios para o rio Huanghe, conforme Cai et al., 2003 apud Xing et al., 2014). O uso desse modelo de mistura, na costa brasileira, precisaria ser calibrado para os valores médios de δ^{13} C da nossa matéria orgânica terrígena, embora um valor geral de -27% (WEIJERS et al., 2009) possa ser adotado como uma primeira aproximação para a avaliação da contribuição relativa dessas fontes.

4.5.2 Biomarcadores lipídicos e outros marcadores moleculares

Marcadores moleculares são moléculas ou famílias de moléculas utilizadas para inferir a origem da matéria orgânica. De acordo com Eganhouse (1997) e Libes (2009), os dois principais critérios para um marcador molecular ideal são a elevada especificidade e comportamento conservativo (elevada resistência à degradação), características encontradas nos lipídios que, por isso, são bastante utilizados em geoquímica da matéria orgânica. Diversos termos são utilizados para definir um marcador molecular e um mesmo termo pode ter aplicações diferentes em diferentes áreas da ciência. Em geoquímica, biomarcadores são fósseis moleculares, o que significa dizer que são remanescentes de organismos outrora vivos que, em função de sua elevada especificidade e resistência à degradação, podem ser utilizados como ferramenta na reconstrução de eventos e processos observados na natureza (EGLINTON et al., 1964 apud PETERS et al., 2005; EGLINTON & CALVIN, 1967 apud PETERS et al., 2005; BIANCHI & CANUEL, 2011).

Ocorrem em sedimentos, rochas e petróleos. Podem ser relacionados à uma origem biológica específica e mostram pouca ou nenhuma alteração estrutural quando comparados às moléculas orgânicas dos organismos que lhes deram origem (PETERS et al., 2005). Ao longo das últimas décadas, tais famílias de compostos vêm se mostrando uma ferramenta efetiva para estudar a geoquímica da matéria orgânica em sistemas aquáticos (BIANCHI & CANUEL, 2011), embora sua escolha dependa dos objetivos do estudo. Estudos anteriores indicaram que os biomarcadores de ácidos graxos e alcanóis são mais sensíveis a alterações diagenéticas que os n-alcanos (HO & MEYERS, 1994 apud BIANCHI & CANUEL, 2011). Os esteróides também são mais estáveis que os ácidos graxos e outras classes de compostos, além de fornecerem informação menos ambígua para diferenciar o aporte de plantas terrestres, fitoplâncton, macroalgas e esgoto doméstico (EGANHOUSE, 1997).

Biomarcadores únicos também já foram identificados e associados a diferentes fontes: ácidos graxos de cadeia curta e esteróis como o 24-metileno-colesterol e o dinosterol que são indicativos, respectivamente, de diatomáceas (VOLKMAN, 1986; ZIMMERMAN & CANUEL, 2002) e dinoflagelados (VOLKMAN, 1986; ZIMMERMAN & CANUEL, 2002; LIBES, 2009); bem como ácidos graxos ramificados e aminoácidos específicos, que são indicativos de fontes bacterianas (CANUEL & MARTENS, 1993; VEUGER et al., 2007). A figura 5 ilustra o registro da utilização do dinosterol como um biomarcador específico a partir de um organismo dinoflagelado, registrado em um perfil sedimentar.

Como os biomarcadores lipídicos presentes em amostras ambientais e no petróleo, outros compostos estão presentes em meio ambiente mas, por não terem origem biológica determinada ou por serem produtos de síntese química, não se enquadram na definição típica de biomarcadores (PETERS et al., 2005). Tais compostos são ditos marcadores ambientais (PETERS et al., 2005) ou antropogênicos (EGANHOUSE, 1997; PETERS et al., 2005; BIANCHI e CANUEL, 2011), abrangendo compostos que, em função de suas propriedades físico-químicas, acabam se acumulando nos sedimentos (MACKAY et al. 2006). Tais marcadores, introduzidos no meio ambiente como poluentes ou como produto de processos
naturais (vulcanismo ou incêndios florestais), podem ser utilizados em estudos que buscam determinar a origem da matéria orgânica (PETERS et al. 2005).

Figura 5 – Dinosterol como biomarcador de dinoflagelados (produzido pelo autor a partir de Santos et al., 2008 e imagens disponíveis na Internet).

Dado que a família de hidrocarbonetos aromáticos não se enquadra na definição clássica de biomarcadores, este estudo adotou o termo "marcador molecular" para definir as moléculas estudadas para inferir a origem da matéria orgânica nos ambientes estudados, conforme adotado por Eganhouse (1997) e por Bayona & Albaigés (2006). As exceções ao uso desse termo se dão com os hopanos e esteranos, biomarcadores de petróleo típicos segundo Peters et al. (2005).

No presente estudo os marcadores analisados foram hidrocarbonetos alifáticos, hidrocarbonetos aromáticos e esteróides, cujas características gerais são descritas a seguir.

4.5.2.1 Hidrocarbonetos alifáticos

Os hidrocarbonetos alifáticos são biomoléculas compostas somente por átomos de carbono e hidrogênio (PETERS et al., 2005; LIBES, 2009; BIANCHI, 2007; BIANCHI & CANUEL, 2011). Compreendem os alcanos lineares, alcanos ramificados e naftênicos (hidrocarbonetos alifáticos cíclicos, aí incluídos hopanos e esteranos).

Os n-alcanos consistem de cadeias lineares, não-ramificadas, de átomos de carbono, em que todas as ligações de carbono são saturadas. Hidrocarbonetos lineares, que contêm ligações

duplas ou triplas são chamados, respectivamente, n-alcenos ou n-alcinos (PETERS et al., 2005; BIANCHI, 2007). Os hidrocarbonetos podem ainda conter uma ou mais estruturas cíclicas em forma de anel, como o ciclohexano, hopanos e esteranos (PETERS et al., 2005).

Os alcanos isoprenóides consistem de hidrocarbonetos, cíclicos ou acíclicos, de cadeia ramificada com estrutura molecular derivada do isopreno, uma unidade básica estrutural (como um bloco de construção) composta de cinco átomos de carbono, encontrada na maioria dos marcadores moleculares (KILLOPS & KILLOPS, 2005; PETERS et al., 2005). Os isoprenóides pristano (2,6,10,14-tetrametil-pentadecano) e fitano (2,6,10,14-tetrametil-hexadecano) são produzidos a partir da degradação do fitol (C₂₀H₄₀O), constituinte da clorofila-a, seja por assimilação pelo zooplâncton (KILLOPS & KILLOPS, 2005; BLUMER et al., 1964 apud BIANCHI & CANUEL, 2011) ou pela diagênese em ambiente deposicional anóxico (DIDYK et al., 1978; KILLOPS & KILLOPS, 2005; PETERS et al., 2005). Sob condições oxidantes, o fitol é preferencialmente convertido, por meio de uma série de reações, em pristano. No entanto, sob condições anóxicas, as reações de redução e desidratação são favorecidas, resultando na formação preferencial do fitano, via bactérias metanogênicas (RISATTI et al., 1984 apud BIANCHI & CANUEL, 2011). Tais características possibilitam a utilização desses isoprenóides como indicadores do ambiente de deposição. Baixos valores para a razão pristano/fitano (<1) sugerem um ambiente de deposição anóxico enquanto valores mais elevados sugerem um ambiente oxidante (DIDYK et al., 1978; PETERS et al., 2005).

Os n-alcanos e isoprenóides são encontrados em praticamente todos os sedimentos que contém matéria orgânica, pois são sintetizados por todos os organismos vivos (KILLOPS & KILLOPS, 2005), sendo bastante utilizados em estudos que buscam a caracterização da matéria orgânica em ambiente sedimentar, pois podem ser usados como indicadores de fitoplâncton, bactérias e plantas terrestres (VOLKMAN et al. 1992 apud ATANASSOVA & MILLS, 2016). Estão presentes como cadeias laterais nas biomacromoléculas e, portanto, são prontamente clivados por meio de reações bióticas e abióticas (LIBES, 2009). Em ambiente sedimentar, podem ter origem biogênica ou antropogênica (LIBES, 2009; BIANCHI & CANUEL, 2011). Podem ser utilizados como marcadores do aporte antropogênico de produtos derivados do petróleo, seja por meio de aportes crônicos ou em eventos agudos, como derramamentos de óleo quando, junto a outros marcadores, podem fornecer informação útil na identificação forense de tais incidentes (PETERS et al., 2005; WANG et al., 2006; LOBÃO et al., 2010).

A produção de hidrocarbonetos por meio da catagênese de sedimentos ricos em matéria orgânica, submetidos à soterramento profundo, levou à formação de grandes depósitos de petróleo (PETERS et al., 2005; LIBES, 2009). Além de n-alcanos e HPAs, entre os

hidrocarbonetos de petróleo encontram-se ainda alcanos cíclicos, como os hopanos e esteranos, catagênese da matéria orgânica, derivados, resultado da respectivamente, dos bacteriohopanopolióis e dos esteróides, bastante utilizados como marcadores da presença de hidrocarbonetos de petróleo (KILLOPS & KILLOPS, 2005; PETERS et al., 2005; WANG et al., 2006; LIBES, 2009; LOBÃO et al., 2010; SHIRNESHAN et al., 2016; SHIRNESHAN et al., 2017), pois retêm o esqueleto carbônico de suas estruturas biológicas originais, mesmo após terem sido submetidos à alterações diagenéticas e catagenéticas. A figura 6 apresenta a estrutura molecular dos esteróides e hopanóides, com seus respectivos sistemas de numeração de átomos de carbono. Em função de sua ampla distribuição no ambiente, relativa resistência à degradação diagenética em relação a outros tipos de matéria orgânica e especificidade, os hidrocarbonetos são considerados bons marcadores ambientais (MEYERS, 2003; KILLOPS & KILLOPS, 2005; PETERS et al., 2005; BIANCHI & CANUEL, 2011).

Figura 6 – Estrutura molecular de esteróides e hopanóides (KILLOPS & KILLOPS, 2005)

A biossíntese produz um número limitado de compostos, dentro de uma faixa estreita de átomos de carbono, que gera n-alcanos com predomínio de número ímpar de átomos de carbono (VOLKMAN et al., 1992), diferentemente dos ácidos e álcoois graxos. Tal característica está relacionada à biossíntese dos hidrocarbonetos a partir dos ácidos graxos, que apresentam número par de átomos de carbono. Por meio da descarboxilação enzimática, gera-se um n-alcano com um átomo de carbono a menos que o ácido graxo que lhe deu origem (KILLOPS & KILLOPS, 2005; BIANCHI & CANUEL, 2011), conforme a reação descrita a seguir:

$$\begin{array}{rcl} CH_3\text{-}CH_2(n)\text{-}CH_2\text{-}COOH & \rightarrow & CH_3\text{-}CH_2(n)\text{-}CH_3 & + & CO_2 & & equação (1) \\ \\ & & \acute{A}cido \ graxo & & n\text{-}alcano & & \end{array}$$

Onde n = número ímpar

O fitoplâncton marinho e as algas bentônicas apresentam cadeia carbônica entre o $n-C_{15}$ e $n-C_{21}$ (BIANCHI & CANUEL, 2011) ou entre $n-C_{14}$ e $n-C_{24}$ (SAKATA et al., 1997 apud XING et al., 2011), com predomínio dos n-alcanos ímpares $n-C_{15}$, $n-C_{17}$ e $n-C_{19}$ (CRANWELL, 1982; MEYERS, 1997; ZHOU et al., 2010; BIANCHI & CANUEL, 2011).

Os compostos de origem terrígena, associados às ceras epicuticulares de vegetais superiores, apresentam n-alcanos de cadeia longa (com forte predomínio de ímpares sobre pares) que variam entre n-C₂₃ a n-C₃₅ (MEYERS, 1997; MEYERS, 2003; ZHOU et al., 2010; BIANCHI & CANUEL, 2011), geralmente com predomínio dos n-alcanos n-C₂₇, n-C₂₉ e n-C₃₁ (BOULOUBASSI et al. 1997; KILLOPS & KILLOPS, 2005; SIMONEIT, 2008; BIANCHI & CANUEL, 2011) e n-C₃₃ (SIMONEIT, 2008). Diversos estudos têm utilizado os n-alcanos ímpares de cadeia longa como marcadores do transporte de material de origem terrígena para o ambiente aquático (BOULOUBASSI et al., 1997; XING et al., 2011, 2014; SEKI et al., 2012; DUAN et al., 2019). No entanto, Freeman et al. (1994), que estudaram a biogeoquímica de hidrocarbonetos em ambientes anóxicos localizados no Mar negro e na Fossa de Cariaco (Mar do Caribe), observaram a presença dos n-alcanos n-C₃₁ e n-C₃₃, juntamente com alcenos poliinsaturados (alquenonas) em C₃₁, C₃₃, C₃₇ e C₃₈, que foram associados ao cocolitoforídeo fitoplanctônico Emiliania huxleyi. Lichtfouse et al. (1994) também observaram que uma das três raças conhecidas da microalga Botryococcus braunii sintetiza n-alcadienos de cadeia longa, com forte predomínio de seus homólogos C_{27} , C_{29} e C_{31} , os quais foram associados aos n-alcanos presentes em uma amostra de sedimento pliocênico em função das abundâncias relativas desses homólogos de n-alcanos nos sedimentos. Tais observações sugerem que, apesar do aparente consenso relativo ao uso de n-alcanos ímpares de cadeia longa como indicadores de matéria orgânica terrígena, tais compostos podem não ser oriundos, exclusivamente, de aportes envolvendo vegetais superiores. Recentemente VOLKMAN & SMITTENBERG (2017) indicaram que a presença de n-alcanos entre n-C₂₅ e n-C₃₅, com predomínio de cadeias ímpares de átomos de carbono são indicadores usualmente confiáveis de contribuição de vegetais superiores, embora em ambientes particulares possa ocorrer pequena contribuição de bactérias e microalgas nessa mesma faixa de átomos de carbono.

Segundo Volkman (2005) há muitos exemplos de lipídios específicos em bactérias, microalgas, vegetais superiores e alguns animais que podem ser usados como biomarcadores confiáveis, embora possam não estar completamente restritos, em sua distribuição, a um grupo particular de organismos: Hidrocarbonetos oriundos de fontes bacterianas ocorrem na forma de

cadeias abertas (acíclicas), geralmente com comprimentos de cadeia entre n- C_{10} e n- C_{30} segundo Bianchi & Canuel (2011) ou entre n- C_{13} e n- C_{31} segundo Volkman et al. (1992), embora Nishimura & Baker (1986) e Grimalt & Albaigés (1987) tenham proposto a faixa entre n- C_{12} a n- C_{24} . No entanto, a faixa de átomos de carbono predominante nas bactérias é entre C_{17} e C_{20} , sem preferência entre cadeias pares ou ímpares (VOLKMAN et al., 1992). Já as macrófitas aquáticas são caracterizadas por apresentarem n-alcanos com cadeias médias (intermediárias entre o comprimento das cadeias das algas e dos vegetais superiores) com predomínio dos nalcanos ímpares n- C_{21} , n- C_{23} e n- C_{25} (FICKEN et al., 2000).

No estudo de amostras ambientais (como a matéria orgânica preservada em sedimentos marinhos ou em ambientes impactados por derramamentos de óleos) não é comum encontrar nalcanos de baixa massa molecular (sobretudo até n- C_{15} , de acordo com Peters et al., 2005, mas podendo chegar até n- C_{20} segundo Meyers, 2003 & Matsumoto et al., (2007 apud CHEN et al., 2017a) em função de sua elevada volatilidade e da degradação microbiana, o que faz com que os n-alcanos de menor massa molecular sejam preferencialmente removidos e, por isso, sejam de difícil detecção.

Os n-alcanos de origem fóssil apresentam composição variável de acordo com sua fonte específica (diferentes petróleos brutos/produtos derivados de petróleo). Nos petróleos, diferentemente dos hidrocarbonetos biogênicos, não há predomínio de compostos de cadeias moleculares com número par ou ímpar de átomos de carbono, de modo que a presença de n-alcanos na faixa de n-C₂₀ a n-C₄₀ com essa característica é indicativo de aportes petrogênicos (VOLKMAN et al., 1992; PETERS et al., 2005). De modo similar, a presença de uma Mistura Complexa Não Resolvida (MCNR) de hidrocarbonetos, caracterizada pela elevação ampla e pronunciada da linha de base de um cromatograma obtido via cromatografia em fase gasosa convencional (unidimensional) – devido à perda de alcanos lineares por biodegradação, que promove o enriquecimento proporcional em alcanos ramificados/cíclicos (não resolvidos na análise cromatográfica) – é uma forte evidência de contaminação de amostras de água ou sedimento por aportes petrogênicos (PETERS et al., 2005). A figura 7 apresenta um exemplo de cromatogramas em que se observa a extensão da biodegradação de petróleos em reservatórios refletida na ocorrência de MCNR (ou UCM, do inglês Unknown Complex Mixture) de hidrocarbonetos.

Figura 7 – Cromatogramas contendo MCNR de hidrocarbonetos (Peters et al., 2005)

Em termos de concentração de alifáticos, estudos anteriores (VOLKMAN et al., 1980 apud VOLKMAN et al. 1992; VAN VLEET et al., 1984 & PILLON et al., 1986 apud BOULOUBASSI & SALIOT, 1993) consideram que concentrações inferiores a $10 \,\mu g.g^{-1}$ (peso seco) de hidrocarbonetos alifáticos totais são indicativos de locais isentos de aportes antropogênicos. Essas concentrações podem ser maiores quando ocorrem aportes significativos de n-alcanos derivados de ceras vegetais. Sedimentos marinhos ricos em matéria orgânica podem conter até $100 \,\mu g.g^{-1}$ de hidrocarbonetos alifáticos, com concentrações superiores a esse nível sendo geralmente associadas a aportes de petróleo/derivados (BOULOUBASSI & SALIOT, 1993) enquanto Volkman et al. (1992) admitem que concentrações acima de 500 $\mu g.g^{-1}$ são indicativo de locais contaminados por óleo.

Diversos proxies têm sido desenvolvidos para avaliação geral dos perfis de hidrocarbonetos alifáticos em amostras ambientais. Esses índices se baseiam nas características típicas desses hidrocarbonetos, utilizadas para inferir informações acerca da matéria orgânica contribuinte, conforme detalhado a seguir:

- O Índice de Preferência de Carbonos (IPC), originalmente proposto por Bray & Evans (1961), tem sido amplamente utilizado como um indicador de maturidade na geoquímica do petróleo.
O IPC avalia a contribuição de fontes petrogênicas versus vegetais superiores, baseado no fato de que vegetais superiores sintetizam hidrocarbonetos com forte predominância de n-alcanos ímpares sobre números pares enquanto petróleos tendem a não apresentar essa característica

(CLARK Jr. & BLUMER, 1967; ABOUL-KASSIM & SIMONEIT, 1996; BOURBONNIERE et al., 1997). O IPC é calculado a partir das concentrações equivalentes entre os compostos de cadeia carbônica par e ímpar. A expressão descrita na equação 2, apresentada a seguir consiste na versão original, conforme proposto por Bray & Evans (1961), descrita por Bianchi & Canuel (2011).

$$IPC = 0,5.[(C_{25} + C_{27} + C_{29} + C_{31} + C_{33})/(C_{24} + C_{26} + C_{28} + C_{30} + C_{32}) + (C_{25} + C_{27} + C_{29} + C_{31} + C_{33})/(C_{26} + C_{28} + C_{30} + C_{32} + C_{34})]$$
equação (2)

Como, conforme exposto por Marzi et al. (1993) apud Bianchi & Canuel (2011), a equação originalmente proposta apresentava inconsistências matemáticas em algumas situações, de modo que esses autores propuseram um segundo método para calcular o IPC (IPC2), o qual utiliza a equação geral apresentada a seguir:

$$IPC2 = 0,5. [(C_{25} + C_{27} + C_{29} + C_{31}) + (C_{27} + C_{29} + C_{31} + C_{33})]/(C_{26} + C_{28} + C_{30} + C_{32})$$
equação (3)

O IPC2 também pode ser calculado em faixas, em função do padrão de distribuição dos n-alcanos, conforme proposto por Bourbonniere et al. (1997), que indicou três faixas de cálculo: uma abrangendo a faixa de n-alcanos geral, desde algas até vegetais superiores, incluindo eventuais aportes petrogênicos, entre n- C_{15} e n- C_{35} (IPC_G); uma faixa de baixa massa molecular média, entre n- C_{15} e n- C_{25} (IPC_B); e uma última, abrangendo os hidrocarbonetos de alta massa molecular, entre n- C_{25} e n- C_{35} (IPC_A). Xing et al. (2011) utilizaram duas faixas diferentes, uma entre n- C_{15} e n- C_{19} e outra entre n- C_{25} e n- C_{33} . Os aportes de vegetais superiores para sedimentos recentes são geralmente caracterizados por valores de IPC2 muito superiores a 1 (BIANCHI & CANUEL, 2011). Com o aumento da maturidade (na catagênese do petróleo, por exemplo), os valores de IPC2 geralmente se aproximam de 1. É incomum ter valores de IPC2 menores que 1, embora isso seja observado com alguns homólogos de cadeia mais curta (< C_{23}) e em alguns ambientes deposicionais (BIANCHI & CANUEL, 2011). Nestes casos, os hidrocarbonetos geralmente derivam diretamente da síntese microbiana, em vez da redução de ácidos graxos ou álcoois.

Alguns estudos sugerem parâmetros de interpretação, para avaliar a origem dos n-alcanos presentes em amostras ambientais:

- IPC2 igual a ou próximo a 1 – predomínio de fontes petrogênicas (CLARK Jr. & BLUMER, 1967; ABOUL-KASSIM & SIMONEIT, 1996) ou matéria orgânica degradada (BOULOUBASSI et al. 1997);

- IPC2 entre 4 e 7 – predomínio de fontes biogênicas e terrígenas (CLARK Jr. & BLUMER, 1967; HOSTETTLER et al., 1999); e

 - IPC2 maior que 5 – predomínio de matéria orgânica originária de vegetais superiores (EGLINGTON & HAMILTON, 1963; BOULOUBASSI et al. 1997).

Um outro proxy utilizado para inferir a origem da matéria orgânica em ambiente sedimentar é a Razão Terrígenos/Aquáticos (TAR). As fontes aquáticas de matéria orgânica marinha, como algas e bactérias, são tipicamente dominadas por n-alcanos de cadeia curta enquanto as plantas vasculares terrígenas são caracterizadas por n-alcanos de cadeia longa. A TAR foi desenvolvida como um proxy para avaliar as contribuições relativas de hidrocarbonetos autóctones e alóctones em ambientes aquáticos (MEYERS, 1997; MEYERS, 2003). Para os n-alcanos, a TAR é calculada conforme a equação a seguir (BIANCHI & CANUEL, 2011; DUAN & MA, 2001 apud ATANASSOVA & MILLS, 2016):

 $TAR = [(C_{27} + C_{29} + C_{31})/(C_{15} + C_{17} + C_{19})]$

equação (4)

Valores elevados de TAR indicam uma predominância das fontes terrígenas em detrimento das aquáticas (BOURBONNIERE & MEYERS, 1996). Conforme exposto por Bianchi & Canuel (2011), quando TAR > 1, as contribuições de plantas vasculares predominam, enquanto TAR < 1 reflete o predomínio de hidrocarbonetos de origem aquática. No entanto, essa razão pode ter seu resultado alterado em função do fato de os n-alcanos de baixo peso molecular serem mais facilmente degradados que os de alto peso molecular (PETERS et al. 2005).

Ficken et al. (2000) propuseram um proxy para avaliar a composição de macrófitas aquáticas submersas/flutuantes, que expressa as contribuições relativas dessas plantas contra os aportes de plantas emergentes e terrestres para sedimentos lacustres. Este índice, renomeado por Sikes et al. (2009) para P_{mar-aq}, de modo a ser aplicável à avaliação da matéria orgânica em ambientes costeiros, é calculado da seguinte forma:

$$P_{\text{mar-aq}} = [(C_{23} + C_{25})/(C_{23} + C_{25} + C_{29} + C_{31})]$$

equação (5)

Para o P_{mar-aq} , valores baixos (0,01-0,25) indicam aportes de material terrígeno, valores médios (~ 0,4 a 0,6) indicam aportes aquáticos emergentes, incluindo manguezais, e valores altos (> 0,6) indicam aporte de plantas aquáticas e macrófitas marinhas (SIKES et al., 2009). Xing et al. (2011) propuseram a utilização do proxy 1/P_{mar-aq}, de modo a dar destaque ao aporte de material terrígeno, com valores superiores a 4 indicando predomínio de matéria orgânica de origem terrígena e valores inferiores a 1,7 indicando contribuição predominante de plantas aquáticas e macrófitas marinhas.

4.5.2.2 Hidrocarbonetos aromáticos

Caracterizados pela presença de anéis benzênicos, esses hidrocarbonetos são monoaromáticos se compostos de um anel benzênico e poli-aromáticos (HPAs) se compostos por dois ou mais anéis benzênicos fundidos (WHITEHEAD, 2008; RAMESH et al., 2012).

Os hidrocarbonetos mono-aromáticos, de baixo peso molecular, presentes no petróleo, como o benzeno, tolueno, etil-benzeno e os isômeros orto, meta e para do xileno são parcialmente solúveis em água e bastante voláteis à temperatura ambiente. Apresentam toxicidade aguda à vida marinha (PETERS et al., 2005) mas, em função de suas propriedades físico-químicas, não são preferencialmente preservados em sedimentos.

Os HPAs são POPs introduzidos no ambiente tanto por processos naturais quanto por atividades antropogênicas, encontrados mesmo nas regiões mais remotas do planeta (LIMA et al., 2005; FOAN et al. 2010; BIANCHI & CANUEL, 2011). Sua origem nos sedimentos marinhos já foi associada, até mesmo, a fazendas de criação de peixes (TSAPAKIS et al., 2010).

Os aportes de HPAs provenientes de processos naturais são geralmente pequenos, quando comparados com aqueles oriundos de fontes antropogênicas (WITT, 1995; ACQUAVITA et al., 2014). O consumo de combustíveis, em suas diversas formas, e o uso de lenha para aquecimento doméstico e produção de energia são as principais fontes antropogênicas de emissões de HPAs (MASTRAL et al., 2003 apud FOAN et al. 2010), embora derramamentos de petróleo ou seus derivados também aportem HPAs em meio ambiente. Erupções vulcânicas, queima de biomassa e diagênese da matéria orgânica são fontes naturais.

Alguns HPAs também são produzidos comercialmente: acenafteno, acenaftileno e antraceno são utilizados na produção de corantes, explosivos e fibras, além de serem utilizados na indústria farmacêutica (HAWLEY, 1987 apud FOAN et al. 2010). Vários HPAs são perigosos para os organismos vivos devido ao seu efeito mutagênico, carcinogênico, propriedades teratogênicas, imunossupressoras e/ou neurotóxicas (GALUSZKA, 2000 apud FOAN et al., 2010). A U.S. EPA designou 16 HPAs como poluentes prioritários para fins de monitoramento ambiental: naftaleno, acenaftileno, acenafteno, fluoreno, fenantreno, antraceno, fluoranteno, pireno, benzo[a]antraceno, criseno, benzo[b]fluoranteno, benzo[k]fluoranteno, benzo[a]pireno, dibenzo[a,h]-antraceno, benzo[g,h,i]perileno e indeno[1,2,3-cd]pireno (U.S. EPA, 2014A), cujas estruturas químicas são apresentadas na figura 8. Desses, o benzo[a]pireno é reconhecido como um agente carcinogênico a humanos (grupo 1) e outros seis HPAs são classificados como prováveis ou possíveis agentes carcinogênicos a humanos (IARC, 2010). Por isso, a concentração e as fontes desses compostos são bastante monitoradas. Segundo Ramesh et al. (2012), exposições crônicas – até mesmo em baixas concentrações – a esses produtos químicos causam danos de longa duração, como câncer, infertilidade e neurotoxicidade em seres humanos e à vida selvagem. Em função de sua persistência e efeitos nocivos à saúde os HPAs estão entre os POPs mais estudados em meio ambiente, sendo alvo de diversos estudos, como os conduzidos por Soclo, 1986; Law & Biscaya, 1994; Stout et al., 2001; Readman et al., 2002; Younker et al., 2002; Luo et al., 2006; Zhang et al., 2009; Hu et al., 2011; Slater et al., 2013; Bemanikharanagh et al., 2017; Pinheiro et al., 2017 e Lubecki et al., 2019.

O transporte fluvial de HPAs é importante para ambientes lacustres e marinhos próximos à costa. A lixiviação de solos urbanos e de asfalto mobiliza HPAs pirolíticos para o ambiente. Desse modo, as redes de descarte de água de drenagem urbana podem influenciar as concentrações sedimentares locais de HPAs (KILLOPS & KILLOPS, 2005). Em locais sujeitos ao transporte de água com alta energia (como na calha de rios com alta vazão constante ou sazonal), sedimentos superficiais são periodicamente ressuspensos e redistribuídos ao longo do curso desses rios e ambientes costeiros, até que os sedimentos atinjam seu destino final em ambientes de mais baixa energia, onde serão depositados e soterrados por sedimentos trazidos posteriormente. Os sedimentos mais ricos em frações finas são geralmente os mais ricos em HPAs, pois apresentam maior capacidade de retenção de matéria orgânica (KOWALSKA et al., 1994).

Figura 8 – 16 HPAS prioritários (U.S. EPA.)

A tabela 1 compila dados de diversas propriedades físico-químicas dos HPAs. Dessas propriedades, é possível concluir que os HPAs são pouco solúveis em água, mas altamente lipofílicos, possuindo ainda baixa pressão de vapor. Por isso tendem, normalmente, a particionar para a fase particulada e para o sedimento, sendo adsorvidos em partículas no ar, no solo, na água e nos sedimentos.

Os HPAs podem sofrer foto-decomposição quando expostos à luz ultravioleta da radiação solar (LIMA et al., 2005; RAMESH et al., 2012), tanto na atmosfera quanto na coluna d'água. No solo e sedimentos também são submetidos à degradação microbiana (LIMA et al., 2005; RAMESH et al., 2012). Apesar disso, quantidades consideráveis desses compostos estão presentes no meio ambiente, o que faz com que a sua caracterização, dos pontos de vista regulatório, ecotoxicológico e de saúde humana, seja de suma importância (RAMESH et al. (2012). Também são geoquimicamente interessantes porque não têm fontes biossintéticas diretas e, ainda assim, são amplamente distribuídos em sedimentos de – essencialmente – todas as idades geológicas (WHITEHEAD, 2008).

A maioria dos HPAs encontrados no ambiente provém de três fontes principais: pirolítica, petrolítica e diagenética/biogênica (RAMESH et al. (2012).

НРА	Fórmula química ***	Nº DE ANEIS *	NOME ABREVIADO	Classe IARC ^a ****	MM ^b (g/mol) ***	PF ° (°C) ***	PE ^d (°C) ***	Solubilidade (mg/l) a 25°C ***	Log Kow ^e ***	Log Koc ^f **	Log Kd ^g ****	Pressão de vapor ^h (Pa) a 25°C ***	Constante da Lei de Henry ⁱ (Pa.m ³ /mol) ***
Naftaleno	C10H8	2	N	3	128,17	80	218	31	3,37	3,11	1,7	10,4	232,8
Acenaftileno	$C_{12}H_8$	3	ACT	3	152,19	92	280	16,1	4,00	3,4	ND	9,0.10-1	8,396
Acenafteno	C12H10	3	ACE	3	154,21	96	279	3,8	3,92	3,65	ND	3,0.10-1	12,17
Fluoreno	C13H10	3	FLU	3	166,22	116	295	1,90	4,18	4,18	ND	9,0.10-2	7,873
Fenantreno	C14H10	3	FEN	3	178,23	99	340	1,10	4,57	4,46	2,7	2,0.10-2	3,240
Antraceno	C14H10	3	ANT	3	178,23	216	340	4,5.10-2	4,54	4,45	2,7	1,0.10-3	3,961
Fluoranteno	C16H10	4	FLT	3	202,25	110	384	0,26	5,22	4,90	3,7	1,2.10-3	0,957
Pireno	C16H10	4	PIR	3	202,25	150	404	0,132	5,18	4,88	3,7	6,0.10-4	0,919
Benzo[a]antraceno	C ₁₈ H ₁₂	4	B[a]A	2B	228,29	160	438	1,1.10-2	5,91	6,14	4,2	2,8.10-5	0,581
Criseno	C18H12	4	CRIS	2B	228,29	255	448	2.10-3	5,60	5,3	4,2	5,7.10-7	0,065
Benzo[b]fluoranteno	C20H12	5	B[b]F	2B	252,31	168	481	1,5.10-3	5,80	5,74	5,0	5,1.10-5	ND
Benzo[k]fluoranteno	C20H12	5	B[k]F	2B	252,31	217	480	8.10-4	6,00	5,74	4,9	5,2.10-8	0,016
Benzo[a]pireno	C ₂₀ H ₁₂	5	B[a]P	1	252,31	181	495	3,8.10-3	6,04	6,74	4,9	7,0.10-7	0,046
Indeno[1,2,3-c,d]pireno	C22H12	6	I[cd]P	2B	276,33	162	ND	1,9.10-4	6,6	6,20	5,6	2,9.10-5	ND
Dibenzo[a,h]antraceno	C22H14	5	D[ah]A	2A	278,35	269	524	6.10-4	6,75	6,52	5,6	3,7.10-10	1,72.10-4
Benzo[g,h,i]perileno	C ₂₂ H ₁₂	6	B[ghi]P	3	276,33	272	ND	2,6.10-4	6,50	6,20	5,6	6,0.10-8 *	ND

Tabela 1 – Propriedades físico-químicas dos HPAs definidos como prioritários pela WHO (1998)

^a Classe IARC (carcinogenicidade a humanos): 1 – carcinogênico; 2A – provável carcinogênico; 2B – possível carcinogênico; e 3 – não há evidência de que cause câncer a humanos.

^b MM: Massa molecular. ^c PF: Ponto de fusão. ^d PE: Ponto de ebulição. ND: Não disponível.

^e Kow: Coeficiente de partição n-octanol-água, razão entre as concentrações de equilíbrio do HPA nas duas fases constituídas de solventes imiscíveis entre si.

^f Koc: Coeficiente de partição carbono orgânico-água, razão entre a quantidade adsorvida de um HPA por unidade de massa de carbono orgânico do solo ou sedimento e a concentração desse mesmo HPA em solução aquosa, em equilíbrio.

^g Kd: Coeficiente de partição sedimento/água, razão entre a concentração de um HPA adsorvido no sedimento e a concentração desse mesmo HPA em solução aquosa, em equilíbrio.

^h Pressão de vapor: pressão de saturação de uma substância líquida ou sólida.

ⁱ Constante da Lei de Henry: traduz a capacidade de uma substância de se distribuir entre duas fazes de um sistema binário ar-água à 25 °C.

Refs: * MENICONI (2007); ** LAGREGA et al. (1994)/ROGERS et al. (2002); *** MACKAY et al. (2006); **** MAZEAS (2004) apud MENICONI (2007); e ***** IARC (2010).

HPAs pirolíticos

HPAs pirolíticos são formados pela ação do calor gerado durante o processo de combustão sob condições de deficiência local de oxigênio. Por esse motivo são considerados produtos de pirólise (KILLOPS & KILLOPS, 2005). Fontes pirolíticas contribuem em maior extensão para os aportes de HPAs no meio aquático. HPAs com massa molecular mais elevada, gerados a partir da pirólise, são resistentes à degradação microbiana e são mais propensos a serem depositados e preservados em sedimentos (RAMESH et al. 2012).

Acredita-se que os HPAs pirolíticos resultem da decomposição da matéria orgânica em compostos de baixo peso molecular durante a pirólise, seguida pelo rápido rearranjo em estruturas de HPAs não alquiladas (RAMESH et al. 2012). A combustão incompleta de uma grande variedade de materiais combustíveis orgânicos produz um conjunto extenso de HPAs que inclui essencialmente todas as combinações imagináveis de estruturas de cinco e seis anéis. Ao contrário das contrapartes de baixa temperatura, os HPAs derivados da combustão exibem uma forte predominância de anéis sem substituição alquila (KILLOPS & KILLOPS, 2005; WHITEHEAD, 2008).

A presença de HPAs parentais, sobretudo com quatro ou mais anéis benzênicos, como o pireno, os benzopirenos e o benzo[g,h,i]perileno nas frações de hidrocarbonetos aromáticos de sedimentos recentes é geralmente considerada um reflexo de aportes da combustão de matéria orgânica, como madeira e combustíveis fósseis. Os HPA pirolíticos são amplamente difundidos em sedimentos depositados após a revolução industrial e demonstram a extensão da influência humana no meio ambiente (STOUT et al., 2001; KILLOPS & KILLOPS, 2005). Como o benzo[a]pireno é pouco abundante em petróleos, é considerado um marcador potencial da origem pirolítica (STOUT et al., 2001).

HPAs petrogênicos

Os HPAs petrogênicos derivam de materiais biológicos depositados em sedimentos em escala geológica (milhões de anos), resultando na formação de petróleos enriquecidos com HPAs (PETERS et al., 2005; KILLOPS & KILLOPS, 2005).

No petróleo, as alterações termais de baixa temperatura da matéria orgânica, como na formação de combustíveis fósseis, resultam preferencialmente em HPAs com 2 ou 3 anéis na estrutura e uma grande proporção de alquilados homólogos.

Os derivados alquilados dos HPAs são mais abundantes no petróleo do que seus homólogos não-substituídos (TISSOT e WELTE, 1984; HUNT, 1995; WANG et al., 2006). Apresentam graus de alquilação variando de C₁ a C₄, particularmente para os homólogos alquilados do naftaleno, fenantreno, dibenzotiofeno, fluoreno e criseno (WANG et al., 2006). Estão presentes no petróleo bruto e podem ser liberados diretamente para o meio ambiente, tanto por atividades humanas (derramamento de óleo) quanto por processos naturais (exsudações naturais de petróleo bruto) (LIMA et al., 2005; PETERS et al., 2005; KILLOPS & KILLOPS, 2005). Embora os derramamentos de óleo atraiam muita atenção da mídia e do público em geral, devido aos efeitos visíveis e agudos que produzem, eles geralmente não contribuem significativamente para o inventário de HPAs.

Similarmente às fontes pirogênicas, as fontes petrogênicas contribuem de forma importante para os aportes de HPAs no ambiente marinho. Esses HPAs também são resistentes à degradação microbiana e, por isso, mais propensos a serem depositados e preservados em sedimentos (RAMESH et al. 2012).

HPAs diagenéticos/biogênicos

São derivados de material biogênico, produzidos por meio de processos anaeróbicos (RAMESH et al., 2012). Estão presentes em sedimentos mais antigos e em resíduos de atividade industrial pregressa (BAUMARD et al., 1998; RAMESH et al. (2012) e são sintetizados por organismos como bactérias, plantas, fungos e algas (McVEETY & HITES, 1988; LAW & BISCAYA, 1994). Dentre esses HPAs, os mais significativos são o perileno, o coroneno e o reteno (figura 9). Destes, o perileno é o mais importante em termos ambientais.

Figura 9 – HPAs diagenéticos

O perileno é usualmente considerado um produto diagenético de seus precursores biogênicos naturais, formado em ambiente deposicional sob condições anóxicas (SILLIMAN et al., 2001). Este é, provavelmente, o HPA diagenético mais importante encontrado no sedimento marinho (WAKEHAM et al., 1979; BAUMARD et al., 1998; WAKEHAM, 1996; READMAN et al., 2002), sendo amplamente detectado em ambientes sedimentares diversos, incluindo rios e estuários (SILLIMAN et al., 1998; VENKATESAN, 1998; SILLIMAN et al., 2001; SLATER et al., 2013; HU et al., 2014).

O mecanismo de formação de perileno e as fontes naturais de seus materiais precursores permanece incerto (VENKATESAN, 1998; SILLIMAN et al., 2001; FAN et al., 2011). Hu et al. (2014), que estudaram a sua origem em sedimentos superficiais em ambiente estuarino e na plataforma continental interna no Mar da China Oriental, concluíram que o aporte desse HPA foi oriundo de aporte pré-deposicional e formação a partir de precursores baseados em terra, cuja origem é apoiada pela sua presença em solos (LIU et al., 2008 apud HU et al., 2014) e material particulado em suspensão nos rios (SICRE et al., 1993 apud HU et al., 2014; BOULOUBASSI et al., 2001 apud HU et al., 2014). De modo similar, Bakhtiari et al. (2009) encontraram perileno associado à atividade de cupins em vegetais lenhosos, indicando que uma possível fonte desse HPA é o transporte via lixiviação de solos. Diversos estudos, no entanto, indicam que as concentrações do perileno em perfis sedimentares aumentam com a profundidade da coluna sedimentar, em um forte indício de formação sob condições anóxicas (SILLIMAN et al., 1998; SOCLO et al., 2000; SILLIMAN et al., 2001; LUO et al., 2006; BAKHTIARI et al., 2009; SLATER et al., 2013). Essas e outras observações indicam que esse HPA pode ter múltiplas origens em ambiente sedimentar.

Embora o perileno possa ter origem natural, também está relacionado a fontes antropogênicas. Quando comparado aos demais HPAs, sua abundância pode ser usada como indicativo de origem natural. Concentrações superiores a 10% do total de isômeros penta-aromáticos indicam uma provável fonte diagenética enquanto concentrações inferiores a 10%, indicam uma provável origem pirolítica (BAUMARD et al., 1998; FAN et al., 2001; READMAN et al., 2002).

Avaliação da origem de HPAs

A presença de HPAs petrogênicos, pirolíticos ou diagenéticos pode ser utilizada para inferir a origem desses compostos em função dos HPAs característicos de cada fonte: interpretando a sua presença e as quantidades relativas dos diversos HPAs (e de proxies ou relações determinadas entre eles), é possível, em parte, diferenciar os aportes relativos de cada fonte (NEFF, 2002). Tal técnica se baseia na composição e distribuição destes compostos em função da sua origem ou fonte emissora, tendo em vista que a abundância relativa de compostos de mesma massa reflete o mecanismo de controle da reação predominante, cinético ou termodinâmico, que os origina (WANG et al., 2006).

Para os HPAs parentais, a combustão e/ou aporte antropogênico são frequentemente inferidos a partir de um aumento na proporção dos isômeros de HPAs "cinéticos" menos estáveis em relação aos isômeros "termodinâmicos" mais estáveis (YUNKER & MACDONALD, 1995 apud YUNKER et al., 2002). Assim, foram estabelecidas razões para avaliar a origem dos HPAs a partir, por exemplo, dos pares fenantreno e antraceno (isótopos de massa molecular 178); fluoranteno e pireno (isótopos de massa molecular 202); e benzo[a]antraceno e criseno (isótopos de massa molecular 228) (BAUMARD et al., 1998; GSCHWEND & HITES, 1981; READMAN et al., 2002; SICRE et al., 1987; SOCLO et al., 2000; TAM et al., 2001; YUNKER et al., 2002), com base no fato de que na formação do petróleo as reações que dão origem a esses compostos são controladas "termodinamicamente" (com predomínio de compostos mais estáveis) enquanto na formação de HPAs pirolíticos o mecanismo de controle da reação é predominantemente "cinético" (favorecendo a formação de compostos menos estáveis quando comparados aos HPAs petrogênicos) (YUNKER et al., 2002).

Tobiszewski & Namiesnik (2012) compilaram proxies tipicamente utilizados para avaliar a origem dos HPAs em amostras ambientais e discutiram seus usos e limitações em diferentes compartimentos. A tabela 2 apresenta tanto proxies citados nesta revisão quanto outros proxies relevantes, considerados neste estudo.

O perfil de HPAs alquilados pode ser utilizado para inferir a origem desses compostos em amostras ambientais (NEFF, 2002). Em petróleos, os HPAs alquilados são mais abundantes que os seus homólogos parentais, de modo que o perfil de concentração apresenta o formato aproximado de um "sino", como indicado na figura 10. Já o perfil dos HPAs oriundos de pirólise apresenta uma conformação diferente, tendo em vista que a formação dos HPAs alquilados não é favorecida nessas condições, levando à menor abundância dos alquilados com relação ao seu HPA parental. Com isso, o perfil de concentração é decrescente com o aumento da alquilação.

R _d HPAs	Faixa típica	Fonte	Referência		
	<1	Pirolítico			
∑LMW/∑HMW	>1	Petrogênico	Zhang et al. (2008)		
∑COMB/∑HPAs	~1	Combustão	Ravindra et al. (2008a)		
ANT/(ANT+FEN)	<0.1 Petrogênico		Yunker et al. (2002) Piec et al. (2008)		
	>0.1	Pirolítico	r les et al. (2008)		
	< 0.4	Petrogênico			
FLT/(FLT+PIR)	0.4-0.5	Combustão de petróleo e derivados	Yunker et al. (2002) De La Torre-Roche et al. (2009)		
	>0.5 Combustão de gramíneas, madeira e lenha		ai. (2007)		
	0.2-0.35	Combustão de carvão	Akyüz and Çabuk (2010)		
	>0.35	Emissões veiculares			
	<0.2 Petrogênico		Yunker et al. (2002)		
	>0.35 Combustão				
	~ 0.5	Partículas frescas			
B[a]P/(B[a]P+B[e]P)	<0.5 Fotólise (envelhecimento de partículas)		Oliveira et al. (2011)		
	< 0.2	Petrogênico			
I[cd]P/(I[cd]P+B[ghi]P)	0.2-0.5	Combustão de petróleo	Yunker et al. (2002)		
	>0.5	Combustão de gramíneas, madeira e lenha			
	<1	Combustão			
2-MN/FEN			Opuene et al. (2009)		
	2-6	Combustíveis fósseis			
B[a]P/B[ghi]P	<0.6	Emissões não relacionadas ao tráfego	Katsoyiannis et al. (2007)		
	>0.6	Emissões relacionadas ao tráfego	(- ~ ·)		
	<1	Petrogênico			
B[b+k]F/BaP	<u>\</u> 1	Dirolítico	Soclo et al. (2000)		
	>01	Diagânese da MO	Baumard et al. (1009)		
Perileno/∑HPAs de 5	- 0,1		Ean et al. (2001)		
anéis	< 0,1	Pirolítico	Readman et al. (2002)		

Tabela 2 – Proxies de HPAs utilizados, com os valores tipicamente reportados para cada fonte ou processo em particular (adaptado de TOBISZEWSKI & NAMIESNIK, 2012)

Abreviaturas: $\sum COMB - (FLA, PIR, B[a]A, CRIS, B[k]F, B[b]F, B[a]P, I[cd]P and B[ghi]P); <math>\sum HPAs - soma do total de HPAs$ (não alquilados); $\sum LMW - soma dos HPAs de dois e três anéis; <math>\sum HMW - soma dos HPAs de quarto e cinco anéis; Naftaleno (N); 2-Metil Naftaleno (2-MN); Acenaftileno(ACT); Acenafteno (ACE); Fluoreno (FLU); Fenantreno (FEN); Antraceno (ANT); Fluoranteno (FLT); Pireno (PIR); Benzo[a]antraceno (B[a]A); Criseno (CRIS); Benzo[b]fluoranteno (B[b]F); Benzo[k]fluoranteno (B[k]F); Benzo[a]pireno (B[a]P); Indeno[1,2,3-c,d]pireno (I[cd]P); Dibenzo[a,h]antraceno (D[ah]A); e Benzo[g,h,i]perileno (B[ghi]P).$

Figura 10 – HPAs alquilados na avaliação da origem de aportes petrogênicos e pirolíticos (adaptado de NEFF, 2002)

4.5.2.3 Esteróides

São triterpenóides tetracíclicos cuja formação se dá por oxidação enzimática, seguida de ciclização, gerando os precursores da maioria dos esteróides encontrados em plantas e animais (KILLOPS & KILLOPS, 2005; PETERS et al., 2005; BIANCHI & CANUEL, 2011). São originários de uma variedade de organismos eucarióticos, incluindo o fitoplâncton, zooplâncton e plantas vasculares (VOLKMAN, 1986). Nas membranas das células eucarióticas, têm como função principal controlar a rigidez e a permeabilidade das membranas celulares (KILLOPS & KILLOPS & KILLOPS, 2005; BIANCHI & CANUEL, 2011). O papel equivalente nas eubactérias é realizado pelos hopanóides (ROHMER et al. 1980 apud KILLOPS & KILLOPS, 2005).

Os ambientes marinhos costeiros são caracterizados pela ocorrência de alta produção trófica. Os principais produtores primários são as diatomáceas (*Bacillariophyta*) e dinoflagelados (*Dinophyta*), que são constituintes proeminentes do "microfitoplâncton" e "microfitobentos" (LIBES, 2009). Estas duas classes de algas podem formar extensas florações e são os principais fornecedores de matéria orgânica na cadeia alimentar marinha (SERRAZANETTI et al., 2006). Juntamente com seus produtos diagenéticos, os esteróis são comuns em sistemas aquáticos e sedimentos, refletindo contribuições de múltiplas fontes (BIANCHI & CANUEL, 2011). Por esse motivo são largamente utilizados em geoquímica orgânica devido à sua estabilidade (sobretudo em ambientes anóxicos) e especificidade

(WANG et al., 2016) para distinguir a contribuição marinha ou terrígena em virtude de variações consideráveis em suas distribuições (VOLKMAN & SMITTENBERG, 2017).

Os esteróides podem ser identificados por seu nome oficial, conforme a nomenclatura oficial da IUPAC (International Union of Pure and Applied Chemistry), por seu nome usual ou pela notação abreviada. Na identificação usando a notação abreviada os compostos são identificados com um código $C_x \Delta^{y,z}$, onde "x" corresponde ao número total de átomos de carbono e "y" e "z" indicam as posições das ligações duplas (BIANCHI & CANUEL, 2011). Tanto para a nomenclatura IUPAC quanto para o esquema de numeração abreviado, utiliza-se a convenção apresentada na figura 11, descrita em Killops & Killops (2005), Peters et al. (2005), Wang et al. (2006) e Bianchi & Canuel (2011) para compostos esteroidais.

Figura 11 – Estrutura generalizada de numeração de esteróis (VOLKMAN, 2005)

O termo esterol é comumente adotado para denotar álcoois esteroidais, que podem ou não ser insaturados. De acordo com Killops & Killops (2005) e Bianchi & Canuel (2011) o termo geral estanol é usado para descrever compostos sem ligações insaturadas (ligações duplas) na porção cíclica da molécula, enquanto o termo estenol se refere a compostos com ligações duplas em um ou mais dos anéis cíclicos. Nos organismos fotossintéticos os principais esteróis são, eventualmente, referidos como fitoesteróis e incluem os principais esteróis de origem vegetal, estigmasterol e sitosterol, bem como esteróis fitoplanctônicos, como o brassicasterol (e seu epímero, epi-brassicasterol) (BIANCHI & CANUEL, 2011).

Apesar de existirem esteróis específicos para determinadas espécies de organismos, a maioria é biossintetizada por mais de uma espécie, o que conduz à necessidade de cautela nas interpretações que se utilizem somente de esteróis para avaliar a origem da matéria orgânica (BIANCHI, 2007). Tais avaliações são melhor conduzidas por meio do estabelecimento de proxies entre os esteróis e/ou outras classes de lipídios, como n-alcanos, alcanóis ou ácidos graxos, para caracterizar a matéria orgânica sedimentar (VOLKMAN et al., 1998), já que essa característica dos esteróis impõe algumas limitações à sua interpretação.

O colesterol $(27\Delta^5)$ é usualmente o esterol mais abundantemente encontrado na matéria orgânica preservada em sedimentos de ambientes aquáticos, devido à sua ampla ocorrência principalmente em animais, podendo ser encontrado ainda em esgotos domésticos (BOULOUBASSI et al., 1997; VOLKMAN, 2006; LIBES, 2009). Já os esteróides associados a vegetais superiores são usualmente compostos, principalmente, pelos C₂₉ 4-desmetil esteróis 24-etilcolest-5-en-3 β -ol (sitosterol, 29 Δ^5) e 24-etilcolesta-5,22-dien-3 β -ol (estigmasterol, 29 $\Delta^{5,22}$) com quantidades menores do C₂₈ 4-desmetil esterol 24-metilcolest-5-en-3 β -ol (campesterol, $28\Delta^5$) (BOULOUBASSI et al., 1997; VOLKMAN et al., 1998; LIBES, 2009; VOLKMAN & SMITTENBERG, 2017). Apesar de esses esteróis específicos não serem produzidos exclusivamente por essas fontes, podendo ser sintetizados ainda por microalgas (VOLKMAN, 1986) e gramíneas marinhas (VOLKMAN et al. 2008 apud VOLKMAN & SMITTENBERG, 2017) - sua principal fonte em sedimentos costeiros é geralmente proveniente de vegetais superiores (VOLKMAN et al., 1998; RUSHDI et al. 2014). Tal constatação é evidenciada pelo fato de suas concentrações se reduzirem com a distância da foz do rio, conforme mencionado em estudo conduzido por Hu et al. (2009) ou dos valores característicos da δ^{13} C (MATSUMOTO et al., 2001 apud VOLKMAN & SMITTENBERG, 2017). Como anteriormente mencionado, alguns esteróis são considerados altamente específicos, como marcadores únicos: alguns 24-metil-esteróis, como o 24-metileno-colesterol, são indicativos de diatomáceas (VOLKMAN, 1986; ZIMMERMAN & CANUEL, 2002; LIBES, 2009; VOLKMAN & SMITTENBERG, 2017), juntamente com o brassicasterol ($28\Delta^{5,22}$). Já o dinosterol ($30\Delta^{22}$), caracterizado pela presença de um grupo metila na posição C₄, é indicativo da presença de dinoflagelados (VOLKMAN, 1986; ZIMMERMAN & CANUEL, 2002; LIBES, 2009) e bastante raro em outras classes de organismos (VOLKMAN & SMITTENBERG, 2017). Tais esteróis são considerados bons indicadores de produtividade fitoplanctônica.

Os principais esteróis encontrados em vegetais superiores são os esteróis de estereoquímica 24α : 24-etil-colester-5-en-3 β -ol (sitosterol), 24-etilcolest-5,22E-dien-3 β -ol (estigmasterol) e 24-metilcolest-5-en-3 β -ol (campesterol) (GOAD & GOODWIN, 1972 apud

VOLKMAN, 1986). Pequenas quantidades de colesterol também são encontradas em muitas espécies, e algumas plantas contêm esteróis com estereoquímica 24β, como o 24-metilcholesta-5,22E-dien 3 β -ol (brassicasterol). A maioria dos C₂₉ esteróis tem a configuração 24 α , mas os C₂₈ esteróis podem ocorrer tanto como epímeros 24α como 24β (VOLKMAN, 1986). Em vista disso, a especificidade dos esteróis pode ser passível de questionamento (VOLKMAN, 1986; LAUREILLARD & SALIOT, 1993; apud SANTOS et al., 2008). Dada essa limitação na especificidade desses esteróis e seus produtos de degradação, Volkman (1986) propôs a utilização de um proxy relativo à distribuição desses marcadores, a razão campesterol/estigmasterol/sitosterol, com o intuito de elucidar a sua origem em ambientes sujeitos a aportes terrestres e fluviais. Para esta razão, valores próximos a 1/1,6/6,6 estariam associados ao predomínio de uma fonte terrígena/fluvial e valores inferiores sugeririam uma fonte fitoplanctônica marinha para esses compostos (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008). Rontani et al. (2014) utilizaram uma razão entre campesterol e sitosterol para elucidar a origem desses esteróis, considerando também os seus produtos de degradação: (sitosterol + sitostanol)/(campesterol + campestanol). Muitas plantas têm um valor de sitosterol/campesterol <4 (Volkman, 1986). No entanto, Nishimura (1977) apud VOLKMAN (1986) relatou valores que variam de 11,5 (Pinus densiflora) a 31 (Ilex pedunculosa), de modo que essa razão pode ser bastante variável, refletindo o envolvimento de diversas fontes. A importância relativa das fontes terrígenas ou marinhas depende do tipo de ambiente, da proximidade do local às fontes de matéria orgânica derivada da terra e da abundância e tipo de fitoplâncton presente (VOLKMAN, 1986).

Xing et al. (2011) propuseram o uso dos esteróis brassicasterol e dinosterol, juntamente com as C_{37} alquenonas para avaliar a origem da matéria orgânica em conjunto com os n-alcanos n- C_{27} , n- C_{29} e n- C_{31} , compondo um proxy chamado TMBR (Terrestrial to Marine Biomarker Ratio), utilizado para avaliar a origem da matéria orgânica em ambientes costeiros.

Pouca atenção é dada à estereoquímica do grupo alquila na cadeia lateral da molécula (na posição C-24) em estudos sobre as fontes de esteróides em sedimentos, pois os dois epímeros possíveis coeluem na análise cromatográfica convencional (VOLKMAN, 1986; (2005). Conforme exposto por Maxwell et al. (1980) e Thompson et al. (1981) apud Volkman (1986), haveria necessidade de colunas cromatográficas muito longas para separar alguns desses epímeros). No entanto, é importante reconhecer que diferentes grupos de organismos produzem esteróides com estereoquímica 24 α ou 24 β , mas raramente ambos (VOLKMAN & SMITTENBERG (2017). No caso dos esteróides com centro assimétrico na posição C-24, usase a notação descrita por Nes (1978) em que 24 α pode corresponder à 24R quando a cadeia

lateral é saturada ou 24S quando ocorre uma ligação dupla em C-22, também descrita em Volkman (2005). À título de exemplo, tem-se que o 24β-metilcolesta-5,22(E)-dien-3β-ol é chamado brassicasterol enquanto o seu epímero, o 24α-metilcolesta-5,22(E)-dien-3β-ol é chamado epi-brassicasterol (na análise cromatográfica convencional tais epímeros não podem ser distinguidos entre si tanto por coeluírem quanto por serem caracterizados pelos mesmos íons de diagnóstico na espectrometria de massas). Na análise cromatográfica convencional, então, o resultado analítico inclui os isômeros α e β . Por esse motivo, Volkman (2005) sugere que os nomes usuais desses esteróides não sejam utilizados nesses casos, pois o seu uso pressupõe que a estereoquímica na posição C-24 é conhecida. Apesar desta observação de Volkman (2005), neste texto foi adotada a nomenclatura usual, conforme adotado por Xing et al. (2011), Xing et al. (2014), Wang et al. (2016) e Chen et al. (2017b), que realizaram suas análises nas mesmas condições deste estudo, de modo a facilitar a leitura e interpretação dos resultados com a ressalva de que os resultados dos C-24 esteróides englobam os resultados dos isômeros α e β eventualmente presentes.

Outros esteróides, com isomeria em posições diferentes, podem ser distinguidos na análise cromatográfica: os epímeros com hidroxilas na posição C-3, como o coprostanol (5β-colestan-3β-ol) de seu epímero, o epi-coprostanol (5β-colestan-3α-ol) ou na posição C-5, com o colestanol (5α-colestan-3β-ol), são facilmente identificáveis em função das diferenças de tempos de retenção cromatográfico, apesar de responderem aos mesmos íons na espectrometria de massas convencional.

Os estanóis coprostanol (5 β -colestan-3 β -ol) e epi-coprostanol (5 β -colestan-3 α -ol) (figura 12), encontrados especificamente no esgoto sanitário (READMAN et al., 2005; CORDEIRO et al., 2008 apud CARREIRA et al., 2011; BIANCHI & CANUEL, 2011; RUSHDI et al., 2014; CARREIRA et al., 2015b), têm sido utilizados para identificar matéria orgânica de origem fecal, possibilitando examinar tanto variações no aporte de esgoto sanitário em colunas sedimentares (CARREIRA et al., 2004) quanto em sedimentos superficiais (MARTINS et al., 2007; 2010). Seu uso decorre da ocorrência em altas concentrações nas fezes humanas: entre 40 e 60% do total de esteróis fecais excretados (GONZÁLEZ-OREJA & SAIZ-SALINAS, 1998; CHOI et al., 2009). O epi-coprostanol é formado durante o tratamento de esgotos McCALLEY et al., 1981).

Figura 12 – Estrutura molecular do coprostanol e epicoprostanol (BIANCHI & CANUEL, 2011)

A redução de esteróis a estanóis ocorre nos primeiros estágios da diagênese (KILLOPS & KILLOPS, 2005), de modo que o aumento na proporção de estanóis/estenóis é um indício de alterações diagenéticas. Os estanóis são encontrados na maioria dos sedimentos estuarinos e são gerados a partir da redução microbiana, embora algumas fontes naturais sejam conhecidas (VOLKMAN, 1986). A diagênese é um processo mediado por microorganismos, ocorrendo em condições anaeróbias, tanto em sedimentos como em material particulado (WAKEHAM, 1989 apud KILLOPS & KILLOPS, 2005). Os 5α (H)-estanóis são o produto diagenético mais comum dos esteróis e, após essa redução, não são mais oxidados a esteróis, podendo ser preservados nos sedimentos com essa estereoquímica (ROSENFELD & HELLMAN, 1971; EYSSEN et al., 1973 apud NAKAKUNI et al., 2018). Os aportes de esgotos são prontamente identificados a partir da presença de níveis elevados de $5\beta(H)$ -estanóis (O'LEARY et al., 1999 apud VOLKMAN & SMITTENBERG, 2017), em que o coprostanol geralmente predomina. O coprostanol é produzido via biohidrogenação do colesterol no trato intestinal de mamíferos e é um tradicional indicador de material fecal (EGANHOUSE, 1997; TAKADA & EGANHOUSE, 1998). Outras fontes fecais também podem ser distinguidas, uma vez que as fezes dos herbívoros são dominadas por estanóis C29 (24-etilcoprostanol e 24-etil-colesterol) (LEEMING et al., 1997 apud VOLKMAN & SMITTENBERG, 2017).

Dada a diversidade de esteróis e estanóis e a sua ocorrência disseminada, a análise dessa família de compostos é melhor conduzida por meio da organização das suas características e sua aplicação na determinação da origem da matéria orgânica, como apresentado na tabela 3, onde são compiladas informações ambientais de diversos esteróides de interesse geoquímico. A tabela apresentada não exaure o tema, tendo em vista que a detecção de 30 ou mais esteróis em amostras de partículas em sedimentação ou em sedimentos, em ambientes marinho diversos, não é incomum (BAYONA et al., 1989; HUDSON et al., 2001).

Como observado com os estudos envolvendo outras famílias de compostos orgânicos, alguns proxies foram sendo desenvolvidos ao longo do tempo para os esteróides, visando otimizar a interpretação da origem e processos envolvendo a matéria orgânica em ambiente sedimentar. A razão estanol/esterol pode ser utilizada tanto para avaliar a diagênese recente da matéria orgânica, visto que pode indicar alteração microbiana de esteróis, quanto para indicar alteração redox (CARREIRA et al., 2011, LOURENÇO et al. (2017); NAKAKUNI et al., 2018). Pequenas quantidades de estanóis já foram detectadas em diatomáceas, dinoflagelados e algas haptófitas (VOLKMAN, 1998). Também, um baixo valor para a razão estanol/esterol é consistente com uma origem autóctone dos esteróides (VOLKMAN, 1986). A razão estanol/esterol é avaliada a partir dos C₂₇, C₂₈ e C₂₉ esteróis e estanóis, juntos em uma única razão como em Lourenço et al. (2017) ou em separado, como em Shanchun & Rongfen (1992).

Outros proxies envolvendo coprostanol (5 β -colestan-3 β -ol), colestanol (5 α -colestan-3 β ol) e colesterol (colest-5-en-3β-ol) são geralmente considerados na avaliação da contaminação por esgoto sanitário (TAKADA & EGANHOUSE, 1998), juntamente com resultados quantitativos. Em termos dos proxies, valores críticos são tipicamente aceitos como indicadores: resultados entre 0,7 e 1,0 para a razão coprostanol/(coprostanol + colestanol) (COP/(COP+COL-anol)) de modo a confirmar contaminação por esgoto (GRIMALT et al., 1990 apud MUDGE & BALL, 2006; GRIMALT et al., 1990 apud MARTINS et al., 2010). Para esta razão, valores inferiores a 0,3 e baixas concentrações de coprostanol indicam que não há contaminação por esgoto e os traços de coprostanol são derivados de degradação bacteriana do colesterol (NISHIMURA, 1982 apud CARREIRA et al., 2015b). Já para a razão coprostanol/colesterol (COP/COL-erol), um limiar maior que 0,2 é indicativo de contaminação fecal moderada (SEGUEL et al., 2001; GRIMALT & ALBAIGÉS, 1990 apud MUDGE & BALL, 2006) ou contaminação fecal moderada (TAKADA et al., 1994) enquanto resultados maiores que 1 indicam aporte elevado de material fecal (TAKADA et al., 1994). Já em termos de concentração do coprostanol, usualmente é aceito que valores acima de 0,50 µg/g (peso seco) são indicativos de acúmulo de material fecal no sedimento (NICHOLS et al., 1996 apud GONZÁLEZ-OREJA & SAIZ-SALINAS, 1998).

NOMENCLATURA OFICIAL (CONFORME IUPAC)	NOME DELTA	NOME USUAL	FONTES PRINCIPAIS	REFERÊNCIA		
24-nor-colesta-5,22-dien-3β-ol	26Δ ^{5,22}	-	Dinoflagelados e diatomáceas	Volkman (1986); Leblond & Chapman (2002)		
5β-colestan-3β-ol	-	Coprostanol	Contaminação fecal (esgoto)	McCalley et al. (1981); Sherblom et al. (1997); Takada & Eganhouse (1998); O'Leary et al. (1999) apud Volkman & Smittenberg (2017)		
5β-colestan-3α-ol	-	Epicoprostanol	Contaminação fecal (esgoto)	McCalley et al. (1981); Sherblom et al. (1997); O'Leary et al. (1999) apud Volkma & Smittenberg (2017)		
27-nor-24-metilcolesta-5,22E-dien-3β-ol	nor $27\Delta^{5,22}$	-	Diatomáceas, dinoflagelados e haptófitas	Goad & Withers (1982) apud Volkman (1986); Bayona et al. (1989)		
Colesta-5,22-dien-3β-ol	27 ^{5,22}	Dihidrocolesterol	Zooplâncton, fauna bêntica, diatomáceas e dinoflagelados	Volkman (1986); Barrett et al. (1995); Hudson et al. (2001)		
5α-colestan-22-en-3β-ol	$27\Delta^{22}$	Dihidrocolestanol	Idem $27\Delta^{5,22}$ e diagênese	Volkman (1986)		
Colest-5-en-3β-ol	$27\Delta^5$	Colesterol	Zooplâncton e fauna bêntica (principalmente); fitoplâncton; esgoto doméstico	Lee et al. (1980); Volkman (1986); Eganhouse (1997); Bouloubassi et al. (1997); Voet & Voet (2004) apud Rushdi et al. (2014); Volkman (2006); Libes (2009)		
5α -colestan- 3β -ol $27\Delta^0$		Colestanol	Dinoflagelados e diatomáceas (contribuição menor); diagênese	Volkman et al. (1998); Parrish et al. (2000)		
5α-colestan-3-ona	-	Colestanona	Contaminação fecal (esgoto)	Sherblom et al. (1997)		
24-metilcolesta-5,22(E)-dien-3β-ol	28Δ ^{5,22}	Brassicasterol*	Diatomáceas (principalmente), dinoflagelados, algas haptófitas e primnesiófitas	Lee et al. (1980); Goad & Withers (1982) apud Volkman (1986); Volkman et al. (1998); Parrish et al. (2000); Hudson et al. (2001); Schefuβ et al. (2004); Xing et al. (2011); Werne et al., 2000 & Higginson et al., 2004 apud Wang et al. (2016)		
24-metil-5α-colest-22-en-3β-ol	$28\Delta^{22}$	Brassicastanol*	Idem $28\Delta^{5,22}$ e diagênese	Volkman (1986)		
24-metileno-colesta-5,24(28)-dien-3β-ol	28Δ ^{5,24(28)}	Metileno-colesterol	Diatomáceas (principalmente), dinoflagelados, algas feófitas e prasinófitas	Volkman (1986); Volkman et al. (1989); Parrish et al. (2000); Hudson et al. (2001); Zimmerman & Canuel (2002); Bianchi (2007); Volkman & Smittenberg (2017)		
24-metilcolest-5-en-3β-ol	28Δ ⁵	Campesterol	Vegetais superiores (principalmente), diatomáceas e clorofíceas	Volkman (1986); Bouloubassi et al. (1997); Volkman et al. (1998); Parrish et al. (2000); Libes (2009);Volkman & Smittenberg (2017)		
24-metil-5α-colestan-3β-ol	$28\Delta^0$	Campestanol	Idem $28\Delta^5$ e diagênese	Volkman (1986); Volkman et al. (1989); Barrett et al. (1995);		
24-etilcolesta-5,22-dien-3β-ol	24-etilcolesta-5,22-dien-3 β -ol 29 $\Delta^{5,22}$ Estigmasterol Vegetais superiores (principalmente) e fitoplâncton		Goad & Goodwin (1972) apud Volkman (1986); Gaskell & Eglington (1976); Volkman (1986); Barrett et al. (1995); Bouloubassi et al. (1997); Volkman et al. (1998); Volkman & Smittenberg (2017)			
24-etil-5α-colest-22-en-3β-ol	$29\Delta^{22}$	Estigmastanol	Idem $29\Delta^{5,22}$ e diagênese	Volkman (1986)		
24-etilcolest-5-en-3β-ol	29Δ ⁵	Sitosterol	Vegetais superiores (principalmente) e fitoplâncton	Gaskell & Eglington (1976); Volkman (1986); Bouloubassi et al. (1997); Volkman et al. (1998); Libes (2009);Volkman & Smittenberg (2017)		
24- etil-5α-colestan-3β-ol	$29\Delta^0$	Sitostanol	Idem $29\Delta^5$ e diagênese	Volkman (1986)		
4α-23,24-trimetil-5α-colest-22(E)-en-3β-ol	30Δ ^{22E}	Dinosterol	Dinoflagelados (principalmente) e algumas classes de diatomáceas (menor contribuição)	Volkman (1986); Volkman et al. (1993) apud Hudson et al. (2001); Mansour et al. (1999) apud Yoshinaga et al. (2008); Zimmerman & Canuel (2002); Xing et al. (2011)		

Tabela 3 – Esteróides utilizados como traçadores em sistemas aquáticos

* Brassicasterol e Brassicastanol são também chamados, respectivamente, de Diatomesterol e Diatomastanol (VOLKMAN et al., 1998; SCHEFUβ et al., 2004; NAKAKUNI et al., 2018). ** O Metileno-colesterol pode existir como dois isômeros: 24(28)E (fucosterol) ou 24(28)Z (isofucosterol) (VOLKMAN, 1986; SCHEFUβ et al., 2004). 4.6 O registro histórico da matéria orgânica a partir de colunas sedimentares

A geocronologia da matéria orgânica presente em ambiente sedimentar, associada à sua abundância relativa, possibilita a obtenção de registros que podem documentar eventos e processos naturais ou antropogênicos observados no ambiente estudado.

A obtenção de registros confiáveis, nas investigações geocronológicas, é extremamente importante para a reconstrução adequada do ambiente estudado. Para tanto, a obtenção da coluna sedimentar ideal deve obedecer aos seguintes critérios essenciais:

Uma sedimentação não perturbada de partículas finamente granuladas (material particulado, como minerais argilosos e matéria orgânica), de modo a permitir a adsorção de contaminantes e compostos orgânicos hidrofóbicos durante a deposição;
Precisam de perfis sedimentares não perturbados após a deposição, com intervalos de sedimentação suficientemente longos, entre 10 e 100 anos; e
Pada cartíficas de apostes mais aspacíficas, como produção e uso de

- Pode ser útil conhecer fatores de aportes mais específicos, como produção e uso de determinados poluentes (intervalo de tempo, extensão e medidas de regulação), além de informações gerais sobre fontes dos compostos estudados, como suas vias de descarga e processos de transporte/transformação (WARREN et al., 2003; ALDERTON, 1985 apud HEIM & SCHWARZBAUER, 2013).

De acordo com Heim & Schwarzbauer (2013), esses critérios limitam severamente os ambientes propícios aos estudos geocronológicos e explicam porque a maioria desses estudos é conduzida em ambientes lacustres e estuarinos. A mistura física, a ressuspensão e a bioturbação, muitas vezes até profundidades de vários centímetros, perturbam os perfis e podem levar a erros de interpretação (ALDERTON, 1985 apud HEIM & SCHWARZBAUER, 2013). Sem a datação adequada do perfil sedimentar, é possível somente estabelecer uma tendência geral sobre os aportes ao ambiente sedimentar. Apesar disso, a reconstrução cronológica de sedimentos recentes tem sido determinada com sucesso, além de em lagos, pântanos e estuários, também nos demais ambientes costeiros (HEIM & SCHWARZBAUER, 2013; ANDERSEN, 2017), como pode ser observado dos estudos conduzidos por Hu et al. (2011) e Wang et al. (2016), que estudaram a distribuição vertical de marcadores lipídicos em ambientes de plataforma continental.

Várias abordagens podem ser utilizadas para a datação de sedimentos. A avaliação da sedimentação recente tem sido conduzida por meio da análise de radioisótopos, como o ²¹⁰Pb e o ¹³⁷Cs, como uma forma de integração temporal nos ambientes estudados (SMOL, 2008; ANDERSEN, 2017). O ²¹⁰Pb é um radioisótopo de ocorrência natural, que faz parte da série de decaimento do ²³⁸U. Em função do seu tempo de meia-vida curto, em torno de 22,26 anos (SMOL, 2008; CHURCH & SARIN, 2008; NIENCHESKI et al., 2014), é adequado para o

estudo de sedimentos recentes, possibilitando a datação de colunas sedimentares de até, aproximadamente, 100-150 anos (SMOL, 2008; ALEXANDER et al., 2012; CRUZ et al., 2013; CORBETT & WALSH, 2015; ANDERSEN, 2017).

A figura 13 ilustra a datação de sedimentos como ferramenta de registro da história deposicional de um dado ambiente.

Figura 13 - O registro geoquímico por meio dos testemunhos (adaptado de SMOL, 2008)

O ²¹⁰Pb está presente nos sedimentos devido à decomposição de radioisótopos da série do ²³⁸U no próprio sedimento (²¹⁰Pb suportado ou ²¹⁰Pb_s) e também devido à deposição via precipitação atmosférica do ²¹⁰Pb não suportado ("²¹⁰Pb em excesso" ou ²¹⁰Pb_{ex}). É formado como um produto do decaimento do radônio ²²²Rn, de meia-vida curta (T^{1/2} = 3,82 dias), via ²²⁶Ra (ANDERSEN, 2017). O ²¹⁰Pb_s é gerado a partir do decaimento do radônio dentro do sedimento antes do seu escape para a atmosfera. Já a parcela do radônio que escapa para a atmosfera antes do seu decaimento irá gerar o ²¹⁰Pb_{ex}. É este fornecimento de ²¹⁰Pb em excesso que pode ser utilizado para a datação de sedimentos em ambientes terrestres (por exemplo, lacustres), estuarinos e marinhos (SMOL, 2008; ANDERSEN, 2017). A figura 14 ilustra o mecanismo de deposição do ²¹⁰Pb_{ex} em sedimentos.

Figura 14 – Deposição do ²¹⁰Pbex (adaptado de Ferreira et al., 2015 e Andersen, 2017).

Desde que o sedimento depositado seja finamente granulado e não seja perturbado (não misturado verticalmente), qualquer testemunho terá uma concentração mensurável de ²¹⁰Pb_s e ²¹⁰Pb_{ex} do topo do núcleo até o nível em que é atingido o chamado "horizonte de datação" do ²¹⁰Pb (SMOL, 2008; ANDERSEN, 2017), decaindo com o aumento da profundidade. A atividade do ²¹⁰Pb_{ex} é determinada subtraindo-se a atividade total mensurada da atividade do ²²⁶Ra. Assumindo o equilíbrio radioativo entre o ²²⁶Ra e o ²¹⁰Pb, a concentração do ²²⁶Ra é igual a do ²¹⁰Pb_s, de modo que a determinação deste último é indireta (MOZETO et al., 2006).

Os dois modelos matemáticos mais utilizados para a datação por ²¹⁰Pb são o CRS (Constant Rate of Supply) e CIC (Constant Initial Concentration) (APPLEBY & OLDFIELD, 1978 apud SMOL, 2008; ROBBINS, 1978 apud SMOL, 2008). O modelo CIC, de mais fácil aplicação, estabelece que existe uma atividade inicial constante de ²¹⁰Pb_{ex} na amostra de sedimento e que há um aporte constante de sedimentos para o local. Assim, obtêm-se um valor médio de taxa de sedimentação para o período amostrado. Quando a taxa de sedimentação é constante, o log da atividade do ²¹⁰Pb_{ex} apresenta tendência de declínio linear com a profundidade (APPLEBY & OADFIELD, 1992). O modelo CRS é aplicado quando o fluxo de ²¹⁰Pb_{ex} é constante, mas a taxa de sedimentação não o é. Como o modelo CIC pode ser aplicado por seções, acaba sendo o mais utilizado. Com a sua aplicação, o perfil de ²¹⁰Pb_{ex} mostrará uma

diminuição exponencial com a profundidade e, com isso, a sua atividade irá variar de acordo com a equação a seguir (APPLEBY & OADFIELD, 1992):

$$A_i = A_0 e^{-\lambda t}$$

equação (6)

Onde:

 $\begin{array}{l} A_i - Atividade \ do \ ^{210} Pb_{ex} \ na \ profundidade \ i; \\ A_0 - Atividade \ do \ ^{210} Pb_{ex} \ na \ superfície \ do \ sedimento \ (ou \ qualquer \ outro \ nível \ de \ referência \ ao \ longo \ do \ testemunho); \\ \lambda - constante \ de \ decaimento \ para \ ^{210} Pb \ (0,03114 \ ano^{-1}); \ e \\ t - \ idade \ da \ camada \ sedimentar \ considerada \ (anos). \end{array}$

Por meio de regressão linear, a taxa de sedimentação pode ser calculada a partir da determinação do coeficiente angular da linha de tendência formada. Da taxa de sedimentação, a idade do sedimento em cada camada do testemunho pode ser obtida a partir da equação a seguir:

$$D = D_0 - Z/I$$

Equação (7)

Onde:

D = Ano na profundidade considerada; $D_0 =$ Ano de coleta; Z = profundidade considerada (cm); e r = taxa de sedimentação (cm/ano).

A datação por ²¹⁰Pb pode ser calibrada por meio de outros radioisótopos, como o ¹³⁷Cs, um isótopo antropogênico liberado na atmosfera pela primeira vez em 1945 e, cuja deposição nos sedimentos pode ser associada a testes nucleares realizados na atmosfera ou a acidentes, como o ocorrido em 1986 em Chernobyl, na Ucrânia (SMOL, 2008; ANDERSEN, 2017). Tais liberações de ¹³⁷Cs na atmosfera ocasionaram seu transporte e deposição a longas distâncias, de modo que nos dias atuais os picos de ¹³⁷Cs nos sedimentos podem ser associados tanto ao ano de 1963 (máximo atingido durante os testes nucleares) quanto ao ano de 1986 (acidente de Chernobyl). Segundo Azouri et al. (2013), na Europa o acidente de Chernobyl é detectado em sedimentos de 1987 ± 1 ano. Outros produtos químicos antropogênicos podem ser utilizados como marcadores geocronológicos, como pesticidas ou organoclorados (SMOL, 2008).

5. ÁREA DE ESTUDO

Este capítulo apresenta uma contextualização geral da costa brasileira, com foco na descrição da área de estudo e sua abrangência. O detalhamento acerca das características fisiográficas de cada região é apresentado em Resultados e Discussão, previamente aos seus respectivos resultados, de modo a facilitar a interpretação dos resultados obtidos.

A costa brasileira está entre as mais extensas do planeta, estendendo-se desde a foz do rio Oiapoque, no Amapá, até o Chuí, no Rio Grande do Sul, perfazendo – na sua porção terrestre – mais de 8.500 km de extensão (BRASIL, 2018).

Conforme exposto por Garrison (2010), o Oceano Atlântico Sul é suprido pela Corrente do Brasil (CB), uma das cinco grandes correntes de contorno oeste existentes no planeta. A CB é a corrente de contorno oeste associada ao Giro Subtropical do Atlântico Sul, originando-se na bifurcação do ramo sul da Corrente Sul Equatorial (CSE), ao sul de 10°S, bordejando o continente sul-americano até a região da Convergência Subtropical $(38^{\circ}S \pm 2^{\circ})$, onde forma a confluência com a Corrente das Malvinas e se afasta da costa (OLSON et al., 1988 apud CIRANO et al., 2006; DA SILVEIRA et al., 2000). A CB transporta águas superficiais quentes e pobres em nutrientes da região do Equador para toda a costa brasileira. É composta pela Água Tropical (AT: 0-200m de profundidade), quente e salina, e pela Água Central do Atlântico Sul (ACAS: 200-800m de profundidade), fria e rica em nutrientes (CASTRO & MIRANDA, 1998; CIRANO et al., 2006). Sob condições favoráveis de ventos, pode ocorrer a intrusão das águas da ACAS sobre a plataforma continental em algumas regiões da costa brasileira (VALENTIN, 1984; MAZZINI & BARTH, 2013), que traz nutrientes para a zona eufótica e propicia o aumento na produção primária fitoplanctônica. No Brasil a ressurgência da ACAS sobre a plataforma continental está restrita a regiões com fortes variações topográficas e com alteração na linha de costa, como no Cabo Frio – RJ e no Cabo de Santa Marta – SC, além de ocorrer ao longo da quebra da plataforma continental (CAMPOS et al., 2000). O ramo norte da CSE gera a Corrente Norte do Brasil (CNB), que flui para o norte bordejando o continente sul americano até latitudes entre 5°N e 10°N, quando, após passar pelo equador, retroflete para leste e passa a alimentar a Contracorrente Norte Equatorial (CCNE) (FLAGG et al., 1986; FFIELD, 2005).

Em função de suas dimensões continentais, o território brasileiro apresenta características climáticas diversas, passando do clima equatorial na região Norte ao temperado na região Sul (NIMER, 1989), com notável diversidade entre as inúmeras regiões do pais. Tal diversidade implica em diferentes regimes pluviais e de temperaturas que se refletem em distintos regimes de vazão nos rios existentes. Na área de abrangência deste estudo o clima

varia do tropical úmido, no Sudeste, ao semi-árido, no Nordeste. No Sudeste, o clima tropical possibilita um regime regular de chuvas, mas apresenta regime de temperaturas variável enquanto na região Nordeste essa maior variabilidade se dá em termos do regime de chuvas (NIMER, 1989, op.cit). Apesar de ocorrerem chuvas mais frequentes na região litorânea, no Nordeste o regime de chuvas é bastante inferior ao de outras regiões do país, consequência da abrangência do clima semi-árido, característico da Caatinga, sobre as bacias hidrográficas da região (ROSA et al., 2003). Essa região apresenta uma rede hidrográfica modesta se comparada às de outras regiões brasileiras. Grande parte das Bacias do Nordeste encontra-se sob influência da Caatinga, com exceção das bacias costeiras da Bahia, ao sul do Rio de Contas e de rios que drenam o Golfão Maranhense no limite norte ocidental (ROSA et al., op.cit). No Nordeste, rios como o São Francisco, de Contas, Paraguaçu e outros se mantêm perenes graças ao fato de suas cabeceiras estarem localizadas em regiões de clima mais ameno, sendo ainda supridos por diversos afluentes cujo regime de vazão, em sua maioria, é intermitente (COUTINHO, 2000).

Dadas as características da região nordeste do Brasil, a sua zona costeira é bastante pobre em termos de suprimento de sedimentos, como resultado do baixo relevo, bacias de drenagem de pequeno porte e devido ao clima semi-árido reinante (DOMINGUEZ, 2006). A costa leste do Brasil, de maior latitude, recebe volumes consideráveis de sedimentos como resultado da presença de rios maiores drenando áreas de alto relevo e de maior umidade. Já as costas sudeste e sul do Brasil, apesar da presença de áreas de alto relevo e de alta precipitação nas áreas adjacentes à zona costeira, não recebem descargas fluviais significativas, já que os rios mais importantes, do ponto de vista de sua drenagem, fluem para o interior do continente, sobretudo para a bacia de drenagem dos rios Paraná e da Prata (DOMINGUEZ, 2006, op.cit).

Na região localizada entre 10°S e 23°S, objeto deste estudo, ocorrem diversos rios, em sua maioria de pequeno porte, que se constituem, dada a baixa produtividade natural de nossas águas oceânicas, as mais importantes fontes locais de nutrientes para a costa, em regiões que, na ausência dessas fontes de nutrientes, estariam desprovidas de uma fonte significativa para a produção primária, tendo em vista as características oligotróficas predominantes dessas águas. Deste modo, dadas as características oceanográficas observadas na costa brasileira, em que os rios constituem, aparentemente, os principais fornecedores de sedimentos para a zona costeira, à exceção das regiões onde ocorre ressurgência costeira ou de quebra de plataforma, as regiões desprovidas desse aporte sedimentar são empobrecidas em nutrientes (DOMINGUEZ, 2006) e, em consequência, naturalmente oligotróficas.

Este estudo, então, abrange o registro de marcadores geoquímicos na região costeira representada no mapa apresentado na figura 15, estando delimitado entre as latitudes entre 10°S

e 23°S. Essa figura destaca, ainda, as áreas das bacias de drenagem dos rios considerados neste estudo, os rios Doce, de Contas e São Francisco, com as respectivas áreas de plataforma continental associadas à descarga desses rios (áreas 1 a 3) e da área de ocorrência da ressurgência costeira e de quebra de plataforma associada ao Cabo Frio (área 4). Foram obtidas, ao todo, quatro colunas sedimentares para estudo, com uma coluna associada a cada região.

Figura 15 - Mapa da área de abrangência do estudo (adaptado de BAHR et al., 2016)

6. MATERIAL E MÉTODOS

6.1 Amostragem

A coleta de amostras foi conduzida durante cruzeiro oceanográfico M125, conduzido no período de 21/03 a 15/04/2016 pelo Navio R/V Meteor, em parceria do Laboratório do Oceanografia Operacional e Paleoceanografia (LOOP) da Universidade Federal Fluminense (UFF) com a Universidade de Heidelberg – Alemanha, entre as latitudes 10°S e 23°S, na costa brasileira. A estratégia amostral foi elaborada pela coordenação do Projeto SAMBA (BAHR et al., 2016), visando atender todas as áreas de conhecimento contempladas no projeto.

A figura 16 detalha os pontos onde os testemunhos destinados a este trabalho foram coletados. Já a tabela 4 detalha as informações dos pontos de coleta. Os pontos onde os testemunhos foram obtidos estão identificados com os códigos BIOMT1, BIOMT3, BIOMT6 e BIOMT7. Essas colunas sedimentares foram obtidas, respectivamente, na região de ocorrência da ressurgência do Cabo Frio, proximidades da foz do Rio Doce, proximidades da foz do Rio de Contas e proximidade da foz do Rio São Francisco.

Figura 16 - Detalhamento dos pontos de amostragem

Os pontos de coleta foram definidos em função do interesse em caracterizar a influência desses rios em vários aspectos oceanográficos e buscavam a recuperação de sedimentos finos (preferencialmente lamosos) em zonas de acumulação existentes ao longo da costa. As amostras foram obtidas por meio de equipamento Multi Corer (MUC). Previamente ao lançamento do MUC, as áreas foram submetidas à varredura com equipamentos multifeixe e perfilador de fundo (Sub Bottom profiler), visando aumentar o potencial de recuperação de sedimentos com as características desejadas (BAHR et al., 2016).

Sistema	Código	Código Código (MN***)		Comprimento da seção recuperada (cm)	Latitude	Longitude
Ressurgência de Cabo Frio	BIOMT1	34,5 / 89 **	80,6	23	23°04,771'S	41°21,380'W
Doce	BIOMT3	4,6 / 5,4	17,6	40	19°44,285'S	39°50,737'W
Contas	BIOMT6	3,7 / 8,5	38	39	14°24,285'S	38°57,026'W
São Francisco	BIOMT7	7,6 / 7,6	55,4	39	10°34,937'S	36°16,020'W

Tabela 4 - Caracterização geral das colunas sedimentares estudadas

* A distância da costa e da foz não é necessariamente a mesma, já que a maioria das colunas não foi coletada em frente à foz dos rios considerados.

** O rio mais próximo é o Paraíba do Sul. Existem outras ligações de pequeno porte do continente para o mar, como o canal do Itajurú, localizado em Cabo Frio-RJ, que liga a Lagoa de Araruama¹ ao mar. *** MN: distância em milhas náuticas (1 MN equivale a 1.852 metros).

As colunas sedimentares obtidas foram seccionadas a bordo do navio logo após a coleta, utilizando extrusor manual, a cada 1,0 cm de espessura. Cada amostra foi acondicionada em recipientes de coleta do tipo quentinha de alumínio devidamente identificados (previamente calcinados a 450 °C por, no mínimo, seis horas) e armazenada em câmara fria disponível no navio, visando a sua preservação até o encaminhamento para tratamento posterior e análise.

¹ A Lagoa de Araruama é, na verdade, uma laguna. Esta recebe água de dois rios permanentes, os rios das Moças e Mataruna, ambos de pequeno porte.

6.2 Pré-tratamento

No LOOP-UFF, as amostras obtidas foram congeladas a -81°C em ultrafreezer Thermo Scientific Revco modelo ExF-86C e, a seguir, liofilizadas utilizando dois liofilizadores de bancada da marca Terroni Equipamentos, modelo Enterprise, visando otimizar a sua preservação. A liofilização de cada lote de amostras se deu por um período de três a cinco dias à temperatura de -40°C.

O pré-tratamento das amostras consistiu de etapas diferentes, conduzidas em diferentes frações das amostras liofilizadas, em função do tipo de análise a ser realizada:

- Para a análise granulométrica as amostras foram submetidas a tratamento com Peróxido de Hidrogênio, visando a eliminação da matéria orgânica, conforme procedimento adotado pelo LOOP-UFF (protocolo LAB 03-11 EM. 02 – Descarbonatação de Sedimentos), baseado em Hedges & Stern (1984), visando a determinação granulométrica em granulômetro a laser em laboratório do Departamento de Geoquímica da UFF;

- Para a determinação dos teores de COT e NT, juntamente com dados de δ^{13} C e δ^{15} N, as amostras foram descarbonatadas e maceradas em grau e pistilo de ágata (previamente descontaminados), sendo a seguir encapsuladas em cápsulas de estanho, conforme procedimento adotado pelo LOOP-UFF (protocolo LAB 02-16 EM. 00 – Análise de δ^{13} C e δ^{15} N em Sedimento Marinho), baseado em instruções disponíveis na página da U.C. Davis Stable Isotope Facility (Universidade da Califórnia) (Davis, 2018) na Internet, com posterior envio para análise isotópica naquele laboratório;

- Para a determinação das taxas de sedimentação e, consequentemente, da datação, as amostras foram maceradas em grau e pistilo de porcelana (previamente descontaminados), seguindo instruções fornecidas pelos laboratórios que realizaram as análises de ²¹⁰Pb; e

- Para a análise cromatográfica as amostras foram maceradas em grau e pistilo de porcelana (previamente descontaminados) e, a seguir, encaminhadas para extração.

6.3 Procedimentos para extração, purificação e fracionamento dos compostos analisados

A obtenção dos extratos para as análises das famílias de compostos estudados foi conduzida conforme descrito nos itens a seguir, que detalham os diversos procedimentos adotados.

6.3.1 Preparo dos materiais e reagentes utilizados

6.3.1.1 Limpeza do material

O procedimento de limpeza da vidraria e demais materiais de uso comum consistia em lavagem com esponja ou escova contendo solução de detergente aniônico Extran[®] (solução a 5% v/v) e, a seguir, repouso em banho contendo a mesma solução de limpeza por, pelo menos, 12 horas (overnight). A seguir essa vidraria era enxaguada com água corrente em abundância e com água destilada. Na sequência, essa vidraria era seca em estufa a 120 °C e preparada para calcinação, com o isolamento do material em papel alumínio. O processo de limpeza era concluído após a vidraria ter sido submetida à calcinação, em forno do tipo mufla, por um período mínimo de seis horas à 450°C.

A limpeza da vidraria volumétrica e de outros materiais que não poderiam ser calcinados, como teflon, foi conduzida com os mesmos procedimentos iniciais adotados para a vidraria comum, com algumas modificações: esse material foi submetido à secagem em temperatura ambiente (em bancada abrigada, a fim de evitar contaminação pós-lavagem). Imediatamente antes do uso, esses materiais eram submetidos à lavagem sequencial utilizando metanol, diclorometano e n-hexano em três diferentes estágios de limpeza.

Todo o material era manuseado com o uso de luvas de borracha nitrílica, de modo a evitar contaminação posterior à limpeza.

6.3.1.2 Solventes e reagentes

Todos os solventes utilizados foram de alta pureza, de modo a possibilitar a determinação de compostos em nível de traços. Foram utilizados n-hexano, diclorometano, metanol e acetonitrila das marcas Merck ou Tedia, todos especificados como grau cromatográfico ou análise de resíduos de pesticidas, testados com relação à eventual contaminação a cada lote utilizado.

Todos os padrões analíticos foram adquiridos da empresa Sigma Aldrich.

Foram utilizados reagentes e adsorventes de alta pureza/qualidade. Os materiais adsorventes foram submetidos à purificação/descontaminação antes do uso:

- Os adsorventes Sílica gel 60 (Merck, 60-200 mesh) e alumina neutra (Merck, 70-230 mesh)
foram descontaminados por calcinação em forno de mufla da marca Quimis a 450 °C por 6 horas. Previamente ao uso, os adsorventes eram ativados em estufa por aquecimento a 180 °C por 8 horas sendo, a seguir, resfriados em dessecador, onde eram mantidos por, no máximo, três dias. Imediatamente antes do uso esses adsorventes eram parcialmente desativados com o uso de 5% (p/v) de água padrão Milli-Q, sendo submetidos à agitação por duas horas, para homogeneização. Após a desativação esses adsorventes eram mantidos em dessecador e utilizados em, no máximo, 24 horas após o preparo. Os procedimentos adotados são os mesmos descritos em Fillmann & Bícego (2006), com pequenas modificações:

O dessecante sulfato de sódio foi descontaminado por calcinação em forno de mufla a 450
°C por 6 horas sendo, a seguir, resfriado em dessecador, onde era mantido por, no máximo, 24 horas antes do uso.

 O Cobre em pó utilizado era submetido à tratamento de ativação com HCl e, a seguir, lavagem sequencial com solventes de polaridade decrescente, iniciando-se com água padrão Milli-Q, seguido de metanol, acetona e n-hexano, em procedimento similar ao descrito em Fillmann & Bícego (2006).

- A água padrão Milli-Q utilizada para desativação dos adsorventes era adicionalmente tratada, para garantir a ausência de eventuais traços de matéria orgânica, utilizando extração líquido-líquido em funil de separação contendo n-hexano.

6.3.2 Procedimento analítico para obtenção dos extratos

Os procedimentos adotados para a obtenção de extratos, para as análises das amostras de sedimentos, seguiram um protocolo modificado de Fillmann & Bícego (2006), com a utilização da técnica de extração por ultrassom, em metodologia baseada na norma US-EPA 3550 C (Extração por ultrassom), conforme adotado por Wang et al. (2016) e Frena et al. (2017) e fracionamento em coluna cromatográfica de vidro, em metodologia baseada na norma US-EPA 3611B (fracionamento em coluna cromatográfica para separação das frações contendo hidrocarbonetos de petróleo). O fluxograma apresentado na figura 17 detalha as etapas conduzidas para a obtenção dos extratos das frações analisadas.

Figura 17 - Fluxograma de extração, fracionamento e análise das amostras

6.3.2.1 Extração

As amostras liofilizadas e maceradas foram pesadas em um frasco de extração em vidro, com tampa rosqueada em polipropileno e septo em teflon. A esses frascos eram adicionados cerca de 3 gramas de cobre ativado em pó, previamente à pesagem de cada amostra (foram utilizados cerca de 10 gramas de amostras por extração) e cerca de 10 gramas de sulfato de sódio anidro. A seguir, as amostras eram "contaminadas" com padrões de recuperação (surrogate), utilizados para determinar a percentagem de recuperação dos extratos. Foram utilizados os padrões 1-eicoseno (F1, alifáticos), p-terfenil-d14 (F2, aromáticos), e Androstanol (F3, esteróides). Após a contaminação do sedimento com os padrões surrogate cada amostra ficava em repouso por um período mínimo de 8 horas (overnight), para possibilitar o contato íntimo entre os compostos adicionados e a matriz do sedimento.

A extração se deu de forma sequencial, utilizando misturas de solventes orgânicos: para cada amostra eram conduzidas duas extrações utilizando 40 ml de n-hexano/acetona (1:1) e duas extrações utilizando 40 ml de diclorometano/metanol (2:1) para uma massa de cerca de 10 gramas de amostra. O equipamento de ultrassom era operado em quatro etapas de 30 minutos cada, sempre com troca de solvente. A temperatura do banho era mantida entre 20 e 22°C por meio de sistema de refrigeração acoplado ao ultrassom. Os extratos obtidos a cada etapa de extração eram concentrados em evaporador rotativo e fluxo de gás nitrogênio, de modo a, posteriormente, submetê-los à etapa de fracionamento.

6.3.2.2 Fracionamento e preparo das amostras para análise

O fracionamento dos extratos obtidos se deu com o uso de colunas cromatográficas de vidro empacotadas com 8 gramas de sílica, 3 gramas de alumina – previamente ativadas e desativadas parcialmente com água padrão Milli-Q – e 1 grama de sulfato de sódio anidro. Cada amostra era transferida para a coluna com o uso de pipetas descartáveis do tipo Pasteur previamente calcinadas, seguida da lavagem do frasco com pequenos volumes de n-hexano para reduzir perdas do extrato. A separação entre as frações deu com o uso de solventes de diferentes polaridades, com a calibração do volume necessário para eluir cada fração conduzida de acordo com o descrito em Fillmann & Bícego (2006). A fração F1, composta de hidrocarbonetos alifáticos, foi eluída com a passagem de 20 ml de n-hexano pelo leito contendo a amostra. A fração F2, contendo hidrocarbonetos aromáticos, foi eluída com 60 ml de solução de n-hexano/diclorometano (1:1). Por fim a fração F3, contendo os compostos polares, foi eluída com 60 ml de solução de diclorometano/metanol (9:1).

Após o fracionamento, os extratos obtidos das frações F1 e F2 foram concentrados em evaporador rotativo e transferidos para balões volumétricos de 1ml, onde receberam seus respectivos padrões internos: 1-tetradeceno para alifáticos e mix de HPAs deuterados (contendo naftaleno-D8, acenafteno D10, Fenantreno D10, Criseno D12 e Perileno D12) para aromáticos. Cada balão foi avolumado e, por fim, transferido para um vial de 2ml, estando pronto para análise em cromatógrafo a gás. O tratamento da fração F3 (esteróides) teve como etapa adicional a derivatização das amostras, que se deu com o uso do reagente derivatizante BSTFA/TMCS (99:1), obtido da empresa Sigma Aldrich. A sililação de n-álcoois e esteróis se dá por meio da substituição do grupo OH por um grupo tri-metil-silil, em que os derivados sililados são mais voláteis e mais estáveis que os compostos originais e, portanto, produzem picos mais estreitos e simétricos (FARAJZADEH et al., 2014). O procedimento adotado foi similar ao descrito em Carreira et al. (2015b) e Wang et al. (2016): cada frasco contendo a fração F3 foi levado à secura com o uso de evaporador rotativo e fluxo suave de gás nitrogênio. A seguir foi adicionado 50 µl do reagente BSTFA/TMCS (99:1) e 150 µl de acetonitrila, aquecendo-se o frasco contendo a amostra à temperatura de 80°C por 60 minutos. A seguir, o excesso do derivatizante e da acetonitrila era eliminado por evaporação com fluxo suave de gás nitrogênio. Após a adição do padrão interno, 5α-colestano, a amostra era avolumada a 1ml com n-hexano e, por fim, transferida para um vial de 2ml. A reação de derivatização era conduzida no mesmo dia em que as amostras eram encaminhadas para análise cromatográfica.

6.3.3 Determinação dos parâmetros de caracterização geral

6.3.3.1 Análise granulométrica

As medidas do tamanho de grão das amostras foram conduzidas em laboratório do Departamento de Geoquímica da UFF, utilizando um analisador de partículas a laser CILAS modelo 1064, conforme descrito em Cruz et al. (2013), A faixa de detecção operacional deste equipamento é de 0,02 a 2000 µm. A classificação do tamanho de grão foi feita de acordo com Folk & Ward (1957) apud Cruz et al. (2013), usando o método de escala de tamanho adotado no software GRADISTAT (BLOTT & PYE, 2001 apud CRUZ et al., 2013).

6.3.3.2 Determinação da composição elementar e isotópica da matéria orgânica

A determinação da %COT foi conduzida com o uso de um Analisador de carbono, modelo TOC-VCPH, acoplado ao módulo de amostras sólidas, modelo SSM–5000A, marca SHIMADZU com detector de combustão por absorção no infravermelho não dispersivo, utilizando a determinação da concentração do COT pelo método indireto, combinando reações de acidificação e de oxidação química para análise de %CI (Carbono Inorgânico) e %CT (Carbono Total), respectivamente, obtendo-se a %COT por diferença entre as duas determinações. Esta análise foi conduzida em todas as amostras nas instalações do setor de geoquímica do LOG-FURG. Amostras selecionadas de todos os testemunhos foram também analisadas nas instalações do laboratório de análise de isótopos (Stable Isotope Facility) do campus da Universidade da Califórnia em Davis – EUA, com o objetivo de determinar a Razão isotópica de carbono (δ^{13} C) e Razão isotópica de nitrogênio (δ^{13} N).

De acordo com informações disponíveis na página do laboratório na Internet (DAVIS, 2018), a análise isotópica desses compostos se deu por meio da determinação dos teores de carbono e nitrogênio (na forma de seus isótopos estáveis), em amostras previamente tratadas, com o uso de um analisador elementar Vario EL Cubo ou analisador elementar MicroCube (Elementar Analysensysteme GmbH, Hanau, Alemanha) em interface com um IRMS (espectrômetro de massa de razão isotópica) PDZ Europa 20-20 (Sercon Ltd Cheshire, UK). Resumidamente, as amostras de sedimentos são queimadas a 1.080 °C em um reator com óxido de cobre e óxido de tungstênio (VI). Após a combustão, os óxidos são removidos em um reator de redução (cobre reduzido a 650 °C). A água é removida por meio de uma armadilha de água

(composta de perclorato de magnésio). Nitrogênio e gás carbônico são separados usando peneira molecular antes do encaminhamento ao IRMS. Durante a análise, as amostras são intercaladas com réplicas de, pelo menos, dois padrões diferentes. Esses padrões laboratoriais, que são selecionados para serem composicionalmente semelhantes às amostras em análise, foram previamente calibrados contra Materiais de Referência Padrão do NIST (IAEA-600, USGS-40, USGS-41, USGS-42, USGS-43, USGS-61 USGS-64 e USGS-65). Os resultados fornecidos são expressos em relação aos padrões internacionais VPDB (Vienna PeeDee Belemnite) e ar para carbono e nitrogênio, respectivamente.

6.3.3.3 Datação

A datação da coluna sedimentar associada à região de ocorrência da ressurgência costeira do Cabo Frio (BIOMT1) foi efetuada em laboratório do Departamento de Geoquímica da UFF utilizando Espectrometria Gama, com um detector de poço de germânio ultrapuro (resfriado a -196°C com nitrogênio líquido), cujo método é descrito em Cruz et al. (2013), com a taxa de sedimentação obtida a partir da declividade da curva de decaimento da atividade com a profundidade. A técnica utilizada para a datação desta coluna sedimentar não requer tratamento prévio da amostra. No entanto, além do tempo em sistema fechado (para que seja atingido o equilíbrio secular dos radioisótopos em decaimento), como as atividades do ²¹⁰Pb são normalmente baixas o tempo de contagem de cada amostra é bastante elevado, podendo ser superior a 24 horas por amostra. As taxas de sedimentação locais em um banco lamoso próximo ao ponto de coleta do testemunho BIOMT1 foram anteriormente determinadas por Sanders et al. (2014). Em seu estudo, apesar de as taxas de sedimentação variarem ao longo da extensão dessa feição oceanográfica, as taxas de sedimentação individuais se mostraram constantes ao longo do tempo, pelo menos ao longo dos últimos 100 anos. Tal característica se deve à distância da costa, que leva à baixa influência de fontes terrígenas de sedimentos. Com isso, a determinação da taxa de sedimentação se restringiu à porção superficial da coluna recuperada (do topo até 7 cm de profundidade).

A datação das colunas sedimentares associadas à desembocadura dos rios considerados neste estudo, coletadas em locais mais propícios a eventuais variações na taxa de sedimentação (BIOMT3, BIOMT6 e BIOMT7) se deu nas instalações do Serviço de Monitoração Ambiental do CRCN-NE (Centro Regional de Ciências Nucleares do Nordeste), também por meio das análises do isótopo marcador ²¹⁰Pb, conforme descrito em Pereira Neto et al. (2017), com

leituras a cada 1 cm de profundidade. Resumidamente, após o procedimento radioquímico (precipitação do ²¹⁰Pb como cromato), as amostras são analisadas em um Detector Proporcional de Fluxo Gasoso, modelo Eclipse 5S da marca Canberra, via contagem Beta do ²¹⁰Bi, com a taxa de sedimentação obtida a partir da determinação da declividade da curva de decaimento da atividade com a profundidade. Apesar de esta técnica requerer uma etapa prévia de preparo da amostra (conduzida nas instalações do CRCN-NE), a contagem é realizada de forma mais rápida do que com a espectrometria Gama, possibilitando melhor resolução analítica da coluna sedimentar em menor tempo de uso do equipamento.

6.3.4 Identificação e quantificação cromatográfica dos analitos

Cada família de compostos foi analisada por meio de métodos cromatográficos diferentes, baseados nas metodologias U.S. EPA 8015C (U.S. EPA, 2003) e U.S. EPA 8270E (U.S. EPA, 2014b), utilizando um mesmo equipamento: as análises cromatográficas se deram com o uso de um cromatógrafo a gás acoplado a um espectrômetro de massas (CG-EM) do tipo quadrupolo com ionização por impacto de elétrons, marca Perkin Elmer (modelo Clarus 600 GC-MS). O equipamento utilizado era dotado de autosampler e injetor automático de amostras do tipo PSS (Pulsed Split Splitless), que possui rampa de injeção programável. O controle de operação do equipamento e processamento dos resultados se deu com o uso do software Turbomass, versão 5.4.2. Em todos os métodos o CG-EM operou no modo SIM (monitoramento de íons selecionados) e SCAN (varredura total, entre m/z 50 e 550).

A identificação dos compostos foi baseada nos espectros de massas dos compostos individuais e nos tempos de retenção de padrões autênticos. Para aqueles compostos em que não havia padrões disponíveis a identificação se deu com base em dados disponíveis na literatura ou da biblioteca da U.S. National Institute of Standards and Technology (NIST) (distribuída junto com o software Turbomass).

As amostras foram quantificadas com o uso de curvas analíticas multiponto, via padronização interna. Para cada composto de interesse foi calculado o Fator de Resposta Relativo (FRR) a partir do padrão e do seu respectivo padrão interno. Foram utilizados diferentes FRRs em função da faixa de utilização da curva analítica, de modo a aumentar a precisão do método, sendo utilizado na quantificação o FRR médio calculado dentro de cada faixa estabelecida. A linearidade das curvas analíticas foi avaliada por meio do coeficiente de correlação linear, determinado pelo método dos mínimos quadrados. A quantificação dos

compostos em que não havia padrões disponíveis para identificação se deu com base nos FRR de compostos similares cujo padrão estava disponível. Deste modo, para esses compostos, a determinação foi semi-quantitativa. A determinação do FRR para cada analito se deu a partir das equações (8) e (9), a seguir, seguindo o disposto em Denoux et al. (1998), Rome e McIntyre (2012) e U.S. EPA 8270E (U.S. EPA, 2014b).

$$FRR = \frac{Area A_x x [PI]}{[A_x] x \text{ Area PI}}$$

Equação (8)

Onde:

- Área A_x = área do Analito de interesse na curva;

- Área PI = área do Padrão Interno correspondente;

- $[A_x]$ = concentração do Analito na curva (expressa em ng.ml⁻¹); e

- [PI] = concentração do Padrão Interno correspondente (expressa em ng.ml⁻¹).

Da determinação do FRR, a concentração do analito de interesse nas amostras reais é determinada a partir de uma modificação da mesma equação, descrita a seguir:

$$[A_n] = \frac{\text{Área } A_n \text{ x } [PI]}{\text{FRR x Área PI}}$$

Equação (9)

Onde:

- Área A_n = área do Analito de interesse na amostra em análise;

- Área PI = área do Padrão Interno correspondente na amostra em análise;

- [Em] = concentração do Analito na amostra em análise (expressa em ng.ml⁻¹); e

- [PI] = concentração do Padrão Interno na amostra analisada (expressa em ng.ml⁻¹).

A recuperação dos métodos foi avaliada com base em padrões de recuperação, adicionados às amostras de sedimento previamente à extração e cuja percentagem de recuperação era avaliada ao final da análise. Diversos autores apresentam valores de recuperação típicos que determinam um parâmetro mínimo de qualidade para o método analítico como um todo: Sericano et al. (1998), que descreveram um protocolo analítico para a determinação quantitativa de hidrocarbonetos clorados, adotaram medidas corretivas sempre que a recuperação estava fora do intervalo entre 50 e 125%. Denoux et al. (1998) estabeleceram em um protocolo analítico para HPAs utilizado pela NOAA (United States National Oceanic and Atmospheric Administration) no Projeto Mussel Watch, que medidas corretivas para a

análise quantitativa de HPAs por CG-EM deveriam ser adotadas sempre que a recuperação estivesse fora do intervalo entre 40 e 120%. Mais recentemente, Ribani et al. (2004) sugeriram que a recuperação de métodos cromatográficos e eletroforéticos esteja entre 70 e 120%. Amostras cuja recuperação estava fora dos limites sugeridos por Ribani et al. (2004) eram descartadas e repetidas sempre que houvesse amostra disponível. Para os HPAs foi adotado o limite proposto por Denoux et al. (1998). As concentrações determinadas não foram corrigidas pelos valores de recuperação de cada amostra/família de compostos.

O Limite de Quantificação (LQ) dos métodos foi estabelecido a partir do ponto de menor concentração em cada curva analítica estabelecida. Já o Limite de Detecção (LD) foi estabelecido a partir da determinação da relação sinal/ruído (S/N) dos picos, utilizando ferramenta disponível no software Turbomass. De acordo com Ribani et al. (2004), um composto é considerado Não Detectado (ND) se S/N<3. Amostras cuja concentração determinada foi maior que o maior ponto da curva estabelecida foram diluídas, visando o seu enquadramento nas concentrações definidas pelo respectivo método analítico.

A cada lote de amostras um ponto da curva analítica era injetado no sistema cromatográfico para avaliação do FRR. Conforme descrito em Rome e McIntyre (2012) e U.S. EPA 8270E (U.S. EPA, 2014b), variações de até 20% do FRR são aceitáveis pelo método. Caso tal parâmetro de qualidade não fosse atingido o equipamento era submetido à manutenção (tipicamente à limpeza de sua fonte iônica, tuning do equipamento e calibração interna com o gás de referência, Heptacosatributilamina) e, a partir de nova leitura dos padrões, uma nova curva analítica era determinada.

Cada lote de 19 amostras era acompanhado de uma amostra em Branco, para avaliação de eventual contaminação na análise. Resultados diferentes de Zero para o Branco eram descontados dos resultados das amostras. O RSD% (desvio padrão relativo) avaliado em amostras analisadas em triplicata, esteve abaixo de 15%.

6.3.4.1 Hidrocarbonetos alifáticos

A determinação de hidrocarbonetos alifáticos seguiu metodologia baseada em U.S. EPA 8015C (U.S. EPA, 2003). Foi utilizada uma coluna cromatográfica modelo Elite1-MS (100% dimetilpolisiloxano), da marca Perkin Elmer com comprimento de 30 metros, diâmetro interno (DI) de 0,25 mm e espessura de filme de 0,25 μ m. O volume de amostra injetado foi de 1,0 μ L. O gás de arraste utilizado foi o He grau 5.0, com vazão de 1,5 ml.min⁻¹. A programação de

temperatura do forno iniciou-se em 40 °C, sendo mantida nesse patamar por 1,0 minuto, elevação até a temperatura de 60 °C à taxa de 20 °C.min⁻¹ e, a partir dessa temperatura, elevada à taxa de 5 °C.min⁻¹ até 300 °C sendo, por fim, mantida em isoterma nesse patamar por 5 minutos. A temperatura do injetor foi mantida em 290 °C, com injeção no modo splitless. O espectrômetro de massas operou em modo SIM (monitoramento de íons selecionados) e SCAN (varredura de todos os íons da faixa de leitura do método). Foram monitorados os íons m/z 83 para n-alcenos e m/z 85 para n-alcanos.

A tabela 5 especifica alguns parâmetros de configuração do método de quantificação, com uma lista dos compostos quantificados.

Nome	Nome	Íon de quantificação	Tempo de		
Oficial	abreviado	(m/z)	retenção (min.)		
n-undecano	n-C ₁₁	85	9,54		
n-dodecano	n-C ₁₂	85	12,23		
n-tridecano	n-C ₁₃	85	14,89		
n-tetradecano	n-C ₁₄	85	17,48		
n-pentadecano	n-C ₁₅	85	19,95		
n-hexadecano	n-C ₁₆	85	22,30		
n-heptadecano	n-C ₁₇	85	24,53		
2,6,10,14-tetrametil pentadecano	Pristano	85	24,58		
n-octadecano	n-C ₁₈	85	26,66		
2,6,10,14-tetrametil hexadecano	Fitano	85	26,77		
n-nonadecano	n-C ₁₉	85	28,68		
n-eicosano	n-C ₂₀	85	30,60		
n-Heneicosano	n-C ₂₁	85	32,46		
n-dococosano	n-C ₂₂	85	34,21		
n-tricosano	n-C ₂₃	85	35,93		
n-tetracosano	n-C ₂₄	85	37,54		
n-pentacosano	n-C ₂₅	85	39,11		
n-hexacosano	n-C ₂₆	85	40,62		
n-heptacosano	n-C ₂₇	85	42,07		
n-octacosano	n-C ₂₈	85	43,48		
n-nonacosano	n-C ₂₉	85	44,83		
n-triacontano	n-C ₃₀	85	46,15		
n-hentriacontano	n-C ₃₁	85	47,41		
n-dotriacontano	n-C ₃₂	85	48,63		
n-tritriacontano	n-C ₃₃	85	49,84		
n-tetratriacontano	n-C ₃₄	85	51,07		
n-pentatriacontano	n-C ₃₅	85	52,53		
n-hexatriacontano	n-C ₃₆	85	54,34		
1-tetradeceno (PI)	1-T-DCN	83	17,28		
1-Eicoseno (SURR)	1-EICO	83	30,49		

Tabela 5 – Nomenclatura e parâmetros de identificação dos Hidrocarbonetos alifáticos

A identificação dos hidrocarbonetos alifáticos foi baseada nos tempos de retenção de padrões autênticos de n-alcanos e dos isoprenóides pristano e fitano. Foi utilizado o padrão de referência 40147-U (C8-C40 Alkanes Calibration Standard), fornecido pela empresa Sigma Aldrich, com o método de quantificação estabelecido para a faixa de n-C₁₁ a n-C₃₆, totalizando 28 compostos, aí incluídos os isoprenóides pristano e fitano. A determinação da MCNR foi efetuada conforme descrito em Peters et al. (2005) e Meniconi et al. (2008), com dupla integração dos cromatogramas e subtração das áreas dos picos resolvidos.

As amostras foram quantificadas com o uso de curvas analíticas multiponto para cada analito contido no padrão que, além dos n-alcanos inclui os isoprenóides pristano e fitano. A determinação dos FRRs do método se deu com os níveis de concentração variando entre 20 ng.ml⁻¹ a 10.000 ng.ml⁻¹, divididos em três níveis: 20-250 ng.ml⁻¹, 100-1.000 ng.ml⁻¹ e 750-10.000 ng.ml⁻¹. O LQ do método para n-alcanos e isoprenóides foi estabelecido em 2,0 ng.g⁻¹, com base em 10 gramas de amostra. O padrão interno (PI) de quantificação utilizado foi o 1-tetradeceno. A recuperação da metodologia foi avaliada com o uso do padrão 1-eicoseno, como descrito na U.S. EPA 8015C (U.S. EPA, 2003).

6.3.4.2 Hidrocarbonetos aromáticos

A determinação de HPAs seguiu metodologia baseada na U.S. EPA 8270E (U.S. EPA, 2014b). Foi utilizada uma coluna cromatográfica modelo Elite5-MS (95% dimetilpolisiloxano e 5% fenilpolisiloxano), da marca Perkin Elmer com comprimento de 30 metros, DI de 0,25 mm e espessura de filme de 0,25 μm. O volume de amostra injetado foi de 1,0 μL. O gás de arraste utilizado foi o He grau 5.0, com vazão de 1,5 ml.min⁻¹. A programação de temperatura do forno iniciou-se em 40 °C, sendo mantida nesse patamar por 1,0 minuto, seguida de elevação até a temperatura de 60 °C à taxa de 10 °C.min⁻¹ e, a partir dessa temperatura, elevada à taxa de 5 °C.min⁻¹ até 290 °C e, por fim, mantida isoterma nesse patamar por 5 minutos. A temperatura do injetor foi mantida em 280 °C, com injeção no modo splitless. O CG-EM operou nos modos SIM e SCAN, monitorando íons diferentes, em função dos diversos HPAs monitorados.

A tabela 6 compila as informações dos HPAs monitorados pelo método, juntamente com os íons de quantificação, compostos de referência, padrões internos e respectivos tempos de retenção. A identificação dos hidrocarbonetos aromáticos foi baseada nos tempos de retenção de padrões autênticos de HPAs parentais e alquilados, associado às informações disponíveis das massas monitoradas.

	Nome	Composto	Íon de	Tempo de	Padrão Interno				
Nome Oficial	abreviado	Base *	quantificação	retenção	(PI)				
Noftologo	N	a ná ra ni a	(m/z) **	(min.)					
Nattaleno		proprio	128	12,70					
	2-MIN	proprio	142	15,71					
1-Metilnaftaleno	I-MIN	proprio	142	16,14					
Bitenil	BIF	proprio	154	17,88	Naftaleno-d8				
CI Naftalenos	CIN	N	142	-	(m/z 136)				
C2 Naftalenos	C2N	N	156	-	TK: 12,04				
C3 Naftalenos	C3N	N	170	-					
C4 Naftalenos	C4N	N	184	-					
2,6 Dimetil Naftaleno	26-DMN	próprio	156	18,55					
Acenaftileno	ACT	próprio	152	19,62					
Acenafteno	ACE	próprio	153	20,40	A				
Fluoreno	FLU	próprio	166	22,81	Acenalteno-d10 $(m/z \ 164)$				
C1 Fluorenos	C1-FLU	FLU	180	-	(11/2, 104) TR: 20, 31				
C2 Fluorenos	C2-FLU	FLU	194	-	11. 20,51				
C3 Fluorenos	C3-FLU	FLU	208	-					
Dibenzotiofeno	DBZT	próprio	184	26,54					
C1 Dibenzotiofenos	C1-DBZT	DBZT	198	-					
C2 Dibenzotiofenos	C2-DBZT	DBZT	212	-					
C3 Dibenzotiofenos	C3-DBZT	DBZT	226	-					
Fenantreno	FEN	próprio	178	27,15	Fenantreno-d10				
C1 Fenantrenos	C1-FEN	FEN	192	-	(m/z 188)				
C2 Fenantrenos	C2-FEN	FEN	206	-	TR: 27,04				
C3 Fenantrenos	C3-FEN	FEN	220	_					
C4 Fenantrenos	C4-FEN	FEN	234	_					
Antraceno	ANT	próprio	178	27,39					
p-terfenil-d14	SURR	próprio	244	34.88					
Fluoranteno	FLT	próprio	202	32,67					
Pireno	PIR	próprio	202	33.61					
C1 Pirenos	C1-PIR	PIR	216	-					
C2 Pirenos	C2-PIR	PIR	230	-	Criseno-d12				
Benzo(a)antraceno	BaA	próprio	228	39.22	(m/z 240)				
Criseno	CRIS	próprio	228	39.36	TR: 39,23				
C1 Crisenos	C1-CRIS	CRIS	242	-					
C2 Crisenos	C2-CRIS	CRIS	256	_					
Benzo(b)fluoranteno	BbF	próprio	250	43.81					
Benzo(k)fluoranteno	BkF	próprio	252	43.96					
Benzo(e)pireno	BeP	próprio	252	43,90					
Benzo(a)pireno	BaP	próprio	252	45.02	Perileno-d12				
Derilano		próprio	252	45.02	(m/z 264)				
Indeno(1,2,2,ad)nirana	IcdD	próprio	232	40.00	TR: 45,28				
Dihonzo(a h)ontrocore	DehA	proprio	270	49,09					
Dioenzo(a,n)antraceno	DanA	proprio	278	49,23					
Benzo(g,h,1)perileno	BghiP	proprio	276	49,90					

Tabela 6 – Nomenclatura e parâmetros de identificação dos HPAs estudados.

* Composto cujo FRR foi utilizado para o cálculo da concentração. Compostos com padrão disponível são utilizados como sua própria referência (próprio).

** O íon de quantificação é o mesmo íon molecular (M⁺.).

TR: Tempo de retenção cromatográfico (min.)

As amostras foram quantificadas com o uso de curvas analíticas multiponto para cada analito. Foi utilizado um mix de HPAs deuterados como padrões internos de quantificação, como em Bícego et al. (2009). A recuperação da metodologia foi avaliada com o uso do padrão surrogate p-terfenil-d14, como descrito na U.S. EPA 8270E (U.S. EPA, 2014b).

Foi utilizado o padrão CRM47543 (Polynuclear Aromatic Hydrocarbons Mix), contendo os HPAs (Naftaleno (N), 2-metilnaftaleno (2-MN), 1-metilnaftaleno (1MN), Acenaftileno (ACT), Acenafteno (ACE), Fluoreno (FLU), Fenantreno (FEN), Antraceno (ANT), Fluoranteno (FLT), Pireno (PIR), Benzo(a)antraceno (BaA), Criseno (CRI), Benzo(b)fluoranteno (BbF), Benzo(k)fluoranteno (BkF), Benzo(a)pireno (BaP), Indeno(123cd)pireno (IcdP), Dibenzo(ah)antraceno (DahA) e Benzo(ghi)perileno (BghiP)), juntamente com outros padrões de HPAs, todos fornecidos pela empresa Sigma Aldrich: 2,6-Dimetilnaftaleno (2,6DMN), Bifenil (BIF), Dibenzotiofeno (DBZT), Benzo(e)pireno (BeP) e Perileno (PER). Ao todo, o método de quantificação estabelecido dispunha de 23 diferentes padrões de HPAs. O mix de HPAs CRM47543 é fornecido na concentração de, aproximadamente, 2000 μg.ml⁻¹. As curvas de HPAs levaram em consideração as concentrações específicas informadas nos certificados dos padrões.

Para a maioria dos compostos alquilados não havia padrão analítico disponível e os mesmos, quando identificados, eram quantificados com base no FRR do seu HPA parental. Somente HPAs parentais e isômeros específicos foram relatados como compostos individuais, em vista da dificuldade de identificação individual dos diversos isômeros alquilados, conforme descrito em Denoux et al. (1998) e na norma ASTM D5739 (2013). Foi utilizada uma amostra de óleo diesel como base para a identificação.

Para os HPAs, a qualidade dos resultados foi avaliada por meio da análise do material de referência NIST EM 1941B (Organics in Marine Sediment). Segundo informações contidas em seu certificado, o sedimento que compõe este material de referência foi coletado na saída do porto de Baltimore – EUA. O SRM 1941B destina-se ao uso na avaliação de métodos analíticos para a determinação de HPAs, congêneres de bifenilas policloradas (PCBs) e pesticidas clorados em sedimentos marinhos e matrizes similares. A recuperação dos HPAs parentais e alquilados identificados no material de referência variou entre 39,51 e 188,36%, com média de 115,77% e mediana em 97,18%.

A determinação dos FRRs do método se deu, em geral, com os níveis de concentração variando entre 5 ng.ml⁻¹ a 1.000 ng.ml⁻¹, divididos em dois níveis: 5-100 ng.ml⁻¹ e 100-1.000 ng.ml⁻¹. O LQ do método foi estabelecido em 0,5 ng.g⁻¹, com base em 10 gramas de amostra. Para alguns HPAs o LQ foi de 1,0 ng.g⁻¹, em virtude da baixa linearidade da respectiva curva

ao nível de 5 ng.ml⁻¹, obrigando ao aumento do nível de concentração mínimo para 10 ng.ml⁻¹. A linearidade foi avaliada pelo cálculo dos coeficientes de correlação das curvas de cada HPA por meio do método dos mínimos quadrados (dados não apresentados).

A metodologia utilizada foi desenvolvida para determinar os 16 HPAs considerados prioritários pela U.S. EPA (U.S. EPA, 2014A): Naftaleno (N), Acenaftileno (ACT), Acenafteno (ACE), Fluoreno (FLU), Fenantreno (FEN), Antraceno (ANT), Fluoranteno (FLT), Pireno Benzo(a)antraceno (PIR), (BaA), Criseno (CRI), Benzo(b)fluoranteno (BbF), Benzo(k)fluoranteno (BkF). Benzo(a)pireno (BaP), Indeno(1,2,3-cd)pireno (IP), Dibenzo(a,h)antraceno (DahA) e Benzo(g,h,i)perileno (BghiP), além das seguintes famílias de compostos alquilados: C1 a C4 naftalenos (C1N, C2N, C3N e C4N); C1 a C3 fluorenos (C1FLU, C2FLU e C3FLU); C1 a C3 dibenzotiofenos (C1DBZT, C2DBZT e C3DBZT); C1 a C4 fenantrenos (C1FEN, C2FEN, C3FEN e C4FEN); C1 e C2 pirenos (C1PIR e C2PIR), C1 e C2 crisenos (C1CRIS e C2CRIS). A soma das concentrações de todos os HPAs parentais e seus homólogos alquilados foi considerada como o total de HPAs.

6.3.4.3 Esteróides

A determinação de esteróides seguiu metodologia baseada na U.S. EPA 8270E (U.S. EPA, 2014b). Foi utilizada uma coluna cromatográfica modelo Elite5-MS (95% dimetilpolisiloxano e 5% fenilpolisiloxano), da marca Perkin Elmer com comprimento de 30 metros, DI de 0,25 mm e espessura de filme de 0,25 μ m. O volume de amostra injetado foi de 1,0 μ L. O gás de arraste utilizado foi o He grau 5.0, com vazão de 1,0 ml.min⁻¹. A programação de temperatura do forno iniciou-se em 55 °C, sendo mantida nesse patamar por 1,0 minuto, seguida de elevação até a temperatura de 280 °C à taxa de 27,5 °C.min⁻¹, sendo mantida nesse patamar por 2,0 minutos, nova elevação de temperatura até 300 °C à taxa de 1,0 °C.min⁻¹, e, por fim, mantida isoterma nesse patamar por 2 minutos. A temperatura do injetor foi mantida em 290 °C, com injeção no modo splitless. O espectrômetro de massas operou nos modos SIM e SCAN. Foram monitorados diversos íons diferentes, em função dos esteróides monitorados.

A identificação dos esteróides foi baseada nos tempos de retenção de padrões autênticos, associado às informações disponíveis das massas monitoradas. Ao todo, o método de quantificação estabelecido dispunha de oito diferentes padrões de esteróides: 5 β -colestan-3 β -ol, 5 β -colestan-3 α -ol, Colest-5-en-3 β -ol, 5 α -colestan-3 β -ol, 5 α -colestan-3-ona, 24-metilcolest-5-en-3 β -ol, 24-etilcolesta-5,22-dien-3 β -ol e 24-etilcolest-5-en-3 β -ol.

As amostras foram quantificadas com o uso de curvas analíticas multiponto para cada analito. Foi utilizado o 5α-colestano como PI de quantificação. A recuperação da metodologia foi avaliada com o uso do padrão surrogate (SURR) 5α-Androstanol.

A metodologia utilizada determina os 19 esteróides listados na tabela 7, a qual apresenta os parâmetros de configuração do método de quantificação dos esteróides, incluindo os tempos de retenção e os íons utilizados para identificação e quantificação das amostras. Para alguns destes compostos, para os quais não havia padrão analítico disponível, os mesmos – quando identificados – eram quantificados com base no FRR de um esterol ou estanol cujo tempo de retenção era o mais próximo possível e, preferencialmente, utilizando o mesmo canal do íon de quantificação do composto de referência. A soma das concentrações de todos os esteróides quantificados foi considerada como o total de esteróides. A determinação dos FRRs do método se deu com os níveis de concentração variando entre 250 ng.ml⁻¹ a 10.000 ng.ml⁻¹ para os esteróides, divididos em dois níveis: 250-1.000 ng.ml⁻¹ e 1.000-10.000 ng.ml⁻¹. O LQ do método para os esteróides foi estabelecido em 25 ng.g⁻¹, com base em 10 gramas de amostra.

6.3.5 Análises estatísticas

Todas as análises estatísticas foram conduzidas por meio do uso dos softwares Excel® e PAST (HAMMER et al., 2001).

Os cálculos foram conduzidos com as concentrações dos diversos compostos normalizadas com relação à média e desvio-padrão (z-score).

NOME OFICIAL	NOME NOME		Composto	Tempo de	Íon de quantificação	Íon de identificação/confirmação
(CONFORME IUPAC)	DELTA	USUAL	Base *	retenção (min)	(<i>m/z</i>)**	(<i>m/z</i>) ***
5α-androstan-3β-ol	SURR	Androstanol	próprio	10,11	333	-
5α-colestano	PI	Colestano	próprio	13,31	217	-
24-nor-colesta-5,22-dien-3β-ol	26Δ ^{5,22}	-	$27\Delta^5$	14,24	129	442 (M ^{+.}), 352, 337, 313, 255, 215
5β-colestan-3β-ol	-	Coprostanol	próprio	15,26	370	355, 257, 215, 161, 75
5β-colestan-3α-ol	-	Epicoprostanol	próprio	15,49	370	355, 257, 215, 161, 75
27-nor-24-metilcolesta-5,22E-dien-3β-ol	nor $27\Delta^{5,22}$	-	$27\Delta^5$	15,69	129	456 (M ^{+.}), 441, 366, 327, 255, 213
Colesta-5,22-dien-3β-ol	27 ^{5,22}	Dihidrocolesterol	$27\Delta^5$	15,93	255	456 (M ^{+.}), 441, 372, 366, 351, 327, 215
5α-colestan-22-en-3β-ol	$27\Delta^{22}$	Dihidrocolestanol	$27\Delta^5$	16,10	257	458 (M ^{+.}), 443, 374, 368, 359, 345, 215, 129
Colest-5-en-3β-ol	$27\Delta^5$	Colesterol	próprio	16,44	368	458 (M ^{+.}), 353, 329, 255, 129
5α-colestan-3β-ol	$27\Delta^0$	Colestanol	próprio	16,63	215	460 (M ^{+.}), 445, 370, 355, 230
5α-colestan-3-ona	-	Colestanona	próprio	16,97	231	386 (M ^{+.}), 316, 233
24-metilcolesta-5,22(E)-dien-3β-ol	28Δ ^{5,22E}	Brassicasterol	$27\Delta^5$	17,06	255	470 (M ^{+.}), 455, 380, 365, 341, 129
24-metil-5α-colest-22-en-3β-ol	$28\Delta^{22}$	Brassicastanol	$27\Delta^0$	17,25	257	472 (M ^{+.}), 457, 374, 368, 345
24-metileno-colesta-5,24(28)-dien-3β-ol	28Δ ^{5,24(28)}	Metileno-colesterol	$27\Delta^5$	17,96	129	470 (M ^{+.}), 455, 386, 380, 341, 296, 257
24-metilcolest-5-en-3β-ol	$28\Delta^5$	Campesterol	próprio	18,06	382	472 (M ^{+.}), 367, 343, 255, 129
24-metil-5α-colestan-3β-ol	$28\Delta^0$	Campestanol	$27\Delta^0$	18,28	215	474 (M ^{+.}), 459, 369, 230
24-etilcolesta-5,22-dien-3β-ol	29Δ ^{5,22}	Estigmasterol	próprio	18,48	394	484 (M ^{+.}), 469, 374, 359, 345, 255
24-etil-5α-colest-22-en-3β-ol	29Δ ²²	Estigmastanol	29 ^{5,22}	18,74	257	486 (M ^{+.}), 471, 374, 359, 345, 215
24-etilcolest-5-en-3β-ol	29 ⁵	Sitosterol	próprio	19,56	396	486 (M ^{+.}), 471, 381, 357
24-etil-5α-colestan-3β-ol	29Δ ⁰	Sitostanol	$27\Delta^0$	19,84	215	488 (M ^{+.}), 473, 431, 398, 383
4α-23,24-trimetil-5α-colest-22(E)-en-3β-ol	30Δ ^{22E}	Dinosterol	$29\Delta^5$	20,11	359	500 (M ^{+.}), 396, 388, 369, 298, 271

Tabela 7 – Nomenclatura, compostos base para cálculo do FRR, tempos de retenção e íons de quantificação e identificação dos esteróides estudados.

* Composto cujo FRR foi utilizado para o cálculo da concentração. Compostos com padrão disponível são utilizados como sua própria referência (próprio).

** Sempre que possível, foi utilizado o pico base para quantificação.

*** Íons de identificação baseados em Lee et al. (1979); Cordeiro (2011); Lipid Web (2018); e biblioteca de espectros de massas da NIST (distribuída junto com o software Turbomass versão 5.4.2).

M⁺ – íon molecular do composto derivatizado (trimetil silil derivado). O íon molecular da colestanona é o do composto não derivatizado; SURR – Surrogate (padrão de recuperação); PI – padrão interno

7. RESULTADOS E DISCUSSÃO

Este capítulo descreve as características fisiográficas de cada região estudada, apresenta e discute os resultados da avaliação analítica dos testemunhos coletados para cada um dos ambientes estudados, partindo da região onde se dá a ressurgência costeira do Cabo Frio (7.1), região próxima à foz do rio Doce (7.2), região próxima à foz do rio de Contas (7.3) e região próxima à foz do rio São Francisco (7.4). O item 7.5 consiste de uma comparação entre os diferentes ambientes estudados e entre alguns outros estudos.

7.1 Plataforma continental na região do Cabo Frio

7.1.1 Características fisiográficas da região do Cabo Frio

O Cabo Frio está localizado na região sudeste do Brasil, no estado do Rio de Janeiro. Essa região apresenta importância tanto econômica, sobretudo por conta da extração de petróleo na Bacia de Campos (de onde é extraída a maior parte do petróleo brasileiro), quanto ecológica, em função da ocorrência do fenômeno de ressurgência da ACAS sobre a plataforma continental, em que águas profundas e ricas em nutrientes afloram à zona eufótica, propiciando o aumento da produtividade primária local e, em consequência, maior disponibilidade de recursos pesqueiros (CARREIRA et al., 2010).

A ressurgência é um fenômeno mais característico de regiões em que se dão correntes de contorno leste que, de acordo com Lachkar & Gruber (2011) estão entre os ecossistemas marinhos mais produtivos do planeta e que, portanto, sustentam uma produção pesqueira significativa. Como pode ser observado na figura 18, a região do Cabo Frio, apesar de estar localizada em área abrangida por correntes de contorno oeste, apresenta algumas características que propiciam a ocorrência desse fenômeno em nossa costa. Nessa região ocorre uma mudança significativa na orientação da linha de costa que, em aproximadamente 23°S, deixa de seguir de norte para sul e passa a seguir de leste para oeste (ALBUQUERQUE et al., 2014). Tal característica coloca a região do Cabo Frio em condição favorável à ocorrência de ressurgência costeira sazonal, dependendo dos ventos locais: os ventos de NE, favorecem o afloramento dessas águas para a zona eufótica sobre a plataforma continental enquanto ventos de SW estão associados à subsidência de águas superficiais (MAZZINI &

BARTH, 2013; ALBUQUERQUE et al., 2014; LOURENÇO et al., 2017). De acordo com Campos et al. (2000), além da ressurgência costeira, a região do Cabo Frio ainda está sujeita à ocorrência de ressurgência de quebra de plataforma em virtude da formação de meandros do vórtice quase-estacionário do Cabo Frio. Albuquerque et al. (2014) também indicaram que as plataformas média e externa na região do Cabo Frio estão sujeitas a um regime de ressurgência que difere do predominante na área costeira, o qual estaria associado à combinação de diferentes mecanismos: incursões da frente interna da Corrente do Brasil sobre a plataforma (associada à ocorrência de meandros e vórtices na borda da plataforma), a disponibilidade da ACAS nas camadas de fundo e a dispersão de plumas costeiras.

Figura 18 – Ressurgência costeira na região do Cabo Frio (CARRIERE et al. (2010)

A ocorrência da ressurgência nessa região, que a faz destoar das condições oligotróficas predominantes na maior parte da costa brasileira, levou-a a ser um dos locais mais estudados em nossa margem continental, com inúmeros estudos publicados desde a década de 1970, como os conduzidos por Valentin & Moreira (1978), Valentin (1984), Gonzalez-Rodriguez (1991), Gonzalez-Rodriguez et al. (1992), McManus et al. (2007), Yoshinaga et al. (2008), Guenther et al. (2008), Carriere et al. (2010), Cruz et al. (2013), Albuquerque et al. (2014), Sanders et al. (2014) e Lourenço et al. (2017).

Na região do Cabo Frio não há aporte fluvial significativo, de modo que não há uma fonte importante de material terrígeno (SUMIDA et al., 2005). O rio de maior importância é o Paraíba do Sul, cuja bacia de drenagem possui cerca de 56.000 km². Sua foz está localizada em Atafona, município de São João da barra - RJ. Esse rio é uma importante ligação entre o continente e o oceano, com sua bacia de drenagem localizada numa região industrializada e com elevada densidade populacional, sendo destino de efluentes de todas as cidades localizadas em sua zona de influência. No entanto, a sua foz está localizada a cerca de 89 MN do local onde foi coletado o testemunho BIOMT1, o que limitaria a influência do aporte continental tanto desse rio quanto da Baía da Guanabara, município do Rio de Janeiro, localizada a aproximadamente 95 MN de distância. Apesar disso, Albuquerque et al. (2014), que estudaram as interações entre os processos físicos e biogeoquímicos nessa região singular da costa brasileira, observaram que ocorre mistura de múltiplas fontes de matéria orgânica, com influência continental, na borda da plataforma, com a assinatura isotópica do carbono indicando potencial contribuição do Rio Paraíba do Sul e da Baía da Guanabara. O Paraíba do Sul está sujeito a eventos sazonais de cheias, em decorrência da pluviosidade em sua bacia de drenagem (BRASIL, 2015) na estação chuvosa, com transporte ativo de sedimentos para a plataforma continental. Tais eventos críticos podem explicar o transporte de material terrígeno a longas distâncias sugerido por Albuquerque et al. (2014).

7.1.2 Granulometria

Os resultados da análise granulométrica dos sedimentos do testemunho BIOMT1 indicaram que a coluna sedimentar obtida era composta, predominantemente, pela fração areia, cujo teor variou entre 76,74% e 89,88%. Já a fração silte variou entre 8,24% e 17,31% enquanto a fração argila variou entre 1,44% e 5,95%. Tais resultados confirmam a informação constante do relatório do cruzeiro (BAHR et al., 2016), de que a litologia dos sedimentos coletados na área é predominantemente arenosa. A figura 19 apresenta estes resultados para os primeiros 10 cm da coluna sedimentar. Dos resultados obtidos, também é possível concluir que a granulometria não variou de forma significativa ao longo da coluna sedimentar.

Figura 19 - Resultados da análise granulométrica do testemunho BIOMT1

Tendo em vista que os sedimentos mais finos apresentam maior capacidade de adsorção de matéria orgânica e contaminantes em sua superfície em função da maior razão entre a sua área superficial e o seu volume (KOWALSKA et al., 1994; REICHELT-BRUSHETT et al., 2017), os resultados obtidos para o testemunho BIOMT1 indicam que as amostras apresentam menor propensão à retenção e preservação de matéria orgânica.

7.1.3 Datação

Apesar de a granulometria indicar que a coluna sedimentar obtida não apresentava as características ideais para a adsorção de material sedimentar, foi possível estabelecer a cronologia dos sedimentos via análise do teor de ²¹⁰Pb_{ex}. Tais resultados indicam que o local onde foi obtida a coluna sedimentar em estudo teve uma taxa de sedimentação constante de 0,22 cm.ano⁻¹ e, consequentemente, na sua base, possuía idade de aproximadamente 105 anos. Em vista de as amostras terem sido obtidas no ano de 2016, conclui-se que é possível reconstruir a história sedimentar local até, aproximadamente, o ano de 1906, com 1 cm da camada sedimentar representando cerca de 4,8 anos. A figura 20 apresenta a atividade do ²¹⁰Pb_{ex} em função da profundidade ao longo da coluna sedimentar. Os primeiros 2 cm a partir do topo do testemunho indicam a ocorrência de mistura física e/ou bioturbação, similarmente ao observado em algumas colunas estudadas por Sanders et al., (2014) na mesma região e não foram incluídos na determinação da taxa de sedimentação.

Figura 20 – Atividade do ²¹⁰Pbex – Testemunho BIOMT1.

7.1.4 Parâmetros de caracterização geral (bulk)

Os parâmetros de caracterização geral utilizados indicaram que as amostras apresentam características de origem predominantemente marinha.

Os teores de COT variaram entre 0,54% na superfície (amostra BIOMT1-01) a 0,05% na base da coluna recuperada (amostra BIOMT1-23), com média de 0,32% (desvio-padrão de 0,29%) e máximo de 1,48%. No geral, os teores de COT são considerados baixos quando comparados aos resultados obtidos por Cruz et al. (2013), cujas amostras, coletadas no banco lamoso presente na mesma região, apresentaram teores variáveis no intervalo entre 0,61% e 2,36% em quatro testemunhos curtos anteriormente coletados. Da análise da figura 21, a %COT observada entre 5 e 6 cm de profundidade (amostra BIOMT1-06, representativa do período entre os anos de 1987 e 1992) destoa das demais porções do testemunho. Nessa profundidade a %COT atingiu o valor de 1,48%, indicativo de um evento episódico, registrado na coluna sedimentar. Tal evento pode ter se repetido em outros momentos, em vista do aumento da %COT em períodos mais antigos e, possivelmente, registra no sedimento a ocorrência de episódios de intrusão mais efetiva da ACAS sobre a plataforma continental, característicos de eventos de ressurgência locais.

Figura 21 - % COT versus profundidade e ano de deposição para o testemunho BIOMT1.

Os demais dados, obtidos a partir da caracterização isotópica (%NT, δ^{13} C e δ^{15} N) de amostras selecionadas, nos primeiros 10 cm da coluna sedimentar, indicam que:

1 - A%NT apresenta comportamento similar ao COT, com seus valores variando entre 0,02 e 0,07% (média de 0,04% e desvio-padrão de 0,05%) ao longo de quase todo o perfil analisado, mas atingindo 0,18% no nível de 5-6 cm de profundidade;

2 – A razão C/N variou entre 7,90 e 8,75, com tendência de aumento do topo para a base do testemunho, sugerindo perda preferencial de nitrogênio durante a diagênese; e

3 – Os resultados das análises de δ^{13} C e δ^{15} N indicam que as amostras obtidas não tiveram variações significativas nos resultados desses parâmetros. A razão δ^{13} C variou entre -22,80 e -21,91‰ (média de -22,44‰ e desvio-padrão de 0,33‰) enquanto a δ^{15} N variou entre 5,05‰ e 5,83‰ (média de 5,64‰ e desvio-padrão de 0,28‰), sem que fossem observadas eventuais tendências ao longo da coluna sedimentar. Considerando os limiares descritos para o modelo de mistura adotado por Weijers et al. (2009), Xing et al. (2014) e Chen et al. (2017b), para avaliar a percentagem de matéria orgânica terrígena a partir da δ^{13} C, é possível concluir que esse proxy indica a contribuição mista, com predomínio de matéria orgânica marinha e com contribuição terrígena estimada entre 27,23 e 39,97% (média de 34,74% e desvio-padrão de 4,13%). Os dados da razão C/N versus δ^{13} C, confrontados com dados típicos para amostras de ambientes costeiros, de acordo com os intervalos disponíveis em Lamb et al. (2006), figura 22, confirmam a origem predominantemente marinha da matéria orgânica contribuinte.

Figura 22 – Razão C/N versus δ¹³C para amostras selecionadas do testemunho BIOMT1.

7.1.5 – Análise cromatográfica

7.1.5.1 Hidrocarbonetos alifáticos na PC Cabo Frio

Os resultados das análises de hidrocarbonetos alifáticos estão compilados na tabela 8 e são apresentados graficamente no apêndice A1. Essa tabela apresenta os dados de concentração de n-alcanos individuais resolvidos (n- C_{11} a n- C_{36}), MCNR e os isoprenóides pristano e fitano. São ainda apresentados resultados para os diversos proxies anteriormente descritos. A recuperação do padrão 1-eicoseno variou entre 86,40 e 114,74%, dentro dos limites de qualidade analítica propostos por Ribani et al. (2004).

Os teores de hidrocarbonetos alifáticos totais variaram entre 1.308,67 ng.g⁻¹ (ou 1,31 μ g.g⁻¹) a 4.299,93 ng.g⁻¹ (ou 4,30 μ g.g⁻¹). A figura 23 apresenta o perfil de concentração de hidrocarbonetos alifáticos totais para o testemunho BIOMT1, juntamente com a %COT.

Ao longo do perfil ocorrem períodos em que ocorrem elevações concomitantes nas concentrações, com destaque para o período entre os anos de 1987 e 1992 (horizonte entre 05 e 06 cm de profundidade). Os resultados de hidrocarbonetos alifáticos, associados à %COT e aos dos esteróides (apresentados no item 7.1.5.3), corroboram a importância da ressurgência

como fonte de nutrientes para a manutenção do ecossistema da região e sugerem períodos de intrusão mais efetiva da ACAS sobre a plataforma continental da região, como descrito em Lourenço et al. (2017). Nesses períodos é possível observar um aumento significativo na concentração de n-alcanos e isoprenóides na faixa entre n- C_{18} e n- C_{22} , associados à contribuição algal, indicando que o aumento da %COT nesse intervalo está relacionado à florações fitoplanctônicas.

Figura 23 - Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT1

A MCNR se apresenta em concentração bastante baixa ao longo de todo o testemunho. A proporção da MCNR varia entre 34,97 e 63,20% dos hidrocarbonetos alifáticos totais, sendo pouco significativa quando comparada aos alcanos resolvidos.

neC11 3.33 5.00 4.11 4.07 2.04 1.32 3.26 4.01 2.92 3.82 3.21 1.1.35 3.49 6.08 6.88 neC13 10.20 13.30 6.31 6.51 5.32 5.16 5.16 5.33 1.1.3 6.13 5.15 5.12 1.1.5 5.15 5.21 1.5.1 5.12 1.5.12 1.5.25 1.5.12 1.5.21 1.5.25 1.5.1 2.5.25 1.5.1 2.5.25 1.5.1 2.5.2 2.5.15 1.2.1 1.5.2 1.5.37 1.6.3 1.7.7 1.7.8 1.7.8 1.7.9 1.5.38 1.5.90 1.8.4 1.7.9 1.5.38 1.5.90 1.8.4 1.7.9 1.5.38 1.5.90 1.8.4 1.7.9 1.7.8	Alifáticos (ng.g ⁻¹)	T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
pc12 5.48 9.44 5.41 6.52 7.14 2.42 5.35 2.97 5.71 5.30 5.92 4.16 5.16 3.92 1.13 5.10 3.12 3.51 3.12.1 3.51 3.20 5.90 5.70 7.70 1.64 7.70 1.70 1.70 1.70 1.70 1.70 2.70 2.70 2.70 3.10 3.50 3.10 3.50 3.20 2.50 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	n-C11	3,93	5,00	4,11	4,07	2,04	12,39	3,75	2,23	3,92	4,29	2,69	4,01	2,92	3,82	3,21	11,35	3,49	6,08	6,88
mc13 (1)20 1.30 8.31 6.51 9.41 28.71 4.30 2.50 7.56 6.41 5.18 6.13 5.13 1.123 5.13 1.123 5.23 1.123 5.23 1.123 5.23 1.123 5.23 2.10 7.26 5.33 1.124 5.23 2.10 7.26 7.33 1.124 7.43 7.43 7.43 7.44 7.43 7.45 7.43 7.43 7.43 7.43 7.43 7.43 7.43 7.44 7.44	n-C12	5,48	9,54	5,41	6,25	7,14	24,21	5,35	2,97	5,77	5,33	3,20	5,92	4,16	5,16	3,92	11,43	4,58	5,31	4,51
pc14 1.19 1.19 3.17 3.37 2.30 1.24 1.42 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.55 <t< th=""><th>n-C13</th><th>10,20</th><th>13,50</th><th>8,31</th><th>6,51</th><th>9,41</th><th>28,71</th><th>6,36</th><th>3,09</th><th>7,56</th><th>6,41</th><th>5,18</th><th>6,59</th><th>5,07</th><th>6,50</th><th>5,33</th><th>12,13</th><th>6,13</th><th>5,94</th><th>5,70</th></t<>	n-C13	10,20	13,50	8,31	6,51	9,41	28,71	6,36	3,09	7,56	6,41	5,18	6,59	5,07	6,50	5,33	12,13	6,13	5,94	5,70
peC15 10.30 1.3.71 11.74 4.42 7.40 7.8.30 9.78 19.41 19.41 15.25 13.00 18.84 17.90 13.01 9.42 13.78 27.77 PS1400 27.55 25.29 71.13 31.38 72.65 27.13 27.55 25.53 27.45 29.16 31.30 71.12 32.26 47.13 PS1400 27.55 25.29 71.71 97.83 47.77 19.53 19.00 18.66 31.00 31.06 32.85 73.81 19.10 70.15 53.94 43.74 PS100 35.02 45.85 55.04 45.56 65.66 31.00 10.06 37.85 37.83 10.01 38.94 37.97 37.81 31.04 31.01 55.01 45.56 45.00 45.87 45.00 70.27 10.37 37.35 31.14 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04 33.04	n-C14	11,19	11,91	8,19	3,17	3,93	20,30	7,21	5,19	14,02	14,40	10,66	11,33	9,15	13,21	11,52	53,51	12,51	25,20	22,10
peC16 31.23 55.9 26.01 8.40 24.07 3.52 3.52 3.58 9.02 2.67.5 31.19 31.04 2.32 31.04	n-C15	16,03	13,71	11,74	4,42	7,40	14,57	8,30	9,78	19,41	21,10	17,96	15,35	13,90	18,84	17,96	67,36	18,72	31,78	27,97
neC1741,2025,5525,2017,1431,3832,6527,7125,0322,0423,0225,3527,4529,0917,3171,1252,2041,0947,04neC1858,2145,5237,7739,8347,7710,2539,9429,9566,1470,1082,4243,0848,0823,0141,0343,04neC1939,5044,8831,0433,5013,1035,0135,1035,0145,0643,0431,0432,0737,8443,0343,0541,0343,04neC2142,5050,0444,0430,5014,1939,5724,4855,0023,0723,0844,0553,0144,07	n-C16	31,23	25,59	26,10	8,40	24,07	30,33	19,34	20,96	35,22	31,85	35,58	29,32	26,75	31,19	31,01	94,62	32,87	46,13	43,78
Prisano 27,76 16,14 24,09 9,22 17,04 10,74 10,27 10,12 10,10 10,14 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 <t< th=""><th>n-C17</th><th>41,20</th><th>25,55</th><th>25,29</th><th>17,13</th><th>31,38</th><th>32,65</th><th>23,71</th><th>25,03</th><th>32,61</th><th>31,22</th><th>36,92</th><th>25,53</th><th>27,45</th><th>29,69</th><th>31,33</th><th>71,12</th><th>32,26</th><th>31,95</th><th>24,73</th></t<>	n-C17	41,20	25,55	25,29	17,13	31,38	32,65	23,71	25,03	32,61	31,22	36,92	25,53	27,45	29,69	31,33	71,12	32,26	31,95	24,73
pc18 58,21 45,29 37,77 39,88 47,77 105,25 39,94 29,05 66,14 70,00 82,29 30,10 35,01 45,06 66,05 31,04 30,00 25,01 45,88 39,027 37,85 41,63 34,61 n-C19 39,56 44,88 34,04 33,88 131,94 39,57 24,48 55,60 73,12 32,04 38,04 52,00 60,10 33,29 33,19 49,17 n-C21 73,4 25,00 10,10 44,259 37,21 78,02 66,00 86,83 47,46 54,87 66,99 70,21 55,31 49,02 39,02 37,16 49,17 12,32 23,07 28,84 30,33 28,03 20,97 25,98 41,10 23,83 27,83 41,04 34,34 23,33 28,66 31,77 10,38 29,33 28,54 31,38 34,26 33,33 28,67 31,41 30,38 34,27 10,38 21,33 28,3	Pristano	27,76	16,14	24,09	9,22	17,09	17,64	10,07	32,04	27,13	27,53	34,51	20,31	28,18	25,42	28,52	88,68	28,04	43,19	40,90
Fitano 36,92 26,42 28,28 19,00 18,99 48,86 22,25 30,13 35,10 45,66 31,40 31,00 32,80 37,83 90,27 37,88 14,03 34,01 n-C20 42,50 57,00 47,10 40,43 50,81 147,19 42,59 37,21 78,02 66,00 86,83 47,46 54,87 66,99 70,27 110,39 73,92 53,19 49,17 n-C21 17,34 20,39 12,55 20,33 18,88 33,44 30,33 28,03 20,50 21,77 19,23 49,17 19,23 n-C22 38,32 28,00 31,87 29,25 21,13 36,80 20,20 26,27 22,40 23,16 21,07 34,23 23,02 24,02 36,13 33,32 28,63 21,97 34,44 23,12 24,00 33,33 28,03 20,05 33,33 28,03 23,03 24,07 34,14 33,13 28,01 21,07 </th <th>n-C18</th> <th>58,21</th> <th>45,59</th> <th>37,77</th> <th>39,83</th> <th>47,77</th> <th>105,25</th> <th>39,94</th> <th>29,95</th> <th>66,14</th> <th>70,50</th> <th>82,42</th> <th>43,03</th> <th>45,76</th> <th>63,55</th> <th>70,31</th> <th>119,70</th> <th>70,15</th> <th>55,04</th> <th>45,43</th>	n-C18	58,21	45,59	37,77	39,83	47,77	105,25	39,94	29,95	66,14	70,50	82,42	43,03	45,76	63,55	70,31	119,70	70,15	55,04	45,43
n-C19 39,56 44.88 31,04 33,358 131,94 39,75 24,48 55,40 57,00 77,12 78,20 56,00 86,83 47,46 54,87 66,90 70,27 10,30 73,22 73,31 73,12 73,22 73,12 73,22 73,22 73,22 73,21 73,22 73,23 73,22 73,23 73,22 73,23 73,33 73,33 73,23 73,33	Fitano	36,92	26,42	28,28	19,00	18,99	48,86	22,25	30,13	35,10	35,61	46,66	31,40	31,06	32,89	37,83	90,27	37,58	41,63	34,61
n-C20 42,50 57,00 47,10 40,43 50,81 17,19 42,59 37,21 78,02 66,00 86,83 47,46 54,87 66,99 70,27 110,39 73,92 53,19 49,17 n-C21 18,95 20,93 21,55 20,03 22,19 55,59 12,35 23,07 21,59 21,57 24,58 23,88 22,52 24,40 23,16 24,74 23,14 24,34 23,38 23,88 23,83 23,88 27,71 24,58 23,88 23,88 27,73 25,58 20,88 31,44 24,48 25,57 26,58 33,33 28,63 27,99 23,68 41,19 30,88 21,87 31,10 35,85 31,10 35,85 31,10 35,87 31,02 25,29 24,64 43,90 51,14 76,38 49,07 41,10 30,48 45,64 45,05 55,64 44,94 45,64 65,00 52,17 39,06 31,10 35,89 17,0 46	n-C19	39,56	44,88	34,68	33,04	33,58	131,94	39,57	24,48	55,40	57,69	73,12	32,04	38,04	52,60	60,14	88,83	59,63	41,02	34,23
n-C21 17,34 25,90 18,80 25,00 10,92 20,38 18,98 30,35 20,38 24,77 29,71 26,83 46,95 29,43 25,47 19,28 n-C23 27,79 23,79 27,75 24,58 28,10 31,01 10,00 12,55 31,03 23,88 23,32 23,88 23,32 23,88 23,32 23,88 23,73 23,98 11,99 27,44 23,43 23,48 23,73 24,40 23,16 26,07 22,69 21,57 34,64 34,24 31,24 37,11 36,59 30,6 36,15 46,87 31,14 30,58 32,07 23,98 41,19 27,74 40,61 45,66 33,07 39,60 31,14 31,02 22,88 28,94 40,39 33,10 22,29 23,67 41,64 45,66 33,02 32,08 34,63 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,04 45,	n-C20	42,50	57,00	47,10	40,43	50,81	147,19	42,59	37,21	78,02	66,00	86,83	47,46	54,87	66,99	70,27	110,39	73,92	53,19	49,17
n-C22 18,95 20,93 21,55 20,03 22,19 55,59 12,35 23,07 22,58 20,28 17,90 22,07 21,59 31,23 23,32 23,33 23,33 23,33 23,32 23,33 23,32 23,33 23,33 23,33 23,33 23,33 23,33 23,33 23,33 23,34 23,46 23,41 23,33 23,46 23,11 23,33 23,33 23,34 16,63 33,13 <t< th=""><th>n-C21</th><th>17,34</th><th>25,99</th><th>18,63</th><th>18,29</th><th>25,06</th><th>101,92</th><th>20,38</th><th>18,98</th><th>33,54</th><th>30,33</th><th>28,03</th><th>20,95</th><th>24,77</th><th>29,71</th><th>26,83</th><th>46,95</th><th>29,43</th><th>25,47</th><th>19,28</th></t<>	n-C21	17,34	25,99	18,63	18,29	25,06	101,92	20,38	18,98	33,54	30,33	28,03	20,95	24,77	29,71	26,83	46,95	29,43	25,47	19,28
n.C23 27,79 27,75 24,58 28,19 37,16 16,41 30,92 26,27 22,52 24,40 23,16 26,97 22,69 21,57 34,24 23,38 23,73 n-C25 37,88 35,45 33,78 30,97 25,566 38,42 23,124 37,11 36,59 30,36 36,15 46,87 34,76 31,14 30,88 36,20 33,02 25,09 47,17 31,53 27,73 n-C26 36,05 34,59 30,79 27,87 31,53 34,42 26,66 38,37 31,80 22,28 24,90 33,10 25,29 24,66 43,11 38,92 38,11 38,92 31,13 38,20 39,71 45,51 41,07 27,84 39,41 39,44 32,22 30,40 56,44 38,03 33,33 28,79 41,67 32,68 36,11 38,48 73,31 45,58 41,67 42,66 38,01 52,17 31,36 36,58 32,12 43,1	n-C22	18,95	20,93	21,55	20,03	22,19	55,59	12,35	23,07	25,84	20,58	26,28	17,90	23,07	21,59	21,55	37,03	23,28	23,32	23,59
n-C24 38,32 28,00 31,87 29,25 27,11 36,89 20,20 26,22 34,48 25,57 26,58 33,33 28,63 27,93 23,98 41,19 27,74 31,25 40,07 n-C26 33,05 34,59 30,79 29,78 31,33 34,42 24,44 37,11 30,55 45,65 34,66 34,76 31,00 22,58 28,84 40,03 33,10 25,29 23,66 47,17 26,68 33,11 38,92 n-C28 45,92 35,77 39,61 39,78 45,51 47,00 29,81 41,19 39,44 32,22 30,40 56,44 38,03 33,33 28,79 41,63 32,66 30,60 52,17 49,26 50,15 41,94 39,44 32,22 30,40 56,44 38,03 33,33 28,79 41,61 42,66 30,60 52,15 86,61 32,17 30,66 33,16 34,84 49,87 79,31 45,58 44,20<	n-C23	27,79	23,79	27,75	24,58	28,19	37,16	16,41	30,92	26,27	22,52	24,40	23,16	26,97	22,69	21,57	34,24	23,43	23,83	27,73
n-C25 37,88 35,45 33,78 30,79 35,66 38,42 31,24 37,11 36,59 30,36 36,15 46,87 31,14 30,58 36,26 33,02 29,17 39,60 n-C27 60,61 42,82 50,51 48,68 52,80 59,32 34,67 52,96 52,33 47,95 51,14 78,73 49,67 46,64 45,56 55,52 48,49 45,64 63,05 n-C28 45,92 35,77 39,61 39,78 45,51 47,02 29,81 41,19 39,44 32,22 30,40 56,44 38,03 33,33 28,79 41,67 32,68 60,05 91,01 66,01 66,04 92,56 14,01,03 93,32 45,84 91,31 103,93 93,35 102,41 11,24 77,27 103,91 84,03 85,31 102,44 12,44 73,27 103,84 80,30 33,32 28,79 41,12 41,20 102,30 103,11 34,32	n-C24	38,32	28,00	31,87	29,25	27,11	36,89	20,20	26,22	34,48	25,57	26,58	33,33	28,63	27,93	23,98	41,19	27,74	31,25	40,07
n-C26 33,05 34,59 30,79 29,78 31,53 34,42 26,46 38,77 31,80 22,58 25,94 40,39 33,10 25,29 23,69 47,17 26,66 33,11 38,92 n-C28 45,92 35,77 39,61 39,78 45,51 47,02 29,81 41,19 39,44 32,22 30,40 56,44 38,03 33,33 28,79 41,67 32,68 36,09 52,17 n-C29 106,71 83,20 88,89 78,88 103,47 110,69 61,27 84,08 99,21 94,31 103,39 97,35 84,15 44,15 42,22 48,15 44,15 42,12 48,15 44,15 42,12 48,15 44,15 45,56 41,16 45,56 38,19 97,31 13,35 56,88 35,77 44,15 36,60 30,77 30,27 40,02 55,00 41,10 36,60 30,77 51,15 30,48 45,14 71,03 44,14 44	<u>n-C25</u>	37,88	35,45	33,78	30,97	35,66	38,42	31,24	37,11	36,59	30,36	36,15	46,87	34,76	31,14	30,58	36,26	33,02	29,17	39,60
n-C27 60.61 42.82 50.51 48.68 52.80 59.32 34.67 52.96 51.14 78.73 49.67 46.64 45.56 55.62 48.49 45.66 63.05 n-C29 106.71 83.20 88.89 78.88 103.47 110.69 61.27 84.08 93.41 33.02 87.91 41.67 42.92 48.15 44.72 41.60 51.5 42.25 50.73 43.92 50.12 63.91 31.94 50.32 46.31 43.48 49.88 79.31 45.58 41.76 42.92 48.15 44.72 41.80 66.79 n-C32 66.65 38.59 52.96 40.15 44.20 52.36 28.46 39.91 39.27 40.02 53.05 51.21 37.35 36.88 35.72 44.15 36.60 30.07 51.75 n-C33 61.69 55.28 50.29 49.12 57.21 52.50 32.49 30.39 29.33 30.69 28.32 <th><u>n-C26</u></th> <th>33,05</th> <th>34,59</th> <th>30,79</th> <th>29,78</th> <th>31,53</th> <th>34,42</th> <th>26,46</th> <th>38,37</th> <th>31,80</th> <th>22,58</th> <th>28,94</th> <th>40,39</th> <th>33,10</th> <th>25,29</th> <th>23,69</th> <th>47,17</th> <th>26,68</th> <th>33,11</th> <th>38,92</th>	<u>n-C26</u>	33,05	34,59	30,79	29,78	31,53	34,42	26,46	38,37	31,80	22,58	28,94	40,39	33,10	25,29	23,69	47,17	26,68	33,11	38,92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>n-C27</u>	60,61	42,82	50,51	48,68	52,80	59,32	34,67	52,96	52,33	47,95	51,14	78,73	49,67	46,64	45,56	55,62	48,49	45,64	63,05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-C28	45,92	35,77	39,61	39,78	45,51	47,02	29,81	41,19	39,44	32,22	30,40	56,44	38,03	33,33	28,79	41,67	32,68	36,09	52,17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-C29	106,71	83,20	88,89	78,88	103,47	110,69	61,27	84,08	98,91	99,21	105,91	84,03	86,31	92,15	94,31	103,93	97,35	81,96	109,16
n-C31 132,68 99,56 122,56 92,02 124,85 125,84 73,54 102,44 17,27 80,80 96,14 101,36 88,24 75,27 129,32 86,62 98,20 123,05 p-C32 66,65 38,59 52,96 40,115 44,20 52,36 28,46 39,91 39,27 40,02 35,00 51,21 37,35 36,88 35,72 44,15 36,60 33,07 51,75 n-C34 51,15 30,48 40,77 26,63 32,69 37,48 15,64 27,56 32,49 30,39 28,32 29,25 28,44 25,16 29,53 24,00 39,96 n-C36 17,05 10,16 13,59 11,44 10,90 12,49 52,10 9,19 10,83 10,13 9,78 10,23 9,44 9,75 9,48 8,39 9,37 11,21 11-12 11-13 11-14 11-15 11-17 11-19 11-21 11-23 11-44 11.65 <th>n-C30</th> <th>55,15</th> <th>42,25</th> <th>50,73</th> <th>43,92</th> <th>50,12</th> <th>63,91</th> <th>31,94</th> <th>50,32</th> <th>46,31</th> <th>43,48</th> <th>49,88</th> <th>79,31</th> <th>45,58</th> <th>41,76</th> <th>42,92</th> <th>48,15</th> <th>44,72</th> <th>41,80</th> <th>66,79</th>	n-C30	55,15	42,25	50,73	43,92	50,12	63,91	31,94	50,32	46,31	43,48	49,88	79,31	45,58	41,76	42,92	48,15	44,72	41,80	66,79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-C31	132,68	99,56	122,56	92,02	124,85	125,84	73,54	102,44	112,44	77,27	80,80	96,14	101,36	88,24	75,27	129,32	86,62	98,20	123,05
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-C32	66,65	38,59	52,96	40,15	44,20	52,36	28,46	39,91	39,27	40,02	35,00	51,21	37,35	36,88	35,72	44,15	36,60	33,07	51,75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-C33	112,90	82,27	91,90	75,99	104,13	103,62	71,11	95,57	100,48	70,90	77,66	76,27	92,48	79,71	70,74	92,30	79,74	82,04	107,06
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	n-C34	51,15	30,48	40,77	26,63	32,69	37,48	15,64	27,56	32,49	30,39	29,33	30,69	28,32	29,25	28,44	25,16	29,53	24,30	39,96
n-C36 17,05 10,16 13,59 11,44 10,90 12,49 5,21 9,19 10,83 10,13 9,78 10,23 9,44 9,75 9,48 8,39 9,84 7,79 13,32 T1-01 T1-02 T1-03 T1-04 T1-05 T1-06 T1-07 T1-08 T1-09 T1-10 T1-11 T1-14 T1-15 T1-17 T1-19 T1-23 MCNR 957,40 983,96 1033,23 850,97 1049,21 1583,64 739,30 941,17 1148,24 1026,33 1109,75 107,09 988,29 101,13 100,059 1656,15 1057,55 1039,03 1199,76 Alif. Totais (ngg*) 2165,46 1943,09 1688,12 1308,67 1710,69 4299,93 143,21 1645,05 2591,89 2554,06 3069,96 2012,59 1907,20 1910,21 158,36 190,20 256,49 Alif. Totais (ngg*) 2.0611 0.852 0.48 0.231 0.245 0.246 0.230	n-C35	61,69	55,28	56,29	49,12	57,21	52,50	32,15	40,26	46,92	50,89	53,73	59,17	41,12	45,49	49,82	45,26	48,53	35,52	44,26
Π1-01 T1-02 T1-03 T1-04 T1-05 T1-06 T1-07 T1-08 T1-09 T1-10 T1-12 T1-13 T1-14 T1-15 T1-17 T1-19 T1-21 T1-23 MCNR 959,40 959,13 654,89 457,70 661,48 2716,29 692,81 703,88 1443,65 152,73 1940,22 935,50 918,91 899,29 959,57 1519,91 1088,36 931,17 1366,73 ∑[Alif, Res] (ng;9) 1208,06 983,96 1033,23 850,97 1049,21 1583,64 739,30 941,17 1148,24 1026,33 1129,75 1077,09 988,29 1011,43 1000,59 1656,15 1037,03 1039,03 1199,02 2566,49 TAR ALK 3,10 2,68 3,65 4,02 3,88 1,65 2,37 4,04 2,45 2,04 1,86 3,55 2,99 2,24 1,97 1,27 2,10 2,16 3,400 Pir/Fit 0,752 0,611 0	n-C36	17,05	10,16	13,59	11,44	10,90	12,49	5,21	9,19	10,83	10,13	9,78	10,23	9,44	9,75	9,48	8,39	9,84	7,79	13,32
MCNR 957,40 959,13 654,89 457,70 661,48 2716,29 692,81 703,88 1443,65 1527,73 1940,22 935,50 918,91 899,29 959,57 1519,91 1088,36 931,17 1366,73 ∑ [Alif, Res] (ngg ¹) 2165,46 1943,09 1688,12 1308,67 1710,69 4299,93 1432,11 1645,05 259,40 3069,86 2012,59 1091,72 1960,16 3176,06 2145,91 1970,02 2564,09 TAR ALK 3,10 2,68 3,65 4,02 3,88 1,65 2,37 4,04 2,45 2,04 1,86 3,55 2,99 2,24 197 1,27 2,10 2,16 3,40 Pmi/Fit 0,752 0,611 0,852 0,485 0,900 0,361 0,453 1,063 0,773 0,773 0,773 0,647 0,907 0,773 0,754 0,982 0,746 1,038 1,182 Pmar-aq 0,215 0,245 0,226 <td< th=""><th></th><th>T1-01</th><th>T1-02</th><th>T1-03</th><th>T1-04</th><th>T1-05</th><th>T1-06</th><th>T1-07</th><th>T1-08</th><th>T1-09</th><th>T1-10</th><th>T1-11</th><th>T1-12</th><th>T1-13</th><th>T1-14</th><th>T1-15</th><th>T1-17</th><th>T1-19</th><th>T1-21</th><th>T1-23</th></td<>		T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
2 [Alif. Res] (ngg*) 1208,06 983,96 1035,23 850,97 1049,21 1583,64 739,30 941,17 1148,24 1026,33 1129,75 1077,09 988,29 1011,43 1000,59 1656,15 1057,55 1039,03 1199,76 Alif. Totais (ngg*) 2165,46 1943,09 1688,12 1308,67 1710,69 4299,93 1432,11 1645,05 2591,89 2554,06 3069,96 2012,59 1907,20 1910,72 1960,16 3176,06 2145,91 1970,20 2566,49 TAR ALK 3,10 2,68 3,65 4,02 3,88 1,65 2,37 4,04 2,45 2,04 1,86 3,55 2,99 2,24 1,97 1,27 2,10 2,16 3,40 Pmi/Fit 0,752 0,611 0,852 0,485 0,900 0,361 0,453 1,063 0,773 0,773 0,773 0,773 0,773 0,773 0,773 0,735 0,235 0,232 0,235 0,232 0,235 0,232 0,235 0,235 0,235 0,235 0,235 0,235 0,5	MCNR	957,40	959,13	654,89	457,70	661,48	2716,29	692,81	703,88	1443,65	1527,73	1940,22	935,50	918,91	899,29	959,57	1519,91	1088,36	931,17	1366,73
Alif. 10tals (ng.g') 2165,46 1943,09 1688,12 1308,67 1710,69 4299,93 1432,11 1645,05 2591,89 2554,06 3069,96 2012,59 1907,20 1910,72 1960,16 3176,06 2145,91 197,020 2566,49 TAR ALK 3,10 2,68 3,65 4,02 3,88 1,65 2,37 4,04 2,45 2,04 1,86 3,55 2,99 2,24 1,97 1,27 2,10 2,16 3,40 Pri/Fit 0,752 0,611 0,852 0,485 0,900 0,361 0,453 1,063 0,773 0,773 0,739 0,647 0,907 0,773 0,735 0,235 0,232 0,232 0,232 0,235 0,232 0,235 0,232 0,235 0,232 0,245 0,230 0,245 0,248 0,308 0,385 0,493 0,560 0,882 0,529 0,533 0,355 L(15/20/21-35) 0,338 0,375 0,310 0,265 0,294 0,552 0,407 0,296 0,461 0,530 0,605 0,385 <th< th=""><th>Σ [Alif. Res] (ng.g⁻¹)</th><th>1208,06</th><th>983,96</th><th>1033,23</th><th>850,97</th><th>1049,21</th><th>1583,64</th><th>739,30</th><th>941,17</th><th>1148,24</th><th>1026,33</th><th>1129,75</th><th>1077,09</th><th>988,29</th><th>1011,43</th><th>1000,59</th><th>1656,15</th><th>1057,55</th><th>1039,03</th><th>1199,76</th></th<>	Σ [Alif. Res] (ng.g ⁻¹)	1208,06	983,96	1033,23	850,97	1049,21	1583,64	739,30	941,17	1148,24	1026,33	1129,75	1077,09	988,29	1011,43	1000,59	1656,15	1057,55	1039,03	1199,76
IAR ALK3,102,683,654,023,881,652,374,042,452,041,863,552,992,241,971,272,102,163,40Pri/Fit0,7520,6110,8520,4850,9000,3610,4531,0630,7730,7730,7390,6470,9070,7730,7540,9820,7461,0381,182Pmar-aq0,2150,2450,2250,2450,2190,2420,2610,2670,2290,2310,2450,2800,2480,2300,2350,2320,2350,2270,225Σ(15-20/21-35)0,3380,3750,3100,2650,2940,5520,4070,2960,4610,5300,6050,3080,3850,4930,5600,8820,5290,5330,355n-C17/Pri1,481,581,051,861.841,852,350,781,201,131,071,260,971,171,100,801,150,740,60n-C18/Fit1,581,731,342,102,522,151,800,991,881,981,771,371,471,931,861,331,871,321,31% MCNR44,2149,3638,7934,9738,6763,1748,3842,7955,7059,8263,2046,4848,1847,0748,9547,8650,7247,2653,25MCNR/RES0,790,97	Alif. Totais (ng.g ⁻¹)	2165,46	1943,09	1688,12	1308,67	1/10,69	4299,93	1432,11	1645,05	2591,89	2554,06	3069,96	2012,59	1907,20	1910,72	1960,16	31/6,06	2145,91	1970,20	2566,49
Pri/Fit $0,752$ $0,611$ $0,852$ $0,485$ $0,900$ $0,361$ $0,453$ $1,065$ $0,773$ $0,773$ $0,739$ $0,647$ $0,907$ $0,773$ $0,754$ $0,982$ $0,746$ $1,038$ $1,182$ Pmar-aq $0,215$ $0,245$ $0,225$ $0,225$ $0,245$ $0,219$ $0,242$ $0,261$ $0,267$ $0,229$ $0,231$ $0,245$ $0,280$ $0,248$ $0,230$ $0,235$ $0,232$ $0,235$ $0,222$ $0,225$ $0,227$ $0,225$ $\Sigma(15-20/21-35)$ $0,338$ $0,375$ $0,310$ $0,265$ $0,294$ $0,552$ $0,407$ $0,296$ $0,461$ $0,530$ $0,605$ $0,308$ $0,385$ $0,493$ $0,560$ $0,882$ $0,529$ $0,533$ $0,355$ $n-C17/Pri$ $1,48$ $1,58$ $1,05$ $1,86$ 1.84 1.85 $2,35$ $0,78$ $1,20$ $1,13$ $1,07$ $1,26$ $0,97$ $1,17$ $1,10$ $0,800$ $1,15$ $0,74$ $0,600$ $n-C18/Fit$ $1,58$ $1,73$ $1,34$ $2,10$ $2,52$ $2,15$ $1,80$ $0,99$ $1,88$ $1,98$ $1,77$ $1,37$ $1,47$ $1,93$ 1.86 $1,33$ $1,87$ $1,32$ $1,31$ $\%$ MCNR $44,21$ $49,36$ $38,79$ $34,97$ $38,67$ $63,17$ $48,38$ $42,79$ $55,70$ $59,82$ $63,20$ $46,48$ $48,18$ $47,07$ $48,95$ $47,86$ $50,72$ $47,26$ $53,25$ MCNR/RES $0,79$ </th <th></th> <th>3,10</th> <th>2,68</th> <th>3,65</th> <th>4,02</th> <th>3,88</th> <th>1,65</th> <th>2,37</th> <th>4,04</th> <th>2,45</th> <th>2,04</th> <th>1,80</th> <th>3,33</th> <th>2,99</th> <th>2,24</th> <th>1,97</th> <th>1,27</th> <th>2,10</th> <th>2,16</th> <th>3,40</th>		3,10	2,68	3,65	4,02	3,88	1,65	2,37	4,04	2,45	2,04	1,80	3,33	2,99	2,24	1,97	1,27	2,10	2,16	3,40
Pmar-aq0,2150,2450,2250,2450,2190,2420,2610,2670,2290,2110,2450,2800,2480,2300,2350,2320,2350,2320,2350,2270,225 $\Sigma(15-20/21-35)$ 0,3380,3750,3100,2650,2940,5520,4070,2960,4610,5300,6050,3080,3850,4930,5600,8820,5290,5330,355n-C17/Pri1,481,581,051,861.841,852,350,781,201,131,071,260,971,171,100,801,150,740,60n-C18/Fit1,581,731,342,102,522,151,800,991,881,981,771,371,471,931,861,331,871,321,31% MCNR44,2149,3638,7934,9738,6763,1748,3842,7955,7059,8263,2046,4848,1847,0748,9547,8650,7247,2653,25MCNR/RES0,790,970,630,540,631,720,940,751,261,491,720,870,930,890,960,921,030,901,14IPC21,871,881,871,782,051,861,891,802,121,992,041,411,952,062,031,952,051,951,76%COT0,540,42	Pri/Fit	0,752	0,611	0,852	0,485	0,900	0,361	0,453	1,063	0,773	0,773	0,739	0,647	0,907	0,773	0,754	0,982	0,746	1,038	1,182
2(13-20/21-35) 0,338 0,575 0,310 0,265 0,294 0,552 0,407 0,296 0,461 0,350 0,605 0,308 0,385 0,493 0,560 0,882 0,529 0,333 0,355 n-C17/Pri 1,48 1,58 1,05 1,86 1,84 1,85 2,35 0,78 1,20 1,13 1,07 1,26 0,97 1,17 1,10 0,80 1,15 0,74 0,60 n-C18/Fit 1,58 1,73 1,34 2,10 2,52 2,15 1,80 0,99 1,88 1,98 1,77 1,37 1,47 1,93 1,86 1,33 1,87 1,32 1,31 % MCNR 44,21 49,36 38,79 34,97 38,67 63,17 48,38 42,79 55,70 59,82 63,20 46,48 48,18 47,07 48,95 47,86 50,72 47,26 53,25 MCNR/RES 0,79 0,97 0,63 0,54 0,63 1,72 0,94 0,75 1,26 1,49 1,72 0,87 0,93	Pmar-aq	0,215	0,245	0,225	0,245	0,219	0,242	0,261	0,267	0,229	0,231	0,245	0,280	0,248	0,230	0,235	0,232	0,235	0,227	0,225
n-C1//Pri 1,48 1,58 1,05 1,86 1,84 1,85 2,35 0,78 1,20 1,13 1,07 1,26 0,97 1,17 1,10 0,80 1,15 0,74 0,60 n-C18/Fit 1,58 1,73 1,34 2,10 2,52 2,15 1,80 0,99 1,88 1,98 1,77 1,37 1,47 1,93 1,86 1,33 1,87 1,32 1,31 % MCNR 44,21 49,36 38,79 34,97 38,67 63,17 48,38 42,79 55,70 59,82 63,20 46,48 48,18 47,07 48,95 47,86 50,72 47,26 53,25 MCNR/RES 0,79 0,97 0,63 0,54 0,63 1,72 0,94 0,75 1,26 1,49 1,72 0,87 0,93 0,89 0,96 0,92 1,03 0,90 1,14 IPC2 1,87 1,88 1,87 1,78 2,05 1,86 <t< th=""><th>$\Sigma(15-20/21-35)$</th><th>0,338</th><th>0,375</th><th>0,310</th><th>0,265</th><th>0,294</th><th>0,552</th><th>0,407</th><th>0,296</th><th>0,461</th><th>0,530</th><th>0,605</th><th>0,308</th><th>0,385</th><th>0,493</th><th>0,560</th><th>0,882</th><th>0,529</th><th>0,533</th><th>0,355</th></t<>	$\Sigma(15-20/21-35)$	0,338	0,375	0,310	0,265	0,294	0,552	0,407	0,296	0,461	0,530	0,605	0,308	0,385	0,493	0,560	0,882	0,529	0,533	0,355
In-CLIMPTI 1,75 1,75 1,74 2,10 2,52 2,15 1,80 0,99 1,88 1,98 1,17 1,57 1,47 1,95 1,86 1,35 1,87 1,32 1,31 % MCNR 44,21 49,36 38,79 34,97 38,67 63,17 48,38 42,79 55,70 59,82 63,20 46,48 48,18 47,07 48,95 47,86 50,72 47,26 53,25 MCNR/RES 0,79 0,97 0,63 0,54 0,63 1,72 0,94 0,75 1,26 1,49 1,72 0,87 0,93 0,89 0,96 0,92 1,03 0,90 1,14 IPC2 1,87 1,88 1,78 2,05 1,86 1,89 1,80 2,12 1,99 2,04 1,41 1,95 2,06 2,03 1,95 2,05 1,96 1,76 MCNR/RES 0,54 0,42 0,39 0,37 0,19 1,48 0,25 0,08 0,20 0,25 0,18 0,23 0,15 0,201 0,39 0,0	n-CI//Pri	1,48	1,58	1,05	1,80	1,84	1,85	2,35	0,78	1,20	1,13	1,07	1,20	0,97	1,17	1,10	0,80	1,15	0,74	0,60
% MCNK 44,21 49,350 38,99 34,97 38,67 63,17 48,38 42,79 55,70 59,82 63,20 46,48 48,18 47,07 48,95 47,86 50,72 47,26 53,25 MCNR/RES 0,79 0,97 0,63 0,54 0,63 1,72 0,94 0,75 1,26 1,49 1,72 0,87 0,93 0,89 0,96 0,92 1,03 0,90 1,14 IPC2 1,87 1,88 1,87 1,78 2,05 1,86 1,89 1,80 2,12 1,99 2,04 1,41 1,95 2,06 2,03 1,95 2,05 1,95 1,76 %COT 0,54 0,42 0,39 0,37 0,19 1,48 0,25 0,08 0,25 0,18 0,23 0,15 0,201 0,39 0,010 0,13 0,05 %COT 0,429 0,494 0,497 149,025 0,458 0,20 0,23 0,15 <t< th=""><th>n-CI8/Fit</th><th>1,58</th><th>1,/3</th><th>1,34</th><th>2,10</th><th>2,52</th><th>2,15</th><th>1,80</th><th>0,99</th><th>1,88</th><th>1,98</th><th>1,//</th><th>1,37</th><th>1,4/</th><th>1,93</th><th>1,86</th><th>1,33</th><th>1,8/</th><th>1,32</th><th>1,31</th></t<>	n-CI8/Fit	1,58	1,/3	1,34	2,10	2,52	2,15	1,80	0,99	1,88	1,98	1,//	1,37	1,4/	1,93	1,86	1,33	1,8/	1,32	1,31
MCNR/RES 0,79 0,97 0,63 0,54 0,63 1,72 0,94 0,75 1,26 1,49 1,72 0,87 0,93 0,89 0,96 0,92 1,03 0,90 1,14 IPC2 1,87 1.88 1,78 2.05 1,86 1,89 1,80 2,12 1,99 2,04 1,41 1,95 2,06 2,03 1,95 2,05 1,95 1,76 %COT 0,54 0,42 0,39 0,37 0,19 1,48 0,25 0,08 0,20 0,25 0,18 0,23 0,15 0,201 0,39 0,10 0,13 0,05 %COT 0,42 0,49 0,45 10,92 10,96 0,15 0,201 0,39 0,10 0,13 0,05 %COT 0,54 0,42 0,39 0,37 0,19 1,48 0,25 0,08 0,20 0,25 0,15 0,201 0,39 0,010 0,13 0,05 %COT	% MCNR	44,21	49,36	38,79	34,97	38,67	63,17	48,38	42,79	55,70	59,82	63,20	46,48	48,18	47,07	48,95	47,86	50,72	47,26	53,25
MC2 1,67 1,88 1,87 1,78 2,05 1,89 1,80 2,12 1,99 2,04 1,41 1,95 2,05 1,95 2,05 1,95 1,76 %COT 0,54 0,42 0,39 0,37 0,19 1,48 0,25 0,08 0,58 0,20 0,25 0,18 0,23 0,15 0,201 0,39 0,010 0,13 0,05	MCNR/RES	0,79	0,97	0,63	0,54	0,63	1,/2	0,94	0,75	1,26	1,49	1,72	0,8/	0,93	0,89	0,96	0,92	1,03	0,90	1,14
		1,8/	1,88	1,8/	1,/8	2,05	1,80	1,89	1,80	2,12	1,99	2,04	1,41	1,95	2,00	2,03	1,95	2,05	1,95	1,/0
V_{a01} h_{a01} h_{a	Pecupersoão (%)	0,54	0,42	106.21	04.16	108.16	1,48	86.40	108.02	0,38	112.22	115.02	0,18	105.70	105.01	112.06	107.46	108.40	06.22	06.24

Tabela 8 – Hidrocarbonetos alifáticos no Testemunho BIOMT1

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

As concentrações de hidrocarbonetos alifáticos totais, inferiores a $10 \ \mu g.g^{-1}$ (peso seco), confrontadas com limiares de classificação da qualidade de sedimentos estabelecidos em estudos anteriores (VOLKMAN et al., 1980 apud VOLKMAN et al. 1992; VAN VLEET et al., 1984 & PILLON et al., 1986 apud BOULOUBASSI & SALIOT, 1993), indicam que não houve aportes antropogênicos anteriores no local onde se deu a coleta deste testemunho. Deste modo, este é um ambiente que ainda não foi submetido a aportes antropogênicos significativos à luz dos hidrocarbonetos alifáticos. Apesar de o testemunho ter sido coletado em uma região sujeita à ocorrência de ressurgências, estas baixas concentrações de hidrocarbonetos são consistentes com a baixa %COT do testemunho, cuja granulometria já indicava baixo potencial de preservação da matéria orgânica em vista das características de um sedimento composto, predominantemente, por areia.

Os n-alcanos detectados apresentaram ligeiro predomínio de ímpares sobre pares, sobretudo na faixa entre n-C₂₇ a n-C₃₃, indicando aportes associados a vegetais superiores (EGLINTON & HAMILTON, 1967; VOLKMAN et al., 1992), apesar da evidente origem marinha da matéria orgânica, similar ao observado por Lourenço et al. (2017) para a mesma região. O IPC2 variou entre 1,41 e 2,12 ao longo do testemunho. Os índices TAR e Pmar-aq, também indicativos da contribuição de vegetais superiores para o sedimento, indicam ligeiro predomínio de n-alcanos associados a essa classe de vegetais sobre aqueles de origem marinha, confirmando a importância relativa dos compostos terrestres nos sedimentos analisados, menos suscetíveis à degradação do que os n-alcanos de origem autóctone. O TAR variou entre 1,27 a 4,04, com os menores valores sendo obtidos para as amostras BIOMT1-06 (1,65, coletada entre 5 e 6 cm de profundidade na coluna sedimentar) e BIOMT1-17 (1,27, coletada entre 16 e 17 cm de profundidade). Já o índice Pmar-aq variou entre 0,215 e 0,280, também indicando contribuição associada a vegetais superiores para o sedimento, apesar de as amostras não terem sido coletadas próximo à desembocadura de nenhum rio. Há que se considerar que hidrocarbonetos de mais baixa massa molecular estão mais sujeitos aos efeitos do intemperismo, sendo mais susceptíveis à degradação do que os de maior massa molecular. Também, como descrito em Volkman et al. (1998), apesar de os n-alcanos ímpares de cadeias longas serem bons traçadores de matéria orgânica terrígena, também podem ser derivados do fitoplâncton marinho.

A figura 24 apresenta a distribuição quantitativa de n-alcanos em diferentes horizontes de profundidade ao longo do testemunho BIOMT1.

Figura 24 – Distribuição de n-alcanos em diferentes horizontes de profundidade - BIOMT1

Da sua análise é possível concluir que ocorre distribuição bimodal ao longo de todo o perfil, sendo possível distinguir que a produção primária fitoplanctônica permanece registrada nos sedimentos, apesar da maior suscetibilidade à diagênese dos hidrocarbonetos de baixa massa molecular, o que indica períodos de elevada produção primária, sobretudo por conta das condições desfavoráveis desse testemunho em termos de granulometria. Destaca-se a figura 24B, (horizonte entre os anos de 1987 e 1992), onde a concentração de hidrocarbonetos associados à produção algal/bacteriana chega ser superior à dos hidrocarbonetos associados a vegetais superiores, o que denota a rápida exportação de matéria orgânica para o sedimento. A figura 24E (horizonte entre 15 e 17 cm de profundidade) também chama a atenção tanto pela maior concentração quando comparada às demais amostras do mesmo testemunho quanto pela maior proporção de n-alcanos de menor massa molecular, com aparente predomínio de n-alcanos pares sobre ímpares, que também sugere a ocorrência de contribuição algal/bacteriana.

Em outros horizontes (figuras 24C e 24D) também se observa a presença de n-alcanos associados à produção primária fitoplanctônica. A atividade microbiana e a presença de

combustíveis fósseis podem contribuir para a presença de n-alcanos de cadeia curta sem predomínio entre pares e ímpares, sobretudo na faixa entre n- C_{17} e n- C_{24} (VOLKMAN et al.,1992; 1998; GRIMALT & ALBAIGÉS, 1987; BIANCHI & CANUEL, 2011), característica observada ao longo de todo o perfil sedimentar. No entanto, a região é conhecida pela ocorrência de eventos de ressurgência, o que permite, neste nível de análise, descartar aportes associados a incidentes de poluição por óleo, embora a ocorrência de exsudações naturais de petróleo bruto não possa ser descartada em vista da proximidade da maior região produtora de petróleo do país. Também ocorrem n-alcanos com cadeias médias entre n- C_{21} , n- C_{23} ou n- C_{25} associados à presença de macrófitas aquáticas (FICKEN et al., 2000) (intermediárias entre o comprimento das cadeias das algas e dos vegetais superiores) ao longo de todo o perfil sedimentar.

7.1.5.2 Hidrocarbonetos aromáticos na PC Cabo Frio

Os resultados das análises de hidrocarbonetos aromáticos estão compilados na tabela 9 (apresentados com os resultados de HPAs alquilados no apêndice A2) e são apresentados graficamente no apêndice A3. São ainda apresentados resultados para os diversos proxies de hidrocarbonetos aromáticos, anteriormente descritos. A recuperação do padrão p-terfenil-d14 variou entre 54,16 e 92,21%, fora dos limites de qualidade analítica propostos por Ribani et al. (2004), mas dentro dos limites de qualidade propostos por Sericano et al. (1998) e, principalmente, por Denoux et al. (1998) (análise quantitativa de HPAs).

O perfil de HPAs apresenta baixas concentrações ao longo de toda a coluna sedimentar, condizente com a baixa %COT. Os teores de HPAs prioritários ao longo do testemunho BIOMT1 variaram entre <LQ a 199,72 ng.g⁻¹ (ou cerca de 0,200 μ g.g⁻¹) enquanto os HPAs totais variaram entre 16,86 ng.g⁻¹ (ou cerca de 0,017 μ g.g⁻¹) a 694,60 ng.g⁻¹ (ou cerca de 0,694 μ g.g⁻¹). As maiores concentrações de HPAs ocorrem na base do testemunho (a partir de 16 cm de profundidade, relativos ao período anterior ao ano de 1940), onde também se observa as maiores concentrações de HPAs individuais e alquilados, representadas pelo 2-metil-naftaleno (251,18 ng.g⁻¹) e 2,6-dimetil-naftaleno (126,74 ng.g⁻¹). Nesse horizonte de profundidade também se observa que os HPAs em maior abundância são os de baixa massa molecular (parentais e alquilados) e com, no máximo, quatro anéis benzênicos. A figura 25 apresenta o perfil de HPAs totais ao longo do perfil estudado.

Figura 25 - HPAs totais ao longo do testemunho BIOMT1

A ocorrência de HPAs alquilados em uma distribuição tipo "sino" em períodos anteriores ao ano de 1950 (ver histogramas das amostras BIOMT1-17 a BIOMT1-23, no apêndice A-3) é uma característica condizente com aportes petrogênicos de hidrocarbonetos. O perfil do naftaleno e seus homólogos alquilados se encaixa na descrição de Neff (2002) e Peters et al. (2005), com a concentração do naftaleno menor que as dos seus C1 e C2 homólogos. Em se tratando de um ambiente oceânico, Pampanin & Sydnes (2013) sugerem que a ocorrência de HPAs em sedimentos recentes pode se dar por meio de exsudações naturais de hidrocarbonetos, água produzida de plataformas de petróleo ou derramamentos descarte de de petróleo/derivados. Na região da Bacia de Campos, ainda hoje a mais importante região produtora de petróleo e principal área sedimentar já explorada na costa brasileira, a extração de petróleo bruto no mar iniciou-se na década de 1970 (PETROBRÁS, 2018). Na região, também ocorrem instalações de exploração/produção de petróleo próximo ao local onde o testemunho BIOMT1 foi obtido (BRASIL, 2018d). Tais fatos sugerem que a ocorrência de exsudações naturais de hidrocarbonetos ou a diagênese da matéria orgânica são hipóteses plausíveis para explicar a ocorrência dos HPAs encontrados na base do perfil. Nesta época, ainda não ocorria extração de petróleo na Bacia de Campos e o uso de derivados de petróleo no Brasil ainda era menos disseminado, de modo que a ocorrência de derramamentos de óleo esporádicos na região, como o relatado por Mello et al. (1990), ainda não era possível.

86

Aromáticos (ng.g ⁻¹)	T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
Naftaleno (N)	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<>	14,16	1,56	1,75	1,83	2,08	1,85	1,68	<lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<>	<lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<>	35,28	14,07	5,63	9,84
1 Me-naftaleno (1MN)	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>6,66</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	6,66	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<>	ND	ND	ND	75,88	17,64	12,35	24,67
2 Me-naftaleno (2-MN)	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>30,51</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>30,51</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>30,51</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	30,51	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<>	1,48	1,98	1,60	ND	<lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<>	ND	251,18	51,51	40,06	69,94
Bifenil (BIF)	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	28,49	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<>	2,16	1,55	<lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<>	<lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<>	20,26	8,99	3,60	10,85
2,6 dimetilnaftaleno	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>3,84</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>3,84</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,84	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<>	ND	126,74	27,93	21,73	56,90
Acenaftileno (ACT)	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	2,45	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenafteno (ACE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12,32	<lq< td=""><td>2,10</td><td>5,35</td></lq<>	2,10	5,35
Fluoreno (FLU)	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,34</td><td><lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,34</td><td><lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,34</td><td><lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,34	<lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,02	<lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,92	1,43	2,82	0,86	<lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<>	32,91	<lq< td=""><td>6,56</td><td>27,94</td></lq<>	6,56	27,94
Dibenzotiofeno	ND	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<>	2,16	1,66	2,97	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<>	<lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<>	5,61	ND	ND	3,97
Fenantreno (FEN)	0,61	0,71	1,07	2,25	0,77	4,76	3,47	3,68	19,40	19,47	25,41	9,70	5,45	5,14	5,60	40,72	18,53	9,53	24,42
Antraceno (ANT)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<>	1,13	1,01	3,29	1,73	2,01	2,04	2,21	<lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<>	<lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<>	49,81	27,33	18,74	56,54
Fluoranteno (FLT)	0,80	2,24	1,43	ND	3,48	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<>	4,51	2,94	4,31	7,28	3,78	<lq< td=""><td>7,04</td></lq<>	7,04
Pireno (PIR)	6,55	22,43	24,15	<lq< td=""><td>46,35</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	46,35	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<>	3,56	3,62	39,59	25,66	37,54	14,46	6,93	<lq< td=""><td>10,69</td></lq<>	10,69
Benzo(a)antraceno (BaA)	1,74	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,16	<lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,37	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno (CRIS)	1,28	1,27	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,30	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(b)fluoranteno	1,99	2,33	1,17	0,98	1,68	3,38	2,76	6,26	3,76	7,09	4,94	4,70	3,33	2,72	2,74	2,44	<lq< td=""><td>1,65</td><td><lq< td=""></lq<></td></lq<>	1,65	<lq< td=""></lq<>
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Benzo(a)pireno (BaP)	1,83	2,09	<lq< td=""><td><lq< td=""><td>1,39</td><td>3,43</td><td>1,64</td><td>4,97</td><td>2,53</td><td>6,63</td><td>5,53</td><td>2,74</td><td>2,40</td><td>2,02</td><td>1,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,39</td><td>3,43</td><td>1,64</td><td>4,97</td><td>2,53</td><td>6,63</td><td>5,53</td><td>2,74</td><td>2,40</td><td>2,02</td><td>1,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,39	3,43	1,64	4,97	2,53	6,63	5,53	2,74	2,40	2,02	1,80	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Perileno (PER)	4,91	6,14	<lq< td=""><td>4,99</td><td>5,08</td><td>7,59</td><td>6,42</td><td>15,38</td><td>11,10</td><td>20,86</td><td>13,46</td><td>14,56</td><td>7,61</td><td>6,82</td><td>4,32</td><td>2,74</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	4,99	5,08	7,59	6,42	15,38	11,10	20,86	13,46	14,56	7,61	6,82	4,32	2,74	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(e)pireno (BeP)	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	1,34	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-cd)pireno	1,38	1,81	<lq< td=""><td><lq< td=""><td>1,91</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,91</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,91	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,95	<lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	3,03	2,55	2,40	2,04	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzo(a,h)antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
Benzo(g.h.i)perileno	1,12	1,25	<lq< th=""><th><lq< th=""><th>1,28</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>1,28</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1,28	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,21</th><th>1,69</th><th>1,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2,21	1,69	1,53	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
[HPAS] prioritários (ng.g ⁻¹)	17,30	0,00	0,00	6,56	56,85	27,87	10,44	19,94	31,17	42,81	46,15	28,88	61,82	42,72	55,90	199,73	70,64	27,35	141,82
[HPAS] totais (ng.g ⁻¹)	27,02	50,29	27,82	20,47	70,36	101,12	16,86	36,28	46,48	68,40	66,72	53,45	70,76	49,54	60,23	694,60	176,71	121,94	325,07
ΣLMW/ΣΗΜW ΗΡΑ	0,04	NC	NC	5,72	0,01	3,09	1,37	0,78	3,96	1,57	2,29	1,00	0,11	0,15	0,12	7,17	5,59	10,15	7,00
ΣCOMΒ/ΣΗΡΑS	0,97	NC	NC	0,15	0,99	0,24	0,42	0,56	0,20	0,42	0,30	0,50	0,91	0,88	0,90	0,13	0,15	0,09	0,13
FLI/(FLI+PIK)	0,11	0,09	0,06	NC	0,07	NC	NC	NC	NC	NC	0,00	0,00	0,10	0,10	0,10	0,33	0,35	NC	0,40
I[cd]P/(I[cd]P+B[gh1]P)	0,55	0,59	NC	NC	0,60	NC	NC	NC	NC	1,00	NC	NC	0,58	0,60	0,61	1,00	NC	NC	NC
ANT/(ANT+FEN)	0,00	0,00	0,00	0,00	0,00	0,19	0,23	0,47	0,08	0,09	0,07	0,19	0,00	0,00	0,00	0,55	0,60	0,57	0,70
BaA/(BaA+CRIS)	0,58	NC	NC	NC	NC	NC	NC	NC	NC	1,00	NC	1,00	0,00	NC	NC	NC	NC	NC	NC
B[b+k]F/BaP	1,09	1,11	NC	NC	1,21	0,98	1,68	1,26	1,49	1,07	0,89	1,71	1,38	1,35	1,53	NC 24.40	NC 12.0	NC 20.02	NC
2-MIN/FEN	0,00	0,00	0,00	NC	0,00	NC	NC 1.4(NC 1.27	NC 1.77	NC 1.52	NC 1.00	NC 1.05	0,00	0,00	0,00	34,48	13,62	20,02	9,93
PEKILENU/2 HPAS 5 aneis	1,29	1,39	NC 0.20	5,11	1,66	1,11	1,46	1,37	1,//	1,52	1,29	1,95	1,08	1,44	0,95	1,12	NC 0.10	0,00	NC 0.05
	0,54	0,42	0,39	0,37	0,19	1,48	0,25	0,08	0,58	0,20	0,25	0,18	0,23	0,15	0,201	0,39	0,10	0,13	0,05
Kecuperação (%)	/5,01	54,16	77,14	61,37	78,81	84,14	65,23	89,12	81,1	80,67	54,14	81,23	92,07	85,86	92,21	90,89	61,28	64,14	88,89

Tabela 9 – Hidrocarbonetos aromáticos no Testemunho BIOMT1

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

As baixas concentrações de HPAs ao longo do testemunho BIOMT1, prejudicaram a utilização de proxies para avaliar a origem desses hidrocarbonetos, já que diversos HPAs não foram detectados ou o foram em patamares inferiores ao Limite de Quantificação do método (LQM), numa indicação do baixo aporte antropogênico para o local de coleta desse testemunho. O uso de proxies está baseado na detecção de HPAs e sua correlação com dados pretéritos (de outros estudos em que a origem dos hidrocarbonetos seja conhecida), de forma a inferir a origem antropogênica de tais aportes, seja pirolítica ou petrogênica.

Dos HPAs de maior complexidade, somente B[b]F, B[a]P e PER foram quantificados ao longo de toda (ou quase toda) a coluna sedimentar. A ocorrência dos dois primeiros pode ser atribuída a aportes pirolíticos, relacionados ao transporte de material alóctone. Adicionalmente, as razões IcdP/IcdP+BghiPer (YUNKER et al., 2002), Ant/(Ant+Fen) (PIES et al., 2008 apud TOBISZEWSKI & NAMIESNIK, 2012) e B[b+k]F/BaP (SOCLO et al., 2000) corroboram a hipótese de aporte preponderantemente pirolítico para os HPAs detectados. Também, apesar de os HPAs em maiores concentrações indicarem um aporte petrogênico na base do testemunho, representado pelos elevados valores calculados para o proxy $\Sigma LMW/\Sigma HMW$, alguns proxies indicam também a ocorrência de aporte pirolítico nesse horizonte de profundidade. A baixa concentração determinada indica que a região pode ser considerada praticamente intocada à luz dos HPAs antropogênicos.

A presença do perileno, com base na razão entre a sua concentração e a soma do total de isômeros penta-aromáticos (Baumard et al., 1998; Fan et al., 2001; Readman et al., 2002), está associada à diagênese da matéria orgânica. Sua concentração variou entre <LQ a 20,861 ng.g⁻¹, considerada baixa juntamente com as dos demais HPAs.

7.1.5.3 Biomarcadores de petróleo para elucidar a origem dos hidrocarbonetos na base do testemunho BIOMT1

Dada a suspeita da presença de hidrocarbonetos de petróleo associados a uma possível exsudação natural no local onde foi obtido o testemunho BIOMT1, a qual poderia explicar a presença de HPAs alquilados na base do testemunho, as amostras BIOMT1-17, BIOMT1-19, BIOMT1-21 e BIOMT1-23 foram submetidas à análise de biomarcadores de petróleo saturados por espectrometria de massas (CG-EM), visando avaliar os perfis de hopanos e esteranos que, conforme Peters et al. (2005) e Wang et al. (2006), são ferramentas bastante elucidativas para inferir a presença de hidrocarbonetos de petróleo. Foi utilizado o mesmo método descrito em

Lobão et al. (2010). Os compostos detectados não foram quantificados, sendo utilizados apenas para avaliar a presença ou não desses biomarcadores.

A figura 26 compara o perfil de $\beta\beta$ esteranos (íon *m/z* 218) de uma amostra de óleo diesel marítimo (cromatograma superior) ao perfil da amostra BIOMT1-17 (cromatograma inferior). Possivelmente em função das baixas concentrações desses compostos nos sedimentos, somente a amostra BIOMT1-17 evidenciou a presença da série de C₂₇ a C₂₉ $\beta\beta$ esteranos (nomenclatura conforme Peters et al., 2005). A presença dessa série de esteranos maturados na amostra, apesar da sua baixa concentração, indica a presença de hidrocarbonetos de petróleo no sedimento.

Figura 26 – Esteranos na amostra BIOMT1-17

A figura 27 compara o perfil de terpanos tricíclicos, tetracíclicos e pentacíclicos (íon m/z 191) da amostra BIOMT1-17 (cromatograma inferior) ao perfil da mesma amostra de óleo diesel (cromatograma superior). De modo similar ao observado na análise da série de C₂₇ a C₂₉ $\beta\beta$ esteranos, somente a amostra BIOMT1-17 evidenciou a presença dessa família de biomarcadores de petróleo, ainda que quase no Limite de Detecção (LD) do equipamento. A presença desses compostos, similarmente à série de esteranos, também indica a presença de hidrocarbonetos de petróleo no sedimento. A presença de hidrocarbonetos de petróleo no sedimento. A presença de hidrocarbonetos de petróleo e seus derivados, como os terpanos tricíclicos (TR21 a TR29B), tetracíclicos (TET24) e pentacíclicos

(de TS a H35R), incluindo-se os hopanos estendidos, os quais foram detectados somente até os C_{32} homohopanos (nomenclatura conforme Peters et al., 2005).

Somada à presença de HPAs alquilados na base do testemunho, a presença de biomarcadores de petróleo sugere a ocorrência de exsudação natural de hidrocarbonetos de petróleo no local onde foi obtido o testemunho BIOMT1. A ocorrência de exsudações naturais de hidrocarbonetos tinha sido relatada anteriormente por Baêta (2008), que estudou dois testemunhos na mesma região, e é plausível em virtude da relativa proximidade à maior região produtora de petróleo do Brasil. No entanto, dado que somente um testemunho foi analisado, a ocorrência de exsudações naturais nessa área carece de melhor averiguação, que não faz parte do escopo deste estudo.

Figura 27 – Terpanos tricíclicos, tetracíclicos e pentacíclicos na amostra BIOMT1-17

7.1.5.4 Esteróides na PC Cabo Frio

Os resultados das análises de esteróides estão compilados na tabela 10. Essa tabela apresenta os dados de concentração dos compostos avaliados pelo método. São ainda apresentados resultados para alguns proxies, anteriormente descritos. A recuperação do padrão 5α -androstanol variou entre 70,54 e 95,04%, dentro dos limites de qualidade analítica propostos por Ribani et al. (2004).

O perfil de esteróides deste testemunho apresenta baixas concentrações ao longo de quase toda a coluna sedimentar, condizente com o baixo teor geral de COT. Os teores de

esteróides totais variaram entre 266,35 (ou cerca de 0,266 mg.kg⁻¹) a 7021,31 ng.g⁻¹ (ou cerca de 7,021 mg.kg⁻¹). A figura 28 relaciona alguns dos esteróides detectados ao longo do testemunho ao teor de COT.

As maiores concentrações de esteróides ocorrem na superfície do sedimento, associadas à deposição de carbono orgânico fresco, decaindo rapidamente com o aumento da profundidade, mas voltando a se elevar no horizonte entre 5 e 6 cm de profundidade, onde atinge quase o seu valor máximo e, a seguir, volta a decair. Essa característica volta a se repetir, com outros horizontes de elevação na concentração, menos intensos, identificados ao longo do testemunho. Tais aumentos na concentração de esteróides totais parecem ser episódicos e, em geral, concomitantes com elevações na %COT e sugerem períodos em que teria se dado a ocorrência de eventos de ressurgência mais significativos do que os normalmente observados na região do Cabo Frio. Os baixos valores calculados para a razão estanol/esterol indicam que a produção desses esteróides é, predominantemente, autóctone (Volkman, 1986).

Figura 28 - Concentrações de esteróides no testemunho BIOMT1

Tabela 10 – Esteróides no Testemunho BIOMT1

Esteróides (ng.g ⁻¹)	T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
$26\Delta^{5,22}$	87,39	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>88,08</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>88,08</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>88,08</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>88,08</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<>	88,08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Coprostanol (COP)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	ND	ND	ND	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND
Epicoprostanol (Epicop)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
nor $27\Delta^{5,22}$	141,97	<lq< th=""><th>68,08</th><th><lq< th=""><th><lq< th=""><th>122,28</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	68,08	<lq< th=""><th><lq< th=""><th>122,28</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>122,28</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	122,28	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th></lq<>	ND
Dihidro-Colesterol	367,97	219,29	197,09	363,64	184,31	383,69	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Dihidro-Colestanol	162,79	0,00	124,99	0,00	0,00	0,00	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Colesterol (COL-erol)	2165,99	1771,86	1388,32	870,31	1020,13	3866,09	172,16	150,69	201,88	248,39	245,92	134,12	130,15	146,36	152,71	388,05	118,34	105,66	<lq< th=""></lq<>
Colestanol (COL-anol)	244,32	239,81	122,23	127,82	137,60	96,47	<lq< th=""><th><lq< th=""><th><lq< th=""><th>67,07</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>67,07</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>67,07</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	67,07	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Colestanona	129,72	<lq< th=""><th>71,67</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	71,67	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicasterol	1396,42	676,00	470,77	326,52	340,89	598,11	195,43	135,92	178,20	292,88	251,01	175,83	179,20	152,74	219,94	435,19	200,61	166,85	<lq< th=""></lq<>
Brassicastanol	104,85	<lq< th=""><th>89,72</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	89,72	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Metileno-Colesterol	335,05	226,33	212,44	278,02	334,81	200,29	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th></lq<>	ND
Campesterol	193,49	116,00	67,40	<lq< th=""><th><lq< th=""><th>141,27</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>141,27</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	141,27	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campestanol	83,46	<lq< th=""><th>58,47</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	58,47	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmasterol	269,39	291,24	184,75	137,10	149,05	202,33	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmastanol	113,41	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Sitosterol	711,76	284,01	214,42	213,33	222,20	213,30	170,19	154,54	215,65	292,43	246,15	190,72	150,84	145,20	172,41	256,89	206,20	181,13	<lq< th=""></lq<>
Sitostanol	133,79	117,05	120,69	117,58	108,50	126,08	75,12	74,28	111,53	138,89	118,08	102,06	102,55	94,19	92,58	104,66	91,24	81,27	<lq< th=""></lq<>
Dinosterol	379,54	294,09	282,13	264,16	288,21	309,74	197,40	184,90	246,36	385,26	332,00	308,00	286,59	235,58	241,15	260,35	253,48	210,55	266,35
	T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
Σ esteróides (ng.g ⁻¹)	7021,31	4235,68	3673,15	2698,49	2785,71	6347,74	810,30	700,32	953,62	1424,93	1193,15	910,72	849,32	774,08	878,79	1445,15	869,87	745,45	266,35
Epicop/COP	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
COP/(COP+COL-anol)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
(COP/COL-erol)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Camp-e/Estig-e/Sit-e	1:1,4:3,7	1:2,5:2,4	1:2,7:3,2	NC	NC	1:1,4:1,5	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
$\frac{\Sigma}{\Sigma} \frac{5\alpha(H)}{\Sigma} \frac{5\alpha(H)}{\Sigma} \frac{\Delta^5}{\Sigma} \frac{\Delta^5}{\Sigma} \frac{1}{\Sigma} $	0,16	0,13	0,18	0,18	0,16	0,06	0,14	0,33	0,36	0,40	0,32	0,39	0,45	0,41	0,33	0,00	0,19	0,19	NC
Sit/Camp (EST+EST-A)	3,05	3,47	2,57	NC	NC	2,39	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Dinosterol/Metileno- colesterol	1,13	1,30	1,33	0,95	0,86	1,55	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Colesterol/Metileno- colesterol	6,46	7,83	6,54	3,13	3,05	19,30	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
%COT	0,54	0,42	0,39	0,37	0,19	1,48	0,25	0,08	0,58	0,20	0,25	0,18	0,23	0,15	0,201	0,39	0,10	0,13	0,05
Recuperação (%)	73.38	74,90	74.80	73.67	70,54	73.88	73.19	77.55	82.13	77.96	76.78	81.60	81.91	84.82	88.06	81.38	95.04	87.66	74.13

- Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/Sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL – C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002). NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método Conforme se depreende da análise da figura 28, o colesterol $(27\Delta^5)$ é o esterol de maior concentração na porção superior do testemunho, seguido do brassicasterol $(28\Delta^{5,22E})$.

O máximo em concentração observado entre 5 e 6 cm de profundidade (horizonte entre os anos de 1987 e 1992), coincidente com o máximo teor de COT, indica uma alteração significativa no perfil sedimentar, caracterizada principalmente – neste nível de análise – pelo aumento na concentração de $27\Delta^5$ e $28\Delta^{5,22E}$. O colesterol é um esterol de ampla ocorrência em animais, sendo reconhecidamente associado ao zooplâncton (BOULOUBASSI et al., 1997; VOLKMAN, 2006; LIBES, 2009) enquanto os 24-metil-esteróis, como o 24-metileno-colesterol e o brassicasterol ($28\Delta^{5,22E}$) são indicativos de diatomáceas (VOLKMAN, 1986; ZIMMERMAN & CANUEL, 2002; LIBES, 2009; VOLKMAN & SMITTENBERG, 2017).

Tais máximos de concentração sugerem a ocorrência de florações fitoplanctônicas, seguidas do subsequente crescimento zooplanctônico por herbivoria, característico de eventos de ressurgência. Estudos anteriores (McMANUS et al., 2007; GUENTHER et al., 2008) demonstraram que, na ocorrência de ressurgência da ACAS sobre a plataforma continental na região do Cabo Frio, a ocorrência do microplâncton autotrófico é seguida do predomínio do mesozooplâncton – em especial de náuplios de copépodes herbívoros oportunistas, consumidores primários preponderantes, caracterizando o estabelecimento de uma cadeia alimentar entre esses organismos.

Eventos de ressurgência devem ficar registrados no sedimento em virtude do rápido transporte ao longo da coluna d'água, tanto via pelotas fecais quanto pela morte dos próprios organismos zooplanctônicos, após assimilarem o fitoplâncton, além de restos do próprio fitoplâncton não consumido, que escapam do zooplâncton herbívoro em função da defasagem no seu crescimento larval, já que se dão alguns dias entre o início da floração fitoplanctônica e o surgimento de grandes populações zooplanctônicas (FALKOWSKI et al., 1998 apud KILLOPS & KILLOPS, 2005). As pelotas fecais geradas pelo metabolismo zooplanctônico, sendo maiores, viajam mais rapidamente ao longo da coluna d'água do que a neve marinha (agregados compostos principalmente de restos fitoplanctônicos) e, por esse motivo, os compostos orgânicos associados às pelotas fecais tendem a ter um maior potencial de incorporação aos sedimentos marinhos e, em consequência, maior potencial de preservação (KILLOPS & KILLOPS, 2005; RULLKÖTTER, 2006; LIBES, 2009) por terem reduzido tempo de exposição ao oxigênio dissolvido na coluna d'água. Tal conclusão se baseia na elevação concomitante dos teores de $28\Delta^{5,22}$ (brassicasterol se o radical metil na posição C₂₄ encontra-se na configuração β) e colesterol nos mesmos intervalos do testemunho (fato não observado com a maioria dos demais esteróides detectados ao longo da coluna sedimentar).

Tais episódios, tendo em vista a localização do testemunho obtido, sugerem a ocorrência de ressurgência não associada aos eventos costeiros tipicamente observados na região do Cabo Frio, como descrito por Albuquerque et al. (2014).

Aos resultados de concentração dos esteróides, constantes da tabela 10, foi aplicado o teste de normalidade de Shapiro-Wilk. Os resultados obtidos indicaram que somente os resultados do dinosterol tinham distribuição normal. Com isso, foi avaliada a correlação entre os esteróis detectados por meio do teste de Spearman, cujos resultados são apresentados na tabela 11 para os principais esteróis detectados ao longo do testemunho BIOMT1. Da sua análise é possível concluir que existe forte correlação linear (coeficientes de correlação maiores que 0,60, conforme critério apresentado em Callegari-Jacques, 2003) entre o colesterol e os esteróis destacados (valores em negrito), o que sugere uma origem comum a estes compostos, com destaque para a elevada correlação entre o colesterol $(27\Delta^5)$ e o brassicasterol $(28\Delta^{5,22})$.

	26Δ ^{5,22}	nor $27\Delta^{5,22}$	27 ^{5,22}	27Δ ⁵	28Δ ^{5,22}	28 ^{5,24(28)}	28∆ ⁵	29 ∆ ^{5,22}	29∆ ⁵	30Δ ^{22E}
26∆ ^{5,22}		0,834	0,646	0,533	0,497	0,483	0,743	0,566	0,267	0,434
nor $27\Delta^{5,22}$	0,834		0,710	0,609	0,586	0,586	0,858	0,675	0,308	0,413
27∆ ^{5,22}	0,646	0,710		0,812	0,768	0,946	0,811	0,969	0,459	0,457
27∆ ⁵	0,533	0,609	0,812		0,898	0,776	0,711	0,817	0,742	0,511
28Δ ^{5,22}	0,497	0,586	0,768	0,898		0,746	0,711	0,791	0,793	0,589
$28\Delta^{5,24(28)}$	0,483	0,586	0,946	0,776	0,746		0,695	0,951	0,512	0,436
$28\Delta^5$	0,743	0,858	0,811	0,711	0,711	0,695		0,856	0,438	0,472
29∆ ^{5,22}	0,566	0,675	0,969	0,817	0,791	0,951	0,856		0,510	0,472
29∆ ⁵	0,267	0,308	0,459	0,742	0,793	0,512	0,438	0,510		0,628
$30\Delta^{22E}$	0,434	0,413	0,457	0,511	0,589	0,436	0,472	0,472	0,628	

Tabela 11 – Coeficientes de correlação de Spearman – esteróis no testemunho BIOMT1

Legenda: $-26\Delta^{5,22} - 24$ -nor-colesta-5,22-dien-3 β -ol; nor27 $\Delta^{5,22} - 27$ -nor-24-metilcolesta-5,22E-dien-3 β -ol; 27 $\Delta^{5,22}$ - Colesta-5,22-dien-3 β -ol (dihidro-colesterol); 27 Δ^{5} - Colest-5-en-3 β -ol (colesterol); 28 $\Delta^{5,22} - 24$ -metilcolesta-5,22(E)-dien-3 β -ol (brassicasterol); 28 $\Delta^{5,24(28)} - 24$ -metileno-colesta-5,24(28)-dien-3 β -ol (metileno-colesterol); 28 $\Delta^{5} - 24$ -metilcolest-5-en-3 β -ol (campesterol); 29 $\Delta^{5,22} - 24$ -etilcolesta-5,22-dien-3 β -ol (estigmasterol); 29 $\Delta^{5} - 24$ -etilcolest-5-en-3 β -ol (sitosterol); 30 $\Delta^{22E} - 4\alpha$ -23,24-trimetil-5 α -colest-22(E)-en-3 β -ol (dinosterol).

Cabe mencionar que a elevada correlação demonstrada entre o colesterol $(27\Delta^5)$, o estigmasterol $(29\Delta^{5,22})$ e o sitosterol $(29\Delta^5)$ não era esperada, tendo em vista que os C₂₉ esteróis são associados principalmente a contribuições de vegetais superiores (origem terrígena), embora possam ser oriundos do fitoplâncton (BOULOUBASSI et al.; 1997; VOLKMAN et al., 1998; VOLKMAN & SMITTENBERG, 2017). O esterol $29\Delta^{5,22}$ pode ser comum em
sedimentos marinhos, sendo um esterol importante em algumas famílias de diatomáceas, embora raramente ocorra em dinoflagelados (VOLKMAN, 1986). Também, conforme descrito por Volkman (1986) e Bianchi (2007), apesar de existirem esteróis específicos para determinadas espécies de organismos, a maioria é biossintetizada por mais de uma espécie ou mesmo família de organismos, o que pode, em algumas ocasiões, limitar a especificidade das interpretações geoquímicas que se utilizem somente de esteróis para avaliar a origem da matéria orgânica. Os resultados de n-alcanos sugeriram aporte terrígeno associado ao aporte autóctone. Tal fato, somado às características do estigmasterol $(29\Delta^{5.22})$ e do sitosterol $(29\Delta^5)$ nas amostras, em que o estigmasterol foi quantificado somente na porção superficial do testemunho enquanto o sitosterol esteve presente ao longo de toda a coluna sedimentar, sugere que a presença do estigmasterol pode ser associada à florações de diatomáceas enquanto a presença do sitosterol pode decorrer de aportes relativamente constantes em baixas concentrações, associados a contribuições de vegetais superiores, embora muitas fontes algais sejam possíveis, como as diatomáceas, cocolitoforídeos e haptófitas, entre outras (VOLKMAN, 1986; 2006). Comportamento similar ao aqui descrito foi também observado por Lourenço et al. (2017).

Outro resultado notável na tabela 11 é a ausência de correlação entre o dinosterol $(30\Delta^{22E})$ e o colesterol $(27\Delta^5)$. Ao longo do perfil sedimentar a concentração do dinosterol se mostrou mais ou menos constante, variando entre 184,90 e 379,54 ng.g⁻¹, estando entre os poucos esteróides presentes ao longo de todo perfil sedimentar. Tal característica pode ser explicada tanto por uma maior resistência à diagênese (que possibilitou a sua preservação ao longo de toda a coluna sedimentar) quanto por uma aparente constância em termos de contribuição para o pacote sedimentar, indicando que apesar de sua importância como produtores primários (SERRAZANETTI et al., 2006), os dinoflagelados não são contribuintes significativos nas florações fitoplanctônicas locais, dominadas por copépodes.

Carreira et al. (2012) estudaram o histórico recente da sedimentação da matéria orgânica na plataforma continental do estado do Rio de Janeiro, por meio da caracterização geoquímica de um testemunho obtido em março de 2002, denominado C01. Tal testemunho foi obtido cerca de 50 km ao sul da cidade do Rio de Janeiro, na isóbata de 100 metros, em uma área de lama adjacente à Baía da Guanabara. Nesse estudo os autores relataram ter encontrado elevadas concentrações de esteróides totais na superfície do sedimento (na seção entre 0 e 1 cm de profundidade), atingindo concentrações de 62,3 µg.g⁻¹, com rápido decaimento ao longo do perfil sedimentar estudado, consistente com as condições predominantemente oligotróficas encontradas na margem continental sudeste da costa brasileira (ROSSI-WONGTSCHOWSKI & MADUREIRA, 2006 apud CARREIRA et al., 2012). Neste horizonte de profundidade, o predomínio do colesterol foi associado a um evento recente de floração fitoplanctônica local, indicando uma possível ocorrência regional de ressurgência da ACAS no local estudado. Lourenço et al. (2017), que estudaram 4 colunas sedimentares na região de ocorrência da ressurgência costeira do Cabo Frio, com amostras obtidas em 2001 em áreas da plataforma continental (em profundidades menores que 100 metros), observaram que os maiores teores de esteróides foram detectados nos locais mais distantes da costa, com algumas elevações episódicas de concentração e com as amostras apresentando tendência similar às de Carreira et al. (2012), com decréscimo da concentração de esteróides do topo para a base do testemunho, condizente com a diagênese. A elevação significativa do teor de colesterol no testemunho BIOMT1, ocorrido entre os anos de 1987 e 1992, aparenta um comportamento similar ao observado no testemunho C01 por Carreira et al. (2012), apesar da significativa diferença em termos de máxima concentração de esteróides totais, que pode ser explicada pela granulometria desfavorável do testemunho BIOMT1. Supondo que a deposição sedimentar do testemunho C01 tenha a mesma taxa de sedimentação do testemunho BIOMT1, seu horizonte de 0-1 cm de profundidade teria sido depositado entre os anos de 1997 e 2002 (aparentemente o testemunho C01 não foi datado).

Dada a hipótese da ocorrência de eventos significativos de ressurgência da ACAS sobre a plataforma continental na região do Cabo Frio, aventada por este estudo ao avaliar resultados com resolução a cada cinco anos (aproximadamente) concomitantemente com os resultados de Carreira et al. (2012) e Lourenço et al. (2017), seria interessante que em estudos futuros, se reduza a espessura das seções obtidas, de modo a aumentar a resolução temporal de cada amostra obtida. Assim, seria possível obter uma melhor avaliação quanto à intensidade desses eventos, como em estudo conduzido por Conte et al. (1992), que seccionaram testemunhos em escala milimétrica para estudar indicadores de paleo-temperatura no Oceano Atlântico Norte.

7.1.6 Integração dos parâmetros considerados

Os resultados obtidos da análise de amostras da coluna sedimentar recuperada na região do Cabo Frio indicam baixas concentrações de todos os marcadores analisados, com algumas alterações episódicas. Indicam também uma origem mista para a matéria orgânica depositada, com predomínio de matéria de origem marinha mas com algum aporte terrígeno. Apesar de essa região ser conhecida pela ocorrência de ressurgências costeiras, onde a rápida transferência de material para os sedimentos leva a um maior potencial de preservação, o mesmo foi recuperado fora do banco lamoso estudado por Cruz et al. (2013) e Sanders et al. (2014). Deste modo o testemunho obtido reflete um maior teor de areia fina, que levou à menores concentrações dos analitos considerados.

Não era esperado encontrar elevados teores de HPAs ou hidrocarbonetos petrogênicos no local, justamente tendo em vista a distância da costa e a ausência de fontes óbvias desta família de compostos orgânicos, apesar da relativa proximidade com estruturas de extração de petróleo localizadas na Bacia de Campos. Na base do testemunho foram detectados HPAs de baixa massa molecular que sugeriram aportes relacionados a exsudações naturais de hidrocarbonetos. As amostras dos horizontes de profundidade considerado foram submetidas à análise de biomarcadores de petróleo (originalmente não previstas), que indicaram a presença de hopanos e esteranos maturados que, embora em baixa concentração, confirmaram observação anteriormente descrita por Baêta (2008), relativa à presença de hidrocarbonetos oriundos de exsudações naturais naquela região.

Ao longo do perfil sedimentar foi possível distinguir períodos em que foi observado um maior acúmulo de matéria orgânica associada às interações tróficas deflagradas pela ressurgência da ACAS. Carreira et al. (2012) que estudaram um testemunho na plataforma continental em área localizada cerca de 50 km ao sul da Baía da Guanabara – RJ (isóbata de 100 metros), relataram elevadas concentrações de esteróides no topo da coluna sedimentar estudada, concluindo que a ressurgência da ACAS não está restrita à região do Cabo Frio, mas se estende regionalmente ao longo da plataforma. Neste estudo, apesar das baixas concentrações dos n-alcanos e esteróides, foi possível distinguir períodos em que ocorreu rápida e intensa transferência de matéria orgânica para o sedimento, levando ao acúmulo associado à ressurgência, possivelmente decorrente de intrusões mais efetivas da ACAS sobre a plataforma continental. No entanto essa observação precisa ser melhor investigada.

7.2 Plataforma continental na região da foz do Rio Doce

7.2.1 Características fisiográficas da região

O Rio Doce, que tem sua nascente na Serra da Mantiqueira - MG, desemboca no Oceano Atlântico no estado do Espírito Santo, próximo ao distrito de Regência (município de Linhares). Segundo dados disponíveis na página do Comitê da Bacia Hidrográfica do Rio Doce na Internet (CBH-DOCE), a área de drenagem de sua bacia corresponde a 86.715 km², dos quais 86% encontram-se no Estado de Minas Gerais e 14% no Espírito Santo (CBH-DOCE, 2018).

O Rio Doce está inserido na Região Hidrográfica do Atlântico Sudeste, região hidrográfica mais povoada do país (BRASIL, 2017b). Cerca de 98% da área de sua bacia está inserida no bioma de Mata Atlântica, um dos mais importantes e ameaçados do mundo, enquanto os 2% restantes estão inseridos em área de Cerrado (BRASIL, 2016; CBH-DOCE, 2018). Sua bacia abrange 225 municípios, sendo 200 em Minas Gerais e 25 no Espírito Santo (BRASIL, 2016). Em termos populacionais, os maiores municípios são Governador Valadares e Ipatinga em Minas Gerais; Colatina e Linhares no Espírito Santo (BRASIL, 2018b). A população total é da ordem de 3,6 milhões de habitantes (BRASIL, 2016).

Os recursos hídricos da bacia desempenham um papel fundamental na economia do leste mineiro e do noroeste capixaba, uma vez que fornecem a água necessária aos usos doméstico, agropecuário, industrial e geração de energia elétrica, dentre outros. A bacia possui relevância na geração de energia elétrica, sendo que atualmente encontram-se em operação 10 usinas hidrelétricas (UHEs), sendo 4 localizadas na calha do rio Doce e 6 em seus afluentes (BRASIL, 2016). A área da bacia encontra-se sob pressão de diversos fatores de cunho antropogênico, como as atividades industriais (especialmente mineração e cultivo de eucaliptos para a indústria de papel e celulose) e o nível elevado de supressão da cobertura vegetal. Além disso, as áreas de pastagem encontram-se bastante degradadas, com volumes expressivos de sedimentos carreados aos cursos d'água, de modo que as características de solos e relevo a levam a uma condição de fragilidade no tocante a susceptibilidade à erosão (BRASIL, 2016).

A deficiência observada no Brasil, em termos de saneamento básico, também se reflete na condição da bacia hidrográfica do Rio Doce: no Brasil, segundo dados do Ministério das Cidades, 44,9% do esgoto é tratado enquanto na região sudeste esse índice atinge o patamar de 83,2% nas áreas urbanas (BRASIL 2018a). Apesar disso, a falta de tratamento dos esgotos domésticos é um dos principais problemas verificados na bacia do Rio Doce: nessa bacia os cursos d'água normalmente funcionam como canais receptores, transportadores e autodepuradores dos rejeitos e efluentes produzidos pelas atividades econômicas desenvolvidas e também dos esgotos domésticos da grande maioria dos municípios existentes, o que compromete a qualidade da água (BRASIL, 2016). Das cidades localizadas na bacia do Rio Doce, apenas 41 apresentam serviços de coleta e tratamento de esgotos. Dessas, somente 28 tratam mais da metade do esgoto que produzem (BRASIL, 2016).

A figura 29 apresenta um mapa da bacia do Rio Doce, com o panorama da geração e tratamento de esgotos por município.

Figura 29 – Panorama do tratamento de esgotos por município e ocorrência de cianobactérias na bacia do Rio Doce (BRASIL, 2016).

O impacto dessa carência em termos de tratamento de esgotos apresenta consequências deletérias em alguns trechos da bacia, notadamente nos seus afluentes e no seu médio curso, com a ocorrência de eutrofização, indicada por meio de florações de cianobactérias, bem como pelos níveis elevados de coliformes termotolerantes e de alguns metais acima dos limites legalmente estabelecidos (BRASIL, 2016). Tais florações, segundo relatório técnico da Agência Nacional de Águas (Ocorrência de cianobactérias na bacia hidrográfica do Rio Doce) (BRASIL, 2012 apud BRASIL, 2016) e estudo de Jardim et al. (2014), são recorrentes na bacia do Rio Doce, com ocorrência em seu curso principal e nas bacias afluentes no estado do Espírito Santo, especialmente no período de julho a dezembro (estação seca).

As duas cidades mais populosas da bacia contrastam em termos da coleta e tratamento de esgotos: enquanto Ipatinga trata praticamente todo o seu esgoto sanitário, Governador Valadares, cidade mais populosa da bacia e localizada no curso médio do Rio Doce, ainda não possui estação de tratamento de esgotos e descarta seus resíduos sem tratamento na calha do rio (BRASIL, 2016; BRASIL, 2018c), respondendo pelos baixos índices de qualidade da água registrados no médio curso do rio.

A região tem duas estações bem definidas, inverno seco (abril a setembro) e verão úmido (outubro a março), com precipitação média mensal de 145 mm e temperaturas médias de 24 a 26 °C (ALVARES et al., 2013; BERNARDINO et al., 2015 apud GOMES et al., 2017). Similarmente ao Rio Paraíba do Sul, a região da bacia de drenagem do Rio Doce está sujeita a eventos críticos de cheias na estação chuvosa (BRASIL, 2015). As maiores vazões são geralmente observadas entre dezembro e janeiro, variando desde 2.000 m³/s na estação chuvosa até 500 m³/s na estação seca (BRASIL, 2017a). Na estação chuvosa, as cheias podem lixiviar o solo urbano, transportando poluentes diversos para o rio, bem como ocasionar erosão dos solos, arrastando volumes expressivos de sedimentos que são carreados aos cursos d'água e transportados rio abaixo, ao longo do seu leito. Tais eventos podem, ainda, ressuspender poluentes imobilizados nos sedimentos de fundo no leito do rio, os quais acabam sendo transferidos para novas zonas de acumulação e, por fim, acabam chegando até o oceano. Desde a década de 1970, houve pelo menos três grandes enchentes que provocaram prejuízos a diversos municípios da bacia do Rio Doce (CPRM, 2004; UFV, 2018): no ano de 1979 houve um episódio de grande monta, que teve repercussão em todo o país e até no exterior; no ano de 1985, houve outra enchente, de menores proporções, que ainda assim causou prejuízos às cidades atingidas; e, em 1997², um terceiro episódio também foi registrado, ocasionando prejuízos similares aos anteriores. Mais recentemente, no verão de 2012/13, um quarto episódio foi observado, com um total de 47 municípios afetados no estado do Espírito Santo, com destaque para as cidades de Linhares e Colatina (ZERO HORA, 2013). Os apêndices B1 e B2 consistem de dados da série histórica de vazões máximas no Rio Doce de duas diferentes estações (Governador Valadares - MG e Colatina - ES), entre os anos de 1938 e 2014, obtidos por meio de consulta ao portal do Sistema Nacional de Informações Hidrológicas do Brasil (HIDROWEB, 2019). Essas séries documentam tais períodos de cheias no rio e indicam a ocorrência de vazões extremas, que apresentam vazão máxima mais pronunciada nos anos mais recentes. O processo de ocupação, transformação e interferências diretas no leito do rio,

² Segundo Zero Hora (2013), a maior cheia da história do Rio Doce ocorreu no ano de 1997.

observado ao longo das últimas décadas, sobretudo após a construção das barragens das UHE de Mascarenhas e Aimorés (ambas operadas a fio d'água), levou a alterações nas vazões e na morfologia do rio. Coelho (2007) apud Franco (2013) constatou aumento das vazões mensais abaixo da média, atribuído à ação do homem no processo de ocupação e exploração da bacia do Rio Doce. Tais características denotam que o transporte de sedimentos para a plataforma continental pode ser bastante complexo.

Outro aspecto notável é a situação da bacia em termos de cobertura vegetal. O desmatamento na Mata Atlântica brasileira começou com a colonização brasileira, inicialmente em busca do Pau-Brasil. No estado de Minas Gerais a história do desmatamento se iniciou com a descoberta de ouro. De acordo com Silva (1995), a atividade de mineração do chamado "Ciclo Econômico do Ouro" (século XVII) caracterizou-se por ações predatórias dos jazimentos e agressão violenta ao meio ambiente. No entanto, na região do leste de Minas Gerais e em parte significativa do Espírito Santo, a área da bacia do Rio Doce foi relativamente poupada até o início do século XX. Essas regiões tiveram seu processo de ocupação protelado, uma vez que a Coroa portuguesa proibia a ocupação das áreas ao leste da Estrada Real e da Zona Aurífera para dificultar o acesso de potências europeias à região das Minas e coibir o contrabando do ouro e diamantes (CARVALHO & MATOS, 2016). A ocupação ininterrupta do vale do Rio Doce só se intensificou após a construção da estrada de ferro que liga Vitória a Minas. Esse processo, embora tenha antecedentes que remontem à segunda metade do século XIX, iniciou-se efetivamente em 1904, e provocou em poucas décadas o desmatamento de uma ampla área de floresta até então intocada (CARVALHO & MATOS, 2016, op.cit).

Além dos aspectos até aqui colocados sobre a precariedade da saúde ambiental da bacia do Rio Doce, que vem se degradando gradativamente ao longo de sua história, no dia 05 de novembro de 2015 ocorreu aquela que é atualmente considerada a maior tragédia ambiental do Brasil, que se deu com o rompimento da barragem de rejeitos de Fundão, localizada no município de Mariana – MG (BRASIL, 2016; MARTA-ALMEIDA et al., 2016; GUERRA et al., 2017; GOMES et al., 2017; HATJE et al., 2017). Este incidente, além de ocasionar a morte de funcionários e moradores da região, espalhou rejeitos de mineração ao longo de todo o curso do rio, ocasionando mortandade disseminada de peixes ao longo do seu percurso (figura 30) e, ainda, danos ambientais à plataforma continental na região próxima à sua foz. A espessura da lama no local onde foi obtida a coluna sedimentar associada à região da foz do Rio Doce – objeto deste estudo, atingiu 4 cm (BAHR et al., 2016).

Figura 30 - Mortandade de peixes na área do Parque Estadual do Rio Doce (BRASIL, 2016)

Algumas observações importantes devem ser consideradas acerca desse episódio: 1 – Esse não foi o primeiro rompimento de barragens no Brasil e, nem ao menos, nessa bacia de drenagem. No ano anterior ao rompimento da barragem de Fundão, ocorreu o rompimento de uma barragem da mineradora Herculano, na cidade de Itabirito – MG, também localizada na bacia de drenagem do Rio Doce. Na ocasião, de modo similar, houve contaminação das águas e assoreamento de córregos e rios (BRASIL, 2016), apesar de as proporções desse incidente não serem comparáveis ao evento de 2015. Também em Itabirito, outro incidente tinha ocorrido em 1986. Ao todo, seis incidentes foram registrados somente no estado de Minas Gerais desde o ano de 1986 (BRASIL, 2016). Recentemente esse número foi aumentado, com o rompimento da barragem de rejeitos de mineração operada pela empresa Vale S.A. em Brumadinho – MG. Não estão disponíveis informações detalhadas sobre o impacto ambiental de cada um desses incidentes na saúde ambiental das áreas atingidas;

2 – Conforme noticiado pela imprensa, por ocasião do rompimento da barragem de Fundão, o Rio Doce era considerado poluído e assoreado. O rio já passava pela pior crise de sua história tanto pela escassez de água quanto pela degradação de sua bacia em decorrência do lançamento de esgotos, assoreamento e desmatamento (ESTADO DE MINAS, 2015). Tal reportagem corrobora o contido no documento "Conjuntura dos recursos hídricos no Brasil. Informe 2015 – Encarte Especial sobre a Bacia do Rio Doce: Rompimento da Barragem em Mariana/MG", emitido pela Agência Nacional de Águas do Brasil em 2016 (BRASIL, 2016);

3 – Apesar de a bacia ter sofrido diversas alterações pela ocupação humana ao longo de sua história e – consequentemente – ter estado sujeita a múltiplos impactos humanos antes do rompimento da barragem de Fundão, as mudanças crônicas que vinham sendo observadas nos ecossistemas aquáticos foram mal quantificadas antes do acidente (GOMES et al., 2017);

4 - Análises conduzidas em monitoramentos após o incidente relataram que, durante a passagem da pluma de sedimentos foram observadas elevações significativas nas concentrações de metais pesados, provavelmente adsorvidos aos sedimentos finos, como Alumínio, Arsênio, Cádmio, Chumbo, Cobre, Cromo, Mercúrio e Níquel (BRASIL, 2016). Os rejeitos armazenados na barragem de Fundão, anteriormente ao incidente, eram classificados como resíduos não perigosos e não inertes para ferro e manganês, de acordo com um Laudo Técnico Preliminar do IBAMA emitido após o incidente (BRASIL, 2016). Também, de acordo com análises realizadas em 2014, o Instituto Mineiro de Gestão das Águas informou que os rejeitos de Fundão eram compostos basicamente por óxido de ferro e sílica (IGAM, 2016 apud BRASIL, 2016). Na ocasião, não foi mencionada a possibilidade de outros compostos químicos estarem armazenados na barragem de rejeitos, embora seja plausível supor que outros materiais (talvez até não documentados nos registros administrativos da empresa responsável pela barragem) tenham sido encaminhados para o local no período em que a barragem armazenou esses resíduos de mineração. A indústria de mineração utiliza amplamente um explosivo industrial de baixo custo, chamado ANFO, na perfuração e desmonte de lavras de minerais (GERMANI, 2002). Tal explosivo é composto de uma mistura de nitrato de amônio com óleo combustível, cujos resíduos podem ser incorporados aos rejeitos de mineração. Também, considerando que os rejeitos atingiram algumas localidades no trajeto até o leito do rio e destruíram diversas construções e outras instalações, provavelmente outros produtos foram agregados aos resíduos de mineração originalmente armazenados na barragem de Fundão, como derivados de petróleo ou defensivos agrícolas, por exemplo;

5 – Alguns estudos foram conduzidos para avaliar os impactos desse incidente, com foco principalmente na quantificação dos metais aportados ao ambiente e na avaliação dos impactos desses aportes (GOMES et al., 2017; GUERRA et al., 2017; HATJE et al., 2017), na dispersão oceânica dessa pluma de rejeitos (MARTA-ALMEIDA et al., 2016) e também nos efeitos dos rejeitos de mineração no ecossistema (BOTTINO et al., 2017). Além disso, foi estabelecida uma linha de base em termos das comunidades de macrofauna bêntica que viviam na plataforma continental antes do desastre (MATTHEWS-CASCON et al., 2018). Foi ainda registrado o enriquecimento em Arsênio dos sedimentos da plataforma continental na região da foz do Rio Doce, em colunas sedimentares obtidas anteriormente ao rompimento da barragem de rejeitos

da mineradora Samarco (CAGNIN et al., 2017), o qual foi atribuído à explotação de ferro e ouro na bacia do Rio Doce. No entanto, outros parâmetros que poderiam indicar o aporte antropogênico anterior ao incidente, ainda não foram publicados; e

6 – Em função do rompimento da barragem de Fundão e das consequências advindas desse incidente ao longo da bacia do Rio Doce e plataforma continental, na porção oceânica atingida pela pluma de rejeitos de mineração, foram estabelecidos programas de monitoramento para avaliar as consequências ambientais advindas desse incidente, como o conduzido pela Fundação Renova (RENOVA, 2018), que monitora parâmetros como oxigênio dissolvido, metais pesados, turbidez e potabilidade das águas.

Em estudo conduzido por Balzer & Knoppers (1996) foram analisadas amostras de sedimentos superficiais e de armadilhas de sedimentos obtidas na plataforma continental, em região próxima ao local onde foi obtido o testemunho deste estudo. Na ocasião foram detectadas concentrações elevadas de HPAs pirolíticos, em níveis comparáveis aos de ambientes costeiros de regiões industrializadas (BALZER & KNOPPERS, 1996), indicando o caráter antropizado dessa região da plataforma continental brasileira. No entanto não foram conduzidos outros estudos que visassem entender aspectos prévios da geoquímica orgânica da bacia ou da plataforma continental associada, embora já tenham sido conduzidos outros estudos nessa região, como os conduzidos por Patchineelam & Smoak (1999) e Quaresma et al. (2015), que estudaram, respectivamente, as taxas de sedimentação na plataforma continental interna na costa leste brasileira e os processos sedimentares que ocorrem ao longo da plataforma continental adjacente à desembocadura do rio Doce. Dadas as características da bacia, diversas famílias de estressores antropogênicos podem ter sido aportados ao ambiente ao longo da história da bacia, como HPAs e praguicidas clorados, por exemplo.

7.2.2 Granulometria

A análise granulométrica de amostras selecionadas do testemunho BIOMT3 indicou que a coluna sedimentar obtida era composta, predominantemente, pela fração silte, cujo teor variou entre 62,17 e 70,83%. Já a fração argila variou entre 29,13 a 37,83% enquanto a fração areia variou entre 0,00 e 0,19%. Tais resultados confirmam a informação constante do relatório do cruzeiro (BAHR et al., 2016), de que a litologia dos sedimentos coletados na área é predominantemente composta por silte argiloso. A figura 31 apresenta estes resultados para as

amostras analisadas. Observa-se também que a granulometria não variou de forma significativa ao longo da coluna sedimentar.

Neste testemunho os primeiros 4 cm da camada superior são compostos por sedimentos finos avermelhados, presumivelmente depositados a partir do material em suspensão transportado para a plataforma continental em decorrência do rompimento da barragem de Fundão, ocorrido em novembro de 2015. Este testemunho apresentou ainda camadas de coloração variável (alternância entre camadas escuras e claras), que indicam fluxos fluviais individuais e deposição de material em suspensão (BAHR et al. 2016).

Figura 31 - Resultados da análise granulométrica do testemunho BIOMT3

7.2.3 Datação

As análises relativas à datação não apresentaram decréscimo exponencial esperado na atividade do ²¹⁰Pb_{ex}. Deste modo, a obtenção da taxa de sedimentação tornou-se tarefa bastante complexa, em virtude das variações observadas na atividade do ²¹⁰Pb_{ex}. Tal comportamento já tinha sido relatado em estudos anteriores, como o conduzido por Franco (2013) e, também, por Patchineelam & Smoak (1999), denotando que durante a época das chuvas ocorre transporte ativo de material sedimentar para a costa, com variações na taxa de sedimentação. Essa taxa de sedimentação variável, aparentemente, obedece tanto ao regime de chuvas quanto a crescente urbanização/industrialização na área da sua bacia de drenagem. A figura 32 apresenta a

Atividade do 210 Pb_{ex} em função da profundidade. Dado que a atividade do 210 Pb_{ex} em algumas amostras foi inferior à do 210 Pb_s, esses pontos não foram utilizados/representados.

Figura 32 – Atividade do ²¹⁰Pbex – Testemunho BIOMT3.

O testemunho apresenta taxa de sedimentação variável ao longo do tempo e não mostra o decréscimo monotônico esperado na Atividade do ²¹⁰Pb (APPLEBY & OLDFIELD, 1983; ALEXANDER, 2017), que se reflete em baixa correlação linear entre os pontos (França 2019, comunicação pessoal), de modo que existem variações significativas nas taxas de sedimentação que não podem ser explicadas por bioturbação ou mistura física de sedimentos (APPLEBY & OLDFIELD, 1983). Dada a ocorrência sazonal de chuvas de intensidade variável, com registro de enchentes na área da bacia, este modelo não pôde ser diretamente aplicado à toda a coluna sedimentar, obrigando ao cálculo das taxas de sedimentação, por tentativa.

A figura 33 consiste da cronologia-tentativa de deposição dos sedimentos para o testemunho BIOMT3, estabelecida a partir da taxa de sedimentação média, utilizando também como base as profundidades em que se deram as maiores concentrações de HPAs (apresentados no item 7.2.5.2 e utilizados aqui como marcadores secundários) e os dados históricos de vazão máxima no leito do rio.

Figura 33 – Cronologia-tentativa para o testemunho BIOMT3.

Tal cronologia pressupõe que as maiores concentrações de HPAs são oriundas do transporte de material continental por via fluvial em decorrência das enchentes registradas nos anos hidrológicos de 1984/85, 1996/97 e 2012/13, com as maiores concentrações de HPAs coincidindo com as maiores vazões máximas medidas nas séries históricas das estações de Governador Valadares – MG (apêndice B1) e Colatina – ES (apêndice B2) (HIDROWEB, 2019). Tal abordagem é similar à descrita em Andersen (2017) e utilizada por Niencheski et al. (2014), mas ao invés do radioisótopo ¹³⁷Cs foram utilizados os resultados de HPAs totais para calibração externa da datação. Com base nos dados de HPAs é possível concluir que os sedimentos locais apresentam taxas de sedimentação elevadas por ocasião das enchentes registradas e também não apresentam ressuspensão/mistura física significativa

O apêndice B3 apresenta os dados que serviram de base para a datação apresentada na figura 33. A datação, em períodos anteriores ao ano hidrológico de 1984/85 (a partir de 18 cm de profundidade), foi estabelecida com a taxa de sedimentação média calculada por França (2019, comunicação pessoal) por meio do modelo CIC, de 0,56 cm.ano⁻¹. A datação com o radioisótopo ¹³⁷Cs, caso disponível, poderia se prestar como uma ferramenta adicional para refinar o modelo de datação, visto que no hemisfério sul a deposição do ¹³⁷Cs oriundo de testes nucleares ocorreu no ano de 1965 (ARGOLLO, 2001 apud LIMA et al., 2011). Com base nos

resultados, em vista de o testemunho BIOMT3 ter sido obtido no ano de 2016, é possível reconstruir a história sedimentar local até, aproximadamente, o ano de 1944.

7.2.4 Parâmetros de caracterização geral

Os parâmetros de caracterização geral utilizados indicaram que as amostras coletadas a partir do testemunho BIOMT3 apresentam origem mista, com predomínio de matéria orgânica marinha. No entanto, alguns parâmetros indicam influência marcadamente terrígena, possivelmente relacionadas à pouca distância da foz do rio.

Os teores de COT variaram entre 1,29% na superfície (amostra BIOMT3-01) a 1,32% (amostra BIOMT3-40), com média de 1,44% (desvio-padrão de 0,28%), máximo de 2,11% (entre 10 e 11 cm de profundidade) e mínimo de 0,80% (entre 21 e 22 cm de profundidade) (figura 34), condizentes com os teores esperados para depósitos sedimentares nas margens continentais (HEDGES & OADES, 1997). Diferentemente do testemunho BIOMT1, obtido em uma área mais estável geoquimicamente, o testemunho BIOMT3 apresenta diversos picos (vários mínimos e máximos) em termos da %COT, possivelmente, decorrentes de alternância entre períodos secos e chuvosos quando, em decorrência das cheias, deve ter ocorrido uma maior variação no aporte de sedimentos para a plataforma continental.

Figura 34 – % COT versus profundidade e ano de deposição para o testemunho BIOMT3

Os demais dados, obtidos a partir da caracterização isotópica (%NT, δ^{13} C e δ^{15} N) determinados a cada 1 cm até 36 cm de profundidade, indicam que:

1 - A %NT apresenta comportamento similar ao COT, com seus valores variando entre 0,07 e 0,23% (média de 0,14% e desvio-padrão de 0,03%) ao longo de todo o perfil, máximo de 0,23% entre os níveis de 10-11 cm de profundidade, coincidente com os maiores teores de COT e com as enchentes de 1997;

2 – A razão C/N variou entre 8,83 e 12,26, com os menores valores entre o horizonte de
9 a 18 cm de profundidade e os maiores valores, sugestivos de maior contribuição terrígena, próximo à superfície; e

3 – As análises de δ^{13} C e δ^{15} N indicam variações significativas nos resultados desses parâmetros. A razão δ^{13} C variou entre -24,50 e -23,01% (média de -23,55% e desvio-padrão de 0,32%) enquanto a δ^{15} N variou entre 5,78 e 6,89% (média de 6,19% e desvio-padrão de 0,24%). Considerando os limiares descritos para o modelo de mistura adotado por Xing et al. (2014) e Chen et al. (2017b) para avaliar a percentagem de matéria orgânica terrígena a partir da δ^{13} C, é possível concluir que esse proxy indica a contribuição mista de fontes marinhas e terrígenas, com contribuição terrígena estimada entre 44,95 e 64,35%.

Os dados da razão C/N versus δ^{13} C, confrontados com dados típicos para amostras de ambientes costeiros, de acordo com os intervalos disponíveis em Lamb et al. (2006), figura 35, confirmam a origem mista da matéria orgânica no ambiente considerado.

Figura 35 – Razão C/N versus δ^{13} C para amostras selecionadas do testemunho BIOMT3.

7.2.5 – Análise cromatográfica

7.2.5.1 Hidrocarbonetos alifáticos na PC Doce

Os resultados das análises de hidrocarbonetos alifáticos estão compilados na tabela 12 e são apresentados graficamente no apêndice B4. Essa tabela apresenta os dados de concentração de n-alcanos individuais resolvidos (n- C_{11} a n- C_{36}), juntamente com a MCNR e os isoprenóides pristano e fitano. São ainda apresentados resultados para os diversos proxies de hidrocarbonetos alifáticos, anteriormente descritos. A recuperação do padrão 1-eicoseno variou entre 56,11 e 118,57%, com todas as amostras dentro dos limites de qualidade propostos por Sericano et al. (1998) e Denoux et al. (1998) e somente uma amostra fora dos limites de qualidade analítica propostos por Ribani et al. (2004).

Os teores de hidrocarbonetos alifáticos totais variaram entre 1.801,77 ng.g⁻¹ (ou 1,80 μ g.g⁻¹) a 46.826,36 ng.g⁻¹ (ou 46,83 μ g.g⁻¹). Os resultados obtidos, confrontados com limiares de classificação da qualidade de sedimentos estabelecidos em estudos anteriores (VOLKMAN et al., 1980 apud VOLKMAN et al. 1992; VAN VLEET et al., 1984 & PILLON et al., 1986 apud BOULOUBASSI & SALIOT, 1993), indicam concentrações moderadas de hidrocarbonetos alifáticos nos níveis próximos à base do testemunho BIOMT3 sem, no entanto, configurar níveis que indiquem contaminação clara por petróleo com base nessas referências e tratando somente de hidrocarbonetos alifáticos.

Nesse testemunho a maior concentração de hidrocarbonetos alifáticos se deu próximo à base do testemunho, com a amostra BIOMT3-38 (entre 37 e 38 cm de profundidade), seguida das amostras BIOMT3-26 e BIOMT3-27 (entre 25 e 27 cm de profundidade), localizadas na porção intermediária do testemunho. A concentração determinada na base do testemunho foi cerca de uma ordem de grandeza maior que os máximos valores encontrados no testemunho BIOMT1 e comparável às maiores concentrações detectadas por Abessa et al. (2017) em sedimentos superficiais sobre a plataforma continental no estado de São Paulo. Apesar da concentração relativamente elevada nesses horizontes de profundidade, cujo teor de hidrocarbonetos alifáticos totais é superior a 10 μ g.g⁻¹ (peso seco), indicando a possível ocorrência de aportes antropogênicos, a concentração determinada é inferior a 100 μ g.g⁻¹ ou 500 μ g.g⁻¹, limiares propostos respectivamente por Bouloubassi & Saliot (1993) e Volkman et al. (1992), os quais indicam que concentrações superiores são geralmente associadas a aportes de petróleo/derivados. Por este critério, não é possível afirmar que os sedimentos depositados

foram contaminados por aportes petrogênicos. Em outros horizontes de profundidade os resultados quantitativos variaram de forma menos significativa, como pode ser observado no perfil da figura 36.

Figura 36 – Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT3

Os n-alcanos detectados apresentaram ligeiro predomínio de ímpares sobre pares na maior parte do testemunho. Tal característica, sobretudo na faixa entre n- C_{27} e n- C_{33} , indica aportes associados a vegetais superiores (EGLINTON & HAMILTON, 1967; VOLKMAN et al., 1992). O proxy IPC2 variou entre 1,15 e 4,95, com contribuições principais dos homólogos de n- C_{22} a n- C_{33} . Os índices TAR e Pmar-aq, também indicativos da contribuição de vegetais superiores para o sedimento, indicam o predomínio de n-alcanos associados a essa classe de vegetais sobre aqueles de origem marinha ao longo de todo o testemunho, confirmando a importância relativa dos compostos terrígenos no local estudado.

A MCNR se apresenta em concentração relativamente baixa ao longo de todo o testemunho. A proporção da MCNR varia entre 17,28 e 56,01% dos hidrocarbonetos alifáticos totais, sendo pouco significativa quando comparada aos alcanos resolvidos.

O índice TAR variou entre 2,85 e 82,15, com os menores valores coincidindo com os menores valores obtidos para a razão C/N (entre 13 e 18 cm de profundidade) e com a menor

proporção de matéria orgânica terrígena estimada a partir da δ^{13} C. Os maiores resultados obtidos para o TAR são, em geral, coincidentes com as profundidades em que se dão as maiores concentrações de hidrocarbonetos alifáticos, com destaque para o horizonte entre 35 e 36 cm de profundidade (onde esse índice atinge seu valor máximo, juntamente com o valor de 1,19 para o índice IPC2) e entre 37 e 38 cm de profundidade (onde o TAR atinge o valor de 42,92, juntamente com o valor mínimo de 1,15 para o índice IPC2 e onde ocorre também a maior concentração de hidrocarbonetos alifáticos totais). Tais valores para o índice IPC2 sugerem a ocorrência de aportes relacionados a hidrocarbonetos de petróleo, indicados pelo baixo predomínio de alcanos ímpares sobre pares. O índice Pmar-aq variou entre 0,045 e 0,597, também indicando contribuição associada a vegetais superiores ao longo de todo o perfil sedimentar.

Diferente do observado com o testemunho BIOMT1, a maior concentração de hidrocarbonetos alifáticos totais no testemunho BIOMT3 não coincide com a profundidade da coluna sedimentar em que se deu a maior %COT. É possível que isto tenha ocorrido em função de outros contribuintes alóctones e autóctones não lipídicos para a matéria orgânica local, como exposto por Xing et al. (2011), como matéria lenhosa (fenóis de ligninas, por exemplo), não caracterizadas neste estudo.

Os lipídios representam uma pequena fração do COT (XING et al., 2011), de modo que sua assinatura pode não ser preponderante para o perfil bruto da matéria orgânica, levando o perfil de COT a ser diferente do perfil cromatográfico quando a matéria orgânica contribuinte apresenta maior complexidade. Também pode ter contribuído para esta não coincidência entre ambos os perfis a maior taxa de sedimentação observada na região da foz do Rio Doce, que determina uma maior preservação de outras famílias de compostos orgânicos mais lábeis, os quais não são preservados na região do Cabo Frio, por exemplo.

A figura 37 apresenta a distribuição quantitativa de n-alcanos em diferentes horizontes de profundidade ao longo do testemunho BIOMT3. Apesar do aumento da concentração de hidrocarbonetos alifáticos no topo do testemunho (horizonte entre 0 e 1 cm de profundidade), figura 37A, não ocorre variação significativa na concentração de alifáticos totais nas demais porções dos primeiros 4 cm do testemunho, diretamente relacionados com o aporte agudo de sedimentos que atingiram a costa em decorrência do rompimento da barragem de Fundão. Nota-se nos primeiros 4 cm de profundidade (figuras 37A e 37B), no entanto, o aumento na concentração de hidrocarbonetos leves, que indicam possível contribuição bacteriana, além da contribuição algal e de vegetação aquática para os sedimentos.

Tabela 12 – Hidrocarbonetos alifáticos no Testemunho BIOMT3

Alifáticos (ng.g ⁻¹)	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19	T3-20
n-C11	4,33	30,02	3,69	37,15	6,20	44,06	3,87	2,23	4,13	17,93	5,44	24,65	28,47	16,15	40,82	23,37	52,91	26,42	13,58	5,35
n-C12	1,05	5,08	1,38	3,08	1,58	9,22	0,84	2,97	1,12	7,98	1,33	1,87	15,22	11,10	24,88	13,96	24,12	17,04	12,36	5,44
n-C13	1,17	9,77	2,43	17,76	4,38	37,18	1,73	3,09	2,15	9,04	2,46	13,90	15,58	7,89	34,45	10,07	18,23	13,72	7,79	4,12
n-C14	5,17	5,91	5,50	3,80	6,40	15,02	4,03	5,19	5,94	14,81	7,45	2,78	12,39	16,23	48,74	15,06	24,47	20,02	9,05	3,36
n-C15	21,34	20,98	19,15	8,80	16,32	38,07	6,70	9,78	14,23	33,29	16,02	5,19	17,19	20,09	60,27	20,03	29,40	20,17	14,75	6,52
n-C16	29,03	15,58	20,50	10,41	12,62	28,16	6,82	20,96	16,22	33,94	14,52	7,38	22,50	21,69	57,78	21,78	26,41	19,40	22,56	11,16
n-C17	74,40	54,20	56,54	53,80	40,45	47,51	20,83	25,03	33,16	60,54	27,13	12,35	26,85	30,83	43,92	32,78	23,66	16,30	33,01	18,25
Pristano	131,46	50,97	53,95	57,50	45,71	67,37	11,67	32,04	15,04	35,38	14,15	8,47	13,76	27,60	46,05	22,49	37,76	15,38	14,40	6,03
n-C18	97,89	48,41	56,81	44,19	25,64	43,33	29,04	29,95	39,15	64,60	24,60	26,10	43,66	57,32	49,74	54,87	20,16	30,40	46,49	30,27
Fitano	59,89	33,41	42,62	36,93	14,36	40,46	11,57	30,13	12,30	37,38	11,89	10,98	17,88	37,21	41,41	28,91	18,33	12,40	17,25	6,62
n-C19	117,15	45,76	71,75	39,20	38,95	48,13	42,11	24,48	48,93	62,87	31,67	28,05	41,95	102,87	39,82	89,96	21,63	33,25	39,93	24,84
n-C20	159,51	52,99	84,36	43,28	57,26	60,71	54,40	37,21	63,54	62,55	58,81	27,33	49,14	92,94	62,80	102,88	47,50	40,11	44,96	41,33
n-C21	259,10	46,70	49,01	40,90	43,87	52,85	48,07	18,98	52,62	58,16	52,59	24,26	42,08	65,91	58,98	69,17	43,62	27,60	29,69	27,92
n-C22	462,24	47,27	36,49	36,61	29,42	36,08	31,43	23,07	32,39	40,62	46,27	27,50	40,80	34,64	82,65	48,20	35,82	18,36	24,03	28,35
<u>n-C23</u>	679,90	64,96	49,49	56,67	61,76	61,35	46,36	30,92	47,83	83,52	68,87	45,25	39,19	36,97	127,92	56,99	41,90	25,40	37,75	34,59
n-C24	929,99	52,05	42,82	40,30	40,53	43,32	42,18	26,22	48,43	53,81	52,01	41,66	45,06	37,41	98,11	43,51	45,54	19,78	30,76	27,54
n-C25	1054,69	133,48	76,88	108,25	72,33	116,46	75,02	37,11	97,22	109,93	129,83	72,35	49,75	51,08	121,55	67,92	64,37	43,72	62,91	61,62
n-C26	825,13	76,57	48,31	48,49	57,83	56,87	55,71	38,37	51,95	72,95	57,77	43,40	45,28	28,98	104,64	38,51	48,51	20,80	38,34	37,35
n-C27	659,25	154,10	126,32	133,45	112,81	143,98	104,02	52,96	169,58	201,05	183,73	65,77	66,65	81,11	143,88	95,19	91,13	45,20	71,17	65,89
n-C28	420,45	116,04	53,40	97,02	64,28	100,50	59,79	41,19	78,18	119,28	70,25	57,03	38,98	39,90	120,60	45,40	45,00	28,71	56,77	50,68
n-C29	629,31	438,00	168,12	400,19	166,80	448,78	228,12	84,08	294,52	669,85	308,02	174,52	159,65	142,94	271,79	165,84	151,10	134,76	190,33	144,19
n-C30	249,43	160,15	54,05	150,17	62,07	153,60	58,78	50,32	93,98	178,43	75,72	66,68	48,11	47,69	137,58	69,73	55,14	37,84	72,02	52,59
n-C31	542,82	655,17	182,57	559,83	180,01	590,90	148,89	102,44	327,65	824,70	276,07	264,25	133,59	214,44	317,58	208,81	173,18	146,66	234,81	146,82
n-C32	170,24	152,34	52,37	121,17	55,98	134,95	44,65	39,91	67,35	166,23	63,98	70,41	44,27	48,19	122,11	58,16	52,12	31,00	54,88	45,13
n-C33	410,96	649,80	137,18	552,11	159,41	548,20	160,36	95,57	262,75	653,66	169,26	261,37	131,23	190,89	276,59	183,84	134,09	132,93	190,02	151,81
n-C34	114,38	91,41	31,53	80,08	30,36	67,69	22,50	27,56	43,09	82,41	32,13	41,97	27,46	31,17	130,55	38,05	32,68	21,88	40,09	31,86
n-C35	156,51	285,86	69,25	234,50	84,26	212,56	60,86	40,26	145,62	271,43	84,10	108,78	91,35	127,78	149,36	147,71	88,79	51,05	81,86	100,14
n-C36	38,13	30,47	26,44	26,69	10,12	22,56	7,50	9,19	14,36	27,47	10,71	13,99	9,15	10,39	43,52	12,68	10,89	7,29	13,36	10,62
	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19	T3-20
[MCNR]	6654,14	1391,33	1056,48	1317,81	480,38	1623,30	553,46	703,88	727,92	1028,18	396,24	939,46	907,30	1532,04	2698,56	1675,92	1293,49	744,17	588,20	1163,59
Σ [Alif. Res]	8304,93	3527,44	1622,92	3042,36	1501,71	3269,90	1387,83	941,17	2083,45	4053,80	1896,78	1548,24	1317,21	1631,40	2858,07	1785,87	1458,46	1057,60	1504,93	1180,36
[Alif. Totais]	14959,07	4918,//	26/9,40	4360,17	1982,08	4893,20	1941,29 6 01	1645,05	2811,37	10.82	10.26	2487,70	2224,51	3163,44	500	3461,80	2/51,96	1801,//	2093,13	2343,95
IAK ALK	2,105	10,51	3,24	10,74	2 1 9 4	0,03	1,000	4,04	0,22	10,82	1 101	0.772	4,10	2,65	5,09	0.779	2,060	4,08	0.825	7,19
PII/Fit	2,193	1,320	0.265	1,557	5,164	0.146	1,009	1,005	0.120	0,940	1,191	0,772	0,709	0,742	1,112	0,778	2,000	0.107	0,855	0,911
$\Sigma(15, 20/21, 25)$	0,397	0,154	0,205	0,147	0,279	0,140	0,244	0,207	0,189	0,115	0,254	0,211	0,233	0,198	0,297	0,250	0,247	0,197	0,191	0,248
2(15-20/21-55)	0,091	0,103	0,344	0,111	0,200	0,135	0,154	0,290	0,134	0,109	0,119	0,092	0,232	0,331	0,177	0,280	0,204	0,239	0,192	0,144
n-C1//Pri	0,57	1,06	1,05	0,94	0,88	0,/1	1,/8	0,78	2,20	1,/1	1,92	1,46	1,95	1,12	0,95	1,46	0,63	1,06	2,29	3,03
	1,03	1,45	1,55	1,20	1,79	1,07	2,31	42.70	3,18	1,/3	2,07	2,38	2,44	1,34	1,20	1,90	1,10	41.20	2,70	4,37
% MCNR	44,48	28,29	39,43	30,22	24,24	33,17	28,51	42,19	25,89	20,23	0.21	37,70	40,79	48,43	48,30	48,41	47,00	41,50	28,10	49,64
MCNK/KES	0,80	0,39	0,65	0,43	0,32	0,50	0,40	0,75	0,35	0,25	0,21	0,61	0,69	0,94	0,94	0,94	0,89	0,70	0,39	0,99
IPC2	1,34	3,24	2,81	3,42	2,40	3,40	2,73	1,8	3,35	3,87	3,45	2,83	2,33	3,40	1,92	2,81	2,30	3,31	2,81	2,50
%C01	1,29	1,/2	1,00	1,/3	1,0/	1,42	1,52	1,15	1,57	2,03	2,11	1,42	0,95	1,51	1,57	1,00	1,50	1,62	0,80	1,30
Recup. (%)	118,57	/8,06	109,96	//,84	103,07	93,01	94,99	108,02	108,80	/9,91	112,67	/1,9/	83,36	108,06	98,26	94,24	105,25	/3,8/	107,75	102,82

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado

Tabela 12 – Hidrocarbonetos alifáticos no Testemunho BIOMT3 (continuação)

Alifáticos (ng.g ⁻¹)	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
n-C11	9,93	12,16	13,17	19,05	26,83	138,08	17,82	16,09	17,58	16,13	3,14	9,96	10,43	8,88	11,79	8,17	10,57	20,68	10,93
n-C12	11,02	7,78	3,76	8,64	14,39	56,30	18,68	14,62	13,49	12,00	4,16	8,19	7,86	10,28	11,36	9,66	8,49	39,13	10,83
n-C13	7,89	7,79	6,92	65,79	131,25	162,47	235,17	112,18	11,63	153,84	55,29	216,92	301,16	313,15	273,85	134,91	150,33	256,04	129,72
n-C14	5,98	5,76	4,97	8,77	13,45	65,02	26,16	16,07	9,19	11,73	4,39	8,37	8,68	10,53	11,23	11,53	8,66	57,11	13,70
n-C15	9,08	8,81	7,67	11,76	17,02	105,11	17,13	12,58	10,55	16,43	6,31	13,14	11,81	13,14	16,19	14,16	12,33	32,46	16,85
n-C16	11,84	13,04	12,94	16,78	22,30	102,56	31,94	19,58	11,13	19,88	16,01	21,34	19,10	22,59	22,96	22,52	17,26	94,88	23,78
n-C17	19,92	20,88	19,76	20,41	23,10	134,60	25,72	16,72	11,06	13,96	8,58	18,37	16,19	20,61	21,11	15,96	11,17	85,62	15,11
Pristano	9,70	8,77	7,85	15,94	25,63	65,78	29,85	17,87	9,47	27,47	13,56	29,47	24,26	25,03	28,18	20,82	24,29	70,55	20,70
n-C18	27,66	26,01	24,36	27,65	30,95	83,19	82,88	53,12	23,36	15,49	29,13	20,47	19,43	26,11	24,02	22,17	17,50	138,56	38,44
Fitano	11,64	10,94	10,25	11,92	13,59	50,25	25,26	17,29	9,31	7,70	6,10	7,08	7,33	7,85	8,85	6,42	5,44	39,75	6,86
n-C19	29,10	26,96	24,82	32,14	39,45	69,22	54,15	41,70	29,26	13,32	11,48	13,63	19,84	11,89	18,26	17,13	13,93	84,56	13,88
n-C20	35,62	31,64	30,82	45,52	55,67	75,87	102,02	75,22	48,42	32,04	55,44	32,82	40,28	44,14	44,40	45,78	35,13	147,78	55,53
n-C21	24,45	24,79	27,62	33,45	39,28	43,31	160,28	93,23	26,19	23,06	23,22	19,44	41,42	21,70	44,44	37,46	42,79	327,39	19,75
n-C22	24,63	20,22	17,84	21,92	26,01	59,76	364,73	193,78	22,83	25,04	53,64	21,24	52,25	40,10	59,38	51,21	50,45	988,87	50,82
n-C23	35,52	27,92	23,10	34,09	45,08	54,42	587,66	307,67	27,69	39,14	28,24	45,59	103,36	36,68	65,50	71,37	74,76	1933,10	34,70
n-C24	29,70	26,01	24,91	28,22	31,53	61,46	592,50	311,04	29,58	27,63	60,00	50,35	134,72	50,41	71,12	88,23	60,88	2463,63	54,27
n-C25	67,36	52,88	43,67	64,15	84,63	69,69	570,90	311,35	51,81	72,94	58,44	59,39	196,72	45,84	107,16	133,81	78,02	2274,47	45,48
n-C26	50,46	39,58	32,66	37,57	42,47	77,96	402,27	217,08	31,89	43,69	43,75	43,11	240,63	54,87	99,46	153,06	51,79	2070,48	60,15
n-C27	83,59	69,60	62,57	80,31	98,05	208,17	548,62	306,33	64,04	94,27	69,71	76,48	462,88	79,12	189,41	346,72	114,50	2559,26	85,96
n-C28	76,86	68,87	67,77	72,81	77,85	146,98	687,52	370,38	53,24	76,93	57,56	73,55	671,57	56,09	215,26	720,05	80,32	3405,00	88,20
n-C29	194,57	194,96	214,84	263,18	311,52	1046,28	981,73	596,30	210,88	300,25	230,56	181,14	1089,36	284,09	515,88	1669,54	313,92	4121,15	255,71
n-C30	80,49	95,66	120,38	96,17	71,96	278,09	431,60	259,77	87,94	83,90	73,76	70,13	882,69	98,67	340,70	1768,78	105,67	2540,43	110,29
<u>n-C31</u>	202,99	204,46	226,37	308,14	389,91	1612,55	687,40	488,10	288,79	390,94	279,69	246,89	813,81	385,65	499,42	1865,65	394,15	2016,96	342,50
<u>n-C32</u>	62,54	70,92	79,30	86,06	92,83	252,53	184,29	131,05	77,81	102,28	58,58	79,09	307,42	68,07	139,80	1059,19	63,51	854,74	101,73
<u>n-C33</u>	182,65	170,99	159,32	261,65	363,99	1672,42	558,14	413,44	268,73	376,45	252,77	268,28	473,59	406,98	379,04	886,37	351,18	747,06	309,04
n-C34	34,48	36,91	39,34	45,58	51,83	131,00	69,07	55,08	41,09	57,21	48,89	43,64	68,67	62,34	57,44	225,03	55,94	135,26	74,65
n-C35	79,84	83,09	86,35	116,03	145,70	684,67	211,40	161,59	111,78	165,31	104,59	116,90	177,24	178,93	152,51	260,74	134,07	269,88	143,93
<u>n-C36</u>	11,49	12,30	13,11	15,19	17,28	43,67	23,02	18,36	13,70	19,07	16,30	14,55	22,89	20,78	19,15	75,01	18,65	45,09	24,88
	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
[MCNR]	445,30	445,04	444,78	910,79	1376,80	6312,65	7767,55	1355,78	466,78	1605,70	909,32	2647,28	3682,33	2013,60	2977,61	2248,60	2501,69	19006,48	1313,84
Σ [Alif. Res]	1431,00	1379,71	1406,44	1848,90	2303,52	7551,39	7727,91	4647,60	1612,44	2238,10	1673,27	1809,52	6225,58	2404,51	3447,87	9741,46	2305,68	27819,88	2158,40
[Alif. Totais]	1876,30	1824,75	1851,22	2759,69	3680,32	13864,03	15495,45	6003,38	2079,22	3843,80	2582,59	4456,80	9907,90	4418,11	6425,48	11990,06	4807,37	46826,36	3472,24
TAR ALK	8,28	8,28	9,64	10,13	10,05	9,28	22,86	19,59	11,08	17,97	22,00	11,18	49,45	16,41	21,68	82,15	21,98	42,92	14,92
Pri/Fit	0,833	0,802	0,766	1,338	1,886	1,309	1,181	1,034	1,017	3,567	2,224	4,162	3,309	3,189	3,183	3,243	4,467	1,775	3,019
Pmar-aq	0,206	0,168	0,131	0,147	0,156	0,045	0,410	0,363	0,137	0,140	0,145	0,197	0,136	0,110	0,145	0,055	0,177	0,407	0,118
Σ(15-20/21-35)	0,126	0,124	0,113	0,118	0,122	0,107	0,052	0,060	0,109	0,078	0,102	0,112	0,028	0,092	0,063	0,018	0,069	0,026	0,108
n-C17/Pri	2,05	2,38	2,52	1,28	0,90	2,05	0,86	0,94	1,17	0,51	0,63	0,62	0,67	0,82	0,75	0,77	0,46	1,21	0,73
n-C18/Fit	2,38	2,38	2,38	2,32	2,28	1,66	3,28	3,07	2,51	2,01	4,78	2,89	2,65	3,33	2,71	3,45	3,22	3,49	5,61
% MCNR	23,73	24,39	24,03	33,00	37,41	45,53	50,13	22,58	22,45	41,77	35,21	56,01	37,17	45,58	46,34	18,75	52,04	40,59	37,84
MCNR/RES	0,31	0,32	0,32	0,49	0,60	0,84	1,01	0,29	0,29	0,72	0,54	1,46	0,59	0,84	0,86	0,23	1,09	0,68	0,61
IPC2	2,24	2,11	2,02	2,78	3,59	4,95	1,63	1,79	2,89	3,29	3,15	2,51	1,28	3,51	1,82	1,19	3,44	1,15	2,39
%COT	1,46	1,71	1,43	1,39	1,39	1,59	0,98	1,28	1,39	1,45	1,17	0,83	1,26	1,42	1,64	1,56	1,21	1,28	1,32
Recup. (%)	111,75	83,93	56,11	79,96	103,80	101,64	112,08	103,08	94,07	105,67	94,84	84,16	81,70	82,58	82,00	91,67	91,51	89,89	83,63

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado

Figura 37 - Distribuição de n-alcanos em diferentes horizontes de profundidade - BIOMT3

A atividade microbiana e a presença de combustíveis fósseis podem contribuir para a presença de n-alcanos de cadeia curta sem predomínio entre pares e ímpares, sobretudo na faixa entre n-C₁₇ e n-C₂₄ (VOLKMAN et al.,1992; 1998; GRIMALT & ALBAIGÉS, 1987; BIANCHI & CANUEL, 2011), característica observada na camada de lama depositada sobre a plataforma continental), juntamente com as primeiras camadas de sedimento anteriores à lama (representadas no apêndice B-4). É provável que tal aumento tenha se dado já na plataforma continental, em decorrência do aporte de nutrientes, do desenvolvimento de anoxia nos sedimentos e por alteração nas condições de luminosidade, que devem ter alterado a produção fitoplanctônica local.

Em outros horizontes de profundidade ocorrem diversas oscilações nas concentrações de n-alcanos e isoprenóides as quais decorrem, possivelmente, da dinâmica de transporte de sedimentos na bacia durante as estações chuvosas, sendo mantido o predomínio de n-alcanos ímpares sobre pares e características condizentes com o aporte de vegetação aquática,

caracterizada pela presença de n-alcanos com cadeias médias entre n- C_{21} , n- C_{23} ou n- C_{25} (intermediárias entre o comprimento das cadeias das algas e dos vegetais superiores) (FICKEN et al., 2000) e terrígena, caracterizada pela presença de n-alcanos com cadeias ímpares entre n- C_{27} e n- C_{33} (BOULOUBASSI et al. 1997; KILLOPS & KILLOPS, 2005; SIMONEIT, 2008; BIANCHI & CANUEL, 2011; VOLKMAN & SMITTENBERG, 2017).

Na porção intermediária do testemunho duas amostras consecutivas apresentam contribuições diferentes. A figura 37C apresenta concentrações bastante elevadas num horizonte bastante restrito de n-alcanos indicativos de vegetais superiores observada no perfil entre 25 e 26 cm de profundidade. Já a figura 37D, entre 26 e 27 cm de profundidade, sugere contribuições mais diversas para o perfil sedimentar, também com predomínio de contribuições atribuídas a vegetais superiores. Tais variações se deram na década de 1960, de acordo com o modelo de datação.

Ainda da análise da figura 37, os perfis cromatográficos das figuras 37E e 37F, sugerem o aporte de hidrocarbonetos de petróleo na base de testemunho, correspondente ao período entre o final dos anos 1940 e os anos 1950, em função de não ter sido observado o predomínio de n-alcanos ímpares sobre pares (que determina um baixo IPC2). Quanto mais avança a diagênese, mais o IPC2 se aproxima do valor 1. Uma razão próxima de 1 é típica de matéria orgânica sujeita a stress térmico ao longo do tempo geológico, indicando a presença de matéria orgânica maturada, como petróleo e carvão (TISSOT & WELTE, 1984) mas, em se tratando de sedimentos recentes, sugere aporte antropogênico de petróleo/derivados. A hipótese mais plausível para este achado é a ocorrência de incidentes de poluição por óleo que teriam ocorrido naquela época, quando preocupações de cunho ambiental não eram consideradas com o mesmo interessente que estudos futuros avaliem outras colunas sedimentares da mesma região.

7.2.5.2 Hidrocarbonetos aromáticos na PC Doce

Os resultados das análises de hidrocarbonetos aromáticos estão compilados na tabela 13 (apresentados com os resultados de HPAs alquilados no apêndice B5) e são apresentados graficamente no apêndice B6. São ainda apresentados resultados para os proxies de hidrocarbonetos aromáticos, anteriormente descritos. A recuperação do padrão p-terfenil-d14 variou entre 54,33 e 92,15%, com algumas amostras fora dos limites de qualidade analítica

propostos por Ribani et al. (2004), mas dentro dos limites de qualidade propostos por Sericano et al. (1998) e, principalmente, por Denoux et al. (1998) (análise quantitativa de HPAs).

O perfil de HPAs apresenta concentrações moderadas ao longo de toda a coluna sedimentar. Tal característica tinha sido observada anteriormente por Balzer & Knoppers (1996) em um estudo em que foram coletados sedimentos superficiais e em armadilhas de sedimentos. Os teores de HPAs prioritários variaram entre 415,10 e 5.603,76 ng.g⁻¹ (ou cerca de 5,60 mg.kg⁻¹), enquanto os teores de HPAs totais variaram entre 596,91 e 6931,08 ng.g⁻¹ (ou cerca de 6,93 mg.kg⁻¹), com as maiores concentrações nos horizontes entre 9-11 e 16-17 cm de profundidade (figura 38). Tais intervalos coincidem com os períodos em que foram registradas enchentes na área da bacia do Rio Doce, nos anos de 1997 (9-11 cm) e 1985 (16-17 cm), de modo que os picos na concentraçõo refletem períodos de chuvas intensas na região, levando à lixiviação de solo urbano e rural e também a alterações no regime de vazão que remobilizaram sedimentos do leito do rio os quais, presumivelmente, continham esses compostos. O pico de concentração observado mais recentemente, no intervalo entre 6-7 cm, deve estar associado às enchentes observadas no ano de 2013.

Figura 38 - Concentração de HPAs e perileno no testemunho BIOMT3

O perfil sedimentar indica que as concentrações de HPAs aumentaram desde a década de 1940 (época aproximada de deposição na base do testemunho), atingindo seu máximo na década de 1990. Tal característica, possivelmente, reflete o desenvolvimento urbano e industrial na área da bacia, que ainda era incipiente na primeira metade do século XX, mas se tornou mais significativo nos anos mais recentes. As variações no perfil sedimentar de HPAs refletem as interferências antropogênicas na bacia e a ocorrência sazonal de chuvas intensas, que lixiviam os solos e transportam esses contaminantes para a plataforma continental.

Similarmente ao observado com os hidrocarbonetos alifáticos, não foi observado um aumento significativo de concentração na porção do testemunho que representa o rompimento da barragem de Fundão (camada de 1-4 cm de profundidade), indicando que o aporte agudo de sedimentos não contribuiu significativamente para a presença de HPAs. Também é possível concluir pelo aporte predominantemente pirolítico, caracterizado pelo domínio de HPAs parentais sobre alquilados e de HPAs de 4 a 6 anéis benzênicos sobre os de menor complexidade.

O perileno, com base nos limiares propostos para avaliar a razão entre a sua concentração e a soma dos isômeros penta-aromáticos (PERILENO/ Σ HPAs 5 anéis > 0,1), provavelmente tem sua origem associada à diagênese da matéria orgânica (BAUMARD et al., 1998; LAFLAMME & HITES, 1978 apud READMAN et al., 2002). Sua concentração variou entre 81,53 a 515,68 ng.g⁻¹ e representa entre 4,12 e 25,57% dos HPAs totais.

Os proxies ΣLMW/ΣHMW HPA e ΣCOMB/ΣHPAS, utilizados para avaliar a origem dos hidrocarbonetos aromáticos com base na abundância relativa dos HPAs de alta massa molecular sobre os de baixa massa molecular e da abundância relativa de HPAs reconhecidamente pirolíticos (tabela 13), também indicam que os aportes pirolíticos são predominantes ao longo de toda a coluna sedimentar. A relação entre HPAs de alta (HMW) e baixa (LMW) massa molecular é uma excelente base para se avaliar a origem dos aportes desses compostos, pois os HPAs não alquilados de alta massa molecular são tidos como pirolíticos, enquanto os alquilados de dois e três anéis benzênicos são tidos como petrogênicos (ABRAJAMO et al., 2003). A origem dos HPAs também foi avaliada em termos de outros proxies, no mesmo formato descrito/utilizado por Yunker et al. (2002), Tobiszewski & Namiesnik (2012) e Pinheiro et al. (2017). A figura 39 (A a D) apresenta a avaliação dos aportes ao longo da coluna sedimentar por meio de alguns desses proxies.

Aromáticos (ng.g ⁻¹)	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19
Naftaleno (N)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>9,14</th><th><lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	9,14	<lq< th=""><th>9,53</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	9,53	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
1 Metilnaftaleno (1MN)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>16,25</th><th><lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	16,25	<lq< th=""><th>13,60</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	13,60	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
2 Metilnaftaleno (2-MN)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>14,10</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	14,10	ND	<lq< th=""><th><lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>8,27</th><th>61,72</th><th>5,33</th><th>57,17</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	8,27	61,72	5,33	57,17	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Bifenil (BIF)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
2,6 dimetilnaftaleno	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>9,17</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	9,17	<lq< th=""><th><lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>7,09</th><th>45,76</th><th><lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	7,09	45,76	<lq< th=""><th>28,54</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	28,54	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Acenaftileno (ACT)	9,50	<lq< th=""><th><lq< th=""><th>4,63</th><th><lq< th=""><th>6,72</th><th>8,61</th><th>7,99</th><th>8,08</th><th>28,60</th><th>27,05</th><th>4,93</th><th>8,14</th><th>8,90</th><th>8,32</th><th>7,56</th><th>21,68</th><th>12,30</th><th>12,23</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>4,63</th><th><lq< th=""><th>6,72</th><th>8,61</th><th>7,99</th><th>8,08</th><th>28,60</th><th>27,05</th><th>4,93</th><th>8,14</th><th>8,90</th><th>8,32</th><th>7,56</th><th>21,68</th><th>12,30</th><th>12,23</th></lq<></th></lq<>	4,63	<lq< th=""><th>6,72</th><th>8,61</th><th>7,99</th><th>8,08</th><th>28,60</th><th>27,05</th><th>4,93</th><th>8,14</th><th>8,90</th><th>8,32</th><th>7,56</th><th>21,68</th><th>12,30</th><th>12,23</th></lq<>	6,72	8,61	7,99	8,08	28,60	27,05	4,93	8,14	8,90	8,32	7,56	21,68	12,30	12,23
Acenafteno (ACE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Fluoreno (FLU)	<lq< th=""><th><lq< th=""><th>9,64</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>9,64</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	9,64	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>6,13</th><th>9,19</th><th><lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	6,13	9,19	<lq< th=""><th>7,67</th><th>9,13</th><th>9,08</th><th><lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<></th></lq<>	7,67	9,13	9,08	<lq< th=""><th>7,20</th><th>6,77</th><th><lq< th=""></lq<></th></lq<>	7,20	6,77	<lq< th=""></lq<>
Dibenzotiofeno	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Fenantreno (FEN)	22,23	19,15	28,91	12,85	11,11	20,49	23,33	17,91	18,77	39,29	57,25	11,12	28,68	33,61	20,92	22,50	45,23	32,37	31,06
Antraceno (ANT)	10,77	<lq< th=""><th>9,11</th><th>33,78</th><th><lq< th=""><th>33,60</th><th>11,79</th><th>42,04</th><th>7,41</th><th>71,83</th><th>41,59</th><th>23,74</th><th>14,91</th><th>21,52</th><th>17,84</th><th>13,33</th><th>29,71</th><th>19,30</th><th>21,10</th></lq<></th></lq<>	9,11	33,78	<lq< th=""><th>33,60</th><th>11,79</th><th>42,04</th><th>7,41</th><th>71,83</th><th>41,59</th><th>23,74</th><th>14,91</th><th>21,52</th><th>17,84</th><th>13,33</th><th>29,71</th><th>19,30</th><th>21,10</th></lq<>	33,60	11,79	42,04	7,41	71,83	41,59	23,74	14,91	21,52	17,84	13,33	29,71	19,30	21,10
Fluoranteno (FLT)	15,38	<lq< th=""><th><lq< th=""><th>22,32</th><th>24,32</th><th>46,52</th><th>87,54</th><th>29,31</th><th>23,34</th><th>86,26</th><th>136,96</th><th>21,61</th><th>19,08</th><th>11,33</th><th>30,73</th><th>32,27</th><th>84,21</th><th>23,38</th><th>20,10</th></lq<></th></lq<>	<lq< th=""><th>22,32</th><th>24,32</th><th>46,52</th><th>87,54</th><th>29,31</th><th>23,34</th><th>86,26</th><th>136,96</th><th>21,61</th><th>19,08</th><th>11,33</th><th>30,73</th><th>32,27</th><th>84,21</th><th>23,38</th><th>20,10</th></lq<>	22,32	24,32	46,52	87,54	29,31	23,34	86,26	136,96	21,61	19,08	11,33	30,73	32,27	84,21	23,38	20,10
Pireno (PIR)	230,23	89,52	90,66	269,57	338,18	457,53	1096,16	413,58	328,17	1080,73	1672,07	310,85	269,48	190,54	388,72	322,06	1152,80	409,97	411,56
Benzo(a)antraceno (BaA)	176,69	21,05	98,80	381,31	333,91	906,16	998,82	628,05	350,42	1502,37	2046,55	377,66	324,64	274,45	573,69	430,66	1283,55	503,99	522,64
Criseno (CRIS)	41,51	21,96	25,63	79,76	64,11	183,21	178,75	106,41	72,71	224,43	267,31	65,50	69,45	61,70	111,08	89,37	208,21	96,53	93,71
Benzo(b)fluoranteno	165,18	233,94	136,17	69,08	117,83	95,23	142,91	112,90	116,37	350,74	440,74	81,62	210,84	334,78	219,67	241,85	521,82	261,12	375,91
Benzo(k)fluoranteno	40,91	71,21	33,87	29,40	34,50	39,87	52,61	35,09	36,47	93,15	112,93	21,10	53,45	54,16	73,95	70,41	111,84	83,47	61,32
Benzo(a)pireno (BaP)	218,61	228,09	150,67	56,84	87,09	70,82	140,55	73,63	99,85	288,75	362,13	48,35	174,51	285,91	148,79	171,59	385,21	253,13	376,38
Perileno (PER)	304,27	318,53	253,56	81,53	176,99	97,92	164,50	123,31	152,46	377,03	443,13	87,65	267,91	353,51	203,74	244,97	508,60	305,12	378,74
Benzo(e)pireno (BeP)	81,99	58,20	52,76	79,94	96,28	69,25	106,46	108,76	94,04	171,86	218,04	45,08	102,15	125,42	123,69	127,70	314,42	158,01	186,50
Indeno(1,2,3-cd)pireno	63,65	78,62	40,98	50,03	50,51	60,07	75,96	62,77	49,60	81,83	116,63	30,63	75,41	66,23	54,43	91,24	157,73	56,98	84,01
Dibenzo(a,h)antraceno	<lq< th=""><th><lq< th=""><th><lq< th=""><th>14,05</th><th><lq< th=""><th>25,11</th><th>26,26</th><th>20,19</th><th>19,66</th><th>58,04</th><th>66,21</th><th>12,01</th><th>23,21</th><th>27,30</th><th>29,92</th><th>31,24</th><th>90,34</th><th>30,15</th><th>43,41</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>14,05</th><th><lq< th=""><th>25,11</th><th>26,26</th><th>20,19</th><th>19,66</th><th>58,04</th><th>66,21</th><th>12,01</th><th>23,21</th><th>27,30</th><th>29,92</th><th>31,24</th><th>90,34</th><th>30,15</th><th>43,41</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>14,05</th><th><lq< th=""><th>25,11</th><th>26,26</th><th>20,19</th><th>19,66</th><th>58,04</th><th>66,21</th><th>12,01</th><th>23,21</th><th>27,30</th><th>29,92</th><th>31,24</th><th>90,34</th><th>30,15</th><th>43,41</th></lq<></th></lq<>	14,05	<lq< th=""><th>25,11</th><th>26,26</th><th>20,19</th><th>19,66</th><th>58,04</th><th>66,21</th><th>12,01</th><th>23,21</th><th>27,30</th><th>29,92</th><th>31,24</th><th>90,34</th><th>30,15</th><th>43,41</th></lq<>	25,11	26,26	20,19	19,66	58,04	66,21	12,01	23,21	27,30	29,92	31,24	90,34	30,15	43,41
Benzo(g.h.i)perileno	109,57	73,93	64,45	65,45	97,68	85,11	87,04	100,71	115,72	190,66	247,15	38,80	97,09	120,92	95,03	109,11	297,91	135,73	163,17
	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19
[HPAS] prioritários (ng.g ⁻¹)	1104,23	837,47	688,89	1089,08	1159,23	2030,44	2930,32	1650,58	1246,57	4102,80	5603,76	1047,91	1376,56	1500,49	1791,32	1633,19	4406,95	1925,18	2216,60
[HPAS] totais (ng.g ⁻¹)	1660,94	1245,82	1047,91	1341,37	1490,01	2374,52	3402,16	2027,87	1611,35	5178,02	6931,08	1293,78	1869,75	2119,38	2386,50	2140,76	5695,19	2547,50	2983,28
ΣLMW/ΣΗΜW ΗΡΑ	0,05	0,03	0,09	0,06	0,01	0,03	0,02	0,05	0,03	0,04	0,03	0,04	0,05	0,06	0,04	0,03	0,03	0,04	0,03
ΣСОМΒ/ΣΗΡΑS	0,96	0,98	0,93	0,94	0,99	0,96	0,98	0,95	0,96	0,95	0,96	0,95	0,94	0,93	0,95	0,95	0,95	0,95	0,95
FLT/(FLT+PIR)	0,06	0,00	0,00	0,08	0,07	0,09	0,07	0,07	0,07	0,07	0,08	0,07	0,07	0,06	0,07	0,09	0,07	0,05	0,05
I[cd]P/(I[cd]P+B[ghi]P)	0,37	0,52	0,39	0,43	0,34	0,41	0,47	0,38	0,30	0,30	0,32	0,44	0,44	0,35	0,36	0,46	0,35	0,30	0,34
ANT/(ANT+FEN)	0,33	NC	0,24	0,72	NC	0,62	0,34	0,70	0,28	0,65	0,42	0,68	0,34	0,39	0,46	0,37	0,40	0,37	0,40
BaA/(BaA+CRIS)	0,81	0,49	0,79	0,83	0,84	0,83	0,85	0,86	0,83	0,87	0,88	0,85	0,82	0,82	0,84	0,83	0,86	0,84	0,85
2-MN/FEN	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,36	0,00	0,00	0,00	0,25	2,95	0,24	1,26	0,00	0,00
B[b+k]F/BaP	0,94	1,15	1,34	1,36	1,13	1,73	1,75	1,91	1,39	2,01	1,61	1,53	1,54	1,53	2,12	1,51	1,36	1,97	1,82
PERILENO/Σ HPAs 5 anéis	0,38	0,35	0,40	0,25	0,35	0,25	0,26	0,26	0,29	0,28	0,27	0,30	0,32	0,30	0,25	0,28	0,26	0,28	0,27
%COT	1,29	1,72	1,65	1,73	1,67	1,42	1,52	1,15	1,37	2,03	2,11	1,42	0,95	1,51	1,66	1,56	1,62	0,80	1,26
Recuperação (%)	77,21	64,14	61,16	59,84	54,33	66,21	77,89	74,60	75,21	78,84	81,55	89,54	90,12	61,91	62,77	58,81	87,23	82,55	83,99

Tabela 13 – Hidrocarbonetos aromáticos no Testemunho BIOMT3

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado

Aromáticos (ng.g ⁻¹)	T3-20	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
Naftaleno (N)	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
1 Metilnaftaleno (1MN)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
2 Metilnaftaleno (2-MN)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Bifenil (BIF)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	ND	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
2,6 dimetilnaftaleno	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	ND	ND	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	ND	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Acenaftileno (ACT)	12,90	9,23	8,29	8,94	10,43	10,59	4,62	11,19	14,83	7,80	7,59	6,48	6,07	7,17	9,45	11,12	<lq< th=""><th><lq< th=""><th>3,30</th><th>5,05</th></lq<></th></lq<>	<lq< th=""><th>3,30</th><th>5,05</th></lq<>	3,30	5,05
Acenafteno (ACE)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""></lq<></th></lq<>	ND	<lq< th=""></lq<>
Fluoreno (FLU)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>5,08</th><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>5,08</th><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>5,08</th><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>5,08</th><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	5,08	<lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,46</th></lq<></th></lq<>	<lq< th=""><th>2,46</th></lq<>	2,46
Dibenzotiofeno	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Fenantreno (FEN)	27,04	22,81	21,80	17,23	31,03	6,45	<lq< th=""><th>13,48</th><th>60,09</th><th>7,48</th><th>13,82</th><th>19,14</th><th>9,59</th><th>14,30</th><th>17,83</th><th>26,33</th><th>29,28</th><th>19,23</th><th>20,99</th><th>24,51</th></lq<>	13,48	60,09	7,48	13,82	19,14	9,59	14,30	17,83	26,33	29,28	19,23	20,99	24,51
Antraceno (ANT)	16,27	12,56	19,43	12,61	37,68	3,89	<lq< th=""><th>5,90</th><th>21,56</th><th>3,49</th><th>6,21</th><th>8,09</th><th>4,70</th><th>6,28</th><th>9,16</th><th>13,35</th><th>10,29</th><th>8,97</th><th>6,54</th><th>11,13</th></lq<>	5,90	21,56	3,49	6,21	8,09	4,70	6,28	9,16	13,35	10,29	8,97	6,54	11,13
Fluoranteno (FLT)	33,83	20,84	26,20	29,78	13,11	23,09	<lq< th=""><th>14,73</th><th>7,23</th><th>9,21</th><th>13,12</th><th>5,53</th><th>13,02</th><th>7,51</th><th>10,11</th><th>37,33</th><th>11,68</th><th>39,04</th><th>10,87</th><th>21,03</th></lq<>	14,73	7,23	9,21	13,12	5,53	13,02	7,51	10,11	37,33	11,68	39,04	10,87	21,03
Pireno (PIR)	441,23	309,20	353,26	409,50	287,24	202,35	25,91	186,53	148,34	106,65	223,84	121,86	219,25	143,98	225,78	575,47	278,86	466,36	213,57	359,65
Benzo(a)antraceno (BaA)	757,99	535,37	548,07	608,38	407,07	685,09	82,30	446,19	105,18	313,86	303,62	191,39	283,41	243,94	274,48	579,26	365,52	790,14	194,29	538,21
Criseno (CRIS)	129,89	83,73	109,10	110,62	81,21	120,84	21,05	73,07	50,13	58,34	52,18	46,19	48,40	52,33	54,42	94,07	69,13	123,05	48,24	100,04
Benzo(b)fluoranteno	345,67	257,16	264,93	260,22	342,76	222,43	88,24	259,15	845,23	254,36	207,78	294,38	222,35	291,66	303,49	372,95	434,50	285,73	378,89	408,23
Benzo(k)fluoranteno	62,21	41,51	46,33	48,88	53,07	41,08	19,67	38,14	220,81	39,54	45,85	47,03	34,24	44,61	42,19	62,79	63,41	56,47	61,49	63,66
Benzo(a)pireno (BaP)	297,42	225,19	240,65	207,52	354,02	207,82	68,39	240,19	778,97	247,20	188,75	306,92	123,18	263,25	251,51	331,02	370,28	256,78	302,65	46,70
Perileno (PER)	325,58	262,86	255,61	238,57	352,47	225,30	107,72	294,01	515,68	277,58	224,30	320,22	215,18	321,73	296,29	405,58	467,20	309,97	433,54	454,29
Benzo(e)pireno (BeP)	176,86	123,59	129,55	128,49	134,00	135,60	61,79	116,55	143,71	94,43	84,79	91,98	120,08	105,23	126,23	216,07	145,64	160,93	110,36	168,87
Indeno(1,2,3-cd)pireno	88,16	52,36	64,24	60,60	78,92	62,74	28,78	56,18	373,90	60,61	43,40	68,58	47,11	58,91	60,73	96,19	98,36	76,17	81,38	95,62
Dibenzo(a,h)antraceno	48,02	35,64	38,81	37,35	47,60	44,94	11,84	32,44	39,25	33,85	24,15	26,28	28,45	32,34	31,41	30,83	46,54	41,65	31,35	47,79
Benzo(g.h.i)perileno	174,51	141,79	127,23	132,26	159,60	119,93	64,30	108,87	203,15	108,69	89,25	97,35	99,29	112,18	118,56	183,33	164,52	171,68	126,36	162,60
	T3-20	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
[HPAS] prioritários (ng.g ⁻¹)	2435,13	1747,42	1868,34	1943,90	1908,82	1751,24	415,10	1486,07	2868,66	1251,08	1219,57	1239,22	1139,06	1278,46	1409,12	2414,05	1942,37	2335,27	1479,92	1886,69
[HPAS] totais (ng.g ⁻¹)	3130,29	2285,24	2418,29	2468,94	2579,98	2259,14	596,91	2051,30	3688,97	1720,82	1670,14	1772,20	1566,81	1819,67	1984,87	3291,27	2734,28	3004,01	2139,80	2707,72
ΣLMW/ΣΗΜW ΗΡΑ	0,03	0,03	0,03	0,02	0,05	0,01	0,01	0,02	0,04	0,02	0,03	0,03	0,02	0,03	0,03	0,02	0,02	0,01	0,02	0,03
ΣCOMB/ΣΗΡΑS	0,96	0,95	0,95	0,96	0,93	0,96	0,96	0,96	0,95	0,96	0,96	0,95	0,96	0,95	0,95	0,97	0,96	0,97	0,96	0,95
FLT/(FLT+PIR)	0,07	0,06	0,07	0,07	0,04	0,10	0,00	0,07	0,05	0,08	0,06	0,04	0,06	0,05	0,04	0,06	0,04	0,08	0,05	0,06
I[cd]P/(I[cd]P+B[ghi]P)	0,34	0,27	0,34	0,31	0,33	0,34	0,31	0,34	0,65	0,36	0,33	0,41	0,32	0,34	0,34	0,34	0,37	0,31	0,39	0,37
ANT/(ANT+FEN)	0,38	0,36	0,47	0,42	0,55	0,38	NC	0,30	0,26	0,32	0,31	0,30	0,33	0,31	0,34	0,34	0,26	0,32	0,24	0,31
BaA/(BaA+CRIS)	0,85	0,86	0,83	0,85	0,83	0,85	0,80	0,86	0,68	0,84	0,85	0,81	0,85	0,82	0,83	0,86	0,84	0,87	0,80	0,84
2-MN/FEN	0,00	0,00	0,00	0,00	0,00	0,00	NC	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
B[b+k]F/BaP	1,64	1,36	1,16	1,37	1,33	1,29	1,49	1,23	1,12	1,27	1,58	1,24	1,37	1,19	1,34	1,54	1,11	2,08	1,28	0,38
PERILENO/Σ HPAs 5 anéis	0,26	0,28	0,26	0,26	0,27	0,26	0,30	0,30	0,20	0,29	0,29	0,29	0,29	0,30	0,28	0,29	0,31	0,28	0,33	1,53
%COT	1,36	1,46	1,43	1,39	1,59	0,98	1,39	1,45	1,17	0,83	1,26	1,42	1,64	1,56	1,21	1,28	1,32	NA 59.10	NA	NA 07.17
Recuperação (%)	/4,14	69,18	/1,58	82,77	81,08	80,21	83,99	/4,14	92,15	90,01	59,99	56,27	/9,81	11,25	13,33	//,21	68,22	58,18	07,41	87,17

Tabela 13. Hidrocarbonetos aromáticos no Testemunho BIOMT3 (continuação)

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

Figura 39 - Origem dos HPAs no testemunho BIOMT3

As razões BaA/(BaA+CRIS) (YUNKER et al., 2002) (fig. 39A), I[cd]P/(I[cd]P+B[ghi]P) (YUNKER et al., 2002) (fig. 39B), ANT/(ANT+FEN) (PIES et al., 2008 apud TOBISZEWSKI & NAMIESNIK, 2012) (fig. 39C) e B[b+k]F/BaP (não representada) (SOCLO et al. 2000) revelam que o aporte de HPAs para o testemunho BIOMT3 é predominantemente pirolítico.

Diferente das demais razões calculadas, a razão FLT/(FLT+PIR) (YUNKER et al., 2002), calculada entre o fluoranteno e o pireno (fig. 39D), indica a ocorrência de aporte petrogênico para os sedimentos, divergindo das indicações apresentadas por todos os demais proxies. Em um estudo anterior, Fang et al. (2003) apud Tobiszewski & Namiesnik, (2012) tinham indicado que o proxy FLT/(FLT+PIR) não era um bom indicador de origem quando comparado a outras alternativas na caracterização de HPAs em sedimentos. Recentemente Pinheiro et al. (2017) se utilizaram desses proxies como indicadores da origem dos HPAs em sedimentos superficiais e também observaram algumas inconsistências indicando que o seu uso, isoladamente, pode levar a conclusões errôneas, sobretudo em regiões de clima tropical onde os HPAs depositados estão mais sujeitos ao intemperismo bacteriano (WAGENER et al., 2010 e WAGENER et al., 2012 apud PINHEIRO et al., 2017). Conforme dados da tabela 1 (propriedades físico-químicas dos HPAs), o fluoranteno pode ser mais suscetível à degradação que o pireno por ser mais solúvel em água e mais volátil que este último. Tanto o pireno quanto

o fluoranteno são isoladamente associados a aportes pirolíticos. O pireno foi um dos HPAs mais abundantes na maior parte da coluna sedimentar. O uso da razão FLT/(FLT+PIR) pode ter sido ainda prejudicado pela elevada abundância do pireno, o que explicaria os baixos resultados obtidos para esta razão. Ou seja, os precursores/condições ambientais de pirólise podem ter sido mais propícios à formação do pireno ao invés do fluoranteno (ABRAJANO et al., 2003).

Em termos de HPAs alquilados, as concentrações dos metil-naftalenos e do 2,6 di-metil naftaleno estiveram abaixo do LQ ao longo de quase toda a coluna sedimentar. Tais HPAs estiveram acima do LQ em alguns poucos horizontes de profundidade, normalmente coincidentes com as maiores concentrações de HPAs prioritários determinadas, associados às enchentes na área da bacia do Rio Doce. A presença de HPAs alquilados indica um possível aporte petrogênico para a região que, aparentemente, não foi significativo à luz desses HPAs. Outros homólogos alquilados detectados foram os do pireno e do criseno, presentes em alguns horizontes de profundidade. O comportamento das amostras, com o HPA parental apresentando maior concentração que os seus homólogos alquilados, também revela que os aportes para a região são predominantemente pirolíticos na maioria das amostras, embora em alguns horizontes seja possível identificar também indicações de aporte petrolítico (NEFF, 2002).

A figura 40 destaca que as maiores concentrações de HPAs encontram-se entre os compostos de 4 a 6 anéis benzênicos, detectados ao longo de toda a coluna sedimentar.

Figura 40 – Gráfico de superfície – concentrações de HPAs no testemunho BIOMT3

Os picos destacados no gráfico de superfície representam as maiores concentrações observadas e correspondem principalmente aos HPAs benzo[a]antraceno e pireno (ambos com quatro anéis benzênicos) nos horizontes de 6-7, 9-11 e 16-17 cm na coluna sedimentar. A imagem também revela que os HPAs com dois e três anéis benzênicos não são significativos quando comparados aos HPAs de maior complexidade.

7.2.5.3 Biomarcadores de petróleo para elucidar a origem dos hidrocarbonetos na base do testemunho BIOMT3

Dada a suspeita da presença de hidrocarbonetos de petróleo na base do testemunho BIOMT3, a qual poderia explicar o teor relativamente elevado de hidrocarbonetos alifáticos, a amostra BIOMT3-38 foi submetida à análise de biomarcadores de petróleo saturados por espectrometria de massas (CG-EM), visando avaliar os perfis de hopanos e esteranos que, conforme Peters et al. (2005) e Wang et al. (2006), são ferramentas bastante elucidativas para inferir a presença de hidrocarbonetos de petróleo. Foi utilizado o mesmo método descrito em Lobão et al. (2010). Os compostos detectados não foram quantificados, sendo utilizados apenas para avaliar a presença ou não desses biomarcadores.

A figura 41 compara o perfil de $\beta\beta$ esteranos (íon *m/z* 218) de uma amostra de óleo diesel marítimo (cromatograma superior) ao perfil da amostra BIOMT3-38 (cromatograma inferior). Os resultados indicaram a presença da série de C₂₇ a C₂₉ $\beta\beta$ esteranos (nomenclatura conforme Peters et al., 2005), evidenciando a presença de hidrocarbonetos de petróleo no sedimento. Tal resultado corrobora os dados do IPC2, que sugeriram a ocorrência de aportes petrogênicos na base do testemunho.

A figura 42 compara o perfil de terpanos tricíclicos, tetracíclicos e pentacíclicos (íon m/z 191) da amostra BIOMT3-38 (cromatograma inferior) ao perfil da mesma amostra de óleo diesel (cromatograma superior). A presença desses compostos, similarmente à série de esteranos, também indica a presença de hidrocarbonetos de petróleo no sedimento. A presença de hidrocarbonetos de petróleo é evidenciada pela presença de biomarcadores tipicamente encontrados em petróleo e seus derivados, como os terpanos tricíclicos (TR21 a TR29B), tetracíclicos (TET24) e pentacíclicos (de TS a H35R), incluindo-se os hopanos estendidos (nomenclatura conforme Peters et al., 2005). Ocorrem ainda outros picos, oriundos de hopanóides biogênicos, não identificados.

Figura 41 – Esteranos na amostra BIOMT3-38

Figura 42 – Terpanos tricíclicos, tetracíclicos e pentacíclicos na amostra BIOMT3-38

O perfil cromatográfico descrito para a amostra BIOMT3-38, considerado em conjunto com outras informações sobre os hidrocarbonetos alifáticos é condizente com um aporte petrogênico ocorrido entre as décadas de 1940 e 1950. A presença de biomarcadores de petróleo foi também observada em outros horizontes de profundidade, indicando que, em maior ou menor medida, a região é impactada por aportes crônicos de hidrocarbonetos de petróleo há algumas décadas. Possivelmente tal fato decorre de deficiências na gestão de resíduos adotada nas cidades da bacia.

7.2.5.4 Esteróides na PC Doce

Os resultados das análises de esteróides estão compilados na tabela 14, que apresenta os dados dos compostos avaliados pelo método. São ainda apresentados resultados para alguns proxies, anteriormente descritos. A recuperação do padrão 5α -androstanol variou entre 70,81 e 118,95%, dentro dos limites de qualidade analítica propostos por Ribani et al. (2004).

O perfil de esteróides apresenta concentrações mais elevadas do que observado na plataforma continental na região do Cabo Frio, refletindo aportes continentais advindos da bacia do Rio Doce. Os teores de esteróides totais variaram entre 3088,80 (ou cerca de 3,089 μ g.g⁻¹) e 16.657,78 ng.g⁻¹ (ou cerca de 16,658 μ g.g⁻¹). As maiores concentrações ocorrem na superfície do sedimento, associadas tanto à deposição de carbono orgânico fresco quanto à material alterado diageneticamente. A concentrações de esteróides totais decai com o aumento da profundidade, figura 43, com variações episódicas ao longo do perfil que sugerem uma dinâmica similar a dos HPAs (associada à ocorrência de chuvas na bacia do rio).

Figura 43 - Concentrações de esteróides no testemunho BIOMT3

Esteróides (ng.g ⁻¹)	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19
$26\Delta^{5,22}$	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Coprostanol (COP)	357,72	359,65	278,21	225,90	215,78	93,84	152,80	179,53	130,66	62,05	137,39	93,80	130,69	104,31	108,19	101,60	104,84	72,31	54,39
Epicoprostanol (Epicop)	67,94	166,31	69,06	<lq< th=""><th>65,16</th><th>68,19</th><th>70,71</th><th><lq< th=""><th>82,86</th><th><lq< th=""><th><lq< th=""><th>56,17</th><th>68,18</th><th>62,90</th><th>93,09</th><th>94,32</th><th>79,03</th><th>66,18</th><th>35,28</th></lq<></th></lq<></th></lq<></th></lq<>	65,16	68,19	70,71	<lq< th=""><th>82,86</th><th><lq< th=""><th><lq< th=""><th>56,17</th><th>68,18</th><th>62,90</th><th>93,09</th><th>94,32</th><th>79,03</th><th>66,18</th><th>35,28</th></lq<></th></lq<></th></lq<>	82,86	<lq< th=""><th><lq< th=""><th>56,17</th><th>68,18</th><th>62,90</th><th>93,09</th><th>94,32</th><th>79,03</th><th>66,18</th><th>35,28</th></lq<></th></lq<>	<lq< th=""><th>56,17</th><th>68,18</th><th>62,90</th><th>93,09</th><th>94,32</th><th>79,03</th><th>66,18</th><th>35,28</th></lq<>	56,17	68,18	62,90	93,09	94,32	79,03	66,18	35,28
nor $27\Delta^{5,22}$	<lq< th=""><th>147,15</th><th><lq< th=""><th>137,32</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	147,15	<lq< th=""><th>137,32</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	137,32	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Dihidro-Colesterol	584,78	608,37	541,35	339,38	442,42	234,34	310,54	564,39	593,02	174,04	406,31	237,54	410,12	187,58	496,73	473,88	405,55	313,79	294,04
Dihidro-Colestanol	414,45	611,12	471,61	267,93	402,88	194,07	367,25	355,13	387,27	304,06	567,22	283,21	469,34	237,30	359,80	325,93	363,78	207,12	222,75
Colesterol (COL-erol)	4851,95	2475,17	2397,20	1546,34	1555,89	1084,99	1155,09	1004,64	959,46	502,15	1304,66	512,64	605,24	684,98	1221,50	750,66	720,59	543,01	277,79
Colestanol (COL-anol)	487,27	702,35	606,35	387,32	467,32	302,40	498,31	455,53	518,83	279,45	377,12	307,27	418,30	379,27	479,22	448,88	414,99	322,15	144,98
Colestanona	146.25	87.118	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>67.688</th><th>57.760</th><th>62.687</th><th>49.209</th><th><lq< th=""><th><lq< th=""><th>64.684</th><th><lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>67.688</th><th>57.760</th><th>62.687</th><th>49.209</th><th><lq< th=""><th><lq< th=""><th>64.684</th><th><lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>67.688</th><th>57.760</th><th>62.687</th><th>49.209</th><th><lq< th=""><th><lq< th=""><th>64.684</th><th><lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>67.688</th><th>57.760</th><th>62.687</th><th>49.209</th><th><lq< th=""><th><lq< th=""><th>64.684</th><th><lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	67.688	57.760	62.687	49.209	<lq< th=""><th><lq< th=""><th>64.684</th><th><lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>64.684</th><th><lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<></th></lq<>	64.684	<lq< th=""><th>78.852</th><th><lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<></th></lq<>	78.852	<lq< th=""><th>64.122</th><th>53.518</th><th>55.445</th></lq<>	64.122	53.518	55.445
Brassicasterol	1867,82	2055,16	1767,00	358,68	1311,02	1056,20	1077,48	896,57	941,06	530,75	713,68	422,49	527,44	597,24	846,72	741,12	749,52	478,67	288,68
Brassicastanol	422,68	282,99	276,63	190,45	416,92	308,07	496,57	461,91	261,41	282,47	339,09	229,17	302,17	194,38	242,77	239,28	256,20	275,28	120,62
Metileno-Colesterol	815,62	920,06	927,38	762,27	743,37	473,77	607,36	417,48	558,16	375,37	432,14	224,19	260,78	322,56	430,58	435,15	354,48	245,33	133,20
Campesterol	485,85	555,73	601,51	571,62	421,25	381,76	330,45	579,60	302,79	236,31	272,54	209,74	367,54	179,28	284,86	258,63	240,73	215,43	134,07
Campestanol	289,28	356,25	363,76	268,44	289,05	219,03	353,96	311,35	424,71	268,45	348,11	232,10	273,74	289,27	406,43	374,31	358,19	244,72	244,75
Estigmasterol	1320,23	1336,75	1248,83	1139,62	868,66	779,17	790,16	551,89	732,88	695,62	885,45	386,19	563,26	553,01	631,00	583,61	539,61	462,19	153,80
Estigmastanol	322,12	408,79	385,32	299,16	299,14	233,95	299,54	284,06	349,78	317,40	410,64	276,50	376,83	356,81	368,88	327,30	387,92	219,03	217,55
Sitosterol	2407,93	2439,61	2403,06	2116,84	1783,40	1514,76	1812,63	1394,93	2037,95	1673,49	2534,47	934,20	1168,92	1186,33	1761,65	1608,55	1686,01	978,88	474,15
Sitostanol	529,31	526,76	616,98	536,51	482,65	410,53	668,52	531,48	751,85	563,42	743,86	406,89	325,01	559,44	771,02	375,25	680,89	438,14	201,55
Dinosterol	1286,57	1161,49	1392,17	1456,25	1098,64	1104,67	1195,11	883,49	1245,89	1126,63	3164,48	671,87	642,96	773,85	1069,89	1022,71	1101,14	655,12	389,01
	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19
Σ esteróides (ng.g ⁻¹)	16657,78	15053,66	14346,42	10466,72	10863,54	8459,75	10254,17	8929,73	10341,24	7440,88	12637,15	5483,98	6975,20	6668,49	9651,18	8161,18	8507,57	5790,89	3442,05
Epicop/COP	0,19	0,46	0,25	0,00	0,30	0,73	0,46	0,00	0,63	NC	NC	0,60	0,52	0,60	0,86	0,93	0,75	0,92	0,65
COP/(COP+COL-anol)	0,42	0,34	0,31	0,37	0,32	0,24	0,23	0,28	0,20	0,18	0,27	0,23	0,24	0,22	0,18	0,18	0,20	0,18	0,27
(COP/COL-erol)	0,07	0,15	0,12	0,15	0,14	0,09	0,13	0,18	0,14	0,12	0,11	0,18	0,22	0,15	0,09	0,14	0,15	0,13	0,20
$\frac{\text{Camp-e/Estig-e/Sit-e}}{\sum 5\pi(H) \text{ESTANOL} (\Sigma A^5)}$	1:2,7:5,0	1:2,4:4,4	1:2,1:4,0	1:2,0:3,7	1:2,1:4,2	1:2,0:4,0	1:2,4:5,5	1:1,0:2,4	1:2,4:0,7	1:2,9:7,1	1:3,2:9,3	1:1,8:4,5	1:1,5:5,2	1:3,1:0,0	1:2,2:0,2	1:2,3:0,2	1:2,2:7,0	1:2,1:4,5	1:1,1:3,5
ESTEROL – C ₂₇ -C ₂₉	0,19	0,26	0,27	0,29	0,33	0,31	0,45	0,46	0,46	0,47	0,39	0,59	0,52	0,56	0,48	0,45	0,53	0,56	0,70
Sit/Camp (EST+EST-A)	3,79	3,25	3,13	3,16	3,19	3,20	3,63	2,16	3,83	4,43	5,28	3,04	2,33	3,73	3,66	3,13	3,95	3,08	1,78
Dinosterol/Metileno-colesterol	1,58	1,26	1,50	1,91	1,48	2,33	1,97	2,12	2,23	3,00	7,32	3,00	2,47	2,40	2,48	2,35	3,11	2,67	2,92
Colesterol/Metileno-colesterol	5,95	2,69	2,58	2,03	2,09	2,29	1,90	2,41	1,72	1,34	3,02	2,29	2,32	2,12	2,84	1,73	2,03	2,21	2,09
	1,29	1,42	1,52	1,73	1,67	1,72	1,65	1,15	1,37	1,51	0,95	1,42	2,11	2,03	1,57	1,66	1,56	1,62	0,80
Recuperação (%)	107,06	102,60	95,78	97,61	87,16	106,49	103,58	107,10	109,84	102,38	102,40	100,26	111,10	111,96	117,42	109,95	118,95	107,48	70,81

- Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL – C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002).

NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método

					I UN VIU	1.1.10		5 110 1 1				(comen	in an 3n o	/						
Esteróides (ng.g ⁻¹)	T3-20	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
26∆ ^{5,22}	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Coprostanol (COP)	77,34	81,39	58,83	64,90	80,98	64,23	66,27	61,77	43,31	54,21	61,14	43,84	50,47	63,74	56,90	59,56	65,76	55,88	66,63	63,41
Epicoprostanol (Epicop)	57,30	54,07	39,52	46,43	72,49	37,21	<lq< td=""><td><lq< td=""><td><lq< td=""><td>35,23</td><td><lq< td=""><td>34,63</td><td>33,47</td><td>48,61</td><td>41,02</td><td>36,47</td><td>39,31</td><td>42,14</td><td>47,91</td><td>39,85</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>35,23</td><td><lq< td=""><td>34,63</td><td>33,47</td><td>48,61</td><td>41,02</td><td>36,47</td><td>39,31</td><td>42,14</td><td>47,91</td><td>39,85</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>35,23</td><td><lq< td=""><td>34,63</td><td>33,47</td><td>48,61</td><td>41,02</td><td>36,47</td><td>39,31</td><td>42,14</td><td>47,91</td><td>39,85</td></lq<></td></lq<>	35,23	<lq< td=""><td>34,63</td><td>33,47</td><td>48,61</td><td>41,02</td><td>36,47</td><td>39,31</td><td>42,14</td><td>47,91</td><td>39,85</td></lq<>	34,63	33,47	48,61	41,02	36,47	39,31	42,14	47,91	39,85
nor $27\Delta^{5,22}$	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dihidro-Colesterol	213,78	191,20	161,28	132,52	243,99	149,72	151,40	183,96	<lq< td=""><td>156,43</td><td>146,27</td><td>160,85</td><td>96,47</td><td>182,82</td><td>174,89</td><td>194,17</td><td>147,35</td><td>127,76</td><td>157,71</td><td>196,05</td></lq<>	156,43	146,27	160,85	96,47	182,82	174,89	194,17	147,35	127,76	157,71	196,05
Dihidro-Colestanol	150,17	129,92	296,26	135,12	197,69	160,29	151,28	165,04	<lq< td=""><td>251,88</td><td>206,28</td><td>122,55</td><td>216,25</td><td>133,07</td><td>104,51</td><td>257,55</td><td>252,69</td><td>245,38</td><td>114,78</td><td>242,57</td></lq<>	251,88	206,28	122,55	216,25	133,07	104,51	257,55	252,69	245,38	114,78	242,57
Colesterol (COL-erol)	400,29	410,95	349,40	367,91	504,95	352,25	361,31	428,72	365,82	391,83	529,84	327,10	291,05	429,62	363,27	493,27	349,20	333,03	901,29	346,40
Colestanol (COL-anol)	297,77	225,63	205,88	275,74	338,29	166,10	162,51	173,07	191,03	164,54	174,66	172,58	139,99	176,73	170,82	171,67	168,44	153,52	196,01	162,41
Colestanona	28.35	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Brassicasterol	243,91	293,84	271,45	257,81	346,12	263,76	272,98	290,01	269,83	242,02	239,19	232,28	210,14	348,87	259,92	261,25	235,11	229,71	246,76	250,20
Brassicastanol	141,55	232,44	187,69	220,27	158,57	137,00	134,18	149,13	159,63	168,54	168,62	173,78	135,13	102,07	165,34	179,97	164,36	161,28	174,24	156,25
Metileno-Colesterol	179,37	157,62	155,78	159,63	256,91	161,30	175,85	195,73	165,55	182,50	190,14	157,63	121,84	204,44	201,27	181,47	186,31	179,73	198,38	196,71
Campesterol	211,03	133,51	158,65	158,11	224,89	148,09	156,63	177,75	156,21	182,43	188,79	144,59	123,69	176,00	170,19	187,07	185,11	175,12	200,13	175,27
Campestanol	219,25	203,75	161,66	184,05	279,37	152,74	154,43	162,28	153,43	149,16	153,94	146,02	122,51	189,70	151,08	146,04	157,29	144,15	154,37	136,55
Estigmasterol	305,29	195,90	232,58	256,96	333,71	207,01	226,23	268,42	274,22	314,42	328,05	200,02	158,64	262,35	257,70	285,20	355,16	302,90	320,09	305,33
Estigmastanol	212,04	196,19	176,16	207,80	246,22	160,68	172,55	184,69	176,27	148,12	148,90	144,15	132,11	205,79	179,76	168,52	144,27	131,56	164,88	108,67
Sitosterol	787,01	760,79	620,77	700,11	1012,51	607,27	677,04	776,56	680,01	745,92	725,28	540,15	482,30	799,35	749,48	780,85	767,16	689,76	712,91	683,79
Sitostanol	739,62	399,23	343,90	447,13	558,34	342,73	362,23	390,73	310,90	362,68	346,43	310,18	294,10	423,91	368,67	379,62	362,75	345,67	324,88	327,80
Dinosterol	737,50	716,96	553,71	644,81	913,24	561,38	592,90	628,90	506,58	555,16	564,32	536,60	480,64	666,90	631,16	588,64	563,95	512,89	610,13	535,93
	T3-20	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
Σ esteróides (ng.g ⁻¹)	5001,56	4383,39	3973,51	4259,30	5768,28	3671,76	3817,78	4236,76	3452,79	4105,08	4171,86	3446,95	3088,80	4413,97	4045,97	4371,33	4144,23	3830,47	4591,07	3927,17
Epicop/COP	0,74	0,66	0,67	0,72	0,90	0,58	NC	NC	NC	0,65	NC	0,79	0,66	0,76	0,72	0,61	0,60	0,75	0,72	0,63
COP/(COP+COL-anol)	0,21	0,27	0,22	0,19	0,19	0,28	0,29	0,26	0,18	0,25	0,26	0,20	0,26	0,27	0,25	0,26	0,28	0,27	0,25	0,28
(COP/COL-erol)	0,19	0,20	0,17	0,18	0,16	0,18	0,18	0,14	0,12	0,14	0,12	0,13	0,17	0,15	0,16	0,12	0,19	0,17	0,07	0,18
Camp-e/Estig-e/Sit-e	1:1,4:3,7	1:1,5:5,7	1:1,5:3,9	1:1,6:4,4	1:1,5:4,5	1:1,4:4,1	1:1,4:4,3	1:1,5:4,4	1:1,8:4,4	1:1,7:4,1	1:1,7:3,8	1:1,4:3,7	1:1,3:3,9	1:1,5:4,5	1:1,5:4,4	1:1,5:4,2	1:1,9:4,1	1:1,7:3,9	1:1,6:3,6	1:1,7:3,9
Σ 5 α (H) ESTANOL/ Σ Δ ⁵	0.83	0.70	0.66	0.77	0.65	0.61	0.58	0.55	0.57	0.53	0.49	0.66	0.65	0.54	0.58	0.52	0.53	0.54	0.43	0.51
$ESTEROL - C_{27} - C_{29}$	-,	-,	-,	.,	-,	-,	.,	-,	-,	-,	.,	-,	-,	.,	-,	-,	.,	.,	-,	.,
Sit/Camp (EST+EST-A)	3,55	3,44	3,01	3,35	3,12	3,16	3,34	3,43	3,20	3,34	3,13	2,93	3,15	3,34	3,48	3,48	3,30	3,24	2,93	3,24
Dinosterol/Metileno- colesterol	4,11	4,55	3,55	4,04	3,55	3,48	3,37	3,21	3,06	3,04	2,97	3,40	3,94	3,26	3,14	3,24	3,03	2,85	3,08	2,72
Colesterol/Metileno- colesterol	2,23	2,61	2,24	2,30	1,97	2,18	2,05	2,19	2,21	2,15	2,79	2,08	2,39	2,10	1,80	2,72	1,87	1,85	4,54	1,76
%COT	1,36	1,46	1,71	1,43	1,39	1,59	0,98	1,39	1,28	1,45	1,17	0,83	1,26	1,42	1,64	1,56	1,53	NA	NA	NA
Recuperação (%)	113,89	94,05	102,36	108,62	116,75	110,42	107,13	116,45	82,16	107,44	90,13	92,14	92,78	99,69	104,68	105,48	102,44	98,81	108,84	105,23

- Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL - C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002).

NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método

Não foi observada correlação significativa entre o teor de esteróides totais e a %COT. É provável que tal característica no testemunho BIOMT3 esteja relacionada à maior complexidade da matéria orgânica contribuinte, com transporte de outros materiais de origem terrígena não considerados neste estudo para a plataforma continental. Há que se considerar ainda que as maiores taxas de sedimentação propiciam uma maior proteção à matéria orgânica adsorvida, o que pode levar à relativa preservação de famílias de compostos que não seriam preservadas em outros ambientes, contribuindo assim para o aumento da %COT, não relacionado aos esteróides.

Ainda da análise da figura 43 e da tabela 14, diferente do perfil de esteróides do testemunho BIOMT1, em que o esterol mais abundante era o colesterol, os C₂₉ e C₃₀ esteróides são os compostos mais abundantes ao longo de quase toda a coluna sedimentar, sobretudo o $29\Delta^5$ (sitosterol), seguido do $30\Delta^{22}$ (dinosterol). Apesar de o $27\Delta^5$ (colesterol) ser o esterol mais abundante dentre os C₂₇ esteróides, quando considerado em relação aos demais esteróides quantificados, apresenta-se em maior abundância somente na superfície do sedimento, com aqueles associados ao fitoplâncton (C₂₈ + C₃₀) e aos vegetais superiores (C₂₉) predominando nos demais horizontes de profundidade. Wang et al. (2016) observaram comportamento similar em um testemunho coletado no Mar da China Oriental e o atribuíram ao fato de os C₂₇ esteróides serem mais suscetíveis à degradação quando comparados aos C₂₉ esteróides, conduzindo à uma maior proporção destes últimos nas porções mais profundas da coluna sedimentar.

Apesar de os esteróides não serem considerados contaminantes seu uso como traçador do aporte antropogênico é bem estabelecido (McCALLEY et al., 1981; GONZÁLEZ-OREJA & SAIZ-SALINAS, 1998; CARREIRA et al., 2004; READMAN et al., 2005; MARTINS et al., 2007; SANTOS et al., 2008; MARTINS et al., 2010; CARREIRA et al., 2015b). O fato de os esteróis fecais coprostanol e epicoprostanol terem sido detectados em um local relativamente distante das principais cidades da bacia do Rio Doce, sugere que o crescimento populacional não é acompanhado por ações públicas que visem a manutenção da sua qualidade ambiental.

A figura 44 indica que, apesar de esses esteróis fecais terem sido detectados, suas baixas concentrações implicam que não há contaminação ambiental quando comparados aos limiares usualmente aceitos, em que valores acima de 0,50 µg.g⁻¹ (peso seco) são indicativos de acúmulo de material fecal no sedimento. Comparado a outras regiões do mundo, como o estuário de Bilbao, onde já se chegou a detectar 293 µg.g⁻¹ de coprostanol em sedimentos superficiais (GONZÁLEZ-OREJA & SAIZ-SALINAS, 1998), o testemunho BIOMT3 apresenta apenas traços desses esteróis fecais, embora os resultados sugiram uma tendência de aumento na sua concentração nos anos mais recentes. Embora traços de coprostanol possam derivar de

degradação bacteriana do colesterol, sugerindo um aporte natural (embora o colesterol também seja associado a fezes humanas), no testemunho BIOMT1 as concentrações de colesterol atingiram patamares mais elevados sem que a concentração desses esteróis fecais estivesse acima do LQ (quando detectados).

Figura 44 - Concentrações de esteróides fecais no testemunho BIOMT3

O uso de proxies também indicou que não há aportes fecais significativos da bacia do Rio Doce para a plataforma continental. A figura 45 apresenta os resultados para as razões COP/COL-erol versus COP/(COP+COL-anol). A razão COP/COL-erol apresentou valores superiores ao limiar de 0,2 com apenas duas amostras, indicativas de algum patamar de contaminação fecal (SEGUEL et al., 2001; GRIMALT & ALBAIGÉS, 1990 apud MUDGE & BALL, 2006) ou contaminação fecal moderada (TAKADA et al., 1994). A razão COP/(COP+COL-anol) também indicou poucas amostras ultrapassando o limiar de 0,3, indicativo de contaminação fecal moderada a partir desse proxy (NISHIMURA, 1982 apud CARREIRA et al. 2015b), todas oriundas de sedimentos próximos ao topo do testemunho. As informações desses proxies, combinadas com as baixas concentrações desses esteróis fecais, indicam que apesar de a saúde ambiental estar se deteriorando aos poucos no local, a condição natural desse ambiente não foi afetada, ao menos com relação ao aporte de material fecal. No entanto, esses resultados sugerem que estudos deveriam ser conduzidos para diagnosticar a saúde ambiental ao longo do leito do Rio Doce e fundamentar ações públicas de saneamento, mesmo antes do rompimento da barragem de Fundão, já que aparentemente a capacidade de auto-depuração do rio foi ultrapassada.

Os valores calculados para a razão estanol/esterol indicam contribuição alóctone para os esteróides detectados (Volkman, 1986).

Figura 45 – Avaliação da contaminação fecal por meio de proxies no testemunho BIOMT3

Os resultados dos esteróides foram avaliados, ainda, por meio da Análise de Componentes Principais (PCA), de modo a verificar eventuais agrupamentos entre as amostras que possibilitassem uma melhor interpretação dos resultados. A figura 46 apresenta graficamente o resultado desta análise para todo o perfil sedimentar e para os 17 esteróides detectados (dois esteróides não foram detectados em nenhuma amostra).

Nesta análise as duas primeiras componentes principais, juntas, respondem por 77,23% da variância total observada. As amostras foram divididas em três grupos a partir dessas duas componentes principais.

Figura 46 – Análise de Componentes Principais – Esteróides no testemunho BIOMT3

O primeiro grupo, na porção inferior à direita, é representado pelas amostras do topo da coluna até 4 cm de profundidade, que consistem da porção de lama oriunda do rompimento da barragem de Fundão. A esse primeiro grupo estão também associadas as amostras T3-05 e T3-06 que não fazem parte do pacote de lama superficial, mas provavelmente foram agrupadas junto a este conjunto em função de se constituírem da camada limítrofe anterior ao acidente, com propriedades similares às demais amostras superficiais. O segundo grupo, porção superior direita do gráfico, consiste das amostras anteriores ao rompimento da barragem de Fundão, com exceção da amostra T3-12 (11-12 cm de profundidade) que não agrupou neste conjunto. Este grupo, aparentemente, representa os períodos em que se observou a ocorrência de enchentes na bacia do Rio Doce. Já o terceiro grupo concentra as amostras localizadas a partir dos 18 cm de profundidade até a base do testemunho, incluindo a amostra T3-12 (todas as amostras do lado direito do gráfico) que, aparentemente sugerem um menor aporte de esteróides para a plataforma continental em função de períodos de secas na área da bacia, em decorrência de uma menor população que se refletia em um volume menor de esteróides para a área onde foi obtido o testemunho BIOMT3 ou, ainda, por efeitos diagenéticos que podem ter atuado na decomposição dos esteróides no sedimento, levando à uma menor concentração na base do testemunho.

Considerada somente a 1ª componente principal (ao longo do eixo horizontal do gráfico, respondendo por 69,35% da variância total observada), os resultados agrupados à direita

(primeiro e segundo grupos) sugerem períodos de maior aporte de matéria orgânica contendo esteróides para a plataforma continental, seja em função de chuvas ou de outros incidentes, como o próprio rompimento da barragem de Fundão, cujos rejeitos devem ter remobilizado sedimentos de fundo na calha do rio, transportando-os ao longo do seu leito para a plataforma continental.

Segundo dados do Centro Nacional de Monitoramento e Alerta de Desastres Naturais (CEMADEN), a bacia do Rio Doce registra a ocorrência de desastres em decorrência de chuvas intensas desde o ano de 1979 (CEMADEN, 2018). Nenhuma das demais fontes consultadas (UFV, 2018; ZERO HORA, 2013) menciona a ocorrência de enchentes anteriores a este ano. A análise das séries históricas da estação Colatina – ES (apêndice B5) indica que as vazões máximas se intensificaram desde o início do seu registro, na década de 1930, enquanto as vazões nominais parecer ter diminuído nos últimos anos, o que corrobora o encontrado por Coelho (2007) apud Franco (2013), em consequência da maior ocupação humana na área da bacia. Com base no cruzamento dessas informações, é plausível supor que a PCA tenha separado as amostras em função da ocorrência de enchentes e do transporte de material alóctone para o local onde se deu a coleta do testemunho BIOMT3 sobre a plataforma continental, com reflexos nos resultados das análises de esteróides (separando as amostras em função de sua concentração).

7.2.6 Integração dos parâmetros considerados

Os resultados obtidos da análise de amostras da coluna sedimentar recuperada na região da foz do Rio Doce indicam que a matéria orgânica preservada ao longo da coluna sedimentar é oriunda de contribuição mista, com forte influência alóctone. O rio recebe aportes antropogênicos há bastante tempo, os quais são episodicamente transferidos ao longo do seu leito e, por fim, acabam atingindo a costa, acumulando-se nos sedimentos da plataforma continental. Esse transporte, aparentemente, é mais significativo nas épocas em que ocorrem as maiores vazões no leito do rio, decorrendo de lixiviação dos solos na bacia e subsequente transporte sedimentar por via fluvial.

Em decorrência desse transporte ativo de sedimentos as taxas de sedimentação são bastante variáveis, de modo que a cronologia de deposição utilizando o ²¹⁰Pb_{ex} necessitou do cruzamento com os resultados de HPAs e dados de vazão máxima medidos em estações pluviométricas ao longo do leito do rio, para sua determinação.

Foram detectadas concentrações relativamente elevadas de HPAs, sobretudo pirolíticos, que denotam a ocupação da bacia e seu uso industrial, juntamente com a presença de biomarcadores de petróleo que corroboram o aporte crônico de compostos petrogênicos ao longo do perfil, com destaque para a base do testemunho, onde foram observadas concentrações elevadas de hidrocarbonetos alifáticos, com características condizentes com um derramamento de petróleo/derivado. Também foram detectados esteróis fecais (em baixas concentrações), numa clara indicação de que o saneamento básico é um problema antigo nas cidades da bacia, o qual como anteriormente descrito, ainda não foi resolvido. A detecção dessas famílias de compostos em local relativamente distante de suas fontes mais próximas, como as cidades de Colatina – ES, Linhares – ES e Governador Valadares – MG, explicita deficiências nas políticas de gestão de resíduos adotadas nessas e em outras cidades da bacia.

As amostras obtidas no horizonte superficial da coluna, oriundas da lama trazida para a plataforma após o rompimento da barragem de rejeitos da mineradora Samarco não apresentaram importância significativa em termos de HPAs e esteróis fecais quando comparadas a outros horizontes de profundidade. A explicação mais provável para a presença desses compostos na lama de rejeitos é que os mesmos devem ter sido agregados ao pacote sedimentar quando do seu transporte sobre o solo local e – posteriormente – ao longo do leito do rio, agregando solo e sedimentos anteriormente contaminados e transportando-os até a costa. No entanto, em vista da ausência de uma amostra de lama obtida na sua fonte para comparação, não é possível afirmar que a mesma era inerte com relação a esses poluentes.

Os resultados obtidos, que indicaram a presença de hidrocarbonetos de petróleo e HPAs (principalmente pirolíticos) – compostos mais comumente detectados em áreas sujeitas a aportes antropogênicos, sugerem que tais amostras devem também ser submetidas a análises complementares com o objetivo de avaliar outras famílias de POPs.

7.3 Plataforma continental na região da foz do Rio de Contas

7.3.1 Características fisiográficas da região

O Rio de Contas, que tem sua nascente e corre integralmente no estado da Bahia, desemboca no Oceano Atlântico no município de Itacaré. Está inserido na Região Hidrográfica do Atlântico Leste (BRASIL, 2016). A área de drenagem de sua bacia corresponde a 55.483 km², abrange 76 municípios e abriga uma população total de 1.242.439 (CBH-CONTAS, 2018).A figura 47, reproduzida de INEMA (2018), detalha a área da bacia do Rio de Contas.

Figura 47 – Mapa da bacia de drenagem do Rio de Contas (INEMA, 2018)

O clima Semi-Árido abrange 51% da área da bacia, predominando no seu trecho superior e médio, onde as precipitações anuais são inferiores a 700 mm. O clima vai ficando mais ameno à medida que se aproxima do litoral, passando do Subúmido a Seco para o Úmido a Subúmido e deste para o Úmido, com a precipitação aumentando gradativamente até atingir valores próximos a 2.000 mm anuais no litoral (CBH-CONTAS, 2018). O rio se mantém perene graças a sua nascente na Chapada Diamantina, a inclinação do terreno e a baixa retenção de água no subsolo, apesar de alguns afluentes intermitentes (ROSA et al 2003). Embora concentradas na porção litorânea da bacia, as chuvas sazonais ocasionam episódios esporádicos de enchentes e transporte de materiais do continente para as praias da região (BAHIA ONLINE, 2018), como as Baronesas, tipo de vegetação que se prolifera em águas eutrofizadas. O apêndice C1 indica que, apesar da ocorrência de máximas episódicas em termos de vazão máxima, tais vazões são historicamente baixas, indicando que a bacia do Rio de Contas apresenta importância restrita para a plataforma continental.

No seu trecho superior e médio ocorrem áreas de vegetação natural de Caatinga e as áreas de pastagens marcam profundamente a paisagem, tendo em vista que a pecuária extensiva é a principal atividade econômica, especialmente nas áreas mais secas. Destacam-se a criação de gado bovino e caprino, juntamente com o cultivo de mandioca e cacau. No seu trecho inferior, a jusante de Jequié, ocorrem remanescentes das matas de Cacau-Cabruca³ e de Mata Atlântica (TEIXEIRA et al., 2013; CBH-CONTAS, 2018).

Comparada à do Rio Doce, a bacia do Rio de Contas não só é de menores dimensões, mas as cidades abrangidas são menos populosas e desenvolvidas economicamente. Apesar disso, o desenvolvimento das atividades humanas na bacia do baixo Contas tem intensificado o uso do solo, com conversão de habitats naturais em áreas agropecuárias e de uso urbano (TEIXEIRA et al. (2013). Da análise de imagens de satélite, Teixeira et al. (2013) concluíram que, em um período de aproximadamente 30 anos, as áreas de matas e de Cacau-Cabruca se reduziram de forma considerável (aproximadamente 43%), sendo convertidas em áreas de pastagem. A qualidade da água do rio é menor próximo às cidades que apresentam maior população, provavelmente por gerarem maiores volumes de esgotos (PESSOA et al., 2018). Avaliações da concentração de coliformes termotolerantes efetuadas nas imediações da cidade de Jequié indicam que o rio recebe esgoto doméstico.

Algumas barragens estão instaladas na bacia do Rio de Contas, em sua maioria utilizadas para abastecimento de água e irrigação (INEMA, 2018), além das UHEs de Pedra e do Funil. A agricultura irrigada está presente em 37 dos 76 municípios da bacia. Consta ainda uma barragem para armazenagem de rejeitos, localizada no município de Itagibá, onde são armazenados rejeitos de mineração da empresa Mirabela Mineração do Brasil, que extraía níquel em uma jazida na região e suspendeu suas atividades em 2016.

Este trabalho não localizou registros de estudos anteriores, envolvendo marcadores orgânicos na plataforma continental, na área de influência do Rio de Contas.

7.3.2 Granulometria

A análise granulométrica de amostras selecionadas (figura 48) indicou que a coluna sedimentar obtida era composta, predominantemente, pela fração silte (silte argiloso), cujo teor

³Sistema ecológico de cultivo agroflorestal. Baseia-se na substituição de estratos florestais por uma cultura de interesse econômico, implantada no sub-bosque de forma descontínua e circundada por vegetação natural, não prejudicando as relações mesológicas com os sistemas remanescentes (LOBÃO, 2019).

variou entre 75,00 e 80,91%. Já a fração argila variou entre 19,07 a 25,00%. Consta do relatório do cruzeiro (BAHR et al., 2016) que as varreduras realizadas identificaram a região como extremamente pobre em termos de acumulações sedimentares. Acumulações de depósitos holocênicos só foram encontradas em uma área relacionada, mas não exatamente em frente à foz (cerca de 8,5 MN ao sul da sua desembocadura), onde foi obtido o testemunho desse estudo.

Figura 48 - Resultados da análise granulométrica do testemunho BIOMT6

7.2.3 Datação

A figura 49 apresenta a atividade do 210 Pb_{ex} em função da profundidade ao longo da coluna sedimentar. Tais resultados indicam uma taxa de sedimentação constante de aproximadamente 0,24 cm.ano⁻¹. Na sua base, a coluna sedimentar possui idade de aproximadamente 162 anos. Em vista de as amostras terem sido obtidas no ano de 2016, é possível reconstruir a história sedimentar local até, aproximadamente, o ano de 1854, com 1 cm da camada sedimentar representando aproximadamente, 4,15 anos.

Figura 49 – Atividade do ²¹⁰Pbex – Testemunho BIOMT6.

7.2.4 Parâmetros de caracterização geral

Os parâmetros de caracterização geral indicam que o testemunho BIOMT6 apresenta origem mista, com predomínio de matéria orgânica marinha.

Os teores de COT (figura 50) variaram entre 0,25 e 1,15%, com média de 0,70% (desvio-padrão de 0,23%), condizentes com os teores esperados para margens continentais (HEDGES & OADES, 1997). A %COT é decrescente com o aumento da profundidade.

Os demais dados, obtidos a partir da caracterização isotópica (%NT, δ^{13} C e δ^{15} N) em amostras selecionadas, indicam que:

1 – A %NT apresenta comportamento similar ao COT, com seus valores variando entre
0,14 e 0,23% (média de 0,17% e desvio-padrão de 0,03%);

2 – A razão C/N variou entre 8,74 e 10,28, crescente com o aumento da profundidade, possivelmente decorrente da perda preferencial de compostos nitrogenados, via diagênese; e

3 - Os resultados obtidos não indicaram variações significativas nas razões $\delta^{13}C$ e $\delta^{15}N$. A razão $\delta^{13}C$ variou entre -22,47 e -21,91‰ (média de -22,24‰ e desvio-padrão de 0,16‰) enquanto a $\delta^{15}N$ variou entre 4,70 e 5,72‰ (média de 5,29‰ e desvio-padrão de 0,28‰). Considerando os limiares descritos para o modelo de mistura adotado por Xing et al. (2014) e Chen et al. (2017b) para avaliar a percentagem de matéria orgânica terrígena a partir da $\delta^{13}C$, é possível concluir que esse proxy indica a contribuição mista de fontes marinhas e terrígenas, com contribuição terrígena estimada entre 27,33 e 35,30%.

Figura 50 – % COT versus profundidade e ano de deposição para o testemunho BIOMT6

Os dados da razão C/N versus δ^{13} C, confrontados com dados típicos para amostras de ambientes costeiros, (figura 51), confirmam a origem mista da matéria orgânica no ambiente considerado, com predomínio de matéria orgânica de origem marinha.

Figura 51 – Razão C/N versus δ^{13} C para amostras selecionadas do testemunho BIOMT6.

7.3.5 – Análise cromatográfica

7.3.5.1 Hidrocarbonetos alifáticos na PC Contas

Os resultados das análises de hidrocarbonetos alifáticos estão compilados na tabela 15 e são apresentados graficamente no apêndice C2. Essa tabela apresenta os dados de concentração de n-alcanos resolvidos (n-C₁₁ a n-C₃₆), juntamente com a MCNR e os isoprenóides pristano e fitano. São ainda apresentados resultados para os diversos proxies, anteriormente descritos. A recuperação do padrão 1-eicoseno variou entre 71,03 e 118,93%, com todas as amostras dentro dos limites de qualidade propostos por Ribani et al. (2004).

Os teores de hidrocarbonetos alifáticos totais variaram entre 510,46 ng.g⁻¹ (ou cerca de 0,510 μ g.g⁻¹) a 3203,88 ng.g⁻¹ (ou cerca de 3,204 μ g.g⁻¹) (figura 52).

Figura 52 - Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT6.

Os resultados obtidos, confrontados com limiares de classificação da qualidade de sedimentos estabelecidos em estudos anteriores (VOLKMAN et al., 1980 apud VOLKMAN et al. 1992; VAN VLEET et al., 1984 & PILLON et al., 1986 apud BOULOUBASSI & SALIOT, 1993), indicam baixas concentrações ao longo de toda a coluna sedimentar, de modo que o

local, à luz dos hidrocarbonetos alifáticos, pode ser considerado um ambiente livre de aportes relacionados à hidrocarbonetos de petróleo.

As maiores concentrações de hidrocarbonetos alifáticos se deram próximo ao topo do testemunho, com a faixa entre as amostras BIOMT6-01 (entre 0 e 1 cm de profundidade) e BIOMT6-03 (entre 02 e 03 cm de profundidade) apresentando as maiores concentrações. A concentração de hidrocarbonetos alifáticos totais determinada na porção superficial do testemunho é comparável às concentrações detectadas no testemunho BIOMT1. A concentração de hidrocarbonetos alifáticos totais é decrescente com o aumento da profundidade, provavelmente refletindo uma contribuição mais ou menos constante para o local ao longo do período coberto pelo testemunho BIOMT6 e os efeitos da diagênese recente, levando ao consumo de uma parcela significativa da matéria orgânica depositada.

A MCNR de hidrocarbonetos se apresenta em concentração baixa ao longo de todo o testemunho. A proporção da MCNR varia entre 11,69 e 37,82% dos hidrocarbonetos alifáticos totais, sendo pouco significativa quando comparada aos alcanos resolvidos.

Os n-alcanos detectados apresentaram marcado predomínio de homólogos ímpares de cadeia longa ao longo de todo o testemunho. O predomínio de homólogos ímpares, sobretudo na faixa entre n- C_{27} e n- C_{33} , típico de ceras epicuticulares, indica aportes associados a vegetais superiores (EGLINTON & HAMILTON, 1967; VOLKMAN et al., 1992). O proxy IPC2 variou entre 2,35 e 5,44 ao longo do testemunho, com contribuições principais dos homólogos de C_{25} a C_{33} , embora na porção superficial sejam observados homólogos de menor massa molecular, possivelmente oriundos de produção algal.

Os índices TAR e Pmar-aq, também indicativos da contribuição de vegetais superiores para o sedimento, indicam o predomínio de n-alcanos associados a essa classe de vegetais sobre aqueles de origem marinha ao longo de todo o testemunho, confirmando a importância relativa dos compostos terrígenos no local estudado. Em função das baixas concentrações determinadas sobretudo entre os hidrocarbonetos de baixa massa molecular, a razão TAR apresentou valores extremamente elevados em algumas porções do testemunho, denotando que a interpretação desses proxies deve ser feita com cautela em vista da possível distorção nos resultados desse proxy em virtude de alterações diagenéticas, principalmente sobre os compostos de menor massa molecular.

Alifáticos (ng.g ⁻¹)	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
n-C11	<lq< th=""><th>4,72</th><th>11,44</th><th>7,31</th><th>9,19</th><th>5,08</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,66</th><th>3,59</th><th>3,80</th></lq<></th></lq<></th></lq<></th></lq<>	4,72	11,44	7,31	9,19	5,08	<lq< th=""><th><lq< th=""><th><lq< th=""><th>3,66</th><th>3,59</th><th>3,80</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>3,66</th><th>3,59</th><th>3,80</th></lq<></th></lq<>	<lq< th=""><th>3,66</th><th>3,59</th><th>3,80</th></lq<>	3,66	3,59	3,80
n-C12	<lq< th=""><th>6,62</th><th>12,80</th><th>10,04</th><th>9,64</th><th>6,20</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	6,62	12,80	10,04	9,64	6,20	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
n-C13	7,47	13,03	18,56	14,73	12,74	12,34	<lq< th=""><th><lq< th=""><th><lq< th=""><th>4,74</th><th>5,36</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>4,74</th><th>5,36</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>4,74</th><th>5,36</th><th><lq< th=""></lq<></th></lq<>	4,74	5,36	<lq< th=""></lq<>
n-C14	7,15	9,64	18,32	16,17	12,57	12,76	8,02	4,80	9,46	8,42	8,04	5,15
n-C15	17,29	10,69	21,19	16,32	11,05	11,60	7,59	5,67	9,15	8,76	7,97	4,68
n-C16	14,82	15,56	23,56	16,83	14,56	17,00	8,68	8,64	13,34	12,93	11,95	7,30
n-C17	47,40	21,59	23,62	14,75	10,81	9,92	6,34	6,43	7,83	7,61	7,19	4,83
Pristano	40,59	15,82	16,24	8,77	7,43	9,42	<lq< th=""><th>3,69</th><th>4,03</th><th>3,63</th><th>3,83</th><th><lq< th=""></lq<></th></lq<>	3,69	4,03	3,63	3,83	<lq< th=""></lq<>
n-C18	18,38	16,74	23,88	18,57	14,80	18,33	8,00	8,76	10,97	8,15	9,10	7,04
Fitano	7,53	12,35	13,87	6,55	4,99	5,98	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
n-C19	18,20	15,15	16,77	14,46	11,65	13,03	8,02	8,39	7,86	8,01	7,80	6,44
n-C20	61,51	53,57	57,11	47,82	47,53	53,59	48,71	50,81	36,66	39,93	37,74	37,73
n-C21	18,33	22,71	27,89	18,37	14,70	15,55	14,61	16,94	15,68	15,99	15,64	13,54
n-C22	22,12	18,59	27,18	19,71	15,41	17,91	13,83	14,35	15,35	15,37	15,53	14,05
n-C23	33,85	33,35	37,89	33,39	23,15	26,11	24,02	19,85	20,63	21,39	21,93	18,91
n-C24	38,17	34,82	37,28	38,56	24,29	25,99	23,72	17,68	19,25	19,92	19,76	19,11
n-C25	86,25	81,74	69,24	80,23	57,01	57,71	56,72	52,11	50,33	55,77	53,18	49,88
n-C26	61,39	52,59	58,77	57,83	35,52	39,92	37,78	29,05	31,67	34,74	30,86	30,32
n-C27	100,90	95,84	93,60	92,43	110,98	107,48	114,62	101,04	101,05	103,81	107,64	95,62
n-C28	98,34	87,79	85,68	87,25	60,06	54,93	64,56	56,49	54,51	57,99	55,31	51,47
n-C29	299,34	297,64	269,84	269,37	217,28	224,27	227,86	205,25	201,82	227,58	225,97	198,92
n-C30	136,95	135,72	121,95	123,85	71,37	77,52	81,57	71,73	71,64	79,76	76,84	72,42
n-C31	369,93	373,82	337,17	340,38	245,26	253,55	281,55	241,24	244,06	284,02	257,79	251,33
n-C32	113,47	95,64	97,02	97,99	59,95	65,47	69,15	57,73	57,53	71,41	64,73	55,18
n-C33	297,27	319,98	277,12	304,01	167,84	182,16	209,60	178,28	174,08	211,00	193,64	163,36
n-C34	63,33	56,36	46,94	46,25	34,46	28,97	36,93	28,27	26,01	31,69	31,42	25,27
n-C35	125,30	113,27	132,12	135,90	100,09	98,92	110,30	97,17	92,51	113,70	108,86	100,33
n-C36	21,11	18,79	15,19	15,42	11,49	9,66	12,31	9,42	8,67	10,56	10,47	8,42
	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
[MCNR]	1060,51	878,92	1211,65	908,28	541,89	623,46	576,94	592,79	284,81	418,16	185,77	398,91
Σ [Alif. Res]	2126,38	2034,15	1992,23	1953,24	1415,82	1461,34	14/4,49	1293,79	1284,11	1460,56	1392,16	1245,12
[Alif. Totais]	3186,89	2913,07	3203,88	2861,52	1957,71	2084,80	2051,43	1886,59	1568,92	18/8,/2	1577,93	1644,03
IAK ALK	<u>9,29</u>	10,18	11,38	15,42	1 401	16,94	28,42	26,73	22,01	25,24	25,75	34,22
Pri/Fit	5,589	1,281	1,1/1	1,339	1,491	1,575	NC 0.127	NC 0.120	NC 0.127	NC 0.121	NC 0.124	NC 0.122
$\frac{\text{Pmar-aq}}{\sum(15,20/21,25)}$	0,132	0,140	0,150	0,157	0,148	0,149	0,137	0,139	0,137	0,131	0,134	0,133
2(15-20/21-55)	0,121	0,089	0,114	0,085	0,099	0,109	0,064	0,078	0,076	0,066	0,067	0,059
n-C1//Pri	1,17	1,30	1,45	1,08	1,45	1,05	NC	1,/4 NC	1,94 NC	2,10 NC	1,88 NC	NC
// MCND	2,44	20.17	1,/2	2,83	2,91	20.01	INC 28.12	21.42	INC 18.15	1NC 22.26	INC 11.77	24.26
MCND/DEC	0.50	0.42	0.61	0.47	0.29	29,91	20,12	0.44	10,13	0.20	0.12	0.22
IDC2	0,50	0,45	0,01	0,47	0,38	0,45	2.00	2.09	2.06	0,29	0,15	0,52
	2,33	2,00	2,40	2,44	3,02	2,97	2,99	3,08	3,00	3,07	3,14	3,12
	1,12	1,15	0,99	0,95	1,00	0,84	0,91	0,81	1,00	0,91	0,82	1,02
Recup. (%)	107,52	118,52	97,15	114,60	118,93	107,78	90,57	81,89	83,78	96,22	95,11	90,48

Tabela 15 – Hidrocarbonetos alifáticos no Testemunho BIOMT6

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

Alifáticos (no o ⁻¹)	T6-13	T6-14	T6-15	T6-18	T6-20	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
n-C11	5 11	ND	3 53	4 57	ND	3.42	ND	<1.0	ND	ND	2.65	ND
n-C12	5.67	ND	3,64	6.14	ND	3.83	ND		ND	ND	4 13	ND
n-C13	6.99		4 54	7.23	4 25	5.25					5.42	
n-C14	4 98			4.96	<10	3,23	ND				3,12	
n-C15	<1.0				ND	<10	ND		ND	ND		ND
n-C16	4 38			3.69	ND	3.64	ND	3.46	ND	ND		ND
n-C17	3.83				ND		ND		ND	ND		ND
Pristano	<u><10</u>	ND			ND		ND		ND	ND		ND
n-C18	8.60	<1.0	4.31	6.33	<1.0	4.45	ND	5.49	ND	ND	3.81	ND
Fitano	<l0< th=""><th>ND</th><th><l0< th=""><th><1.0</th><th>ND</th><th><1.0</th><th>ND</th><th><1.0</th><th>ND</th><th>ND</th><th><1.0</th><th>ND</th></l0<></th></l0<>	ND	<l0< th=""><th><1.0</th><th>ND</th><th><1.0</th><th>ND</th><th><1.0</th><th>ND</th><th>ND</th><th><1.0</th><th>ND</th></l0<>	<1.0	ND	<1.0	ND	<1.0	ND	ND	<1.0	ND
n-C19	8.97	<1.0	3.66	<lq< th=""><th><1.0</th><th>2.79</th><th><1.0</th><th>3.68</th><th><1.0</th><th>ND</th><th><1.0</th><th><1.0</th></lq<>	<1.0	2.79	<1.0	3.68	<1.0	ND	<1.0	<1.0
n-C20	35.62	24.24	28.37	28.23	13.17	23.47	12.43	25.40	13.50	15.49	19.60	12.15
n-C21	16.74	8.08	8.89	7.96	3.18	6.42	<lo< th=""><th>6.42</th><th><lo< th=""><th>3.18</th><th>4.95</th><th><lo< th=""></lo<></th></lo<></th></lo<>	6.42	<lo< th=""><th>3.18</th><th>4.95</th><th><lo< th=""></lo<></th></lo<>	3.18	4.95	<lo< th=""></lo<>
n-C22	17,93	12,07	10,94	11,67	5,49	9,73	4,34	10,49	3,32	4,46	8,87	<lq< th=""></lq<>
n-C23	21,21	17,67	16,68	15,74	9,47	12,25	9,13	12,19	8,87	9,31	9,61	4,09
n-C24	16,68	11,85	13,54	13,54	9,78	11,80	10,42	11,87	6,85	7,86	12,78	4,80
n-C25	44,22	38,14	42,30	38,24	23,63	33,14	21,14	32,40	17,81	23,28	24,93	9,18
n-C26	28,44	18,67	26,08	24,93	14,05	22,17	13,90	20,63	9,64	11,58	17,72	8,27
n-C27	90,70	85,31	84,67	76,30	68,73	68,03	60,03	70,81	53,02	69,97	51,10	25,05
n-C28	48,98	39,23	48,14	43,53	27,97	37,21	29,00	37,76	21,44	29,14	26,95	12,12
n-C29	182,13	192,36	168,60	155,47	176,57	148,71	157,71	150,18	159,66	195,89	107,04	87,35
n-C30	64,63	53,33	60,49	49,66	42,38	51,54	41,64	50,18	32,43	40,90	32,96	16,42
n-C31	224,48	247,31	206,94	185,60	220,66	180,48	192,36	172,37	192,98	246,44	120,78	97,89
n-C32	56,59	44,75	49,98	41,36	30,85	40,25	28,44	39,01	22,25	27,08	26,87	10,81
n-C33	155,44	175,90	156,03	120,00	138,95	114,81	104,92	100,46	100,84	133,98	68,03	69,14
n-C34	24,94	18,30	19,12	16,58	10,60	14,55	11,26	13,74	6,01	8,88	10,12	4,41
n-C35	101,68	61,56	74,68	70,10	44,05	48,70	23,46	52,78	21,97	32,48	27,83	10,87
n-C36	8,31	6,10	6,37	5,53	3,53	4,85	3,75	4,58	2,00	2,96	3,37	1,47
	T6-13	T6-14	T6-15	T6-18	T6-20	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
[MCNR]	331,93	441,06	137,83	313,80	305,03	139,21	256,19	115,21	159,51	169,16	165,76	136,44
Σ [Alif. Res]	1187,25	1054,86	1041,52	937,35	847,32	854,59	723,91	823,88	672,60	862,89	592,64	374,02
[Alif. Totais]	1519,18	1495,91	1179,35	1251,14	1152,35	993,80	980,10	939,08	832,11	1032,06	758,40	510,46
TAR ALK	38,87	NC	125,81	NC	NC	142,59	NC	106,89	NC	NC	NC	NC
Pri/Fit	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Pmar-aq	0,139	0,113	0,136	0,137	0,077	0,121	0,080	0,121	0,070	0,069	0,132	0,067
$\Sigma(15-20/21-35)$	0,056	0,024	0,037	0,044	0,016	0,043	0,018	0,049	0,021	0,018	0,043	0,034
n-C17/Pri	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
n-C18/Fit	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
% MCNR	21,85	29,48	11,69	25,08	26,47	14,01	26,14	12,27	19,17	16,39	21,86	26,73
MCNR/RES	0,28	0,42	0,13	0,33	0,36	0,16	0,35	0,14	0,24	0,20	0,28	0,36
IPC2	3,01	4,05	3,03	3,11	4,75	3,12	4,19	3,12	5,42	5,44	3,11	5,24
%COT	0,92	0,79	0,74	0,84	0,43	0,26	0,62	0,80	0,54	0,56	0,58	0,60
Recup. (%)	110,97	93,30	96,95	91,35	71,45	107,51	71,03	96,73	72,46	72,55	83,98	71,48

Tabela 15 – Hidrocarbonetos alifáticos no Testemunho BIOMT6 (continuação)

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado

O índice TAR variou entre 9,29 e 142,59, crescente com o aumento da profundidade e, possivelmente, refletindo a maior diagênese da matéria orgânica autóctone sobre a alóctone. O índice IPC2 variou entre 2,35 e 5,44, denotando significativa contribuição de matéria orgânica tipicamente associada a vegetais superiores, sem indicação de aportes antropogênicos para o local. O índice Pmar-aq variou entre 0,07 e 0,16, também indicando contribuição associada a vegetais superiores ao longo de todo o perfil sedimentar.

A razão pristano/fitano, indicadora de ambiente deposicional, sugere condições oxidantes para a deposição dos sedimentos.

Similarmente ao observado com o testemunho BIOMT1, a maior concentração de hidrocarbonetos alifáticos totais no testemunho BIOMT6 (porção superficial) coincide com a profundidade da coluna sedimentar em que se deu a maior %COT e, possivelmente, indica a menor complexidade em termos de fontes de matéria orgânica locais.

A figura 53 apresenta a distribuição quantitativa de n-alcanos em diferentes horizontes de profundidade ao longo do testemunho BIOMT6.

Figura 53 - Distribuição de n-alcanos em diferentes horizontes de profundidade - BIOMT6

Na porção superficial do testemunho (figuras 53 A e B), as concentrações são mais elevadas que nos demais horizontes de profundidade (figuras 53 C a F), sendo também possível concluir que os registros da produção fitoplanctônica são pouco significativos (e mais ou menos constantes) e que as variações de concentração se devem à diagênese ao longo da coluna sedimentar. Ao longo do testemunho as maiores concentrações de n-alcanos resolvidos encontram-se na porção superficial, na faixa entre $n-C_{27}$ a $n-C_{33}$, característica da contribuição de vegetais superiores, mais resistentes à diagênese.

7.3.5.2 Hidrocarbonetos aromáticos na PC Contas

Os resultados das análises de hidrocarbonetos aromáticos estão compilados na tabela 16 (apresentados com os resultados de HPAs alquilados no apêndice C3) e são apresentados graficamente no apêndice C4. São ainda apresentados resultados para os proxies de hidrocarbonetos aromáticos, anteriormente descritos. A recuperação do padrão p-terfenil-d14 variou entre 65,71 e 119,81%, com algumas amostras fora dos limites de qualidade analítica propostos por Ribani et al. (2004), mas dentro dos limites de qualidade propostos por Sericano et al. (1998) e, principalmente, por Denoux et al. (1998) (análise quantitativa de HPAs).

Como pode ser observado na figura 54, o perfil de HPAs apresenta baixas concentrações ao longo de toda a coluna sedimentar, similarmente ao observado no testemunho BIOMT1. Os teores de HPAs prioritários variaram entre 0,68 e 27,94 ng.g⁻¹, enquanto os teores de HPAs totais variaram entre 22,85 e 93,57 ng.g⁻¹, com as maiores concentrações observadas na porção de topo do testemunho. A concentração de HPAs totais e prioritários, em geral, decresceu com o aumento da profundidade, embora em alguns horizontes tenha ocorrido maior acúmulo de HPAs, sobretudo pirolíticos, que sugerem aportes antropogênicos como a ocorrência de queimadas e conversão de matas em pastagens, particularmente entre as décadas de 1960 e 1970, que devem refletir o desenvolvimento humano na área da bacia, como descrito em Teixeira et al. (2013).

A concentração do perileno, tipicamente associado à diagênese da matéria orgânica, apresenta contribuição importante para o total de HPAs ao longo de todo o perfil, denotando que a contribuição proporcional de HPAs antropogênicos é pouco significativa ao longo de quase todo o perfil. Com base nos limiares propostos para avaliar a razão entre a concentração do perileno e a soma dos isômeros penta-aromáticos, sua origem provavelmente está associada à diagênese da matéria orgânica ao longo de toda a coluna sedimentar (PERILENO/ Σ HPAs 5

anéis > 0,1) (BAUMARD et al., 1998; LAFLAMME & HITES, 1978 apud READMAN et al., 2002). O perileno é usualmente considerado um produto diagenético formado em ambiente deposicional sob condições anóxicas (SILLIMAN et al., 2001). Apesar das altas concentrações relativas, sua concentração decresce com o aumento da profundidade, sugerindo aporte alóctone. Sua concentração variou entre 15,28 a 79,30 ng.g⁻¹ e representa entre 47,81 e 97,50% dos HPAs totais.

Figura 54 - Concentração de HPAs e perileno no testemunho BIOMT6

Em função das baixas concentrações, o uso de proxies para identificar a origem desses HPAs foi prejudicada. No entanto, é possível identificar dois períodos em que as concentrações de HPAs prioritários tiveram algum aumento e contribuíram para um aumento na concentração total de HPAs. De acordo com os dados de datação, tais episódios se deram entre as décadas de 1960 e 1970, sendo associados à contribuição de HPAs pirolíticos. É possível que tal aumento esteja relacionado a pressões antropogênicas na bacia, como mencionado em Teixeira et al. (2013), embora tal suposição seja de difícil comprovação.

Aromáticos (ng.g ⁻¹)	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
Naftaleno (N)	2,35	2,51	2,74	1,51	2,89	2,48	1,86	<lq< th=""><th>2,27</th><th>1,78</th><th>2,73</th><th><lq< th=""></lq<></th></lq<>	2,27	1,78	2,73	<lq< th=""></lq<>
1 Metilnaftaleno (1MN)	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
2 Metilnaftaleno (2-MN)	<lq< th=""><th>1,13</th><th>1,38</th><th><lq< th=""><th>1,12</th><th>1,36</th><th><lq< th=""><th><lq< th=""><th>1,80</th><th>0,95</th><th>1,35</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1,13	1,38	<lq< th=""><th>1,12</th><th>1,36</th><th><lq< th=""><th><lq< th=""><th>1,80</th><th>0,95</th><th>1,35</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	1,12	1,36	<lq< th=""><th><lq< th=""><th>1,80</th><th>0,95</th><th>1,35</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>1,80</th><th>0,95</th><th>1,35</th><th><lq< th=""></lq<></th></lq<>	1,80	0,95	1,35	<lq< th=""></lq<>
Bifenil (BIF)	3,71	3,84	4,07	2,85	3,25	4,19	<lq< th=""><th>1,24</th><th>1,89</th><th>1,28</th><th>1,13</th><th><lq< th=""></lq<></th></lq<>	1,24	1,89	1,28	1,13	<lq< th=""></lq<>
2,6 dimetilnaftaleno	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Acenaftileno (ACT)	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< th=""><th>ND</th><th>ND</th></lq<>	ND	ND
Acenafteno (ACE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno (FLU)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	ND	ND	ND	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th></lq<>	ND
Dibenzotiofeno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno (FEN)	<lq< th=""><th>1,29</th><th>1,13</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1,29	1,13	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,87</th><th><lq< th=""></lq<></th></lq<>	0,87	<lq< th=""></lq<>
Antraceno (ANT)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	ND	ND	ND	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th></lq<>	ND
Fluoranteno (FLT)	1,35	1,84	1,17	<lq< th=""><th>1,83</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,30</th><th>1,11</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1,83	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,30</th><th>1,11</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,30</th><th>1,11</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>3,30</th><th>1,11</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>3,30</th><th>1,11</th></lq<></th></lq<>	<lq< th=""><th>3,30</th><th>1,11</th></lq<>	3,30	1,11
Pireno (PIR)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,47</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2,47	<lq< th=""><th><lq< th=""><th><lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,67</th><th>5,31</th><th>2,26</th><th><lq< th=""></lq<></th></lq<>	2,67	5,31	2,26	<lq< th=""></lq<>
Benzo(a)antraceno (BaA)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>3,06</th><th><lq< th=""></lq<></th></lq<>	3,06	<lq< th=""></lq<>
Criseno (CRIS)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,47</th><th><lq< th=""></lq<></th></lq<>	2,47	<lq< th=""></lq<>
Benzo(b)fluoranteno	2,88	3,65	2,24	1,17	2,95	2,34	2,91	2,74	3,05	3,05	4,59	3,69
Benzo(k)fluoranteno	<lq< th=""><th><lq< th=""><th>2,32</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,32</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2,32	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Benzo(a)pireno (BaP)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>3,50</th><th><lq< th=""></lq<></th></lq<>	3,50	<lq< th=""></lq<>
Perileno (PER)	66,92	79,30	57,19	35,86	47,97	34,85	41,31	34,98	32,95	31,18	32,14	30,28
Benzo(e)pireno (BeP)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>1,99</th><th><lq< th=""></lq<></th></lq<>	1,99	<lq< th=""></lq<>
Indeno(1,2,3-cd)pireno	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,75</th><th><lq< th=""></lq<></th></lq<>	2,75	<lq< th=""></lq<>
Dibenzo(a,h)antraceno	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th></lq<>	ND
Benzo(g.h.i)perileno	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>2,41</th><th><lq< th=""></lq<></th></lq<>	2,41	<lq< th=""></lq<>
	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
[HPAS] prioritários (ng.g ⁻¹)	6,59	9,30	9,60	2,68	10,14	4,82	4,77	2,74	7,99	10,14	27,94	4,80
[HPAS] totais (ng.g ⁻¹)	77,22	93,57	74,82	41,38	64,86	47,55	46,07	38,97	44,62	45,58	67,22	35,08
	0,56	0,69	0,67	1,29	0,40	1,06	0,64	0,00	0,40	0,21	0,19	0,00
	0,64	0,59	0,60	0,44	0,71	0,49	0,61	1,00	0,72	0,82	0,87	1,00
FL1/(FL1+PIR)	1,00	1,00	1,00	NC	0,43	NC	NC	NC	0,00	0,00	0,59	1,00
I[cd]P/(I[cd]P+B[gh1]P)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0,53	NC
ANI/(ANI+FEN)	NC	0,00	0,00	NC	NC	NC	NC	NC	NC	NC	0,00	NC
BaA/(BaA+CRIS)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	0,55	NC
2-MIN/FEN	0,00	0,61	1,18	NC	0,61	NC	NC	NC	NC	NC	0,41	0,00
BEDHENO/SHDAs 5 andia	NC 0.06	NC 0.06	NC 0.02	NC 0.07	NC 0.04	NC 0.04	NC 0.02	NC 0.03	NC 0.02	NC 0.01	1,31	NC 0.80
COT	1.12	1.15	0,95	0.97	1.06	0.84	0,95	0,95	1.00	0,91	0,70	1.02
Recuperação (%)	115,38	116,84	119,47	68,33	100,98	98,09	98,07	118,57	65,71	77,29	118,66	106,92

Tabela 16 – Hidrocarbonetos aromáticos no Testemunho BIOMT6

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado

								,	,	/		
Aromáticos (ng.g ⁻¹)	T6-13	T6-14	T6-15	T6-18	T6-20	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
Naftaleno (N)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno (1MN)	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
2 Metilnaftaleno (2-MN)	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bifenil (BIF)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2,6 dimetilnaftaleno	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
Acenaftileno (ACT)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenafteno (ACE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno (FLU)	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""></lq<>
Dibenzotiofeno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno (FEN)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antraceno (ANT)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluoranteno (FLT)	<lq< td=""><td>1,93</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,93	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pireno (PIR)	<lq< td=""><td>13,28</td><td><lq< td=""><td><lq< td=""><td>4,59</td><td><lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	13,28	<lq< td=""><td><lq< td=""><td>4,59</td><td><lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,59</td><td><lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<></td></lq<>	4,59	<lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<>	3,57	<lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<>	7,57	2,92	<lq< td=""><td>2,02</td></lq<>	2,02
Benzo(a)antraceno (BaA)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno (CRIS)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(b)fluoranteno	2,37	1,79	2,68	1,62	0,74	1,21	<lq< td=""><td>1,72</td><td><lq< td=""><td>0,79</td><td>0,68</td><td><lq< td=""></lq<></td></lq<></td></lq<>	1,72	<lq< td=""><td>0,79</td><td>0,68</td><td><lq< td=""></lq<></td></lq<>	0,79	0,68	<lq< td=""></lq<>
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Benzo(a)pireno (BaP)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Perileno (PER)	31,51	26,57	27,69	29,32	19,74	27,14	29,06	27,98	15,28	28,41	26,32	16,47
Benzo(e)pireno (BeP)	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Indeno(1,2,3-cd)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Dibenzo(a,h)antraceno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g.h.i)perileno	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th></lq<>	ND
	T6-13	T6-14	T6-15	T6-18	T6-20	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
[HPAS] prioritários (ng.g ⁻¹)	2,37	17,67	2,68	1,62	4,27	1,21	1,99	1,72	4,21	3,43	0,68	0,00
[HPAS] totais (ng.g ⁻¹)	33,87	43,57	30,38	30,94	25,08	28,36	32,63	29,71	22,85	32,12	27,00	18,49
ΣLMW/ΣΗΜW ΗΡΑ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	NC
ΣСОМΒ/ΣΗΡΑS	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	NC
FLT/(FLT+PIR)	NC	0,45	NC	NC	0,00	NC	0,00	NC	0,00	0,00	NC	NC
I[cd]P/(I[cd]P+B[ghi]P)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
ANT/(ANT+FEN)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BaA/(BaA+CRIS)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
2-MN/FEN	NC	0,00	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
B[b+k]F/BaP	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
PERILENO/Σ HPAs 5 anéis	0,93	0,90	0,91	0,95	0,94	0,96	1,00	0,94	1,00	0,95	0,97	1,00
%COT	0,92	0,79	0,74	0,84	0,43	0,26	0,62	0,80	0,54	0,56	0,58	0,60
Recuperação (%)	79,05	77,22	110,18	100,93	87,83	105,22	119,81	110,04	85,34	105,24	115,00	115,66

Tabela 16. Hidrocarbonetos aromáticos no Testemunho BIOMT6 (continuação)

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

Os proxies ΣLMW/ΣHMW HPA e ΣCOMB/ΣHPAS, utilizados para avaliar a origem dos hidrocarbonetos aromáticos com base na abundância relativa dos HPAs de alta massa molecular sobre os de baixa massa molecular e da abundância relativa de HPAs reconhecidamente pirolíticos (tabela 16), indicam que os aportes pirolíticos são predominantes ao longo de toda a coluna sedimentar. O uso desses indicadores também foi prejudicado pela abundância do perileno com relação aos demais HPAs. Além do perileno, somente o pireno foi detectado em maior abundância na maioria das amostras, em clara indicação de que a região não acumula compostos poluentes de forma significativa.

A origem dos HPAs no testemunho BIOMT6 também foi avaliada em termos de outros proxies, no mesmo formato descrito/utilizado por Yunker et al. (2002), Tobiszewski & Namiesnik (2012) e Pinheiro et al. (2017). No entanto, somente uma amostra indicou concentrações de HPAs úteis para esta avaliação, com indicação de aporte de HPAs pirolíticos.

De modo similar aos HPAs parentais, a concentração de HPAs alquilados foi pouco significativa, com as concentrações dos metil-naftalenos e do 2,6 di-metil naftaleno abaixo do LQ ao longo de quase toda a coluna sedimentar. Tais HPAs estiveram acima do LQ em alguns poucos horizontes de profundidade, normalmente coincidentes com as maiores concentrações de HPAs prioritários determinadas e, quando quantificados, indicam aporte pirolítico para o sedimento (NEFF, 2002).

7.3.5.3 Esteróides na PC Contas

Os resultados das análises de esteróides estão compilados na tabela 17. Nesta tabela são ainda apresentados resultados para alguns proxies, anteriormente descritos. A recuperação do padrão 5 α -androstanol variou entre 75,02 e 119,89%, dentro dos limites de qualidade analítica propostos por Ribani et al. (2004).

Quando comparado ao testemunho obtido na plataforma continental associada ao Rio Doce, o perfil de esteróides apresenta menores concentrações desde a porção superficial, refletindo a menor contribuição fluvial e as condições predominantemente oligotróficas da costa na região estudada. Aparentemente não ocorre variação significativa no registro de aportes fluviais ou da produtividade primária local nos sedimentos, ao menos na janela temporal abrangida pela coluna sedimentar. Os teores de esteróides totais (figura 55) variaram entre 355,99 ng.g⁻¹ (cerca de 0,356 μ g.g⁻¹) e 9321,12 ng.g⁻¹ (cerca de 9,321 μ g.g⁻¹), respectivamente na base e no topo do testemunho.

Figura 55 - Concentrações de esteróides no testemunho BIOMT6

As maiores concentrações de esteróides ocorrem na superfície do sedimento com rápido decaimento conforme aumenta a profundidade, de modo similar ao anteriormente observado por Carreira et al. (2012) e por Wang et al. (2016) em outras regiões e nos demais testemunhos deste estudo, possivelmente em decorrência da maior susceptibilidade dos esteróides de menor massa molecular à diagênese.

Dado o decréscimo na concentração de esteróides totais nos primeiros centímetros da coluna sedimentar e a não observação de alterações significativas no perfil dos diferentes esteróides ao longo do testemunho, é razoável supor que o aporte de matéria orgânica não tenha variado de forma importante ao longo do período considerado por este estudo. Esse decréscimo pode ser atribuído à diagênese da matéria orgânica em ambiente sedimentar (WANG et al., 2016). Tal observação se sustenta ainda no fato de que, fora da região de topo, predominam os C₂₉/C₃₀ esteróides, como o sitosterol e o sitostanol (associados à contribuição oriunda de vegetais superiores) dinosterol (associados a dinoflagelados), dada a maior suscetibilidade à degradação dos esteróides de menor massa molecular. A razão estanóis/esteróis indica graus variados de alteração diagenética, que sugerem transporte de material alóctone e sua posterior deposição nos sedimentos da zona de acumulação estudada.

Esteróides (ng.g ⁻¹)	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
$26\Delta^{5,22}$	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Coprostanol (COP)	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Epicoprostanol (Epicop)	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
$nor27\Delta^{5,22}$	109,895	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND	ND
Dihidro-Colesterol	233,918	145,540	65,452	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Dihidro-Colestanol	118,374	78,759	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<>	ND	ND	ND	<lq< th=""><th>ND</th></lq<>	ND
Colesterol (COL-erol)	2319,243	484,524	267,041	207,199	260,695	178,268	121,505	99,924	52,044	64,650	73,237	56,443
Colestanol (COL-anol)	249,855	228,493	196,126	145,891	115,508	83,991	72,522	<lq< th=""><th><lq< th=""><th>45,211</th><th>42,206</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>45,211</th><th>42,206</th><th><lq< th=""></lq<></th></lq<>	45,211	42,206	<lq< th=""></lq<>
Colestanona	134,227	63,743	45,591	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicasterol	1829,778	494,566	252,986	376,539	259,821	185,562	143,842	109,801	57,188	67,944	67,763	48,454
Brassicastanol	128,962	96,732	68,760	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Metileno-Colesterol	363,309	203,497	142,502	105,405	64,141	46,697	<lq< th=""><th><lq< th=""><th><lq< th=""><th>68,288</th><th>83,395</th><th>77,478</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>68,288</th><th>83,395</th><th>77,478</th></lq<></th></lq<>	<lq< th=""><th>68,288</th><th>83,395</th><th>77,478</th></lq<>	68,288	83,395	77,478
Campesterol	354,290	287,453	237,984	230,717	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campestanol	162,315	110,378	109,869	89,775	88,809	61,336	42,829	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmasterol	677,165	249,607	351,466	292,848	208,600	151,513	115,486	50,504	26,304	61,098	64,441	141,031
Estigmastanol	263,295	223,056	252,291	172,452	136,600	123,513	105,626	313,519	104,506	64,467	67,053	52,743
Sitosterol	1069,736	412,871	268,947	314,656	509,869	393,729	314,519	312,600	282,370	229,551	243,696	205,099
Sitostanol	389,751	349,028	141,233	301,927	310,102	230,702	201,791	205,935	203,775	185,313	132,132	119,081
Dinosterol	917,011	699,012	564,438	516,266	427,270	373,266	431,540	354,887	320,177	259,854	263,795	210,434
	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
Σ esteróides (ng.g ⁻¹)	9321,12	4127,26	2964,69	2753,68	2381,41	1828,58	1549,66	1447,17	1046,37	1046,38	1037,72	910,76
Epicop/COP	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
COP/(COP+COL-anol)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	NC	NC	0,00	0,00	NC
(COP/COL-erol)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Camp-e/Estig-e/Sit-e	1:1,9:3,0	1:0,9:1,4	1:1,5:1,1	1:1,3:1,4	NC	NC	NC	NC	NC	NC	NC	NC
$\Sigma 5\alpha(H)$ ESTANOL/ $\Sigma \Delta^5$ ESTEROL – Care Care	0,19	0,52	0,56	0,50	0,53	0,55	0,61	0,91	0,74	0,70	0,54	0,38
Sit/Camp (EST+EST-A)	2.83	1.92	1.18	1.92	9.23	10.18	12.06	NC	NC	NC	NC	NC
Dinosterol/Metileno-	2,00	1,> 2	1,10	1,> 2	>,20	10,10	12,00	110	110	110	1.0	1.0
colesterol	2,52	3,43	3,96	4,90	6,66	7,99	NC	NC	NC	3,81	3,16	2,72
Colesterol/Metileno- colesterol	6,38	2,38	1,87	1,97	4,06	3,82	NC	NC	NC	0,95	0,88	0,73
%COT	1,12	1,15	0,99	0,93	1,06	0,84	0,91	0,81	1,00	0,91	0,82	1,02
\mathbf{D}_{aa}	02.60	70.92	01 11	02 16	02.51	02.14	02.64	00.27	75.02	00.60	00.01	00 70

Tabela 17 – Esteróides no Testemunho BIOMT6

 Recuperação (%)
 83,60
 79,83
 81,44
 82,46
 92,51
 83,14
 93,64
 99,27
 75,02
 90,69
 90,91
 88,78

 - Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).
 83,14
 93,64
 99,27
 75,02
 90,69
 90,91
 88,78

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL - C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002).

NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método

Tabela 17. Esteróides no T	Festemunho BIOMT6 (continuaç	ão)
----------------------------	---------------------	-----------	-----

							· · · ·					
Esteróides (ng.g ⁻¹)	T6-13	T6-14	T6-15	T6-18	T6-20	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
$26\Delta^{5,22}$	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Coprostanol (COP)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND
Epicoprostanol (Epicop)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND
nor $27\Delta^{5,22}$	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Dihidro-Colesterol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Dihidro-Colestanol	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Colesterol (COL-erol)	68,257	89,834	144,510	92,483	63,993	NA	67,910	57,692	84,035	70,784	137,06	33,467
Colestanol (COL-anol)	<lq< th=""><th>41,389</th><th>34,392</th><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	41,389	34,392	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Colestanona	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicasterol	67,277	57,230	85,898	46,977	35,113	NA	35,668	<lq< th=""><th>69,290</th><th>35,630</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	69,290	35,630	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicastanol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Metileno-Colesterol	67,513	48,522	<lq< th=""><th>38,188</th><th>53,792</th><th>NA</th><th>58,610</th><th>74,602</th><th>60,912</th><th>71,329</th><th>44,515</th><th>45,523</th></lq<>	38,188	53,792	NA	58,610	74,602	60,912	71,329	44,515	45,523
Campesterol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campestanol	<lq< th=""><th>26,872</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	26,872	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmasterol	50,932	67,607	116,528	74,024	49,543	NA	43,616	52,009	46,066	61,199	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmastanol	54,941	51,633	76,075	53,573	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>33,264</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th>33,264</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>33,264</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>33,264</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	33,264	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Sitosterol	210,801	266,369	395,633	331,927	228,865	NA	227,558	247,589	241,326	271,770	192,534	147,149
Sitostanol	128,061	105,548	115,464	90,334	73,613	NA	<lq< th=""><th><lq< th=""><th>65,047</th><th>67,957</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>65,047</th><th>67,957</th><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	65,047	67,957	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Dinosterol	201,253	216,148	310,103	243,520	194,383	NA	131,638	165,410	170,309	198,428	360,097	129,855
	T6-13	T6-14	T6-15	T6-18	T6-20	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
Σ esteróides (ng.g ⁻¹)	849,04	971,15	1278,60	971,03	699,30	565,00	597,30	736,98	810,36	734,20	355,99	849,04
Epicop/COP	NC	NC	NC	NC	NC	NA	NC	NC	NC	NC	NC	NC
COP/(COP+COL-anol)	NC	0,00	0,00	NC	NC	NA	NC	NC	NC	NC	NC	NC
(COP/COL-erol)	0,00	0,00	0,00	0,00	0,00	NA	0,00	0,00	0,00	0,00	0,00	0,00
Camp-e/Estig-e/Sit-e	NC	NC	NC	NC	NC	NA	NC	NC	NC	NC	NC	NC
Σ 5 α (H) ESTANOL/ Σ Δ ⁵	0,46	0,47	0,30	0,26	0,19	NA	0,00	0,00	0,15	0,23	0,00	0,00
$\frac{\text{ESTEROL} - C_{27} - C_{29}}{\text{Sit/Comp}(\text{EST} + \text{EST} - A)}$	NC	12.94	NC	NC	NC	NIA	NC	NC	NC	NC	NC	NC
Sil/Callip (EST+EST-A)	NC.	15,64	INC.	INC.	NC	INA	NC	NC	NC	NC.	INC.	INC
colesterol	2,98	4,45	NC	6,38	3,61	NA	2,25	2,22	2,80	2,78	8,09	2,85
Colesterol/Metileno- colesterol	1,01	1,85	NC	2,42	1,19	NA	1,16	0,77	1,38	0,99	3,08	0,74
%COT	0,92	0,79	0,74	0,84	0,43	0,26	0,62	0,80	0,54	0,56	0,58	0,60
Recuperação (%)	99 74	107.27	119.89	108 77	113 27	NA	100.21	117.87	116.86	115.67	118 29	119.61

- Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL – C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002).

NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método

Em função das baixas concentrações, o uso de proxies para identificar a origem dos esteróides foi prejudicado. A razão campesterol/estigmasterol/sitosterol, quando calculada, sugere que a origem da matéria orgânica é predominantemente marinha.

A figura 56, que apresenta a distribuição relativa dos esteróides, associados ao fitoplâncton, zooplâncton (aportes de origem animal) e vegetais superiores (WANG et al., 2016), indica que a concentração de C_{27} -esteróides decresce com o aumento da profundidade desde a porção superficial do testemunho, preferencialmente degradados em comparação com os esteróides associados aos vegetais superiores e ao fitoplâncton (sobretudo aqueles associados aos dinoflagelados). Tal distribuição sugere que a matéria orgânica neste local é derivada tanto de fontes alóctones quanto autóctones, com os organismos fito e zooplanctônicos tendo uma maior contribuição relativa quando comparados aos vegetais superiores. Com as alterações diagenéticas o sedimento passa a ser proporcionalmente mais rico nos esteróides alóctones e autóctones mais resistentes à degradação, sobretudo C_{29} e C_{30} -esteróides.

Figura 56 - Distribuição relativa de esteróides no testemunho BIOMT6

As concentrações dos esteróis fecais coprostanol e epicoprostanol também estiveram abaixo do LQ do método ao longo de todo o perfil (quando detectados). A presença desses

compostos em concentrações bastante baixas sugere que os mesmos podem ser oriundos de alterações bacterianas do colesterol, o que implica em uma origem não antropogênica. Contribui para essa conclusão a presença da 5 α -colestanona, uma cetona esteroidal derivada do colestanol quantificada em baixas concentrações na porção superficial da coluna sedimentar. De acordo com Grimalt et al. (1990), a 5 α -colestanona ocorre em ambientes deposicionais anóxicos como produto da ação microbiana e/ou redução diagenética dos Δ^5 esteróides, diferente das bactérias do trato intestinal de mamíferos que geram esteróides fecais, incluindo a 5 β -colestanona (coprostanona). Deste modo, diferente do observado na plataforma continental na região da foz do Rio Doce, as contribuições de esteróides fecais geradas na região da bacia do Rio de Contas, devem ficar restritas ao continente, não ocorrendo acumulação na plataforma continental associada à sua foz.

7.3.6 Integração dos parâmetros considerados

Os resultados obtidos da análise de amostras da coluna sedimentar recuperada na região da foz do Rio de Contas indicam que a matéria orgânica preservada ao longo da coluna sedimentar é oriunda de contribuição mista, com predomínio de material autóctone. Dadas as características sedimentológicas locais.

O local onde foi obtida a coluna sedimentar apresenta taxa de sedimentação baixa e, aparentemente, constante. Tal fato denota que eventuais variações de vazão no rio não afetam a deposição sedimentar local, diferentemente do observado na região do Rio Doce. As baixas concentrações dos compostos analisados condizem com condições predominantemente oligotróficas, de modo que a importância do rio como fonte de nutrientes deve ficar restrita à sua porção fluvial/estuarina.

A área de acumulação onde o testemunho foi obtido não apresenta evidência de aporte antropogênico significativo à luz dos parâmetros considerados. Deste modo, é possível concluir que eventuais aportes de HPAs e esteróis fecais ficam restritos à área da bacia ou são predominantemente transportados para outras regiões oceânicas, tendo em vista a estreita plataforma continental local. Os horizontes de profundidade onde foi observado aumento nas concentrações de HPAs pirolíticos devem refletir influência das atividades humanas na bacia.

Nessa coluna sedimentar, apesar das baixas concentrações de todos os compostos monitorados, foi possível indicar o claro predomínio do perileno, um HPA de origem natural associado à diagênese da matéria orgânica. O teor do perileno, quando comparado aos demais

HPAs detectados, chega até 97,50% dos HPAs totais, denotando que a região, menos desenvolvida industrialmente do que outras áreas da costa brasileira, representa um ambiente intocado à luz dos parâmetros considerados.

7.4 Plataforma continental na região da foz do Rio São Francisco

7.4.1 Características fisiográficas da região

O Rio São Francisco, que tem sua nascente na Serra da Canastra – MG, banha sete estados brasileiros, desembocando no Oceano Atlântico, na divisa entre os estados de Alagoas e Sergipe, após percorrer a extensão de 2.814 km⁴, passando por regiões com solos e características climáticas variadas.

Aproximadamente, 58% do território de sua região hidrográfica está inserido na região do semiárido nordestino. Essa região é caracterizada por apresentar períodos críticos de estiagens prolongadas, resultado de baixa pluviosidade e alta evapotranspiração, fazendo com que o Rio São Francisco desempenhe um importante papel na região (BRASIL, 2015). Por correr, em parte significativa de sua extensão, na região do semiárido, o rio está sujeito a chuvas escassas nessa porção de sua bacia hidrográfica e, consequentemente, tende a sofrer menor lixiviação dos solos, apesar do uso agrícola da região (KNOPPERS et al., 1999).

Especificamente no caso do São Francisco, o próprio rio nomeia a Região Hidrográfica (RH) onde sua bacia está localizada. Sua RH possui área de aproximadamente 638.466 km² (7,5% do território nacional) e abrange 503 munícipios, sendo 452 com suas sedes inseridas no território da região (BRASIL, 2015). A população total na área de sua bacia, segundo dados do censo de 2010 do IBGE, é de, aproximadamente, 14,3 milhões de habitantes (BRASIL, 2015), com cerca de metade da população instalada na região do Alto São Francisco, onde está localizada a região metropolitana de Belo Horizonte. Ainda segundo dados do censo de 2010 do IBGE poucas cidades possuem população acima de 50.000 habitantes: Belo Horizonte – MG (2.375.151 hab.), Petrolina – PE (293.962 hab.), Juazeiro – PE (197.965 hab.), Barreiras – BA (137.427 hab.), Paracatu – MG (84.718 hab.), Serra Talhada – PE (79.232 hab.), Pirapora – MG

⁴ Estudo conduzido pela CODEVASF (Companhia de Desenvolvimento dos Vales dos Rios São Francisco e Parnaíba), via sensoriamento remoto, determinou que o comprimento total do Rio São Francisco, consideradas as nascentes na Serra da Canastra (trecho tradicional), é de 2.814 km. Consideradas as nascentes do Rio Samburá (trecho geográfico), essa extensão é de 2.863 km (SILVA et al., 2003). Outras fontes citam extensões variadas para o rio.

(49.970 hab.) e Penedo – AL (52.385 hab.). Na região semiárida somente três municípios têm população superior a 100.000 habitantes: Petrolina – PE, Arapiraca – AL e Juazeiro – BA (BRASIL, 2015).

A bacia hidrográfica do Rio São Francisco, representada na figura 57, é dividida em quatro regiões hidrográficas. No seu leito ocorre intenso aproveitamento hidroelétrico, com destaque para o trecho sub-médio do seu curso (BRASIL, 2015; CBH-SF, 2018).

Figura 57 - Bacia hidrográfica do Rio São Francisco (modificada de BRASIL, 2015).

Em função do tamanho da bacia, seus usos são diversificados, com o consumo de água para irrigação predominando em relação aos demais usos (cerca de 77% do total de demandas da região). Já a demanda urbana, concentrada principalmente na região metropolitana de Belo Horizonte, representa cerca de 11%, enquanto a demanda industrial, 7% (BRASIL, 2015).

A Região do São Francisco tem importante papel na geração de energia elétrica. No ano de 2013, o potencial hidroelétrico instalado era de 10.708 MW (12% do total instalado no País).

A Região possui 40 aproveitamentos hidroelétricos em operação, sendo 12 UHEs responsáveis pela geração de 10.568 MW e 28 PCHs (pequenas centrais hidroelétricas), responsáveis pela geração de 140 MW de energia elétrica. Destacam-se, em termos de potencial outorgado, as usinas de Xingó (3.162 MW), Paulo Afonso IV (2.462 MW), Luiz Gonzaga (1.479 MW) e Sobradinho (1.050 MW) (BRASIL, 2015).

A construção de reservatórios e suas respectivas usinas hidroelétricas, em que pese a extrema importância para a matriz energética brasileira, ocasionaram danos ambientais à região de influência da sua bacia, tanto pelo empobrecimento de suas águas quanto pelo processo de erosão fluvial e costeira que se instalou em consequência dessas construções. Com a construção da cascata de barragens para geração de energia elétrica, que teve seu auge entre os anos de 1975 e 1994, sobretudo com Sobradinho (1973-1980) a 800 km de distância da costa e Xingó (1994) a 180 km da costa, a vazão do rio foi definitivamente regularizada, reduzindo a sua vazão e eliminando o padrão sazonal de descarga (SANTOS et al. 2013). O apêndice D1, que registra a série histórica de vazões máximas do Rio São Francisco, demonstra o efeito da regularização das vazões sobre o regime sazonal de vazões máximas desde a década de 1980. A construção dos reservatórios também levou à retenção de sedimentos em suspensão, impedindo a reposição de sedimentos e nutrientes para o baixo curso do rio e sua porção estuarina/costeira. Com isso, conforme exposto por Knoppers et al. (2006), à montante da cascata, o rio tornou-se transparente e oligotrófico, com um empobrecimento que alterou o equilíbrio físico e biogeoquímico dos diversos lagos e várzeas localizados às suas margens, que deixaram de ser sazonalmente inundados e fertilizados. Ainda em consequência dessa retenção de sedimentos nas barragens, o balanço sedimentar do rio também foi alterado, ocasionando erosão nas suas margens e na costa (BITTENCOURT et al. 2007).

Segundo Bandeira et al. (2013), os danos às comunidades afetadas com a erosão observada após a instalação da cascata de barragens no Rio São Francisco vão desde a redução da pesca até a destruição de patrimônio público e privado: o avanço do mar inutilizou o farol do Cabeço, um farol de auxílio à navegação instalado na comunidade do Cabeço, do lado sergipano da sua foz, forçando a instalação de um novo equipamento em área menos sujeita aos efeitos do avanço do mar. Atualmente esse farol abandonado é um ponto turístico local e está, literalmente, dentro d'água. O vilarejo do Cabeço também foi abandonado, por estar sendo consumido pelo avanço do mar. Tal situação denota a carência de sedimentos ocasionada com a construção das barragens para geração de energia, a qual ocasionou alterações morfodinâmicas significativas na região da sua foz. De acordo com um estudo conduzido por Medeiros (2003, apud LORENZZETTI et al., 2007), no período de 1980 a 2000, a vazão do

Rio São Francisco foi reduzida em cerca de 30% em consequência da construção da cascata de barragens. Como consequência dessas construções, as concentrações, cargas e as descargas específicas de material em suspensão foram reduzidas de 70 para 5mg/l, de 7,0.10⁶ para 0,3.10⁶ t/ano e de 4,2 para 0,2 t/km²/ano, respectivamente, em função da retenção de materiais nas barragens (MEDEIROS, 2003 apud LORENZZETTI et al., 2007), resultando na redução da produtividade primária, na perda de recursos pesqueiros, na desestabilização da costa e na intrusão de águas marinhas na região do estuário (LORENZZETTI et al., 2007).

Em que pese o grande porte do Rio São Francisco quando comparado à maioria dos outros rios da costa brasileira, tais construções certamente alteraram o transporte de nutrientes para o oceano: todos os parâmetros de qualidade da água, com exceção do silicato dissolvido (DSi), representam concentrações extremamente baixas quando comparados a outros rios da costa leste do Brasil (SOUZA, 2002 apud KNOPPERS et al., 2006) e outros rios de tamanho médio de regiões tropicais úmidas (MEYBECK, 1993 apud KNOPPERS et al., 2006, MEYBECK & RAGU, 1995 apud KNOPPERS et al., 2006). Do mesmo modo, eventuais poluentes transferidos ao longo da calha do rio, ficam adsorvidos aos sedimentos depositados e, com isso, a chance de chegarem à costa é remota. Compostos orgânicos antropogênicos porventura encontrados nos sedimentos, após a construção dessas barragens, devem sua presença – sobretudo – ao transporte atmosférico ou a aportes fluviais localizados à jusante dessas construções.

Considerando-se a demanda industrial e urbana, as pressões mais expressivas se dão no Alto São Francisco, relacionadas sobretudo, à siderurgia, mineração, química, têxtil, de papel e de equipamentos industriais (CBH-SF, 2018). Tanto as indústrias como as unidades residenciais lançam indiscriminadamente efluentes nas calhas do São Francisco e de seus afluentes. Uma das áreas onde a poluição é mais crítica é a Região Metropolitana de Belo Horizonte, onde se registra, além dos esgotos domésticos e industriais, uma alta carga inorgânica, proveniente da extração e beneficiamento minerais (CBH-SF, 2018). O rio também sofre os efeitos da poluição em outros trechos: na cidade de Petrolina as suas margens são tomadas pelas Baronesas, numa clara indicação de que o rio recebe esgoto sanitário da cidade (G1, 2014). Já no baixo São Francisco as fazendas de criação de camarão são apontadas como os maiores fatores de stress antropogênico para os mangues presentes no estuário (CARVALHO, 2004; SEMENSATTO, 2004; CUNHA & HOLANDA, 2006 apud SANTOS et al., 2014).

Alguns estudos anteriores, envolvendo marcadores orgânicos, foram conduzidos na porção estuarina do rio e na plataforma continental associada: Santos et al. (2013) estudaram a origem da matéria orgânica sedimentar em amostras superficiais obtidas no delta-estuarino após

a regularização da sua vazão. Carreira et al. (2015b) utilizaram coprostanol e outros esteróides fecais como marcadores para rastrear o aporte de esgoto sanitário na plataforma continental ao longo da costa dos estados de Sergipe e Alagoas, por meio do estudo de amostras de sedimentos superficiais associadas a quatro diferentes sistemas fluviais, incluindo a plataforma associada ao Rio São Francisco.

A coluna sedimentar analisada foi obtida em uma acumulação lamosa localizada em frente a foz do São Francisco, a cerca de 7,6 MN da costa e a uma profundidade de 55,4 metros, em área relativamente próxima à quebra da plataforma, na região da cabeceira do canyon do São Francisco. A escolha desse local se deu em função das características da região, cujas varreduras prévias indicaram condições de sedimentação similares às descritas em Fontes et al. (2017), com predomínio de sedimentos arenosos na plataforma interna próximo à foz e com predomínio de sedimentos na plataforma externa.

7.4.2 Granulometria

A análise granulométrica de amostras selecionadas indicou que a coluna sedimentar obtida era composta, predominantemente, pela fração silte na sua porção superficial e pela fração argila na sua porção posterior, cujo teores variaram entre 42,23 e 57,68% para a fração silte e entre 42,32 a 57,77% para a fração argila. A alteração observada no perfil granulométrico pode estar relacionada às intervenções no leito do rio (figura 58).

Figura 58 - Resultados da análise granulométrica do testemunho BIOMT7

7.4.3 Datação

A figura 59 apresenta a atividade do ²¹⁰Pb_{ex} em função da profundidade ao longo da coluna sedimentar. Tais resultados indicam que o local onde a mesma foi obtida teve uma taxa de sedimentação constante de aproximadamente 0,56 cm.ano⁻¹ a partir dos 5 cm de profundidade. Na porção de topo da coluna sedimentar a atividade do ²¹⁰Pb_{ex} apresentou perfil diferente do observado no restante da coluna. Segundo Santos et al. (2013), a vazão do rio foi definitivamente regularizada em 1994, em virtude das construções dos reservatórios para geração de energia hidroelétrica. Com base na taxa de sedimentação no topo do perfil, aproximadamente constante em torno de 0,34 cm.ano⁻¹, é possível concluir que desde o final da década de 1990 a sedimentação no local onde o testemunho BIOMT7 foi obtido foi reduzida em virtude dessa regularização nas vazões, já que tais construções retêm sedimentos, que não mais chegam à plataforma continental. Deste modo, a datação reflete a sedimentação anterior e posterior às intervenções no leito do rio.

Com base nas taxas calculadas, o testemunho possui idade de aproximadamente 84 anos. Em vista de as amostras terem sido obtidas no ano de 2016, é possível reconstruir a história sedimentar local até, aproximadamente, o ano de 1932.

Figura 59 - Atividade do ²¹⁰Pbex – Testemunho BIOMT7.

Os parâmetros de caracterização geral indicaram que as amostras coletadas a partir do testemunho BIOMT7 apresentam matéria orgânica com características predominantemente marinhas. Os teores de COT (figura 60) variaram entre 0,81 e 1,33%, com média de 0,98% (desvio-padrão de 0,14%), condizentes com os teores esperados para depósitos sedimentares nas margens continentais (HEDGES & OADES, 1997). A %COT é decrescente com o aumento da profundidade.

Figura 60 - % COT versus profundidade e ano de deposição para o testemunho BIOMT7

Os demais dados, obtidos a partir da caracterização isotópica (%NT, δ^{13} C e δ^{15} N) determinados até 23 cm de profundidade na coluna sedimentar, indicam que:

1 - A % NT apresenta comportamento similar ao COT, com seus valores variando entre 0,12 e 0,15% (média de 0,14% e desvio-padrão de 0,01%). Apesar de apresentar pouca variação, a %NT é ligeiramente decrescente com o aumento da profundidade;

2 – A razão C/N variou entre 7,65 e 8,19, sem apresentar clara tendência de variação com a profundidade; e

3 – Os resultados das análises de δ^{13} C e δ^{15} N indicam que as amostras obtidas não tiveram variações significativas nos resultados desses parâmetros. A razão δ^{13} C variou entre - 21,90 e -21,41‰ (média de -21,62‰ e desvio-padrão de 0,15‰) enquanto a δ^{15} N variou entre

4,51 e 5,73‰ (média de 4,96‰ e desvio-padrão de 0,40‰). Considerando os limiares descritos para o modelo de mistura adotado por Xing et al. (2014) e Chen et al. (2017b) para avaliar a percentagem de matéria orgânica terrígena a partir da δ^{13} C, é possível concluir que esse proxy indica a contribuição mista de fontes marinhas e terrígenas, com contribuição terrígena estimada entre 20,19 e 27,14‰, menor contribuição terrígena dentre os testemunhos analisados por este estudo.

Os dados da razão C/N versus δ^{13} C, confrontados com dados típicos para amostras de ambientes costeiros, de acordo com os intervalos disponíveis em Lamb et al. (2006), figura 61, confirmam a origem predominantemente marinha no ambiente sedimentar considerado.

Figura 61 - Razão C/N versus δ^{13} C para amostras selecionadas do testemunho BIOMT7

7.4.5 – Análise cromatográfica

7.4.5.1 Hidrocarbonetos alifáticos na PC São Francisco

Os resultados das análises de hidrocarbonetos alifáticos estão compilados na tabela 18 e são apresentados graficamente no apêndice D2. A recuperação do padrão 1-eicoseno variou entre 85,44 e 117,29%, com todas as amostras dentro dos limites de qualidade propostos por Ribani et al. (2004).

Os teores de hidrocarbonetos alifáticos totais do testemunho BIOMT7 variaram entre $814,07 \text{ ng.g}^{-1}$ (ou cerca de $0,814 \mu \text{g.g}^{-1}$) a $9514,25 \text{ ng.g}^{-1}$ (ou cerca de $9,514 \mu \text{g.g}^{-1}$) (figura 62). Os resultados obtidos, confrontados com limiares de classificação da qualidade de sedimentos estabelecidos em estudos anteriores (VOLKMAN et al., 1980 apud VOLKMAN et al. 1992; VAN VLEET et al., 1984 & PILLON et al., 1986 apud BOULOUBASSI & SALIOT, 1993), indicam baixas concentrações de hidrocarbonetos alifáticos ao longo de toda a coluna sedimentar, de modo que não consta para o local, à luz dos hidrocarbonetos alifáticos, a ocorrência de aportes antropogênicos relacionados à hidrocarbonetos de petróleo, aporte mais comumente encontrado em amostras ambientais.

Figura 62 - Perfil de concentração de hidrocarbonetos alifáticos do testemunho BIOMT7

A maior concentração de hidrocarbonetos alifáticos se deu no topo do testemunho, com a faixa entre as amostras BIOMT7-01 (entre 0 e 1 cm de profundidade) e BIOMT7-07 (entre 06 e 07 cm de profundidade, meados da década de 1990) apresentando as maiores concentrações. A concentração determinada na porção superficial do testemunho é comparável às maiores concentrações detectadas no testemunho BIOMT1, sendo decrescente com o aumento da profundidade, embora alguns horizontes indiquem aumento relativo na concentração desses compostos, sobretudo na faixa entre n-C₁₇ e n-C₂₀, que aparentam indicar rápida exportação de matéria orgânica para o sedimento, possivelmente relacionada à produção primária fitoplanctônica/bacteriana. O intervalo de profundidade onde ocorrem as maiores concentrações, fora do topo do perfil, correspondem aproximadamente ao período entre os anos de 1975 e 1994, o qual corresponde ao pico de construções dos reservatórios no leito do rio. É possível que as intervenções realizadas no leito do rio, com a movimentação de solos durante as obras, tenham ocasionado um aumento no transporte sedimentar, com este aporte alóctone contribuindo para a produtividade local. No restante do perfil a redução da concentração provavelmente reflete uma contribuição mais ou menos constante para o local e os efeitos da diagênese recente, ao longo do período coberto pelo testemunho, levando ao consumo de uma parcela significativa da matéria orgânica depositada.

A MCNR se apresenta em baixa concentração ao longo de todo o testemunho, não havendo elevação pronunciada da linha de base nas amostras analisadas. A proporção da MCNR varia entre 7,79 e 71,50% dos hidrocarbonetos alifáticos totais sendo, em geral, pouco significativa quando comparada aos alcanos resolvidos. No topo do testemunho (entre 0 e 1 cm de profundidade) e entre 6 e 7 cm de profundidade ocorre uma maior percentagem de compostos não resolvidos (superior aos compostos resolvidos), sugerindo aportes antropogênicos.

O proxy IPC2 variou entre 2,36 e 4,89 ao longo do perfil, também descartando a possibilidade de aportes relacionados a derivados de petróleo. O índice TAR variou entre 1,02 e 23,55, crescente com o aumento da profundidade e, possivelmente, refletindo a maior diagênese da matéria orgânica autóctone sobre a alóctone. O TAR próximo a 1 no horizonte superficial (entre 0 e 1 cm de profundidade) indica origem predominantemente marinha para o topo do perfil, com pouca influência terrígena. O índice Pmar-aq variou entre 0,13 e 0,27, indicando contribuição associada a vegetais superiores ao longo do perfil sedimentar, embora na porção superficial também indique marcado predomínio de material de origem marinha. Similarmente ao observado nas demais colunas sedimentares estudadas, a interpretação desses índices deve ser feita com cautela em vista da possível distorção decorrente de alterações diagenéticas, principalmente entre os compostos de menor massa molecular.

As Contribuições relativas dos isoprenóides pristano e fitano sugerem que a diagênese se dá em ambiente anóxico, como é possível concluir a partir dos resultados calculados para a razão estabelecida entre esses isoprenóides.

Alifáticos (ng.g ⁻¹)	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12
n-C11	2,88	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>8,58</th></lq<></th></lq<>	<lq< th=""><th>8,58</th></lq<>	8,58
n-C12	3,46	2,91	3,23	<lq< th=""><th><lq< th=""><th>4,59</th><th>6,50</th><th>6,04</th><th>7,18</th><th>7,36</th><th>6,85</th><th>18,86</th></lq<></th></lq<>	<lq< th=""><th>4,59</th><th>6,50</th><th>6,04</th><th>7,18</th><th>7,36</th><th>6,85</th><th>18,86</th></lq<>	4,59	6,50	6,04	7,18	7,36	6,85	18,86
n-C13	5,44	4,82	4,82	3,66	5,08	7,03	8,40	8,05	9,00	8,92	8,46	28,95
n-C14	4,39	4,60	4,43	3,51	4,63	5,71	5,87	8,58	6,26	5,62	6,00	11,34
n-C15	6,01	6,76	4,86	3,67	5,64	5,13	<lq< th=""><th>8,04</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>3,74</th></lq<></th></lq<></th></lq<></th></lq<>	8,04	<lq< th=""><th><lq< th=""><th><lq< th=""><th>3,74</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>3,74</th></lq<></th></lq<>	<lq< th=""><th>3,74</th></lq<>	3,74
n-C16	13,71	11,93	10,43	8,73	13,21	8,06	6,21	17,00	7,23	6,30	7,26	8,90
n-C17	75,22	41,92	28,69	18,44	30,32	13,01	15,89	16,97	14,37	9,61	10,21	4,27
Pristano	18,94	11,17	10,17	9,89	16,00	4,03	7,70	12,27	6,46	<lq< th=""><th>3,74</th><th><lq< th=""></lq<></th></lq<>	3,74	<lq< th=""></lq<>
n-C18	186,60	70,80	61,68	25,95	95,51	11,76	56,15	51,55	54,60	32,00	32,22	11,14
Fitano	96,62	31,99	27,24	13,27	40,34	3,49	22,58	16,87	20,75	14,66	13,08	<lq< th=""></lq<>
n-C19	387,82	109,91	91,55	43,44	163,14	13,19	108,47	104,87	97,56	74,77	68,77	6,41
n-C20	395,40	115,12	97,98	64,32	184,12	37,98	137,38	98,05	129,72	113,58	101,94	31,89
n-C21	182,03	67,17	60,23	36,79	89,87	21,00	96,73	66,86	81,52	54,24	51,06	16,57
n-C22	80,64	33,94	32,51	23,16	66,92	14,65	51,15	38,09	49,33	34,74	32,03	17,51
n-C23	67,75	34,17	36,59	33,22	54,11	28,35	44,33	33,84	40,98	35,45	31,51	26,60
n-C24	27,97	24,94	26,03	24,52	37,95	26,42	29,48	22,60	31,95	26,31	24,11	22,96
n-C25	71,80	61,10	57,85	54,42	69,02	63,75	48,81	38,71	49,82	45,00	41,86	44,62
n-C26	47,00	41,56	39,65	34,06	36,81	44,93	32,60	24,30	29,81	28,40	26,05	29,03
n-C27	76,57	73,79	72,12	91,93	108,11	111,24	84,83	60,17	80,64	78,21	65,77	73,02
n-C28	61,44	63,05	57,91	46,34	54,54	56,52	39,74	28,96	40,66	37,62	33,86	42,42
n-C29	183,45	170,98	176,31	138,65	170,81	154,11	119,80	139,89	120,50	113,90	160,20	118,21
n-C30	71,06	71,87	73,66	58,61	66,40	63,61	48,68	32,72	48,00	48,25	40,66	49,15
n-C31	218,54	198,95	223,15	164,13	198,97	177,71	136,41	97,49	136,18	138,09	122,90	148,20
n-C32	60,54	65,42	72,50	50,14	56,61	55,43	40,38	28,13	43,46	46,03	34,15	47,59
n-C33	197,28	191,86	212,05	149,38	191,76	167,59	136,97	90,94	129,09	135,53	112,24	154,08
n-C34	33,05	28,73	37,42	24,52	33,10	30,52	24,27	15,64	22,36	23,49	20,00	24,98
n-C35	120,06	89,16	78,76	100,32	123,52	98,33	83,83	56,78	79,25	85,97	69,46	88,05
n-C36	22,03	19,15	24,95	16,35	22,07	20,35	16,18	10,43	14,91	15,66	13,33	16,65
	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12
[MCNR]	6796,54	1723,28	1638,73	754,97	2801,28	553,12	3535,47	1369,84	1806,45	1088,93	1062,83	525,91
Σ [Alif. Res]	2/1/,/1	164/,/8	1626,77	1241,42	1938,56	1248,47	1409,36	1133,86	1351,60	1219,72	1137,72	1055,76
[Alif. Totais]	9514,25	33/1,05	3265,50	1996,39	4/39,84	1801,59	4944,83	2503,70	3158,05	2308,65	2200,55	1581,66
IAK ALK	1,02	2,80	3,77	0,02	2,40	14,14	2,74	2,29	3,01	3,91	4,42	23,33 NC
Pfi/Fit	0,196	0,349	0,373	0,745	0,397	1,157	0,341	0,727	0,311	0,000	0,286	NC 0.211
$\frac{\text{Pmar-aq}}{\sum(15,20/21,25)}$	0,238	0,205	0,191	0,224	0,230	0,217	0,267	0,234	0,261	0,242	0,206	0,211
2(15-20/21-55)	0,787	0,328	0,265	0,182	0,404	0,087	0,348	0,420	0,330	0,269	0,274	0,076
n-C1//Pfi	3,97	3,75	2,82	1,80	1,90	3,22	2,00	1,38	2,23	2.19	2,73	NC
% MCNP	71 44	51.12	50.18	37.82	2,37 50.10	3,37	2,49	54.71	2,03	2,10	48.30	33.25
MCNP/PES	2 50	1.05	1.01	0.61	1 45	0.44	2.51	1 21	1 34	0.80	40,50	0.50
IDC2	2,30	2 26	2.40	2.62	2.64	2 52	2,31	1,21	1,34	2.62	3 16	2.61
	2,35	2,30	2,49	2,05	2,04	2,33	2,09	1.06	2,04	2,02	1.02	2,01
	1,21	1,06	1,35	1,07	1,11	102.55	1,24	1,00	1,27	111 22	1,05	0,91
Kecup . (%)	110,45	100,45	106,52	117,29	115,25	102,55	105,90	90,00	112,80	111,32	95,08	00,32

Tabela 18 - Hidrocarbonetos alifáticos no Testemunho BIOMT7

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

Alifáticos (ng g ⁻¹)	T7-13	T7-14	T7-15	T7 -18	T7-20	T7-22	T7-24	T7-26	T7-30	T7 33	T7-36	T7-30
n-C11	<1.0	ND	ND	ND	ND	<10	ND	ND	ND	ND	ND	ND
n-C12		ND	3 59				ND	ND	ND	ND	ND	ND
n-C13	<1.0	ND	<1.0	<1.0	ND	<1.0	ND	ND	ND	ND	<1.0	<1.0
n-C14	<1.0	ND	<1.0	<1.0	ND	ND	ND	ND	ND	ND	ND	ND
n-C15	ND	ND	<lq< th=""><th><1.0</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<>	<1.0	ND	ND	ND	ND	ND	ND	ND	ND
n-C16	<1.0	<1.0	<lq< th=""><th>ND</th><th><1.0</th><th><1.0</th><th><1.0</th><th>ND</th><th><1.0</th><th>ND</th><th><1.0</th><th>ND</th></lq<>	ND	<1.0	<1.0	<1.0	ND	<1.0	ND	<1.0	ND
n-C17	<l0< th=""><th>4.11</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></l0<>	4.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pristano	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-C18	<lq< th=""><th>45,43</th><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	45,43	<lq< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	ND	ND	ND	ND	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th></lq<>	ND
Fitano	ND	12,01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-C19	<lq< th=""><th>104,41</th><th>ND</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	104,41	ND	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
n-C20	27,87	139,78	27,96	26,26	27,25	29,31	25,10	25,01	22,92	19,37	24,87	22,65
n-C21	8,79	85,49	6,66	7,35	8,07	7,25	6,48	6,59	11,55	6,09	4,99	6,23
n-C22	10,95	45,10	9,03	10,98	10,79	7,93	8,09	8,67	21,29	10,95	7,69	8,71
n-C23	18,47	38,35	18,16	20,84	21,68	18,10	14,28	17,86	46,68	19,69	15,07	18,73
n-C24	12,72	22,30	16,05	13,46	18,95	13,48	10,84	13,76	46,86	16,93	10,47	11,73
n-C25	42,32	45,74	41,11	42,06	47,12	41,55	32,83	40,99	83,54	41,56	30,82	32,11
n-C26	20,38	19,13	21,96	19,84	27,16	24,10	16,29	21,82	55,87	22,59	15,38	13,56
n-C27	89,57	80,87	89,97	100,32	92,35	91,27	67,48	88,42	72,38	67,73	65,50	57,13
n-C28	34,49	28,29	34,40	33,72	36,96	34,62	26,12	34,35	51,77	25,37	21,44	16,78
n-C29	156,66	133,37	146,97	172,26	157,92	156,96	122,92	156,88	156,07	103,30	114,23	90,68
n-C30	43,24	37,50	44,58	42,06	44,02	43,92	30,39	46,98	52,14	28,38	29,75	21,39
n-C31	218,80	197,77	200,67	246,00	229,06	231,32	180,86	234,83	212,08	136,16	153,79	119,26
n-C32	42,64	31,37	36,27	39,50	38,73	36,23	26,56	39,46	39,60	20,85	22,07	18,72
n-C33	212,53	184,66	200,86	243,18	217,07	209,28	163,00	218,57	181,82	106,07	129,40	101,85
n-C34	18,06	13,45	16,48	15,83	17,33	14,52	15,40	14,44	15,89	9,34	11,31	8,56
n-C35	87,08	86,61	87,70	86,17	99,73	93,91	58,76	85,29	72,02	32,20	44,78	33,20
n-C36	12,04	8,97	10,99	10,55	11,55	9,68	10,27	9,63	10,59	6,23	7,54	5,71
	T7-13	T7-14	T7-15	T7-18	T7-20	T7-22	T7-24	T7-26	T7-30	T7-33	T7-36	T7-39
[MCNR]	422,09	1418,25	488,68	474,38	397,22	320,65	251,17	89,83	285,21	281,06	369,39	227,08
Σ [Alif. Res]	1056,62	1364,73	1013,43	1130,37	1105,74	1063,42	815,67	1063,56	1153,07	672,81	709,11	587,00
[Alif. Totais]	1478,72	2782,98	1502,11	1604,75	1502,96	1384,08	1066,85	1153,38	1438,28	953,87	1078,50	814,08
TAR ALK	NC	3,80	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
Pri/Fit	NC 0.120	0,000	NC	NC 0.121	NC	NC 0.122	NC	NC	NC	NC	NC	NC 0.105
$\frac{\text{Pmar-aq}}{\sum (15, 20/21, 25)}$	0,139	0,203	0,146	0,131	0,151	0,133	0,134	0,131	0,261	0,204	0,146	0,195
$\Sigma(15-20/21-35)$	0,027	0,291	0,029	0,024	0,026	0,029	0,032	0,024	0,020	0,030	0,037	0,041
n-C1 //Pri	NC	NC 2.79	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
n-C18/Fit	NC 28.54	5,78	NC 22.52	NC 20.5(NC 26.42	NC 22.17	NC 22.54	7.70	INC 10.82	NC 20.47	NC 24.25	NC 27.80
% WICINK	28,34	30,90	32,33	29,30	20,43	23,17	23,34	1,19	19,85	29,47	0.52	27,89
IDC2	0,40	1,04	0,48	0,42	0,30	0,30	0,31	0,08	0,25	2.02	0,52	0,39
	4,21	4,33	4,07	4,89	4,10	4,30	4,72	4,28	2,88	3,92	4,07	4,/4
	1,05	1,05	0,99	0,90	0,81	106.27	100.00	0,88	0,88	0,89	0,85	0,85
Kecup. (%)	105,06	113,15	95,45	90,22	113,24	100,27	100,00	104,82	85,44	92,17	110,67	104,15

Tabela 18 - Hidrocarbonetos alifáticos no Testemunho BIOMT7 (continuação)

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado

A figura 63 apresenta a distribuição quantitativa de n-alcanos em diferentes horizontes de profundidade ao longo do testemunho.

Figura 63 - Distribuição de n-alcanos em diferentes horizontes de profundidade - BIOMT7

Do topo da coluna até os 14 cm de profundidade (figura 63 A a D) ocorre, na maioria das amostras, uma distribuição bimodal de hidrocarbonetos, que sugere a ocorrência de aportes fitoplanctônicos e, possivelmente, bacterianos, representados pela ocorrência de n-alcanos, sobretudo na faixa entre $n-C_{17}$ e $n-C_{20}$. Também há n-alcanos que sugerem a presença de macrófitas aquáticas marinhas, indicados pelos n-alcanos $n-C_{21}$, $n-C_{23}$ e $n-C_{25}$, com predomínio de ímpares sobre pares. Tais características não são observadas nas porções mais profundas do perfil (figura 63 E e F).

No topo do testemunho esses n-alcanos de menor massa molecular chegam a ter maior concentração do que aqueles associados à contribuição oriunda de vegetais superiores (faixa entre $n-C_{27}$ e $n-C_{33}$). Com o aumento da profundidade e a ocorrência da diagênese essa
proporção vai se alterando até que, a partir dos 15 cm de profundidade, passa a ocorrer claro predomínio dos n-alcanos ímpares de maior massa molecular, mais resistentes às alterações diagenéticas, com os n-alcanos de baixa massa molecular estando em concentrações inferiores ao LQ do método. Tal perfil deve refletir mudanças no aporte de matéria orgânica ao longo do tempo, refletindo as intervenções no leito do rio.

Cabe mencionar que os perfis de n-alcanos nas amostras da porção superficial do testemunho BIOMT7 guardam semelhanças com os perfis cromatográficos das amostras de maior concentração do testemunho BIOMT1, presumivelmente influenciado pela ressurgência de quebra da plataforma. Aqui, as concentrações de alifáticos são superiores, possivelmente em função da granulometria desfavorável do testemunho obtido na região do Cabo Frio, região reconhecida pela ocorrência de eventos de ressurgência costeira e de quebra da plataforma. Na região a circulação no talude superior tem influência de águas da ACAS, da corrente norte do Brasil (CNB) e da subcorrente norte do Brasil, fluindo para norte entre 100 e 500 metros de profundidade, abaixo da Água Tropical de Superfície (AT) (STRAMMA & ENGLAND, 1999; STRAMMA & SCHOTT, 1999). A pequena extensão da plataforma continental nessa região e o fato de o testemunho BIOMT7 ter sido coletado nas proximidades da cabeceira do canyon submerso do Rio São Francisco, sugerem a influência de nutrientes oriundos de águas mais ricas em nutrientes. No entanto, o fato de não ter sido observada acumulação de hidrocarbonetos associados à produção primária em intervalos mais profundos do testemunho sugere que esse aumento de produtividade pode estar associado ao transporte de sedimentos decorrente das intervenções no leito do rio, embora não seja possível descartar a influência de contribuições oriundas de outras fontes naturais, tendo em vista que os hidrocarbonetos de menor massa molecular são mais suscetíveis à diagênese.

7.4.5.2 Hidrocarbonetos aromáticos na PC São Francisco

Os resultados das análises de hidrocarbonetos aromáticos estão compilados na tabela 19 (apresentados com os resultados de HPAs alquilados no apêndice D3) e são apresentados graficamente no apêndice D4. São ainda apresentados resultados para os proxies de hidrocarbonetos aromáticos, anteriormente descritos. A recuperação do padrão p-terfenil-d14 variou entre 59,07 e 112,43%, com algumas amostras fora dos limites de qualidade analítica propostos por Ribani et al. (2004), mas dentro dos limites de qualidade propostos por Sericano et al. (1998) e, principalmente, por Denoux et al. (1998) (análise quantitativa de HPAs).

Como pode ser observado na figura 64, o perfil de HPAs apresenta baixas concentrações ao longo de toda a coluna sedimentar, similarmente ao observado nos testemunhos BIOMT1 e BIOMT6. Os teores de HPAs prioritários variaram entre 2,36 e 35,25 ng.g⁻¹, enquanto os teores de HPAs totais variaram entre 30,57 e 144,68 ng.g⁻¹, com as maiores concentrações sendo observadas nos anos mais recentes, possivelmente refletindo a maior ocupação da bacia.

Figura 64 - Concentração de HPAs e perileno no testemunho BIOMT7

A concentração do perileno, tipicamente associado à diagênese da matéria orgânica, apresenta contribuição importante para o total de HPAs ao longo de todo o perfil, denotando que a contribuição proporcional de HPAs antropogênicos é pouco significativa ao longo do perfil. Somente na porção superficial ocorre ligeiro aumento na concentração de HPAs prioritários, ainda assim em baixas concentrações, indicando que a região não foi exposta a aportes significativos de ouros HPAs até os dias atuais. Com base nos limiares propostos para avaliar a razão entre a concentração do perileno e a soma dos isômeros penta-aromáticos (PERILENO/ Σ HPAs 5 anéis > 0,1), sua origem provavelmente está associada à diagênese da

matéria orgânica ao longo de toda a coluna sedimentar (BAUMARD et al., 1998; LAFLAMME & HITES, 1978 apud READMAN et al., 2002). O perileno é usualmente considerado um produto diagenético formado em ambiente deposicional sob condições anóxicas (SILLIMAN et al., 2001). Deste modo, as elevadas concentrações relativas deste HPA sugerem ainda anoxia no ambiente deposicional local. Sua concentração variou entre 21,04 a 109,60 ng.g⁻¹ e representa entre 62,12 e 97,12% dos HPAs totais.

A origem dos HPAs no testemunho BIOMT7 também foi avaliada em termos de outros proxies, no mesmo formato descrito/utilizado por Yunker et al. (2002), Tobiszewski & Namiesnik (2012) e Pinheiro et al. (2017). No entanto, poucas amostras indicaram concentrações de HPAs úteis para esta avaliação (em geral nas porções mais recentes do testemunho), com indicação clara de aporte de aporte pirolítico.

Os proxies ΣLMW/ΣHMW HPA e ΣCOMB/ΣHPAS, utilizados para avaliar a origem dos hidrocarbonetos aromáticos com base na abundância relativa dos HPAs de alta massa molecular sobre os de baixa massa molecular e da abundância relativa de HPAs reconhecidamente pirolíticos (tabela 19), indicam que, com exceção do perileno, os aportes pirolíticos são predominantes ao longo de toda a coluna sedimentar. O uso desses indicadores também foi prejudicado pela abundância do perileno com relação aos demais HPAs. Além do perileno, somente o fluoranteno, o pireno e o benzo(b)fluoranteno foram detectados em maior abundância, indicando que a região não acumula compostos poluentes de forma significativa.

De modo similar aos HPAs parentais, a concentração de HPAs alquilados foi pouco significativa. Foram detectados somente homólogos alquilados do fenantreno e, sobretudo, do pireno em algumas amostras. Tais HPAs estiveram acima do LQ em alguns poucos horizontes de profundidade, normalmente coincidentes com as maiores concentrações de HPAs prioritários e, quando quantificados, indicam aporte pirolítico para o sedimento (NEFF, 2002).

As baixas concentrações de hidrocarbonetos aromáticos encontradas nesse perfil sedimentar, tendo em vista o fato de o Rio São Francisco ser o de maior porte nessa região da costa brasileira, decorrem de fatores diversos: o clima semi-árido em porção considerável da bacia determina baixa pluviosidade e, em consequência, menor lixiviação dos solos; os aportes de material antropogênico na primeira metade do século XX não eram significativos; e após a construção das barragens o transporte de material sedimentar do rio para a plataforma continental sofreu profundas alterações, com retenção de sedimentos nos reservatórios construídos, aos quais a matéria orgânica é preferencialmente adsorvida. Soma-se a esses fatores o fato de as maiores pressões antropogênicas atuais estarem localizadas na região metropolitana de Belo Horizonte.

Aromáticos (ng.g ⁻¹)	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12
Naftaleno (N)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno (1MN)	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	ND	ND	<lq< td=""></lq<>
2 Metilnaftaleno (2-MN)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bifenil (BIF)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,95</td><td>1,38</td></lq<></td></lq<>	<lq< td=""><td>0,95</td><td>1,38</td></lq<>	0,95	1,38
2,6 dimetilnaftaleno	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Acenaftileno (ACT)	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td></lq<>	ND
Acenafteno (ACE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno (FLU)	ND	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
Dibenzotiofeno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno (FEN)	6,72	3,57	2,42	1,57	3,08	1,38	2,71	2,18	1,98	1,58	2,29	1,38
Antraceno (ANT)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,20</td><td>1,25</td><td>1,01</td><td><lq< td=""><td>1,05</td><td>1,12</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,20</td><td>1,25</td><td>1,01</td><td><lq< td=""><td>1,05</td><td>1,12</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,20</td><td>1,25</td><td>1,01</td><td><lq< td=""><td>1,05</td><td>1,12</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>1,20</td><td>1,25</td><td>1,01</td><td><lq< td=""><td>1,05</td><td>1,12</td></lq<></td></lq<>	ND	ND	1,20	1,25	1,01	<lq< td=""><td>1,05</td><td>1,12</td></lq<>	1,05	1,12
Fluoranteno (FLT)	5,43	1,13	1,83	0,97	2,32	0,85	<lq< td=""><td>1,02</td><td>1,16</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,02	1,16	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pireno (PIR)	5,63	6,43	2,32	2,10	1,66	0,00	0,00	3,46	2,22	2,18	1,88	2,28
Benzo(a)antraceno (BaA)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno (CRIS)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(b)fluoranteno	9,30	10,84	10,31	8,86	8,22	7,83	6,79	7,61	6,17	3,20	3,93	4,18
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(a)pireno (BaP)	2,46	2,78	2,39	2,04	<lq< td=""><td>1,69</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,69	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Perileno (PER)	89,88	103,19	98,99	109,60	84,89	69,86	93,78	83,73	65,59	65,36	57,21	56,25
Benzo(e)pireno (BeP)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-cd)pireno	2,45	4,47	5,10	4,09	3,29	3,64	2,33	ND	ND	ND	ND	<lq< td=""></lq<>
Dibenzo(a,h)antraceno	1,82	ND	ND	1,65	3,01	3,11	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perileno	1,44	<lq< th=""><th>2,27</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2,27	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12
[HPAS] prioritários (ng.g ⁻¹)	35,25	29,22	26,63	21,28	21,58	18,50	13,03	15,52	12,54	6,95	9,15	8,96
[HPAS] totais (ng.g ⁻¹)	144,68	139,56	131,90	135,49	114,43	91,96	110,84	103,46	81,31	72,31	67,17	64,10
ΣLMW/ΣΗΜW ΗΡΑ	0,27	0,17	0,14	0,10	0,20	0,10	0,58	0,28	0,31	0,29	0,57	0,39
ΣCOMB/ΣΗΡΑS	0,76	0,88	0,91	0,85	0,72	0,76	0,70	0,78	0,76	0,77	0,64	0,72
FLT/(FLT+PIR)	0,49	0,15	0,44	0,32	0,58	1,00	NC	0,23	0,34	0,00	0,00	0,00
I[cd]P/(I[cd]P+B[ghi]P)	0,63	1,00	0,69	1,00	1,00	1,00	1,00	NC	NC	NC	NC	NC
ANT/(ANT+FEN)	0,00	0,00	0,00	0,00	0,00	0,00	0,31	0,37	0,34	0,00	0,31	0,45
BaA/(BaA+CRIS)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
2-MN/FEN	0,00	0,00	0,00	0,00	0,00	0,00	NC	0,00	0,00	NC	NC	NC
B[b+k]F/BaP	3,78	3,90	4,31	4,34	NC	4,65	NC	NC	NC	NC	NC	NC
PERILENO/Σ HPAs 5 anéis	0,87	0,88	0,89	0,90	0,88	0,85	0,93	0,92	0,91	0,95	0,94	0,93
<u> </u>	1,21	1,08	1,33	1,07	1,11	1,01	1,24	1,06	1,27	0,99	1,03	0,91
Recuperação (%)	111,12	91,63	84,76	94,27	104,16	98,16	98,67	99,00	92,15	97,44	89,56	74,64

Tabela 19 - Hidrocarbonetos aromáticos no Testemunho BIOMT7

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

Aromáticos (ng,g ⁻¹)	T7-13	T7-14	T7-15	T7-18	T7-20	T7-22	T7-24	T7-26	T7-30	T7-33	T7-36	T7-39
Naftaleno (N)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno (1MN)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
2 Metilnaftaleno (2-MN)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bifenil (BIF)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,80	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,71</td></lq<></td></lq<>	<lq< td=""><td>0,71</td></lq<>	0,71
2,6 dimetilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Acenaftileno (ACT)	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND
Acenafteno (ACE)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno (FLU)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzotiofeno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno (FEN)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Antraceno (ANT)	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td></lq<>	ND
Fluoranteno (FLT)	1,43	1,59	3,06	1,93	1,96	0,87	1,35	3,74	<lq< td=""><td><lq< td=""><td>0,75</td><td>1,03</td></lq<></td></lq<>	<lq< td=""><td>0,75</td><td>1,03</td></lq<>	0,75	1,03
Pireno (PIR)	5,36	7,86	5,15	3,96	4,65	1,97	4,16	6,19	<lq< td=""><td>1,83</td><td><lq< td=""><td>3,05</td></lq<></td></lq<>	1,83	<lq< td=""><td>3,05</td></lq<>	3,05
Benzo(a)antraceno (BaA)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno (CRIS)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(b)fluoranteno	2,28	2,39	1,74	2,12	1,74	1,63	1,95	1,13	3,75	2,22	1,61	2,34
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(a)pireno (BaP)	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Perileno (PER)	46,20	43,53	37,89	36,65	21,04	26,98	36,93	28,83	56,25	50,04	54,17	44,45
Benzo(e)pireno (BeP)	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-cd)pireno	2,25	1,78	1,76	1,93	1,47	<lq< td=""><td>1,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,86	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzo(a,h)antraceno	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perileno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	T7-13	T7-14	T7-15	T7-18	T7-20	T7-22	T7-24	T7-26	T7-30	T7-33	T7-36	T7-39
[HPAS] prioritários (ng.g ⁻¹)	11,33	13,62	11,71	9,94	9,81	4,46	9,31	11,06	3,75	4,05	2,36	6,42
[HPAS] totais (ng.g ⁻¹)	52,17	49,29	44,45	46,59	32,43	30,57	44,89	43,23	60,00	52,26	55,78	49,84
ΣLMW/ΣΗΜW ΗΡΑ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ΣCOMB/ΣΗΡΑS	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
FLT/(FLT+PIR)	0,21	0,17	0,37	0,33	0,30	0,31	0,24	0,38	NC	0,00	1,00	0,25
I[cd]P/(I[cd]P+B[ghi]P)	1,00	1,00	1,00	1,00	1,00	NC	1,00	NC	NC	NC	NC	NC
ANT/(ANT+FEN)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
BaA/(BaA+CRIS)	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
2-MN/FEN	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	NC	NC	0,00	0,00
B[b+k]F/BaP	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
PERILENO/ Σ HPAs 5 anéis	0,95	0,95	0,96	0,95	0,92	0,94	0,95	0,96	0,94	0,96	0,97	0,95
%COT	1,05	1,05	0,99	0,90	0,81	0,84	0,97	0,88	0,88	0,89	0,83	0,83
Recuperação (%)	88,55	90,71	67,00	81,56	59,07	78,83	84,81	97,23	112,43	87,16	88,14	71,23

Tabela 19. Hidrocarbonetos aromáticos no Testemunho BIOMT7 (continuação)

<LQ: concentração abaixo do LQ do método; ND: Não detectado; NC: Não calculado; NA: Não analisado</p>

7.4.5.3 Esteróides na PC São Francisco

Os resultados das análises de esteróides estão compilados na tabela 20. A recuperação do padrão 5 α -androstanol variou entre 82,18 e 104,16%, dentro dos limites de qualidade analítica propostos por Ribani et al. (2004). Os teores de esteróides totais variaram entre 393,67 ng.g⁻¹ (cerca de 0,394 µg.g⁻¹) e 6460,69 ng.g⁻¹ (cerca de 6,461 µg.g⁻¹), respectivamente na base e no topo do testemunho.

Quando comparado ao testemunho obtido na plataforma continental associada ao Rio Doce, o perfil de esteróides apresenta menores concentrações desde a porção superficial, refletindo a menor contribuição fluvial e as condições predominantemente oligotróficas da costa na região estudada, apesar das dimensões e importância do Rio São Francisco.

Na porção superficial do perfil sedimentar (figura 65) os esteróides detectados em maior concentração são associados, principalmente, à produção primária fitoplanctônica e à herbivoria do fitoplâncton (colesterol), similarmente ao observado (e anteriormente descrito no item 7.1.5.4) no testemunho do Cabo Frio (BIOMT1). Ao longo de todo o perfil predominam o dinosterol e os esteróides associados à matéria orgânica terrígena/fluvial, com os C₂₉ esteróis sitosterol e estigmasterol apresentando as maiores abundâncias dentre esses últimos.

Figura 65 - Concentrações de esteróides no testemunho BIOMT7

Tabela 20 - Esteróides no Testemunho BIOMT7

Esteróides (ng.g ⁻¹)	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12
$26\Delta^{5,22}$	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Coprostanol (COP)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND
Epicoprostanol (Epicop)	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<></th></lq<>	<lq< th=""><th>ND</th><th>ND</th><th>ND</th></lq<>	ND	ND	ND
$nor27\Delta^{5,22}$	78,23	61,35	57,74	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dihidro-Colesterol	159,75	149,96	347,32	172,10	229,23	73,12	58,63	47,53	53,96	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Dihidro-Colestanol	209,83	210,32	167,11	121,72	173,39	105,55	79,53	50,92	48,16	<lq< th=""><th>ND</th><th>ND</th></lq<>	ND	ND
Colesterol (COL-erol)	1003,95	845,15	866,19	450,71	413,45	290,83	188,42	385,68	395,47	251,05	138,38	113,57
Colestanol (COL-anol)	216,43	201,02	211,14	305,75	180,80	244,62	212,86	176,47	175,25	115,40	70,70	51,37
Colestanona	160,10	154,51	164,26	105,30	129,14	75,60	65,48	53,04	49,30	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicasterol	1144,72	239,84	788,79	432,63	515,66	280,44	223,95	178,87	414,33	242,66	126,07	81,42
Brassicastanol	149,45	142,90	165,80	120,25	153,24	101,02	93,86	65,13	66,20	37,53	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Metileno-Colesterol	197,22	201,76	151,32	211,80	257,74	147,98	109,87	91,63	66,19	47,12	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campesterol	199,34	155,52	161,30	98,10	110,47	62,02	58,03	37,31	40,97	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campestanol	193,34	196,17	199,10	162,03	190,92	127,16	125,42	106,81	110,84	79,12	39,75	37,61
Estigmasterol	515,74	433,42	438,51	250,87	325,35	173,91	372,33	260,48	280,94	147,56	78,52	62,32
Estigmastanol	319,82	322,41	151,11	286,90	355,41	272,91	197,92	166,80	226,74	158,27	108,58	79,27
Sitosterol	770,36	727,15	709,45	469,15	567,11	337,52	266,70	218,50	220,16	448,80	259,66	191,37
Sitostanol	222,95	239,12	244,39	207,27	255,43	188,41	330,42	176,42	612,11	273,78	201,15	158,24
Dinosterol	919,45	956,71	966,01	741,73	799,30	630,12	518,65	477,78	562,46	393,72	284,13	258,52
	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12
Σ esteróides (ng.g ⁻¹)	6460,69	5237,30	5789,54	4136,32	4656,64	3111,22	2902,06	2493,37	3323,07	2195,01	1306,93	1033,70
Epicop/COP	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
COP/(COP+COL-anol)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
(COP/COL-erol)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Camp-e/Estig-e/Sit-e	1:2,6:3,9	1:2,8:4,7	1:2,7:4,4	1:2,6:4,8	1:2,9:5,1	1:2,8:5,4	1:6,4:4,6	1:7,0:5,9	1:6,9:5,4	NC	NC	NC
$\frac{\Sigma 5\alpha(H) \text{ ESTANOL/}\Sigma \Delta^5}{\text{ESTEROL} - \text{C}_{27}-\text{C}_{29}}$	0,30	0,46	0,33	0,64	0,59	0,82	0,87	0,64	0,88	0,61	0,70	0,73
Sit/Camp (EST+EST-A)	2,53	2,75	2,65	2,60	2,73	2,78	3,26	2,74	5,48	9,13	11,59	9,30
Dinosterol/Metileno- colesterol	4,66	4,74	6,38	3,50	3,10	4,26	4,72	5,21	8,50	8,36	NC	NC
Colesterol/Metileno- colesterol	5,09	4,19	5,72	2,13	1,60	1,97	1,71	4,21	5,98	5,33	NC	NC
%COT	1,21	1,08	1,33	1,07	1,11	1,01	1,24	1,06	1,27	0,99	1,03	0,91
Recuperação (%)	83.60	79.83	81.44	82.46	92.51	83.14	93.64	99.27	75.02	90.69	90.91	88.78

- Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL - C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002).

NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método

Tabela 20. Esteróides no Testemunho BIOMT7 (continuação)

								3 /				
Esteróides (ng.g ⁻¹)	T7-13	T7-14	T7-15	T7-18	T7-21	T7-22	T7-24	T7-26	T7-30	T7-33	T7-36	T7-39
26 ^{5,22}	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Coprostanol (COP)	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Epicoprostanol (Epicop)	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
$nor27\Delta^{5,22}$	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Dihidro-Colesterol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<></th></lq<>	<lq< th=""><th>ND</th><th><lq< th=""><th>ND</th></lq<></th></lq<>	ND	<lq< th=""><th>ND</th></lq<>	ND
Dihidro-Colestanol	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Colesterol (COL-erol)	74,75	69,54	57,52	<lq< th=""><th>106,64</th><th>NA</th><th>86,25</th><th>94,30</th><th>71,82</th><th><lq< th=""><th><lq< th=""><th>42,11</th></lq<></th></lq<></th></lq<>	106,64	NA	86,25	94,30	71,82	<lq< th=""><th><lq< th=""><th>42,11</th></lq<></th></lq<>	<lq< th=""><th>42,11</th></lq<>	42,11
Colestanol (COL-anol)	47,17	47,14	39,52	<lq< th=""><th>35,30</th><th>NA</th><th>51,53</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	35,30	NA	51,53	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Colestanona	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicasterol	63,19	60,51	60,58	<lq< th=""><th>52,06</th><th>NA</th><th>75,98</th><th>52,32</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	52,06	NA	75,98	52,32	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Brassicastanol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Metileno-Colesterol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campesterol	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th>NA</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	NA	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Campestanol	36,91	31,10	32,91	<lq< th=""><th>28,71</th><th>NA</th><th>32,48</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	28,71	NA	32,48	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmasterol	66,14	65,77	67,70	50,25	41,84	NA	66,45	45,70	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Estigmastanol	85,55	74,65	75,29	70,63	71,83	NA	80,35	56,18	<lq< th=""><th><lq< th=""><th><lq< th=""><th>34,30</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>34,30</th></lq<></th></lq<>	<lq< th=""><th>34,30</th></lq<>	34,30
Sitosterol	211,87	171,71	176,37	191,37	149,58	NA	208,48	148,34	102,38	92,70	86,08	93,47
Sitostanol	163,72	161,27	114,65	176,10	143,62	NA	157,45	122,62	89,90	75,79	74,90	65,29
Dinosterol	261,73	236,31	223,95	172,14	234,94	NA	254,91	167,93	364,71	225,17	254,03	229,05
	T7-13	T7-14	T7-15	T7-18	T7-21	T7-22	T7-24	T7-26	T7-30	T7-33	T7-36	T7-39
Σ esteróides (ng.g ⁻¹)	1011,03	918,00	848,50	660,48	864,51	NA	1013,90	687,38	628,81	393,67	415,02	464,21
Epicop/COP	NC	NC	NC	NC	NC	NA	NC	NC	NC	NC	NC	NC
COP/(COP+COL-anol)	0,00	0,00	0,00	NC	0,00	NA	0,00	NC	NC	NC	NC	NC
(COP/COL-erol)	0,00	0,00	0,00	NC	0,00	NA	0,00	0,00	0,00	NC	NC	0,00
Camp-e/Estig-e/Sit-e	NC	NC	NC	NC	NC	NA	NC	NC	NC	NC	NC	NC
Σ 5 α (H) ESTANOL/ Σ Δ ⁵	0.80	0.85	0.72	1.02	0.80	NΔ	0.74	0.52	0.52	0.82	0.87	0.73
ESTEROL - C ₂₇ -C ₂₉	0,80	0,85	0,72	1,02	0,80	INA	0,74	0,52	0,52	0,82	0,07	0,75
Sit/Camp (EST+EST-A)	10,18	10,71	8,84	NC	10,21	NA	11,27	NC	NC	NC	NC	NC
Dinosterol/Metileno- colesterol	NC	NC	NC	NC	NC	NA	NC	NC	NC	NC	NC	NC
Colesterol/Metileno- colesterol	NC	NC	NC	NC	NC	NA	NC	NC	NC	NC	NC	NC
%COT	1,05	1,05	0,99	0,90	0,81	0,84	0,97	0,88	0,88	0,89	0,83	0,83
Recuperação (%)	99.74	107.27	119.89	108.77	113.27	NA	100.21	117.87	116,86	115,67	118.29	119.61

- Epicop/COP: Utilizada para avaliar contaminação fecal (tratamento de esgoto sanitário). (MARTINS et al. 2010).

- COP/(COP+COL-anol): Coprostanol/(Coprostanol + Colestanol), utilizada para avaliar contaminação fecal. (GRIMALT et al., 1990).

- (COP/COL-erol): Coprostanol/Colesterol, utilizada para avaliar contaminação fecal. (TAKADA et al., 1994; GRIMALT et al., 1990; SEGUEL et al., 2001).

- Camp-e/Estig-e/Sit-e: Razão entre as concentrações de Campesterol/Estigmasterol/sitosterol (VOLKMAN, 1986; LAUREILLARD SALIOT, 1993 apud SANTOS et al., 2008).

- Σ 5 α (H) ESTANOL/ Σ Δ^5 ESTEROL - C₂₇-C₂₉: Razão entre os estanóis e estenóis na faixa de C₂₇ a C₂₉, utilizada para avaliar a diagênese recente da matéria orgânica. (VOLKMAN, 1986; CANUEL & MARTENS, 1993).

- Sit/Camp (EST/EST-A): Razão entre o (Sitosterol+Sitostanol)/(Campesterol+Campestanol). RONTANI et al. (2014).

- Dinosterol/Metileno-colesterol e Colesterol/Metileno-colesterol: Contribuição relativa de dinoflagelados e zooplâncton, respectivamente com relação à diatomáceas (ZIMMERMAN & CANUEL, 2002).

NC: Não calculado ND: Não Detectado <LQ: Concentração abaixo do LQ do Método

Nos primeiros 10 cm da coluna sedimentar se observa elevações esporádicas no teor de esteróides totais, que sugerem alterações no aporte de matéria orgânica para os sedimentos e podem estar associadas às obras de construção das barragens no leito do São Francisco, com obras que se iniciaram na década de 1950 – mas cujo ápice se deu entre os anos de 1975 e 1994. Nos demais horizontes de profundidade o decréscimo na concentração de esteróides totais e a não observação de outras alterações significativas no perfil dos diferentes esteróides ao longo do testemunho, permite supor que o aporte de matéria orgânica para os sedimentos não tenha variado de forma importante. Deste modo, esse decréscimo pode ser atribuído à diagênese da matéria orgânica em ambiente sedimentar. Tal observação se sustenta ainda no fato de que, fora da região de topo do testemunho, predominam os C_{29}/C_{30} esteróides, como o sitosterol e o sitostanol (associados a vegetais superiores) ou dinosterol (dinoflagelados), entre os esteróides que se encontram em concentrações acima do LQ do método ao longo de todo o perfil sedimentar, dada a maior suscetibilidade à degradação dos esteróides de menor massa molecular.

A análise de correlação de Spearman (dados não apresentados) indicou alta correlação linear entre a maioria dos esteróides detectados, com exceção do $26\Delta^{5,22}$. Tal resultado, associado ao aumento concomitante nas concentrações dos C₂₈+C₃₀ e dos C₂₉ esteróides, sugere que pulsos de aporte terrígeno (possivelmente durante as obras de construção das barragens no leito do rio) foram acompanhados de nutrientes que propiciaram o crescimento fitoplanctônico, de modo similar ao observado na PC Cabo Frio, embora não tenha sido observada resposta zooplanctônica significativa.

Os esteróides sitosterol e sitostanol indicam contribuição terrígena para os sedimentos, além de a razão estanóis/esteróis indicar graus variados de alteração diagenética, que sugerem transporte de material alóctone e sua posterior deposição nos sedimentos na zona de acumulação estudada. Tal característica indica que, apesar de o testemunho obtido estar localizado na plataforma externa, o mesmo ainda recebe influência continental do Rio São Francisco. A razão campesterol/estigmasterol/sitosterol, quando calculada, sugere que a origem da matéria orgânica é predominantemente marinha.

A figura 66, que apresenta a distribuição relativa dos esteróides, associados ao fitoplâncton, zooplâncton (aportes de origem animal) e vegetais superiores (WANG et al., 2016) indica que a concentração de C_{27} -esteróides decresce com o aumento da profundidade desde a porção superficial do testemunho, com esses esteróides sendo preferencialmente degradados em comparação com aqueles associados aos vegetais superiores e ao fitoplâncton (sobretudo dinoflagelados).

Figura 66 - Distribuição relativa de esteróides no testemunho BIOMT7

Tal distribuição sugere que a matéria orgânica neste local é derivada tanto de fontes alóctones quanto autóctones, com os organismos fito e zooplanctônicos tendo uma maior contribuição relativa quando comparados aos vegetais superiores. Com as alterações diagenéticas o sedimento passa a ser proporcionalmente mais rico nos esteróides alóctones e autóctones mais resistentes à degradação, sobretudo C_{29} e C_{30} -esteróides, associados principalmente à contribuição de dinoflagelados e de vegetais superiores.

As concentrações dos esteróis fecais coprostanol e epicoprostanol também estiveram abaixo do LQ do método ao longo de todo o perfil sedimentar (quando detectados), de modo similar ao observado no testemunho associado à desembocadura do Rio de Contas. A presença desses compostos em concentrações bastante baixas sugere que os mesmos podem ser oriundos de alterações bacterianas do colesterol, o que implica em sua origem ser natural. Contribui para essa conclusão a presença da 5 α -colestanona, uma cetona esteroidal derivada do colestanol quantificada em baixas concentrações na porção superficial da coluna sedimentar. De acordo com Grimalt et al. (1990), a 5 α -colestanona ocorre em ambientes deposicionais anóxicos como consequência da ação microbiana e/ou redução diagenética dos Δ^5 esteróides, diferente das bactérias do trato intestinal de mamíferos que geram esteróides fecais, incluindo a 5 β -colestanona (coprostanona). Carreira et al. (2015b) analisaram amostras superficiais para investigar o aporte de esteróides de origem fecal na região da foz do Rio São Francisco e também concluíram pela não ocorrência de poluição de origem fecal nessa região. Do mesmo modo observado na plataforma continental na região da foz do Rio de Contas, as contribuições de esteróides fecais geradas na região da bacia do Rio São Francisco, devem ficar restritas ao continente, não ocorrendo acumulação na plataforma continental, na região da sua foz. Contribui para isso o fato de a bacia do Rio São Francisco ser de dimensões bastante superiores às das demais regiões estudadas e também o fato de as maiores cidades estarem localizadas em regiões distantes da foz e a montante das barragens instaladas.

7.4.6 Integração dos parâmetros considerados

Os resultados obtidos da análise de amostras da coluna sedimentar recuperada na região da foz do Rio São Francisco indicam que a matéria orgânica preservada é oriunda de contribuição mista, com predomínio de material autóctone. Dadas as características sedimentológicas locais, não há acúmulo de sedimentos lamosos na desembocadura do Rio São Francisco. Tal fato obrigou à coleta do testemunho em uma área de acumulação em frente à foz, próxima a quebra da plataforma continental e da região da cabeceira do canyon submerso do São Francisco.

As taxas de sedimentação calculadas refletem a retenção de sedimentos nos reservatórios construídos no leito do rio para geração de energia elétrica. A partir da década de 1990, com a regularização das vazões, ocorreu redução na taxa de sedimentação, de aproximadamente 0,56 cm.ano⁻¹ para 0,34 cm.ano⁻¹. Diferente do observado na plataforma continental associada à desembocadura do Rio Doce, as taxas de sedimentação são aproximadamente constantes ao longo do tempo, exceto por essa alteração no perfil de sedimentação.

A área de acumulação onde o testemunho foi obtido não apresenta evidência de aporte antropogênico significativo à luz dos parâmetros considerados. Possivelmente os baixos teores dos compostos considerados na plataforma continental estão relacionados a dois fatores principais:

 na primeira metade do século XX, o baixo desenvolvimento urbano e industrial não proporcionou contribuição significativa de compostos orgânicos associados a aportes antropogênicos à plataforma continental; e - após a construção dos reservatórios para produção de energia elétrica, os sedimentos trazidos para o rio ficam retidos nesses reservatórios. Em consequência, o acúmulo de compostos orgânicos associados à atividade humana se dá nesses mesmos reservatórios, de modo diverso do observado na bacia do Rio Doce.

Nessa coluna sedimentar, apesar das baixas concentrações de todos os compostos monitorados, foi possível indicar o relativo predomínio do perileno, um HPA de origem natural associado à diagênese da matéria orgânica. O teor do perileno, quando comparado aos demais HPAs detectados, chega até 97,12% dos HPAs totais.

Chama a atenção o fato de o perfil de n-alcanos indicar aportes associados à produção primária fitoplanctônica/bacteriana relativamente importantes quando comparados aos associados a vegetais superiores, nos sedimentos depositados a partir da década de 1970 (em sedimentos mais antigos as concentrações estavam abaixo do LQM). Tal característica sugere condições análogas às observadas no testemunho BIOMT1, coletado em área reconhecida pela ocorrência de ressurgência na região próxima à quebra da plataforma continental, mas devem decorrer do aporte de nutrientes oriundo das intervenções observadas em terra por ocasião da construção da cascata de barragens ao longo do leito do Rio São Francisco, refletindo-se nos sedimentos depositados.

7.5 Comparação dos resultados de cada ambiente estudado

Comparados os diversos ambientes estudados entre si, algumas diferenças ficam evidentes, as quais podem ser atribuídas às características climáticas, morfológicas e de uso humano locais, que se refletem nos sedimentos depositados na plataforma continental. Tal comparação foi efetuada com o objetivo de situar as amostras analisadas entre si e com relação a outros ambientes ou dados de referência, de modo a inferir sobre a qualidade dos sedimentos analisados, não tendo o intuito de comparar eventuais aportes associados aos rios entre si ao longo do tempo, em vista das diferentes histórias de ocupação de cada bacia.

7.5.1 Caracterização geral

Na plataforma continental associada à região do Cabo Frio, sem interferência humana significativa, o testemunho obtido apresentou baixa taxa de sedimentação, em torno de 0,22 cm.ano⁻¹, comparável às determinadas por Cruz et al. (2013) para a mesma região,

que variaram entre 0,11 e 0,32 cm.ano⁻¹ em diferentes testemunhos. As taxas de sedimentação observadas na foz do Rio Doce são variáveis e mais elevadas do que as dos demais ambientes estudados, embora também tenham sido observadas taxas elevadas na região da desembocadura do Rio São Francisco anteriormente à construção dos reservatórios para geração de energia hidroelétrica. Após a regularização das vazões a taxa de sedimentação na região da sua foz se reduziu, passando de 0,56 para 0,34 cm.ano⁻¹. No testemunho associado à desembocadura do Rio de Contas a taxa de sedimentação foi constante, em torno de 0,24 cm.ano⁻¹. Esse testemunho não foi coletado em frente à foz, de modo que o local não sofre interferências continentais significativas, similarmente ao testemunho PC Cabo Frio.

As taxas de sedimentação relativamente elevadas na região da desembocadura do Rio São Francisco, observadas até a construção dos reservatórios, não se refletiram em teores mais elevados da matéria orgânica, como observado no testemunho associado ao Rio Doce. Tal característica deve estar associada ao maior tamanho da bacia de drenagem do Rio São Francisco, juntamente com o clima semi-árido predominante, que determina um menor transporte de matéria orgânica terrígena para a plataforma continental.

Desses resultados, é possível concluir que a plataforma continental associada à desembocadura do Rio Doce funciona como um sumidouro de carbono relativamente importante quando comparada às demais regiões e que uma parcela considerável do aporte de matéria orgânica associado ao Rio São Francisco fica retido nos reservatórios das UHEs.

Outros ambientes na plataforma continental brasileira apresentam taxas de sedimentação variáveis, conforme exposto por Patchineelam & Smoak (1999), desde 0,13 cm.ano⁻¹ no talude associado ao Rio Doce até 0,81 cm.ano⁻¹ na ria de Caravelas. Em outras regiões, influenciadas por aporte fluvial significativo, as taxas de sedimentação podem ser maiores: Chen et al. (2017b), utilizando o radioisótopo ²¹⁰Pb_{ex}, estudaram dois testemunhos obtidos no Mar da China Oriental (um mar marginal dominado por aportes fluviais) e encontraram taxas de sedimentação de 0,89 e 2,2 cm.ano⁻¹ em sedimentos lamosos na costa de Zhejiang-Fujian. Embora tratando-se de um evento extremo, o rompimento da barragem de Fundão determinou uma taxa de sedimentação ainda superior: a camada de 4 cm de lama depositada por ocasião da coleta do testemunho BIOMT3 determinou uma taxa de sedimentação de aproximadamente 12 cm.ano⁻¹ nesse intervalo (a coleta se deu aproximadamente 4 meses após a chegada da lama na plataforma continental).

Em termos de outros parâmetros de caracterização geral, os ambientes apresentam forte influência marinha, por se tratarem de ambientes de plataforma continental. A utilização do modelo de mistura binário baseado na δ^{13} C, descrito em Weijers et al. (2009)

indicou contribuições mistas, com influência terrígena em todos os ambientes estudados, novamente destacando-se a região da desembocadura do Rio Doce, com evidente aporte terrígeno. Esta região é a que recebe maior aporte sedimentar terrígeno dentre as regiões estudadas.

7.5.2 Análise cromatográfica

Apesar de uma comparação direta entre diferentes estudos não poder ser utilizada como um critério definitivo, em vista de os compostos quantificados não serem sempre os mesmos e também em função dos diferentes objetivos, em linhas gerais tal comparação fornece uma indicação da intensidade dos aportes para as regiões estudadas.

A análise cromatográfica de hidrocarbonetos alifáticos indica que os testemunhos estudados apresentam concentrações similares às observadas em outros ambientes do Brasil e do mundo, pouco ou medianamente impactados por aportes antropogênicos. A tabela 21 compara os resultados obtidos com outros estudos, que avaliaram regiões com diferentes aportes naturais e antropogênicos em testemunhos ou amostras de sedimentos superficiais. Já a figura 67 apresenta uma comparação entre as concentrações de hidrocarbonetos alifáticos totais entre os perfis estudados.

Figura 67 - Comparação entre os perfis estudados - hidrocarbonetos alifáticos totais

Neste estudo, com exceção do testemunho PC Doce (BIOMT3), as concentrações individuais de compostos de baixa massa molecular estiveram em patamares inferiores ao LQ do método e, em diversas amostras, alguns desses compostos não foram sequer detectados. Tal característica se reflete na concentração de alifáticos totais, que só atinge concentrações elevadas na plataforma continental associada ao Rio Doce. Na PC Doce ocorrem contribuições naturais e indicações de aportes petrogênicos em diferentes períodos. No entanto, mesmo neste local, as concentrações determinadas são consideradas intermediárias entre áreas não poluídas e áreas associadas a contaminação por petróleo/derivados. Apesar da concentração de alifáticos totais é superior a 10 µg.g⁻¹ (peso seco) em alguns horizontes de profundidade (indicando a possível ocorrência de aportes antropogênicos), a concentração determinada é inferior a 100 µg.g⁻¹ ou 500 µg.g⁻¹, limiares propostos respectivamente por Bouloubassi & Saliot (1993) e Volkman et al. (1992), os quais indicam que concentrações superiores a esses patamares são geralmente associadas a aportes de petróleo/derivados.

Referência	[Alifáticos Res.] µg.g ⁻¹	[alifáticos Totais] µg.g ⁻¹	Local		
Este estudo (BIOMT1)	0,74 - 1,66	1,31 - 4,30	PC Cabo Frio		
Este estudo (BIOMT3)	0,94 - 27,82	1,65 - 46,83	PC Doce		
Este estudo (BIOMT6)	0,37 – 2,13	0,51 – 3,20	PC Contas		
Este estudo (BIOMT7)	0,59 - 2,72	0,81 – 9,51	PC São Francisco		
Readman et al. (2002)	0,21 - 8,10	1,20 - 240,00	Mar Negro		
Ferreira (2008)	0,18 - 7,50	0,33 - 22,70	Baía de Santos		
Ferreira (2008)	0,54 - 1,48	0,68 – 1,55	Plataforma continental		
			adjacente à Baía de Santos		
Bícego et al. (2009)	0,1 - 5,50	NI	Baía do Almirantado – Ilha		
			Rei George - Antártica		
Lourenço et al. (2017)	NI	0,43 - 7,45	PC Cabo Frio		
Abessa et al. (2017)	0.01 - 10.30	0.55 - 39.10	Plataforma continental na		
	0,01 10,00	0,00 00,10	costa do estado de SP.		
Dauner et al. (2018)	0,20 - 15,80	0,75 - 201,20	Baía de Babitonga - SC		
Duan et al. (2019)	0,70 - 2,89	6,06 - 11,97	Mar da China Oriental		

Tabela 21 - Comparação dos resultados de hidrocarbonetos alifáticos com outros estudos

Legenda: NI - Não Informado; ND - Não Detectado

A figura 68 compara os perfis de HPAs totais dos quatro testemunhos estudados. Da sua análise é possível concluir que somente o testemunho PC Doce apresenta concentrações mensuráveis ao longo de todo o perfil. As maiores concentrações observadas no testemunho PC Cabo Frio foram observadas na base do perfil. Nas demais colunas estudadas, além das baixas concentrações, o HPA perileno chega a responder por mais de 90% dos HPAs detectados.

Figura 68 - Comparação entre os perfis estudados - HPAs totais

Os resultados da Análise de Componentes Principais dos HPAs determinados para os quatro testemunhos são apresentados na figura 69. A primeira componente principal estabelece dois grupos distintos, separados em função da concentração de HPAs, sobretudo pirolíticos (4 a 6 anéis benzênicos). Já a segunda componente principal separa os compostos principalmente em função da concentração dos HPAs petrogênicos detectados (2 e 3 anéis benzênicos). Todas as amostras dos testemunhos PC Cabo Frio, PC Contas e PC São Francisco agrupam na mesma região (à esquerda do gráfico de dispersão), em função das baixas concentrações de HPAs. De modo diverso, quase todas as amostras do testemunho PC Doce agrupam à direita do gráfico com o seu espalhamento refletindo os diversos níveis de concentração de HPAs pirolíticos determinados. As duas primeiras componentes principais, juntas, explicam 64,23% da variância total observada.

Dessa análise, destacam-se duas regiões em que ocorre maior dispersão das amostras: a primeira é representada pelas maiores concentrações de HPAs pirolíticos transportados para a plataforma continental por ocasião das enchentes registradas no Rio Doce (amostras T3-10, T3, 11 e T3-17); e a segunda pelas maiores concentrações de HPAs petrogênicos (sobretudo naftaleno e seus homólogos alquilados) observadas na base do testemunho PC Cabo Frio (amostras T1-17 e T1-23).

Figura 69 – Análise de Componentes Principais - HPAs nos testemunhos analisados

A figura 70 compara as concentrações de esteróides totais determinadas para as colunas sedimentares estudadas. O perfil de esteróides associados à desembocadura do Rio Doce destoa dos perfis associados aos demais ambientes estudados.

Figura 70 - Comparação entre os perfis estudados - Esteróides totais

A tabela 23 compara os resultados obtidos para os esteróides analisados com outros estudos, que avaliaram regiões com diferentes aportes naturais e antropogênicos, em testemunhos ou amostras de sedimentos superficiais. A análise de esteróides indica que os testemunhos estudados apresentam concentrações similares às observadas em outros ambientes costeiros do Brasil e do mundo, com concentrações bastante inferiores às observadas por González-Oreja & Saiz-Salinas (1998), que analisaram amostras superficiais no estuário de Bilbao, Espanha, em duas campanhas amostrais, incluindo esteróis fecais.

As concentrações de esteróides totais são similares às observadas em outros estudos envolvendo testemunhos sedimentares na plataforma continental brasileira, como os conduzidos por Carreira et al. (2012) e Lourenço et al. (2017). Em ambos os estudos as maiores concentrações desses compostos foram associadas à ocorrência de ressurgência da ACAS, também observada por este estudo na PC Cabo Frio.

As maiores concentrações de esteróides foram observadas no testemunho PC Doce (BIOMT3), que apresentou teores elevados de C_{29} e C_{30} esteróides, associados a contribuição significativa de vegetais superiores e dinoflagelados, respectivamente, ao longo de todo o perfil. Comportamento similar foi observado em outros estudos, como o conduzido por Wang et al. (2016), e é atribuído, principalmente à diagênese recente da matéria

orgânica, a qual degrada os esteróides de menor massa molecular ao longo do tempo, com reflexos na concentração desses compostos ao longo do perfil sedimentar.

Referência	[Est. Totais]* µg.g ⁻¹	[Est. Fecais]** µg.g ⁻¹	Local		
Este estudo (BIOMT1)	0,27 - 7,02	ND - <lq< td=""><td>PC Cabo Frio</td></lq<>	PC Cabo Frio		
Este estudo (BIOMT3)	3,09 – 16,66	0,043 - 0,526	PC Doce		
Este estudo (BIOMT6)	0,36 - 9,32	ND - <lq< td=""><td>PC Contas</td></lq<>	PC Contas		
Este estudo (BIOMT7)	0,39 - 6,46	ND - <lq< td=""><td>PC São Francisco</td></lq<>	PC São Francisco		
González-Oreja & Saiz-Salinas (1998)	22,83 - 1695,7	2,2 - 293***	Estuário de Bilbao		
Readman et al. (2005)	0,04 - 14,33	0,001 - 5,40***	Mar Negro		
Martins et al. (2007)	<0,01-4,17	ND – 1,56	Lagoa dos Patos - RS		
Martins et al. (2008)	0,35 - 23,90	0,04 - 9,01	Baía de Santos - SP		
Martins et al. (2010)	NI/NA	<lq 2,35<="" td="" –=""><td>Baía de Paranaguá - PR</td></lq>	Baía de Paranaguá - PR		
Carreira et al. (2012)	0,60 - 62,30	NI/NA	PC Rio de Janeiro		
Carreira et al. (2015b)	NI/NA	<lq-0,184***< td=""><td>PC nordeste do Brasil</td></lq-0,184***<>	PC nordeste do Brasil		
Wang et al. (2016)	1,77 - 4,65	NI/NA	Mar da China Oriental		
Lourenço et al. (2017)	1,87 – 14,70	NI/NA	PC Cabo Frio		

 Tabela 22 - Comparação dos resultados de esteróides com outros estudos

Legenda: Não detectado (ND); Concentração menor que o Limite de Quantificação (<LQ); Não Informado ou Não analisado (NI/NA); Esteróides (Est)

* O número de esteróides analisados pode variar de um estudo para outro. Neste estudo foram analisados 19 compostos; González-Oreja & Saiz-Salinas (1998) analisaram sete compostos; Readman et al. (2005) analisaram 8 compostos; Martins et al. (2007) analisaram 10 compostos; Martins et al. (2008) analisaram 7 compostos; Martins et al. (2010) e Carreira et al. (2012) analisaram 15 compostos; e Carreira et al. (2015b) analisaram 5 compostos; Wang et al. (2016) analisaram 11 compostos; e Lourenço et al. (2017) analisaram 13 compostos.

** [Esteróides Fecais]: Somatório das concentrações de coprostanol e epicoprostanol.

*** Somente coprostanol foi analisado.

O único ambiente onde a concentração esteróides fecais foi mensurável, PC Doce, apresentou concentração máxima inferior a regiões pesadamente impactadas por aportes de esgoto doméstico, como a Lagoa dos Patos nas proximidades de Porto Alegre – RS (MARTINS et al. 2007) ou a Baía de Santos (MARTINS et al. 2008). A detecção desses esteróis sobre a plataforma continental, em uma região relativamente distante das cidades mais importantes da bacia, indica que a saúde ambiental do rio se encontra em situação precária por conta de deficiências nas políticas públicas de saneamento básico nas diversas cidades, com reflexos que já são detectados na plataforma continental.

Este estudo teve como proposta investigar a evolução temporal dos aportes de marcadores orgânicos naturais e antropogênicos sobre a plataforma continental, na área de influência de alguns rios da costa brasileira e na região do Cabo Frio, de forma a avaliar a hipótese de que é possível inferir o histórico de desenvolvimento urbano e industrial nas bacias de drenagem dos rios que desaguam na plataforma continental brasileira, entre 10°S e 23°S, por meio de variações nos aportes de matéria orgânica depositada nos sedimentos da plataforma continental, apesar das diferentes características climáticas, oceanográficas e de impacto humano, possibilitando o estabelecimento de registros históricos desses aportes a partir dos sedimentos depositados.

As diferentes características climáticas, geomorfológicas e de ocupação humana das regiões estudadas se refletem nos diferentes aportes continentais na interface continenteoceano. A ocorrência de chuvas, juntamente com a extensão da área da bacia de drenagem e intervenções humanas se mostraram determinantes no transporte de material alóctone para a plataforma continental.

O testemunho PC Doce foi o único que possibilitou inferir claramente as concentrações determinadas à história de ocupação da bacia. O aumento nas concentrações de HPAs pirolíticos desde a década de 1940 registra o desenvolvimento da bacia, cuja ocupação remonta ao início do século XX (as maiores concentrações de HPAs pirolíticos são associadas à história das principais enchentes registradas na bacia do Rio Doce). O seu máximo foi atingido na década de 1990, por ocasião das enchentes de 1996/97 (ocasião em que foram atingidas as maiores vazões máximas registradas na estação de Governador Valadares). A presença de esteróides fecais nessa mesma coluna possibilitou identificar reflexos das políticas malsucedidas de saneamento básico nos sedimentos da plataforma continental. O clima mais úmido e a ocorrência de épocas de chuvas bem definidas, determina o transporte ativo de sedimentos terrígenos do Rio Doce para a plataforma continental. A detecção dos esteróides fecais coprostanol e o epicoprostanol reflete o lançamento de esgoto "in natura" no seu leito e nos de seus afluentes. Por ocasião das chuvas, ocorre lixiviação de solo urbano e rural que transporta sedimentos contendo tanto resíduos do esgotamento sanitário quanto de outros aportes naturais e antropogênicos, os quais acabam encontrando seu destino final nas águas do Oceano Atlântico, tal como ocorreu com os rejeitos de mineração lançados ao rio após o rompimento da barragem de Fundão.

Diferentemente da foz do Rio Doce, a região sob influência do Rio de Contas encontra-se inserida em área de plataforma continental mais estreita, além de a sua bacia de drenagem ser de menores proporções e apresentar menor ocupação humana. Tal fato, somado às condições climáticas locais, onde o clima semi-árido atinge parte da bacia, impõe um menor aporte de material terrígeno para a plataforma continental. Com isso, o registro sedimentar local apresenta características de contribuição predominantemente autóctone e reflete as condições oligotróficas dessa porção da costa brasileira. No local a taxa de sedimentação é constante e inferior à observada nas desembocaduras dos demais ambientes estudados, com exceção da coluna associado à região do Cabo Frio. Não há presença de esteróides fecais. Os HPAs associados a aportes antropogênicos são de origem pirolítica e estão presentes em baixas concentrações. Destaca-se a elevada concentração relativa do HPA diagenético perileno, que foi predominante ao longo de todo o perfil estudado.

Na plataforma continental associada à foz do Rio São Francisco foi possível identificar dois diferentes regimes de sedimentação, associados ao período anterior e posterior à regularização das vazões do rio, ocorrida na década de 1990. Até a regularização das vazões, o local recebia maior aporte de material terrígeno, sobretudo de origem natural. Posteriormente à regularização das vazões o aporte sedimentar foi reduzido de forma significativa. Deste modo, atualmente também ocorre acumulação restrita de sedimentos terrígenos, de modo que o registro sedimentar local também apresenta características de contribuição predominantemente autóctone e reflete as condições oligotróficas dessa porção da costa brasileira. Similarmente ao observado na região da foz do Rio de Contas, não há presença de esteróides fecais; os HPAs associados a aportes antropogênicos são de origem pirolítica e estão presentes em baixas concentrações. O perileno também foi o HPA predominante nesse perfil.

Na região do Cabo Frio, única região estudada em que não havia influência fluvial próxima, as análises indicaram períodos de intrusão mais efetiva da ACAS sobre a plataforma continental, identificados por elevações episódicas nas concentrações de hidrocarbonetos alifáticos e esteróis associados à produção primária fitoplanctônica e à herbivoria por parte do zooplâncton, característicos de eventos de ressurgência. Não foram detectados esteróides fecais. Os HPAs associados a aportes antropogênicos são de origem pirolítica e estão presentes em baixas concentrações, com exceção da porção da base do testemunho, cujas características indicaram a ocorrência de exsudações naturais de hidrocarbonetos.

9. REFERÊNCIAS BIBLIOGRÁFICAS

- ABESSA, D.; VICENTE, T.M.; MOREIRA, L.B.; MORAIS, L.G.; CRUZ, A.C.F.; 1, MASSONETTO, M.; CAMPOS, B.G.; 1, BÍCEGO, M.C.; TANIGUCHI, S.; HORTELLANI, M.A.; SARKIS, J.E.S. 2017. Assessing the sediment quality of the Laje de Santos marine state park and other marine protected areas of the central coast of São Paulo (Brazil). Brazilian Journal of Oceanography, 65(4), pp. 532-548.

- ABOUL-KASSIM, T.T.T; SIMONEIT, B.R.T. 1996. Lipid geochemistry of surficial sediments from the coastal environment of Egypt I. Aliphatic hydrocarbons – Characterization and sources, Marine Chemistry, 54, pp. 135-158.

- ABRAJANO, T.A.; YAN, B.; O'MALLEY, V. 2003. High-molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments. In: LOLLAR, B.S. (Ed.), Treatise on Geochemistry - Environmental Geochemistry. Elsevier, pp 475-510.

- ALBUQUERQUE A.L.S.; BELÉM A.L.; ZULUAGA, F.J.B.; CORDEIRO, L.G.M.; MENDOZA, U.; KNOPPERS, B.A.; GURGEL, M.H.C.; MEYERS, P.A.; CAPILLA, R. 2014. Particle fluxes and bulk geochemical characterization of the Cabo Frio upwelling system in southeastern Brazil: Sediment Trap experiments between spring 2010 and summer 2012. Anais da Academia Brasileira de Ciências, 86 (2), pp. 601–619.

- ALEXANDER, C.R.; UHLER, A.D. LEE, R.F. 2012. Using Sediment Cores to Assess Inputs of Organochlorines and Polycyclic Aromatic Hydrocarbons in Coastal Georgia Estuaries. In: LOGANATHAN, B.G.; LAM, P.K.S. (Eds). Global Contamination Trends of Persistent Organic Chemicals. Taylor and Francis, pp. 469-479.

- ANDERSEN, T.J. 2017. Some Practical Considerations Regarding the Application of ²¹⁰Pb and ¹³⁷Cs Dating to Estuarine Sediments, pp. 121-140. In: WECKSTRÖM et al. (eds). Applications of paleoenvironmental techniques in estuarine studies, developments in paleoenvironmental research, 20.

- APPLEBY, P.G. & OLDFIELD, F. 1983. The assessment of Pb-210 data from sites with varying sediment accumulation rates. Hydrobiologia, 103, pp. 29-35.

- APPLEBY, P.G., OLDFIELD, F. 1992. Application of lead-210 to sedimentation studies, pp. 731-783. In: IVANOVICH, M., HARMON, R.S. (Eds.), Uranium Series Disequilibrium: Application to Earth, Marine and Environmental Science, 2nd ed. Clarendon Press, Oxford, 910p.

- ACQUAVITA, A.; FALOMO, J.; PREDONZANI, S.; TAMBERLICH, F.; BETTOSO, N.; MATTASSI, G. 2014. The PAH level, distribution and composition in surface sediments from a Mediterranean Lagoon: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy). Mar. Pollution. Bulletin, 81, pp. 234–241.

- ATANASSOVA, I.; MILLS, G. 2016. Biogenic and Anthropogenic Lipid Markers in Sediments from a Marsh Habitat Associated with the LCP Chemicals Superfund Site in Brunswick, Georgia, USA. Water, Air, & Soil Pollution, 227, pp. 1-13.

- AZOURI, S.; TRONCZYNSKI, J.; CHIFFOLEAU, J.-F.; COSSA, D.; NAKHLE, K.; SCHMIDT, S.; KHALAF, G. 2013. Historical Records of Mercury, Lead, and Polycyclic

Aromatic Hydrocarbons Depositions in a Dated Sediment Core from the Eastern Mediterranean. Environmental Science & Technology, 47, pp. 7101–7109.

- BAÊTA, A.P. 2008. Caracterização da Matéria Orgânica Sedimentar no Sistema de Ressurgência de Cabo Frio. Tese de Doutorado, Pontifícia Universidade Católica do Rio de Janeiro - PUC-RIO, 322p.

- BAHIA ONLINE. 2018. Após chuvas, Itacaré começa a retirar baronesas nas praias. Disponível em http://www.jornalbahiaonline.com.br/2018/noticia/36122/Ap%C3%B3s-chuvas,-Itacar%C3%A9-come%C3%A7a-a-retirar-baronesas-nas-praias.html. Último acesso em 30/12/2018.

- BAHR, A. et al. 2016. South American Hydrological Balance and Paleoceanography during the Late Pleistocene and Holocene (SAMBA) – Cruise No. M125 – March 21 – April 15, 2016 - Rio de Janeiro (Brazil) – Fortaleza (Brazil). METEOR-Berichte, M125, 47 pp., DFG-Senatskommission für Ozeanographie.

- BAKHTIARI, A.R.; ZAKARIA, M.P.; YAZIZ, M.I.; LAJIS, M.N.H; BI, X.; RAHIM, M.C.A 2009. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: Perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry, 24, pp. 1777–1787.

- BALZER, W.; KNOPPERS, B. 1996. Transport mechanisms of biogeneous material, heavy metals and organic pollutants in east Brazilian waters, large scale investigations, pp. 9-25. In: EKAU, W.; KNOPPERS, B.A. (Eds.), Sedimentation Processes and Productivity in the Continental Shelf Waters of East and Northeast Brazil. Cruise Report and First Results of the Brazilian German Project JOPS-II (Joint Oceanographic Projects). Bremen: Centre for Tropical Marine Ecology, 150 p.

- BANDEIRA, J.V.; DE FARIAS, E.G.G.; LORENZZETTI, J.A.; SALIM, L.H. 2013. Resposta morfológica da foz do Rio São Francisco, devido à retenção de sedimentos nos reservatórios. Vetor, 23(1), pp. 5-17.

- BARRETT, S.M., VOLKMAN, J.K., DUNSTAN, G.A. 1995. Sterols of 14 species of marine diatoms (Bacillariophyta). Journal of Phycology, 31, pp.360-369.

- BAUER, J. E.; CAI, W.-J.; RAYMOND, P. A.; BIANCHI T. S.; HOPKINSON C. S.; REGNIER, P. A. G. 2013. The changing carbon cycle of the coastal ocean. Nature, 504, pp. 61–70.

- BAUMARD, P.; BUDZINSKI, H.; GARRIGUES, P. 1998. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean sea. Environmental Toxicology and Chemistry, 17 (5), pp. 765-776.

- BAYONA, J.M.; FARRA, A.; ALBAIGÉS, J. 1989. Steroid alcohols and ketones in coastal waters of the Western Mediterranean: sources and seasonal variability. Marine Chemistry, 27, pp. 79-104.

- BAYONA, J.M.; ALBAIGÉS, J. 2006. Sources and Fate of Organic Contaminants in the Marine Environment, pp. 323-370. In: VOLKMAN, J.K. (Ed.). The Handbook of Environmental Chemistry Vol. 2, Part N. Springer-Verlag, Berlin Heidelberg, 374p.

- BEMANIKHARANAGH, A.; BAKHTIARI, A.R.; MOHAMMADI, J.; TAGHIZADEH-MEHRJARDI, R. 2017. Characterization and ecological risk of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in sediments of Shadegan international wetland, the Persian Gulf. Marine Pollution Bulletin, 124, pp. 155–170.

- BIANCHI, T.S.; ARGYROU, M.; CHIPPETT, H.F. 1999. Contribution of vascular-plant carbon to surface sediments across the coastal margin of Cyprus (eastern Mediterranean). Organic Geochemistry, 30, pp. 287–297.

BIANCHI, T.S.; CANUEL, E.A. 2001. Introduction - Organic Geochemical Tracers in Estuaries. Organic Geochemistry, vol. 32, p. 451.
BIANCHI, T.S. 2007. Biogeochemistry of Estuaries. Oxford University Press, New York, 706p.

- BIANCHI, T.S.; CANUEL, E.A. 2011. Chemical Biomarkers in Aquatic Ecosystems. Princeton University Press, Princeton, 396p.

- BÍCEGO, M.C., ZANARDI-LAMARDO, E., TANIGUCHI, S., MARTINS, C.C., SILVA, D.A.M., SASSAKI, S.T., ALBERGARIA-BARBOSA, A.C.R., PAOLO, F.S., WEBER, R.R., MONTONE, R.C. 2009. Results from a 15-year study on hydrocarbon concentrations in water and sediment from Admiralty Bay, King George Island, Antarctica. Antarctic Science, 21, pp. 209–220.

- BIGUS, P.; TOBISZEWSKI, M.; NAMIESNIK, J. 2014. Historical records of organic pollutants in sediment cores. Marine Pollution Bulletin, vol. 78, pp. 26-42.

- BITTENCOURT A.C.S.P., DOMINGUEZ J.M.L., FONTES L.C.S., SOUSA D.L., SILVA I.R., SILVA F.R. 2007. Wave refraction, river damming, and episodes of severe shoreline erosion: The São Francisco River Mouth, Northeastern Brazil. Journal of Coastal Research, 23 (4), pp. 930-938.

- BOTTINO, F.; MILAN, J.A.M.; CUNHA-SANTINO, M.B.B.; BIANCHINI JR., I. 2017. Influence of the residue from an iron mining dam in the growth of two macrophyte species. Chemosphere, 186, pp. 488-494.

- BOULOUBASSI, I., SALIOT, A. 1993. Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanologica Acta, 16, pp. 145–161.

- BOULOUBASSI, I.; LIPIATOU, E.; SALIOT, A. TOLOSA, I.; BAYONA, J.M.; ALBAIGÉS, J. 1997. Carbon sources and cycle in the western Mediterranean—the use of molecular markers to determine the origin of organic matter. Deep Sea Research II, 44, pp. 781–799.

- BOURBONNIERE, R.A. MEYERS, P.A. 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, pp. 352-359.

- BOURBONNIERE, R.A. TELFORD, S.L.; ZIOLOWSKI, A.; LEE, J.; EVANS, M.S.; MEYERS, P.A. 1997. Biogeochemical Marker Profiles in Cores of Dated Sediments from Large North American Lakes, pp. 133-150, In: EGANHOUSE, R.P. (Ed.). Molecular Markers in Environmental Geochemistry. American Chemical Society, Washington, DC, 426p.

- BRASIL. Conselho Nacional do Meio Ambiente. 2012. Resolução nº 454, de 01 de novembro de 2012. Diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional, 18p. Disponível em http://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2012/res_conama_4 54_2012_materialserdragadoemaguasjurisdicionaisbrasileiras.pdf. Último acesso em 20/02/2019.

- BRASIL. Agência Nacional de Águas (ANA). 2015. Conjuntura dos recursos hídricos no Brasil: regiões hidrográficas brasileiras – Edição Especial, 163 p. Brasília.

 BRASIL. Agência Nacional de Águas (ANA). 2016. Superintendência de Planejamento de Recursos Hídricos (SPR). Conjuntura dos recursos hídricos no Brasil. Informe 2015 – Encarte Especial sobre a Bacia do Rio Doce: Rompimento da Barragem em Mariana/MG, 50 p. Brasília.

- BRASIL. Agência Nacional de Águas (ANA). 2017a. Conjuntura dos recursos hídricos no Brasil 2017: Relatório Pleno, 169 p. Brasília.

- BRASIL. Agência Nacional de Águas (ANA). 2017b. Atlas Esgotos - Despoluição de Bacias Hidrográficas, 88 p. Brasília.

- BRASIL. Ministério das Cidades (MCIDADES). 2018a. Secretaria Nacional de Saneamento Ambiental – SNSA. Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos Serviços de Água e Esgotos – 2016, 220 p. Brasília.

- BRASIL. Instituto Brasileiro de Geografia e Estatística (IBGE). 2018b. Brasil em Síntese. Disponível em https://cidades.ibge.gov.br. Último acesso em 14/11/2018.

- BRASIL. Agência Nacional de Águas (ANA). 2018c. Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH). Disponível em http://www.snirh.gov.br/portal/snirh/snirh-1/atlas-esgotos. Último acesso em 14/11/2018.

- BRASIL. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. 2018d. Unidades Estacionárias em Produção (UEPs) em operação. Disponível em http://www.anp.gov.br/images/Dados_de_EP/Plataforma_em_Operacao/UEPS_em_opera cao.xlsx. Último acesso em 18/12/2018.

- BRAY, E.E.; EVANS, E.D. 1961. Distribution of *n*-paraffins as a clue to recognition of source beds. *Geochimica et Cosmochimica Acta*, 22, 2–15.

- BURONE, L.; ORTEGA, L.; FRANCO-FRAGUAS, P.; MAHIQUES, M.; GARCÍA-RODRIGUEZ, F.; VENTURINI, N.; MARIN, Y.; BRUGNOLI, E.; NAGAI, R.; MUNIZ, P.; BÍCEGO, M.C.; FIGUEIRA, R.; SALAROLI, A. 2013. A multiproxy study between the Río de la Plata and the adjacent Southwestern Atlantic inner shelf to assess the sediment footprint of river vs. marine influence. Continental Shelf Research, 55, pp. 141–154.

- CAGNIN R.C.; QUARESMA V.S.; CHAILLOU G.; FRANCO T.; BASTOS A.C. 2017. Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Science of the Total Environment, 607–608, pp. 304–316.

- CALLEGARI-JACQUES, S.M. 2003. Bioestatística: princípios e aplicações, 1ª ed. Porto Alegre, Artmed, 255p.

- CALLIARI, L.J. 2015. Sedimentação Marinha, pp. 74-111. In. CASTELLO, J.P., KRUG, L.C. (Orgs.). Introdução às Ciências do Mar, Editora Textos, Pelotas, 601p.

- CAMPOS, E.J.D; VELHOTE, D.; DA SILVEIRA, I.C.A. 2000. Shelf break upwelling driven by Brazil Current cyclonic meanders. Geophysical Research Letters, 27, 751-754.

- CANUEL, E.; MARTENS, C. 1993. Seasonal variations in the sources and alteration of organic matter associated with recently-deposited sediments. Organic Geochemistry, 20, pp. 563–577.

- CANUEL, E.A., CAMMER, S.S., McINTOSH, H.A., PONDELL, C.R. 2012. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annual Review of Earth and Planetary Sciences 40, pp. 685-711.

- CARLSON, C.A.; BATES, N.R.; HANSELL, D.A.; STEINBERG, D.K. 2001. Carbon Cycle, pp. 390-400. In STEELE, J.H.; TUREKIAN, K.K.; THORPE, S.A. Encyclopedia of Ocean Sciences, Vol. 6, Academic Press.

- CARREIRA, R.S.; WAGENER, A.L.R.; READMAN, J.W. 2004. Sterols as markers of sewage contamination in a tropical urban estuary (Guanabara Bay, Brazil): space-time variations. Estuarine, Coastal and Shelf Science, 60 (4), pp. 587-598.

- CARREIRA, R.S.; ARAÚJO, M.P.; COSTA, T.L.F.; ANSARI, N.R.; PIRES, L.C.M. 2010. Lipid biomarkers in deep sea sediments from the Campos Basin, SE Brazilian continental margin. Organic Geochemistry, 41(9), pp. 879-884.

- CARREIRA, R.S.; ARAÚJO, M.P.; COSTA, T.L.F.; SPÖRL, G.; KNOPPERS, B.A. 2011. Lipids in the sedimentary record as markers of the sources and deposition of organic matter in a tropical Brazilian estuarine–lagoon system. Marine Chemistry, 127, pp. 1–11.

- CARREIRA, R.S.; CANUEL, E.A.; MACKO, S.A.; LOPES, M.B.; LUZ, L.G.; JASMIN, L.N. 2012. On the accumulation of organic matter on the southeastern Brazilian continental shelf: a case study based on a sediment core from the shelf off Rio de Janeiro. Brazilian Journal of Oceanography, vol. 60(1), pp. 75-87.

- CARREIRA, R.S.; CORDEIRO, L.G.M.S.; OLIVEIRA, D.R.P.; BAÊTA, A.; WAGENER, A.L.R. 2015a. Source and distribution of organic matter in sediments in the SE Brazilian continental shelf influenced by river discharges: An approach using stable isotopes and molecular markers. Journal of Marine Systems, vol. 141, pp. 80-89.

- CARREIRA, R.S.; ALBERGARIA-BARBOSA, A.C.R.; ARGUELHO, M.L.P.M.; GARCIA, C.A.B. 2015b. Evidence of sewage input to inner shelf sediments in the NE coast of Brazil obtained by molecular markers distribution. Marine Pollution Bulletin, 90, pp 312-316.

- CARREIRA, R.S.; CORDEIRO, L.G.M.S.; BERNARDES, M.C.; HATJE, V. 2016. Distribution and characterization of organic matter using lipid biomarkers: A case study in a pristine tropical bay in NE Brazil. Estuarine, Coastal and Shelf Science, 168, pp. 1-9.

- CARRIERE, O.; HERMAND, J.-P.; CALADO, L.; DE PAULA, A.C; DA SILVEIRA, I.C.A. 2009. Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil). OCEANS Conference. MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges. pp. 1–8.

- CARVALHO, A.S.; MATOS, R. 2016. O ciclo madeireiro e a devastação da Mata Atlântica da Bacia do Rio Doce na primeira metade do século XX. Geografias. Edição Especial - Vale do Rio Doce: formação geo-histórica e questões atuais, Belo Horizonte, pp. 175-201.

- CASTRO, B.D. & MIRANDA, L.D. 1998. Physical Oceanography of the western Atlantic continental shelf located between 4N and 34S. The Sea, 11(1), pp. 209-251.

- CBH-DOCE - Comitê da Bacia Hidrográfica do Rio Doce. 2018. Disponível em http://www.cbhdoce.org.br. Último acesso em 14/11/2018.

- CBH-CONTAS - Comitê da Bacia Hidrográfica do Rio de Contas. 2018. Disponível em http://www.inema.ba.gov.br/gestao-2/comites-de-bacias/comites/cbh-contas. Último acesso em 15/11/2018.

- CBH-SF. Comitê da Bacia Hidrográfica do Rio São Francisco. 2018. Disponível em http://cbhsaofrancisco.org.br/2017/. Último acesso em 14/11/2018.

- CCME – Canadian Council of Ministers of the Environment. 2014. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Disponível em http://ceqg-rcqe.ccme.ca/en/index.html#void. Último acesso em 20/02/2019.

- CEMADEN. Centro Nacional de Monitoramento e Alerta de Desastres Naturais. 2018. Pesquisa do Cemaden contribui para aumentar antecedência de emissão de alerta de cheias na Bacia do Rio Doce. Disponível em: http://www.cemaden.gov.br/antecipacao-do-alerta-de-cheias-na-bacia-do-rio-doce-e-demonstrada-por-pesquisa-do-cemaden/. Último acesso em 23/01/2019.

- CHEN, F.X.; FANG, N.F.; WANG, Y.X.; TONG, L.S.; SHI, Z.H. 2017a. Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales. Geomorphology, 278, pp. 1-11.

- CHEN, L.; LIU, J.; XING, L.; KRAUSS, K.W.; WANG, J.; XU, G.; LI, L. 2017b. Historical changes in organic matter input to the muddy sediments along the Zhejiang-Fujian Coast, China over the past 160 years. Organic Geochemistry, 111, pp. 13–25.

- CHENG, Z.; LIN, T.; XU, W.; XU, Y; LI, J.; LUO, C.; ZHANG, G. 2015. A preliminary assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in deep-sea sediments from the Indian Ocean. Marine Pollution Bulletin, vol. 94, pp. 323-328.

- CHOI, M.; MOON, H.-B.; YU, J.; KIM, S.-S.; PAIT, A.S.; CHOI, H.-G. 2009. Nationwide monitoring of nonylphenols compounds and coprostanol in sediments from Korean coastal waters. Marine Pollution Bulletin, 58, pp. 107–1095.

- CHURCH, T.M. & SARIN, M.M. 2008. U- and Th-Series Nuclides in the Atmosphere: Supply, Exchange, Scavenging, and Applications to Aquatic Processes, pp. 11-47. In KRISHNASWAMI, S. & COCHRAN, J.K. (Eds.). RADIOACTIVITY IN THE

ENVIRONMENT – A companion series to the Journal of Environmental Radioactivity – Vol. 13 - U–Th Series Nuclides in Aquatic Systems, Elsevier Science Ltd. Oxford, 458p.

- CIRANO, M.; MATA, M.M.; CAMPOS, E.J.D.; DEIRÓ, N.F.R. 2006. A circulação oceânica de larga-escala na região oeste do Atlântico Sul com base no modelo de circulação global OCCAM. Revista Brasileira de Geofísica, 24(2), pp. 209-230.

- CLARK Jr., R.C.; BLUMER, M. 1967. Distribution of n-paraffins in marine organisms and sediment. Limnology and Oceanography, 12, pp. 79-87.

- CONSONNI, D., SINDACO, R., BERTAZZI, P.A. 2012. Blood levels of dioxins, furans, dioxinlike PCBs, and TEQs in general populations: a review, 1989–2010. Environment International, 44, pp. 151–162.

- CONTE, M.H.; EGLINTON, G.; MADUREIRA, L.A.S. 1992. Long-chain alkenones and alkyl alkenoates as palaeotemperature indicators: their production, flux and early sedimentary diagenesis in the Eastern North Atlantic. Organic Geochemistry, 19, (1-3), pp. 287-298.

- CORBETT, D.R. & WALSH, J.P. 2015. ²¹⁰Lead and ¹³⁷Cesium: establishing a chronology for the last century, pp. 361-372. In: SHENNAN, I.; LONG, A.J.; HORTON, B.P. (eds.). Handbook of Sea-Level Research. John Wiley & Sons, Oxford, 581p.

- CORDEIRO, L.G.M.S. 2011. Lipídios como indicadores de processos biogeoquímicos em sedimentos da margem continental do Estado do Rio de Janeiro. Tese de Doutorado - Universidade do Estado do Rio de Janeiro (UERJ), 173 p.

- COUTINHO, P.N. (Coord.). 2000. Levantamento do estado da arte da pesquisa dos recursos vivos marinhos do Brasil – Programa REVIZEE – Oceanografia Geológica, FEMAR/SECIRM, 75p.

- CRANWELL, P. A. 1982. Lipids of aquatic sediments and sedimenting particulates. Progress in Lipid Research, 21, pp 271–308.

- CRUZ, A.P.S.; BARBOSA, C.F.; AYRES-NETO, A.; ALBUQUERQUE, A.L.S. 2013. Physical and geochemical properties of centennial marine sediments of the continental shelf of southeast Brazil. Geochimica Brasiliensis, 27(1), pp. 1-12.

- DAUNER, A.L.L; , DIAS, T.H.; ISHII, F.K.; LIBARDONI, B.G.; PARIZZI, R.A.; MARTINS, C.C. 2018. Ecological risk assessment of sedimentary hydrocarbons in a subtropical estuary as tools to select priority areas for environmental management. Journal of Environmental Management, 223, pp. 417–425.

- DAVIS, U.C. University of California – Stable Isotope Facility. 2018. Carbon (¹³C) and Nitrogen (¹⁵N) Analysis of Solids by EA-IRMS. Disponível em https://stableisotopefacility.ucdavis.edu/13cand15n.html. Último acesso em 21/11/2018.

- DA SILVEIRA, I.C.A.; SCHMIDT, A.C.K.; CAMPOS, E.J.D; DE GODOI, S.S.; IKEDA, Y. 2000. A corrente do Brasil ao largo da costa leste brasileira. Revista Brasileira de Oceanografia, 48(2), 171-183.

- DE SOUZA, J.R.B.; ZUCCHI, M.R.; COSTA, A.B.; DE AZEVEDO, A.E.G.; SPANO, S. 2017. Geochemical markers of sedimentary organic matter in Todos os Santos Bay, Bahia – Brazil. Indicators of sources and preservation, Marine Pollution Bulletin, 119, pp. 239-246.

- DENOUX, G.J.; GARDINALLI, P.; WADE, T.L. 1998. Quantitative Determination of Polynuclear Aromatic Hydrocarbons by Gas Chromatography/Mass Spectrometry (GC/MS) - Selected Ion Monitoring (SIM) Mode, pp. 129-139. In: LAUENSTEIN, G.G.; CANTILLO, A.Y. NOAA Technical Memorandum NOS ORCA 130. Sampling and Analytical Methods of the National Status and Trends Program Mussel Watch Project: 1993-1996 Update, Silverspring, MD.

- DIDYK, B.M.; SIMONEIT, B.R.T.; BRASSELL, S.C.; EGLINGTON, G. 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, pp. 216-222.

- DOMINGUEZ, J.M.L. 2006. The Coastal Zone of Brazil: an Overview. Journal of Coastal Research, Special Issue No. 39 (Proceedings of the 8th International Coastal Symposium), Itajaí – SC, Brazil, pp. 16-20.

- DONEY, S.C. 2010. The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry. Science, 328, pp. 1512-1516.

- DUAN, L.; SONG, J.; YUAN, H.; LI, X.; PENG, Q. 2019. Occurrence and origins of biomarker aliphatic hydrocarbons and their indications in surface sediments of the East China Sea. Ecotoxicology and Environmental Safety, 167, pp. 259–268.

- EGANHOUSE, R.P. 1997. Molecular Markers and Environmental Organic Geochemistry: An Overview, pp. 1-20, In: EGANHOUSE, R.P. (Ed.). Molecular Markers in Environmental Geochemistry. American Chemical Society, Washington, DC – 426p.

- EGLINTON, G.; HAMILTON, R.J. 1967. Leaf epicuticular waxes. Science, 156, pp. 1322-1335.

- ESTADO DE MINAS. 2015. Lama de mineração acelera degradação do já poluído Rio Doce. 10/11/2015. Disponível em https://www.em.com.br/app/noticia/ gerais/2015/11/10/ interna_gerais,706095/lama-de-mineracao-acelera-degradacao-do-ja-poluido-rio-doce .shtml. Último acesso em 30/10/2017.

- FAN, C.-W.; SHIUE, J.; WU, C.-Y.; WU, C.-Y. 2011. Perylene dominance in sediments from a subtropical high mountain lake. Organic Geochemistry, 42, pp. 116–119.

- FARAJZADEH, M.A.; NOURI, N.; KHORRAM, P. 2014. Derivatization and microextraction methods for determination of organic compounds by gas chromatography. Trends in Analytical Chemistry, 55, pp. 14–23.

- FERREIRA, J.A. 2008. Estudo das associações de anelídeos Polychaeta da Baía de Santos e Plataforma Continental Adjacente (SP, Brasil) e suas interrelações com parâmetros físicos e geoquímicos estruturadores. Tese de Doutorado. Universidade de São Paulo - USP, Brasil.

- FERREIRA, P.A. de L.; CARDOSO-SILVA, S.; POMPÊO, M.; FIGUEIRA, R.C.L. 2015. Geocronologia e datação por radionuclídeos, um estudo de caso: represa Paiva Castro (sistema Cantareira - Mairiporã - São Paulo), pp. 109-119, In: POMPÊO, M.; MOSCHINI-CARLOS, V.; NISHIMURA, P.Y., CARDOSO-SILVA, S.; DOVA, J.C.L. (eds.). Ecologia de Reservatórios e interfaces. Instituto de Biociências da USP, São Paulo, 460p.

- FFIELD, A. 2005. "North Brazil Current Rings Viewed by TRMM Microwave Imager SST - and the Influence of the Amazon Plume". Deep-Sea Research. V. 52, pp. 137–160.

- FICKEN, K. J.; LI, B.; SWAIN, D.L.; EGLINTON, G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, pp. 745–749.

FILLMANN, G.; BÍCEGO, M.C. 2006. Contaminantes: Metais, hidrocarbonetos e organoclorados - Hidrocarbonetos alifáticos e poliaromáticos (HPAs), pp. 63-118. In: LANA, P. C., BIANCHINI, A., RIBEIRO, C. A. O., NIENCHESKI, L. F. H., FILLMANN, G. & SANTOS, C. S. G. Avaliação ambiental de estuários brasileiros: Diretrizes metodológicas. Museu Nacional, Rio de Janeiro, Brasil. 156p.

- FLAGG, C. N.; GORDON, R. L.; MCDOWELL, S. 1986. "Hydrographic and Current Observations on the Continental Slope and Shelf of the Western Equatorial Atlantic". Journal of Physical Oceanography. V. 16, pp. 1412–1429.

- FOAN, L., C. SABLAYROLLES, C., ELUSTONDO, D.; LASHERAS, E.; GONZÁLEZ, L.; EDERRA, A.; SIMON, V.; SANTAMARÍA J.M. 2010. Reconstructing historical trends of polycyclic aromatic hydrocarbon deposition in a remote area of Spain using herbarium moss material. Atmospheric Environment, 44, pp. 3207-3214.

- FONTES, L.C.S; SANTOS, J.R.; SANTOS, L.A.; MENDONÇA, J.B.S.; SANTOS M.S. 2017. Geomorfologia da plataforma continental de Sergipe-AL, pp. 24-61. In: CARNEIRO, M.E.R. (Org.); FONTES, L.C.S; KOWSMANN, R.O.; PUGA–BERNABÉU, A. (Eds.) Geologia e Geomorfologia da Bacia de Sergipe–Alagoas. Coleção Projeto Marseal – Livro 1. Petrobrás – São Cristovão: Editora UFS, 256p.

- FÖRSTNER, U.; OWENS, P.N. 2007. Introduction - Sediment Quantity and Quality Issues in River Basins, pp. 1-34. In: WESTRICH, B. & FÖRSTNER, U. (Eds.). Sediment Dynamics and Pollutant Mobility in Rivers - An Interdisciplinary Approach. Springer-Verlag, Berlin Heidelberg, 430p.

- FRANCO, T. 2013. Utilização de *proxies* geoquímicos para análise dos padrões de sedimentação na plataforma continental interna adjacente a foz do rio doce (ES). Dissertação de Mestrado. Universidade Federal do Espírito Santo, 74p.

- FREEMAN, K. H.; WAKEHAM, S.G.; HAYES, J.M. 1994. Predictive isotopic biogeochemistry: Hydrocarbons from anoxic marine basins. Organic Geochemistry, 21, pp. 629–644.

- FRENA, M.; BATAGLION, G.A.; SANDINI, S.S.; KUROSHIMA, K.N.; EBERLIN, M.N.; MADUREIRA, L.A.S. 2017. Distribution and Sources of Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediments of Itajaí-Açu Estuarine System in Brazil. Journal of Brazilian Chemical Society, 28 (4), pp. 603-614.

- G1. 2014. Baronesas às margens do Rio São Francisco são alerta de poluição. Disponível em http://g1.globo.com/pe/petrolina-regiao/noticia/2014/04/baronesas-margens-do-rio-sao-francisco-sao-alerta-de-poluicao.html. Último acesso em 30/12/2018.

- GAGOSIAN, R.B.; PELTZER, E.T.; MERRILL, J.T. 1987. Long range transport of terrestrially derived lipids in aerosols from the south Pacific. Nature, 325, pp. 800-803.

- GARRISON, T. 2010. Fundamentos de Oceanografia. Tradução da 4ª ed. norte-americana, Cengage Learning, São Paulo, 426p.

- GASKELL, S.J; EGLINGTON, G. 1976. Sterols of a contemporary lacustrine sediment. Geochimica et Cosmochimica Acta, 40, pp. 1221-1228.

- GERMANI, D.J. 2002. A mineração no Brasil. Relatório Final. Centro de Gestão e Estudos Estratégicos, 60p.

- GOMES, L.E.O.; CORREA, L.B.; SÁ, F.; NETO, R.R.; BERNARDINO, A.F. 2017. The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Marine Pollution Bulletin, 120, pp. 28-36.

- GONZÁLEZ-OREJA, J.A.; SAIZ-SALINAS, J.I. 1998. Short-term spatio-temporal changes in urban pollution by means of faecal sterols analysis. Marine Pollution Bulletin, 36 (11), pp. 868-875.

- GONZALEZ-RODRIGUEZ, E. 1991. A ressurgência de Cabo Frio (RJ, Brasil): fertilidade e fatores nutricionais limitantes da biomassa fitoplanctônica. Revista Brasileira de Biologia 51, pp. 471–486.

- GONZALEZ-RODRIGUEZ, E.; VALENTIN, J.L.; ANDRÉ, D.L.; JACOB, S.A. 1992. Upwelling and downwelling at Cabo Frio (Brazil). Journal of Plankton Research 14, pp. 289–306.

- GRIMALT, J.O.; ALBAIGÉS, J. 1987. Sources and occurrence of C_{12} - C_{22} n-alkane distributions with even carbon number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51, pp. 1379–1384.

- GRIMALT, J.O.; FERNÁNDEZ, P.; BAYONA, J.M.; ALBAIGÉS, J. 1990. Assessment of fecal sterols and ketones as indicators of urban sewage inputs to coastal waters. Environmental Science and Technology, 24(3), pp. 357-363.

- GSCHWEND P. M.; HITES R. A. 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochimica et Cosmochimica Acta, 45, pp. 2359-2367.

- GUENTHER, M.; GONZALEZ-RODRIGUEZ, E.; CARVALHO, W.F.; REZENDE C.E.; MUGRABE, G.; VALENTIN, J.L. 2008. Plankton trophic structure and particulate organic carbon production during a coastal downwelling-upwelling cycle. Marine Ecology Progress Series, 363, pp. 109-119.

- GUERRA, M.B.B.; TEANEY, B.T.; MOUNT, B.J.; ASUNKIS, D.J.; JORDAN, B.T. BARKER, R.J.; SANTOS, E.E.; SCHEFER, C.E.G.R. 2017. Post-catastrophe Analysis of

the Fundão Tailings Dam Failure in the Doce River System, Southeast Brazil: Potentially Toxic Elements in Affected Soils. Water, Air & Soil Pollution, 228 (7), pp.1-12.

- HAMMER, Ø.; HARPER, D.A.T.; RYAN, P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9p.

- HARVEY, H.R. 2006. Sources and Cycling of Organic Matter in the Marine Water Column, pp. 1-25. In: VOLKMAN, J.K. (Ed.). The Handbook of Environmental Chemistry Vol. 2, Part N. Springer-Verlag, Berlin Heidelberg, 374p.

- HATJE, V.; PEDREIRA, R.M.A.; DE REZENDE, C.E.; SCHETTINI, C.A.F.; DE SOUZA, G.C.; MARIN, D.C.; HACKSPACHER, P.C. 2017. The environmental impacts of one of the largest tailing dam failures worldwide. Nature: Scientific Reports, 7, pp. 1-13.

- HE, X.; PANG, Y.; SONG, X.; CHEN, B.; FENG, Z.; MA, Y. 2014. Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China. Marine Pollution Bulletin, 80, pp. 52–58.

- HEDGES, J.I.; STERN, J.H. 1984. Carbon and nitrogen determinations of carbonate containing solids. Limnology and Oceanography, 29, pp. 657-663.

- HEDGES, J.I., KEIL, R.G. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry. 49, pp. 81–115.

- HEDGES, J.I., OADES, J.M. 1997. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 27 (7/8), pp. 319-361.

- HEIM, S. SCHWARZBAUER, J. 2013. Pollution history revealed by sedimentary records: a review. Environmental Chemistry Letters, 11, pp. 255–270.

- HENRICHS S.M. 1992. Early diagenesis of organic matter in marine sediments: progress and perplexity. *Mar. Chem. 39*, pp. 119–49.

- HIDROWEB. 2019. Portal do Sistema Nacional de Informações Hidrológicas do Brasil – Séries históricas de Estações de monitoramento. Agência Nacional de Águas – ANA. Disponível em http://www.snirh.gov.br/hidroweb/publico/medicoes_historicas_abas.jsf. Último acesso em 13/02/2019.

- HOUGHTON, R.A. 2003. The contemporary Carbon Cycle. Cap. 10, pp. 473-514. In: Treatise on Geochemistry. DAVIS A.M. (Ed.), vol. 8, Biogeochemistry, Elsevier.

- HOSTETTLER, F.D.; PEREIRA, W.E.; KVENVOLDEN, K.A.; VAN GEEN, A.; LUOMA, S.N.; FULLER, C.C.; ANIMA, R. 1999. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores. Marine Chemistry, 64, pp. 115–127.

- HU, J.;PENG, P.; CHIVAS,A.R. 2009. Molecular biomarker evidence of origins and transport of organic matter in sediments of the Pearl River estuary and adjacent South China Sea. Applied Geochemistry, 24, pp. 1666-1676.

- HU, L.; GUO, Z.; SHI, X.; QIN, Y.; LEI, K.; ZHANG, G. 2011. Temporal trends of aliphatic and polyaromatic hydrocarbons in the Bohai Sea, China: Evidence from the sedimentary record. Organic Geochemistry, 42, pp. 1181–1193.

- HU, L.; SHI, X.; LIN, T.; GUO, Z.; MA, D.; YANG, Z. 2014. Perylene in surface sediments from the estuarine-inner shelf of the east China sea: A potential indicator to assess the sediment footprint of large river influence. Continental Shelf Research, 90, pp. 142-150.

- HUDSON, E.D.; PARRISH, C.C.; HELLEUR, R.J. 2001. Biogeochemistry of sterols in plankton, settling particles and recent sediments in a cold ocean ecosystem (Trinity Bay, Newfoundland). Marine Chemistry, 76, pp. 253–270.

- HUNT, J. M. 1995. Petroleum Geochemistry and Geology 2nd edition, W. H. Freeman and Company, 744p. – New York.

- IARC. International Agency for Research on Cancer - World Health Organization. 2010. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 92, Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, 853p.

- INEMA. 2018. Instituto do Meio Ambiente e Recursos Hídricos da Bahia. Inventário das barragens do estado da Bahia. Disponível em http://www.inema.ba.gov.br/gestao-2/barragensreservatorios/, 2018. Último acesso em 18/11/2018.

- JARDIM, F.A.; VON SPERLING, E.; JARDIM, B.F.M.; ALMEIDA, K.C.B. 2014. Fatores determinantes das florações de cianobactérias na água do Rio Doce, Minas Gerais, Brasil. Revista Engenharia Sanitária e Ambiental, 19(3), pp. 207-218.

- JENNERJAHN, T.C.; ITTEKKOT, V. 1999. Changes in organic matter from surface waters to continental slope sediments off the São Francisco River, eastern Brazil, Marine Geology, v. 161, pp. 129-140.

- JENG, W.-L. 2007. Aliphatic hydrocarbon concentrations in short sediment cores from the southern Okinawa Trough: Implications for lipid deposition in a complex environment. Continental Shelf Research, v. 27, pp. 2066-2078.

- KILLOPS S.; KILLOPS V. 2005. Introduction to Organic Geochemistry, 2nd ed. – Blackwell Publishing, 393p.

- KNOPPERS, B.; EKAU, W.; FIGUEIREDO, A.G. 1999. The coast and shelf of east and northeast Brazil and material transport. Geo-Marine Letters, 19, pp. 171-178.

- KNOPPERS, B.; MEDEIROS, P.R.P.; SOUZA, W.F.L.; JENNERJAHN, T. 2006. The São Francisco Estuary, Brazil, pp. 51-70. In: WANGERSKY, P.J. (Ed.). The Handbook of Environmental Chemistry – Vol. 5 - Estuaries - Part H. Springer-Verlag, Berlin Heidelberg, 305p.

- KOWALSKA, M., GULER, H.; COCKE, D.L. 1994. Interactions of clay minerals with organic pollutants. The Science of The Total Environment, 141, pp. 223-240.

- KUZYK, Z.Z.A.; GOÑI, M.A.; STERN, G.A.; MACDONALD, R.W. 2008. Sources, pathways and sinks of particulate organic matter in Hudson Bay: evidence from lignin distributions. Marine Chemistry, 112, pp. 215–229.

- LACHKAR, Z.; GRUBER, N. 2011. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study. Biogeosciences, 8, pp. 2961-2976.

- LAGREGA, M. D., BUCKINGHAM, P. L., EVANS, J. C. 1994. Hazardous waste management, McGraw-Hill, New York.

- LAMB, A.L.; WILSON, G.P.; LENG, M.J. 2006. A review of coastal and palaeoclimate and relative sea-level reconstructions using δ^{13} C and C/N ratios in organic material. Earth Science Reviews, 75, pp. 29–57.

- LARUELLE, G. G.; DÜRR, H.H.; LAUERWALD, R.; HARTMANN, J.; SLOMP, C.P.; GOOSSENS, N.; REGNIER, P.A.G. 2013. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17, 2029–2051.

- LAW, R.J.; BISCAYA, J.L. 1994. Polycyclic aromatic hydrocarbons (PAH) – Problems and progress in sampling, analysis, and interpretation. Marine Pollution Bulletin, 29, pp. 235-241.

- LEBLOND, J.; CHAPMAN, P.J. 2002. A survey of the sterol composition of the marine dinoflagellates *Karenia brevis*, *Karenia mikimotoi*, and *Karlodinium micrum*: distribution of sterols within other members of the class Dinophyceae. Journal of Phycology, 38, pp. 670–682.

- LEE, C.; FARRINGTON, J.W.; GAGOSIAN, R.B. 1979. Sterol geochemistry of sediments from the western North Atlantic Ocean and adjacent coastal areas. Geochimica et Cosmochimica Acta, 43, pp. 35-46.

- LENG, M.J.; LEWIS, J.P. 2017. C/N ratios and Carbon Isotope Composition of Organic Matter in Estuarine Environments, pp. 213-237. In: WECKSTRÖM et al. (eds). Applications of paleoenvironmental techniques in estuarine studies, developments in paleoenvironmental research 20, 700p. http://dx.doi.org/1007/978-94-02400990-1_8>.

- LIBES, S.M. 2009. Introduction to Marine Biogeochemistry – 2nd ed. – Academic Press, 909p.

- LICHTFOUSE, É.; DERENNE, S.; MARIOTTI, A.; LARGEAU, C. 1994. Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Organic Geochemistry, 22, pp. 1023-1027.

- LIMA, A.L.; FARRINGTON, J.W.; REDDY, C.M. 2005. Combustion-derived polycyclic aromatic hydrocarbons in the environment: a review. Environmental Forensics, 6, pp. 109-131.

- LIMA, G.M.P; VILAS BOAS, G.S.; COSTA, A.B.; ARGOLLO, R.M. 2011. Taxas de sedimentação recentes provenientes dos métodos Cs^{137} e Pb^{210} e estimativa de preenchimento do estuário Jacuípe, Bahia, Brasil. Revista Brasileira de Geociências, 41(1), pp. 44-55.

- LIMA, A.C.; HELENO, F.F.; AFONSO, R.J.C.F.; COUTRIM, M.X. 2015. Determination of PAHs in Surface Waters from the Doce and Piracicaba Rivers in Brazil. Journal of Water Resource and Protection, **7**, pp. 422-429. http://dx.doi.org/10.4236/jwarp.2015.75034

- LIPID WEB. 2018. Disponível em http://www.lipidhome.co.uk/index.html. Último acesso em 27/11/2018.

- LOBÃO, M.M.; CARDOSO, J.N.; MELLO, M.R.; BROOKS, P.W.; LOPES, C.C.; LOPES, R.S.C. 2010. Identification of source of a marine oil-spill using geochemical and chemometric techniques. Marine Pollution Bulletin, 60, pp. 2263–2274.

- LOBÃO, D.E. 2019. CACAU-CABRUCA - um modelo sustentável de agricultura tropical. Disponível em http://www.ceplac.gov.br/radar/sistema_agro.htm. Último acesso em 26/01/2019.

- LONG, E.R.; MACDONALD, D.L.; SMITH, S.L.; CALDER, F.D. 1995. Incidence of adverse biological enects within ranges of chemical concentration in marine and estuarine sediments. Environmental Management, 19, pp. 81–97.

- LORENZZETTI, J. A., NEGRI, E., KNOPPERS, B., MEDEIROS, P.R.P. 2007. Uso de imagens LANDSAT como subsídio ao estudo da dispersão de sedimentos na região da foz do rio São Francisco. Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, pp. 3429-3436.

- LOURENÇO, R.A.; ARAÚJO JÚNIOR, M.A.G.; MEIRELES JÚNIOR, R.O.; MACENA, L.F.; LIMA, E.F.de A.; CARNEIRO, M.E.R. 2013. Aliphatic and polycyclic aromatic hydrocarbons and trace elements as indicators of contamination status near oil and gas platforms in the Sergipe–Alagoas Basin (Southwest Atlantic Ocean). Continental Shelf Research, 71, pp. 37-44.

- LOURENÇO, R.A.; MARTINS, C.C.; TANIGUCHI, S.; MAHIQUES, M.M.; MONTONE, R.C.; MAGALHÃES, C.A.; BÍCEGO, M.C. 2017. Distribution and evolution of sterols and aliphatic hydrocarbons in dated marine sediment cores from the Cabo Frio upwelling region, SW Atlantic, Brazil. Environmental Science Pollution Research, 24, pp. 19888-19901.

- LUBECKI, L.; OEN, A.M.P; BREEDVELD, G.D.; ZAMOJSKA, A. 2019. Vertical profiles of sedimentary polycyclic aromatic hydrocarbons and black carbon in the Gulf of Gdańsk (Poland) and Oslofjord/Drammensfjord (Norway), and their relation to regional energy transitions. Science of the Total Environment, 646, pp. 336–346.

- LUO, X.J.; CHEN, S.J.; MAI, B.X.; YANG, Q.S.; SHENG, G.Y.; FU, J.M. 2006. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environmental Pollution 139, pp. 9–20.

- MACKAY, D.; SHIU, W.Y.; MA, K.C.; LEE, S.C. 2006. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. I, Introduction and Hydrocarbons. 2nd. Ed. Taylor and Francis, pp. 1-920.

- MACKO, S. A.; ENGEL, M. H. PARKER, P. L. 1993. Early diagenesis of organic matter in sediments - Assessment of Mechanisms and Preservation by the use of Isotopic Molecular

Approaches. In: ENGEL, M.H.; MACKO, S.A. (Eds.). Organic Geochemistry - Principles and Applications. New York. Plenum Press, pp. 211-224.

- MARTA-ALMEIDA, M.; MENDES, R.; AMORIM, F.N.; CIRANO, M.; DIAS, J.M. 2016. Fundão Dam collapse: Oceanic dispersion of River Doce after the greatest Brazilian environmental accident. Marine Pollution Bulletin, 112, pp. 359-364.

- MARTINS, C.C.; FILLMANN, G. MONTONE, R.C. 2007. Natural and anthropogenic sterols inputs is surface sediments of Patos Lagoon, Brazil. Journal of Brazilian Chemical Society, 18 (1), pp. 106-115.

- MARTINS, C.C.; GOMES, F.B.A.; FERREIRA, J.A.; MONTONE, R.C. 2008. Marcadores orgânicos de contaminação por esgotos sanitários em sedimentos superficiais da Baía de Santos, São Paulo. Química Nova, 31 (5), pp. 1008-1014.

- MARTINS, C.C.; BRAUN, J.A.F; SEYFFERT, B.H.; MACHADO, E.C.; FILLMANN, G. 2010. Anthropogenic organic matter inputs indicated by sedimentary fecal steroids in a large South American tropical estuary (Paranaguá estuarine system, Brazil). Marine Pollution Bulletin, v. 60, n. 11, pp. 2137–2143.

- MASCARENHAS, A.S.; MIRANDA, L.B.; ROCK, N.J. 1971. A study of oceanographic conditions in the region of Cabo Frio. In: COSTLOW, J.D. (Ed.), Fertility of the Sea, vol. 1, Gordon & Breach, pp. 285–308.

- MATTHEWS-CASCON, H.; BEZERRA, L.E.A.; BARROSO, C.X.; RABAY, S.G.; MOREIRA, A.K.; ROCHA, V.P.; SOARES, M.O. 2018. Marine benthic communities affected by the Doce River (southwestern Atlantic): Baseline before a mining disaster. Marine Pollution Bulletin, 135, pp. 1000–1006.

- MAUAD, C.R.; WAGENER, A.L.R.; MASSONE, C.G.; ANICETO, M.S. LAZZARI, L.; CARREIRA, R.S.; FARIAS, C.O. 2015. Urban rivers as conveyors of hydrocarbons to sediments of Estuarine areas: Source characterization, flow rates and mass accumulation. Science of the Total Environment, v. 506–507, pp. 656–666.

- MAZZINI, P.L.F.; BARTH, J.A. 2013. A comparison of mechanisms generating vertical transport in the Brazilian coastal upwelling regions. Journal of Geophysical Research, 118, 5977-5993.

- McCALLEY, D.V; COOKE, M.; NICKLESS, G. 1981. Effect of sewage treatment on faecal sterols. Water Research, 15, pp. 1019–1025.

- McKEE, B.; ALLER, R.; ALLISON, M.; BIANCHI, T.; KINEKE, G. 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Continental Shelf Research, 24, pp. 899–926.

- McMANUS, G.; COSTAS, B.; DAM, H.; LOPES, R.; GAETA, S.; SUSINI, S; ROSETTA, C. 2007. Microzooplankton grazing of phytoplankton in a tropical upwelling region. Hydrobiologia, 575, pp. 69-81.
- McVEETY, B.D.; HITES, R.A. 1988. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: A mass balance approach. Atmospheric Environment, 22, pp. 511-536.

- MEDEIROS, P. M.; BÍCEGO, M. C.; CASTELAO R. M.; DEL ROSSO, C.; FILLMANN, G.; ZAMBONI, A. J. 2005. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil. Environment International, v. 31, pp. 77-87.

- MEDEIROS, P. M.; BÍCEGO, M. C. 2004. Investigation of natural and anthropogenic hydrocarbon inputs in sediments using geochemical markers. II. São Sebastião, SP - Brasil. Marine Pollution Bulletin, n.49, pp. 892-899.

- MEGENS, L.; VAN DER PLICHT, J.; DE LEEUW, J.W.; SMEDES, 2002. F. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary. Organic Geochemistry, 33, pp. 945–952.

- MELLO, M. R.; GUADALUPE, M. D. F.; FREITAS, L. C. D. S. 1990. A Geoquímica Orgânica aplicada à caracterização de derramamentos de óleos no mar. <u>4º Congresso</u> Brasileiro do Petróleo.

 MENICONI, M.F.G. 2007. Hidrocarbonetos policíclicos aromáticos no meio ambiente: Diferenciação de fontes em sedimentos e metabólitos em bile de peixes. Tese de Doutorado
UFRN, 213 p.

- MENICONI, M.F.G.; GABARDO, I.T.; SCOFIELD, A.L. 2008. Apostila do curso Química dos Hidrocarbonetos e o Meio Ambiente, 5^a ed. Universidade Petrobrás, Rio de Janeiro – RJ.

- MEYERS, P.A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27, pp. 213-250.

- MEYERS, P.A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34, pp. 261-289.

- MMA. Ministério do Meio Ambiente. 2018. Zona Costeira e Marinha. Disponível em http://www.mma.gov.br/biodiversidade/biodiversidade-aquatica/zona-costeira-e-marinha. Último acesso em 16/09/2018.

- MOZETO, A.A.; CAZOTTI, R.I.; GOMES, A.C.F.; NASCIMENTO, M.R.L. 2006. Geocronologia isotópica (²¹⁰Pb e ²²⁶Ra) de sedimentos límnicos: determinação de velocidades, taxas de sedimentação e idades, pp. 36-57. In: MOZETO, A.A.; UMBUZEIRO, G.A.; JARDIM, W.F. Métodos de coleta, análises físico-químicas e ensaios biológicos e ecotoxicológicos de sedimentos de água doce. Editora Cubo Multimídia, 221p.

- MUDGE, S.M.; BALL, A.S. 2006. Sewage, pp. 35-53. In: MORRISON, R.D.; MURPHY, B.L. Environmental Forensics – Contaminant Specific Guide, 540p., Academic Press.

- NAKAKUNI, M.; KITANO, J.; HITOSHI UEMURA, H.; YAMAMOTO, S. 2018. Modern sediment records of stanol to sterol ratios in Lake Suigetsu, Japan: An indicator of variable lacustrine redox conditions. Organic Geochemistry, 119, pp. 59–71. - NES, W.R. 1977. The biochemistry of plant sterols, pp. 233-324. In: PAOLETTI, R.; KRITCHEVSKY, D. (Eds.). Advances in Lipid Research, Vol. 15, 360p. – Academic Press, New York.

- NEFF, J.M. 2002. Bioaccumulation in Marine Organisms. Effect of Contaminants from Oil Well Produced Water. Elsevier, Oxford - UK, 452 p.

- NIENCHESKI, L.F.; MOORE, W.S.; WINDOM, H.L. 2014. History of human activity in coastal Southern Brazil from sediment, Marine Pollution Bulletin, v. 78, pp. 209-212.

- NIMER, E. 1989. Climatologia do Brasil. 2ª ed. Rio de Janeiro – IBGE (Instituto Brasileiro de Geografia e Estatística), Depto. de Recursos Naturais e Estudos Ambientais.

- NISHIMURA, M.; BAKER, E.W. Possible origin of n-alkanes with a remarkable evento-odd predominance in recent sediments. Geochimica et Cosmochimica Acta, 50, pp. 299– 305, 1986.

- OLIVEIRA, D.R.P; CORDEIRO, L.G.M.S; CARREIRA, R.S. 2013. Characterization of organic matter in cross-margin sediment transects of an upwelling region in the Campos Basin (SW Atlantic, Brazil) using lipid biomarkers. Biogeochemistry, 112, pp. 311-327.

- PANCOST R.D.; BOOT, C.S. 2004. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Marine Chemistry, 92, pp. 239-261.

- PAMPANIN, D.M.; SYDNES, M.O. 2013. Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment, pp. 83-118. In: KUTCHEROV, V. Hydrocarbon. IntechOpen, 210p. Disponível em https://www.intechopen.com/books/hydrocarbon. Último acesso em 17/12/2018.

- PARRISH, C.C.; ABRAJAMO, T.A.; BUDGE, S.M.; HELLEUR, R.J.; HUDSON, E.D.; PULCHAN, K.; RAMOS, C. 2000. Lipid and phenolic biomarkers in marine ecosystems: Analysis and Applications, pp. 193-223. In: WANGERSKY, P. (Ed.) The Handbook of Environmental Chemistry, Vol. 5 - Part D - Marine Chemistry, Springer-Verlag, Berlin Heidelberg, 223p.

- PATCHINEELAM, S.R.; SMOAK, J.M. 1999. Sediment accumulation rates along the inner eastern Brazilian continental Shelf, Geo-Marine Letters, v. 19, pp. 196-201.

- PEREIRA NETO, A.; FILHO, C.; FARIAS, E.; FREITAS, K.; FRANÇA, E. 2017. Determinação de ²¹⁰Pb em água potável pela técnica do contador proporcional de fluxo gasoso, pp. 68-69. In: SANTANA, O.A.; CABRAL FILHO, P.E.; RODRIGUES, C.G. Anais do Encontro Anual da Biofísica 2017. São Paulo, Blucher.

- PESSOA, J.O.; ORRICO, S.R.M.; LORDÊLO, M.S. 2018. Qualidade da água de rios em cidades do Estado da Bahia. Revista Engenharia Sanitária e Ambiental, 23(4), pp. 687-696.

- PETERS, K. E.; WALTERS, C. C.; MOLDOWAN, J. M. 2005. The Biomarker Guide – 2nd edition Vol. 1 - Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, Cambridge – UK, 471p.

- PETROBRÁS. 2018. Bacia de Campos. Disponível em http://www.petrobras. com.br/pt/nossas-atividades/principais-operacoes/bacias/bacia-de-campos.htm. Último acesso em 13/12/2018.

- PINHEIRO, P.P.O.; MASSONE, C.G.; CARREIRA, R.S. 2017. Distribution, sources and toxicity potential of hydrocarbons in harbor sediments: A regional assessment in SE Brazil. Marine Pollution Bulletin, 120, pp. 6–17.

- QUARESMA, V.S.; CATABRIGA, G.; BOURGUIGNON, S.N.; GODINHO, E.; BASTOS, A.C. 2015. Modern sedimentary processes along the Doce river adjacent continental shelf. Brazilian Journal of Geology, 45(4), pp. 635-644.

- RAMESH, A.; ARCHIBONG, A.E.; HOOD, D.B.; GUO, Z.; LOGANATHAN, B.G. 2012. Global Environmental Distribution and Human Health Effects of Polycyclic Aromatic Hydrocarbons, pp. 469-479. In: LOGANATHAN, B.G.; LAM, P.K.S. (Eds). Global Contamination Trends of Persistent Organic Chemicals. Taylor and Francis, 628p.

- READMAN, J.W.; FILLMANN, G.; TOLOSA, I.; BARTOCCI, J.; VILLENEUVE, J.-P.; CATINNI, C. MEE, L.D. 2002. Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin, 44, pp. 48-62.

- READMAN, J.W.; FILLMANN, G.; TOLOSA, I.; BARTOCCI, J.; MEE, L.D. 2005. The use of steroid markers to assess sewage contamination of the Black Sea. Marine Pollution Bulletin, 50, pp. 310-318.

- REES, A.P. 2012. Pressures on the marine environment and the changing climate of ocean biogeochemistry. Philosophical Transactions of Royal Society A, v. 370, pp. 5613-5635.

- REGNIER, P.; FRIEDLINGSTEIN, P.; CIAIS P.; MACKENZIE, F.T.; GRUBER, N.; JANSSEN, I.A.; et al. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6, pp. 597-607.

- REICHELT-BRUSHETT, A.; CLARK, M.; BIRCH, G. 2017. Physical and Chemical Factors to Consider when Studying Historical Contamination and Pollution in Estuaries, pp. 239-276. In: WECKSTRÖM et al. (eds). Applications of paleoenvironmental techniques in estuarine studies, developments in paleoenvironmental research, 20, 700p.

- REIS, D. A.; SANTIAGO, A.F. NASCIMENTO, L.P. ROESER, H.M.P. 2017. Influence of environmental and anthropogenic factors at the bottom sediments in a Doce River tributary in Brazil. Environmental Science Pollution Research, 24, pp. 7456–7467.

- RENOVA. 2018. Monitoramento da qualidade da água na bacia do rio Doce. Disponível em https://www.fundacaorenova.org/programa/monitoramento-da-bacia-do-rio-doce/. Acesso em 15/11/2018.

- RIBANI, M.; BOTTOLI, C.B.G; COLLINS, C.H.; JARDIM, I.C.S.F.; MELO, L.F.C. 2004. Validação em Métodos Cromatográficos e Eletroforéticos. Quimica Nova, 27(5), pp. 771-780.

- ROGERS, S.W.; ONG, S.K.; KJARTANSON, B.H.; GOLCHIN, J.; STENBACK, G.A. 2002. Natural Attenuation of Polycyclic Aromatic Hydrocarbon Contaminated Sites:

Review. Practice periodical of hazardous, toxic, and radioactive waste management, 6(3), pp. 141-155.

- RONTANI, J-F.; CHARRIÈRE, B.; SEMPÉRÉ, R.; DOXARAN, D.; VAULTIER, F.; VONK, J.E.; VOLKMAN, J.K. 2014. Degradation of sterols and terrigenous organic matter in waters of the Mackenzie Shelf, Canadian Arctic. Organic Geochemistry, 75, pp. 61–73.

- ROSA, R.S., N.A. MENEZES, H.A. BRITSKI, W.J.E.M. COSTA & F. GROTH. 2003. Diversidade, padrões de distribuição e conservação dos peixes da Caatinga, pp. 135-180. In: I.R. LEAL, I.R.; TABARELLI, M.; SILVA, J.M.C. (eds.). Ecologia e conservação da Caatinga. Editora Universitária, Universidade Federal de Pernambuco, Recife, Brasil, 804p.

- ROMANKEVICH, E.A. 1984. Geochemistry of Organic Matter in the Ocean. Springer-Verlag, Berlin, 334p.

- ROME, K.; McINTYRE, A. 2012. Intelligent use of Relative Response Factors in Gas Chromatography-Flame Ionisation Detection. Chromatography Today, May/June 2012, pp. 52-56.

- RULLKÖTTER, J. 2006. Organic Matter: The Driving Force for Early Diagenesis, cap. 4, pp. 125-168. In: SCHULZ, H.D. & ZABEL, M. (Eds.). Marine Geochemistry, 2nd ed., Springer Verlag, Berlin, 574p.

- RUSHDI, A.I.; SIMONEIT, B.R.T.; DOUABUL, A.A.Z.; AL-MUTLAQ, K.F.; EL-MUBARAK, A.H.; QURBAN, M.; GONI, M.A. 2014. Occurrence and sources of polar lipid tracers in sediments from the Shatt al-Arab River of Iraq and the northwestern Arabian Gulf. Science of the Total Environment, 470–471, pp. 180–192.

- SAAE. 2018. Serviço Autônomo de Água e Esgoto de Governador Valadares. Disponível em http://www.saaegv.com.br/principal. Último acesso em 14/11/2018.

- SANDERS, C.J.; CALDEIRA, P.P.; SMOAK, J.M.; KETTERER, M.E.; BELÉM, A.; MENDOZA, U.M.N.; CORDEIRO, L.G.M.S.; SILVA-FILHO, E.V.; PATCHI-NEELAM, S.R.; ALBUQUERQUE, A.L.S. 2014. Recent organic carbon accumulation (~100 years) along the Cabo Frio, Brazil upwelling region. Continental Shelf Research, v. 75, pp. 68-75.

- SANTOS, E.S.; CARREIRA, R.S.; KNOPPERS, B.A. 2008. Sedimentary sterols as indicators of environmental conditions in Southeastern Guanabara Bay, Brazil, Brazilian Journal of Oceanography, 56(2), pp. 97-113.

- SANTOS, E.S.; JENNERJAHN, T.C.; LEIPE, T.; MEDEIROS, P.R.P.; DE SOUZA, W.F.L.; KNOPPERS, B.A. 2013. Origem da matéria orgânica sedimentar no delta-estuarino do Rio São Francisco, AL/SE – Brasil, Geochimica Brasiliensis, 27(1), pp. 37-48.

- SANTOS, L.C.M.; MATOS, H.R.; SCHAEFFER-NOVELLI, Y.; CUNHA-LIGNON, M.; BITENCOURT, M.D.; KOEDAM, N.; DAHDOUH-GUEBAS, F. 2014. Anthropogenic activities on mangrove areas (São Francisco River Estuary, Brazil Northeast): A GIS-based analysis of CBERS and SPOT images to aid in local management. Ocean & Coastal Management, 89, pp. 39-50.

- SCHEFUβ, E.; VERSTEEGH, G.J.M.; JANSEN, J.H.F.; SINNINGHE DAMSTÉ, J.S. 2004. Lipid biomarkers as major source and preservation indicators in SE Atlantic surface sediments. Deep Sea Research I, 51, pp. 1199-1228.

- SECCO, T.; PELLIZZATO, F.; SFRISO A.; PAVONI, B. 2005. The changing state of contamination in the Lagoon of Venice. Part 1: organic pollutants. Chemosphere 58(3), pp. 279–290.

- SEGUEL, C.G.; MUDGE, S.M.; SALGADO, C.; TOLEDO, M. 2001. Tracing sewage in the marine environment: altered signatures in Concepción Bay, Chile. Water Research, 35 (17), pp. 4166–4174.

- SERICANO, J.L.; GARDINALLI, P.; WADE, T.L. 1998. Quantitative Determination of Chlorinated Hydrocarbons, pp. 160-167. In: LAUENSTEIN, G.G.; CANTILLO, A.Y. NOAA Technical Memorandum NOS ORCA 130. Sampling and Analytical Methods of the National Status and Trends Program Mussel Watch Project: 1993-1996 Update, Silverspring, MD.

- SERRAZANETTI, G.P.; FOLICALDI, A.; GUERRINI, F.; MONTI, G.; PISTOCCHI, R.; BONI, L. 2006. Microalgal lipid markers for paleoclimatic Research. Climate Research, 31, pp. 145-150.

- SHANCHUN, J.; RONGFEN, J. 1992. The evolution os stenols and stanols in marine sediment core from Beibu bay, The South China Sea. Chinese Journal of Oceanology and Limnology, 10(1), pp. 92-96.

- SHERBLOM, P.M.; HENRY, M.S.; KELLY, D. 1997. Questions Remain in the Use of Coprostanol and Epicoprostanol as Domestic Waste Markers: Examples from Coastal Florida. pp. 320-331, In: EGANHOUSE, R.P. (Ed.). Molecular Markers in Environmental Geochemistry. American Chemical Society, Washington, DC – 426p.

- SHIRNESHAN, G.; BAKHTIARI, A.R.; MEMARIANI, M. 2016. Identification of sources of tar balls deposited along the Southwest Caspian Coast, Iran using fingerprinting techniques. Science of the Total Environment, 568, pp. 979–989.

- SHIRNESHAN, G.; BAKHTIARI, A.R.; MEMARIANI, M. 2017. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Marine Pollution Bulletin, 115, pp. 383–390.

- SICRE, M.A.; MARTY, J.C.; SALIOT, A.; APARICIO, X.; GRIMALD, J.; ALBAIGES, J. 1987. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. **Atmospheric Environment**, 21, pp. 2247-2259.

- SILLIMAN, J.E.; MEYERS, P.A.; EADIE, B.J. 1998. Perylene: an indicator of alteration processes or precursor materials? Organic Geochemistry, 29 (5-7), pp. 1737-1744.

- SILLIMAN, J.E.; MEYERS, P.A.; EADIE, B.J.; VAL KLUMP, J. 2001. A hypothesis for the origin of perylene based on its low abundance in sediments of Green Bay, Wisconsin. Chemistry Geology, 177, pp. 309–322.

- SILVA, O.P. 1995. A mineração em Minas Gerais: passado, presente e futuro. Geonomos, 3(1), pp. 77-86.

- SILVA, P.A.; VIEIRA, G.G.; FARINASSO, M.; CARLOS, R.J. 2003. Determinação da extensão do Rio São Francisco. Anais XI Simpósio Brasileiro de Sensoriamento Remoto. Belo Horizonte, Brasil, 05-10 abril de 2003, INPE, pp. 393-400.

- SILVA, T.R.; LOPES, S.R.P; SPÖRL, G.; KNOPPERS, B.A.; AZEVEDO, D.A. 2013. Evaluation of anthropogenic inputs of hydrocarbons in sediment cores from a tropical Brazilian estuarine system. Microchemical Journal, v. 109, pp. 178-188.

- SIMONEIT, B.R.T. 2006. Atmospheric Transport of Terrestrial Organic Matter to the Sea, pp. 165-208. In: VOLKMAN, J.K. (Ed.). The Handbook of Environmental Chemistry Vol. 2, Part N. Springer-Verlag, Berlin Heidelberg, 374p.

-SIMONEIT, B.R.T. 2008. Natural Products as Biomarker Tracers in Environmental and Geological Processes, pp. 77-126. In: IKAN, R. (Ed.). Selected Topics in the Chemistry of Natural Products. World Scientific, Singapore, 604p.

- SLATER, G.F.; BENSON, A.A.; MARVIN, C.H.; MUIR, D.C. 2013. PAH fluxes to Siskiwit revisted: trends in fluxes and sources of pyrogenic PAH and perylene constrained via radiocarbon analysis. Environmental Science & Technolology, 47, pp. 5066–5073.

- SMOAK, J.M., MOORE, W.S., THUNELL, R.C., SHAW, T.J. 1999. Comparison of ²³⁴Th, ²²⁸Th, and ²¹⁰Pb fluxes with fluxes of major sediment components in the Guaymas Basin, Gulf of California. Marine Chemistry, v. 65, pp. 177–194.

- SMOL, J.P. 2008. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. 2nd ed. Blackwell Publishing, 383 p.

- SOCLO, H. 1986. Etude de la distribution des hydrocarbures aromatiques polycycliques dans les sédiments marins récents. Identification des sources. Ph D thesis n.50, University of Bordeaux, France, 158 p.

- SOCLO, H.H.; GARRIGUES, P.H.; EWALD, M. 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, pp. 387–396.

- STEIN, R. 1991. Accumulation of Organic Carbon in Marine Sediments. Results From The Deep Sea Drilling Project/Ocean Drilling Program. Springer-Verlag, Berlin, 217p.

- STOUT, S.A.; MAGAR, V.S.;UHLER, R.M.; ICKES,J.; ABBOTT, J.; BRENNER, R. 2001. Characterization of Naturally – occurring and Anthropogenic PAHs in Urban Sediments – Wycof/Eagle Harbor Superfund Site – Environmental Forensics, 2 (4), pp. 287–300.

- STRAMMA, L.; ENGLAND, M. 1999. On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research, 104 (C9), pp. 20863–20883.

- STRAMMA, L.; SCHOTT, F. 1999. The mean flow field of the tropical Atlantic Ocean. Deep-Sea Research II, 46, pp. 279–303.

- SUMIDA, P.Y.G.; YOSHINAGA, M.Y.; CIOTTI, A.M.; GAETA, S.A. 2005. Benthic response to upwelling events off the SE Brazilian coast. Marine Ecology Progress Series, 291, pp. 35-42.

- SUMMONS, R. E. 1993. Biogeochemical cycles: a review of fundamental aspects of organic matter formation, preservation and composition. In: ENGEL, M. H.; MACKO, S. A. (Eds.). Organic Geochemistry. Plenum Press, New York, v. 11, pp. 3-21.

- SUTTON M.A.; BLEEKER A.; HOWARD C.M.; BEKUNDA M.; GRIZZETTI, B.; DE VRIES, W.; et al. 2013. Our Nutrient World: The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. Disponível em <http://www.unep.org/gpa/documents/publications/ONW.pdf>. Último acesso em 01/07/2015.

- TAKADA, H.; FARRINGTON, J.W.; BOTNER, M.H.; JOHNSON, C.G.; TRIPP, B.W. 1994. Transport of sludge-derived organic pollutants to deep-sea sediments at Deep Water Dump Site 106. Environmental Science and Technology, 28, pp. 1062–1072.

- TAKADA, H.; EGANHOUSE, R.P. 1998. Molecular markers of anthropogenic waste, pp. 2883-2940. In: MEYERS, R.A. (Ed.). Encyclopedia of Environmental Analysis and Remediation. Molecular markers of anthropogenic waste. New York: John Wiley & Sons, Inc.

- TAM, N.F.Y.; KE, L.; WANG, X.H.; WONG, Y.S. 2001. Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environmental Pollution, 114, pp. 255-263.

- TAREQ, S.M.; KITAGAWA, H.; OHTA, K. 2011. Lignin biomarker and isotopic records of paleovegetation and climate changes from Lake Erhai, southwest China, since 18.5 ka BP. Quaternary International, 229, pp. 47–56.

TEIXEIRA, A.C.O; ALMEIDA, T.M.; MOREAU, M.S.; MOREAU, A.M.S.S. 2013.
Análise da dinâmica de uso e ocupação da terra na bacia hidrográfica do baixo Rio de Contas
Bahia, entre os anos de 1973 a 2001. Revista Eletrônica Geoaraguaia. Barra do Garças-MT. Edição Especial. pp. 42-55.

- TISSOT, B. P.; WELTE, D. H. 1984. Petroleum Formation and Occurrence – A New Approach to Oil and Gas Exploration 2^{nd} edition, Springer-Verlag, 699p. – Berlin Heidelberg.

- TOBISZEWSKI, M., NAMIESNIK, J. 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution 162, pp. 110–119.

- TSAPAKIS, M.; DAKANALI, E.; STEPHANOU, E.G.; KARAKASSIS, I. 2010. PAHs and n-alkanes in Mediterranean coastal marine sediments: aquaculture as a significant point source. Journal of Environmental Monitoring, 12, pp. 958-963.

- TUREKIAN, K.K. 1988. Oceanos. São Paulo: Edgard Blücher Ltda., p. 36-59.

- UFV. Universidade Federal de Viçosa. Atlas Digital das Águas de Minas. Disponível em http://www.atlasdasaguas.ufv.br/doce/impacto_ambiental_relevante_na_bacia_do_rio_doce_em_minas_gerais.html. Último acesso em 15/11/2018.

- UNEP – United Nations Environmental Program. 2005. Intergovernmental Conference to Adopt a Global Programme of Action for the Protection of the Marine Environment From Land-Based Activities, Washington, DC. UNEP(OCA)/LBA/IG.2/7.

- U.S. EPA. – United States Environmental Protection Agency. 2003. Method 8015C (SW-846): Nonhalogenated Organics Using GC/FID, Revision 4. Washington, DC. Disponível em https://www.epa.gov/ sites/production/files/2015-12/documents/8015d_r4.pdf. Último acesso em 25/11/2018.

- U.S. EPA. – United States Environmental Protection Agency. 2014a. Toxic and Priority Pollutants Under the Clean Water Act – Prioritary Pollutant List, updated in 2014. Disponível em https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act. Último acesso em 16/10/2018.

- U.S. EPA. – United States Environmental Protection Agency. 2014b. Method 8270E (SW-846): Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS), Washington, DC. Disponível em https://www.epa.gov/sites/production/files/2017-04/documents/ method_8260d_update_vi_final_03-13-2017_0.pdf. Último acesso em 25/11/2018.

- VALENTIN, J., MOREIRA, A.P. 1978. A matéria orgânica de origem zooplanctônica nas águas de ressurgência de Cabo Frio (Brasil). Instituto de Pesquisas da Marinha, Ministério da Marinha, 122, pp. 103–112.

- VALENTIN, J.L. 1984. Spatial structure of the zooplankton community in the Cabo Frio region (Brazil) influenced by coastal upwelling. In: DUMONT, H.J. e TUNDISI, J.G. (Eds.). Tropical Zooplankton, pp. 183-189. Springer.

- VAN LEEUWEN, S.P.J.; DE BOER, J. 2008. Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment, Journal of Chromatography A, 1186, pp. 161–182.

- VENKATESAN, M. 1998. Occurrence and possible sources of perylene in marine sediments-a review. Marine Chemistry, 25, 1–27.

- VEUGER, B.; EYRE, B.D.; MAHER, D.; MIDDELBURG, J.J. 2007. Nitrogen incorporation and retention by bacteria, algae, and fauna in a subtropical, intertidal sediment: An in situ 15N-labeling study. Limnology and Oceanography, 52, pp. 1930–1942.

- VOLKMAN, J.K. 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9, pp. 83–99.

- VOLKMAN, J.K.; JEFFERY, S.W.; NICHOLS, P.D.; ROGERS, G.I.; GARLAND, C.D. 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128, pp. 219–240.

- VOLKMAN, J.K., HOLDSWORTH, D.G.; NEILL, G.P.; BAVOR Jr., H.J. 1992. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. The Science of Total Environment, 112, pp. 203-219.

- VOLKMAN, J.K., BARRETT, S.M., BLACKBURN, S.I., MANSOUR, M.P., SIKES, E.; GELIN, F. 1998. Microalgal biomarkers: A review of recent research developments. Organic Geochemistry, 29, pp. 1163-1179.

- VOLKMAN, J. K. 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways. *Organic Geochemistry*, 36, pp. 139–159.

- VOLKMAN, J. 2006. Lipid Markers for Marine Organic Matter, pp. 27-70. In: VOLKMAN, J.K. (Ed.). The Handbook of Environmental Chemistry – Marine Organic Matter – Biomarkers, Isotopes and DNA - Vol. 2 - Reactions and Processes - Part N. Springer-Verlag, Berlin Heidelberg, 374p.

- VOLKMAN, J.K., SMITTENBERG, R.H. 2017. Lipid biomarkers as organic geochemical proxies for the paleoenvironmental reconstruction of estuarine environments, pp. 173-212. In: WECKSTRÖM et al. (eds). Applications of paleoenvironmental techniques in estuarine studies, developments in paleoenvironmental research, 20, 700p.

- WALLING, D.E. 2006. Human impact on land-ocean sediment transfer by the world's rivers. Geomorphology, v. 79, pp. 192-216.

- WALSH, J.J. 1988. On the Nature of Continental Shelves. Academic Press Inc. San Diego, 520 pp.

- WAKEHAM, S.G.; SCHAFFNER, C.; GIGER, W.; BOON, J.J.; DE LEEUW, J. 1979. Perylene in sediments from the Namibian Shelf. Geochimica & Cosmochimica Acta, 43, pp. 1141–1144.

- WAKEHAM, S.G. 1996. Aliphatic and polycyclic hydrocarbons in Black Sea sediments. Marine Chemistry, 53, pp. 187–205.

- WAKEHAM, S.G; CANUEL, E.A. 2006. Degradation and Preservation of Organic Matter in Marine Sediments, pp. 295-321. In: VOLKMAN, J.K. (Ed.). The Handbook of Environmental Chemistry Vol. 2, Part N. Springer-Verlag, Berlin Heidelberg, 374p.

- WANG, Z., FINGAS, M. 2003. Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin, 47, pp. 423–452.

- WANG, Z.; STOUT, S.A.; FINGAS, M. 2006. Forensic Fingerprinting of Biomarkers for Oil Spill Characterization and Source Identification. Environmental Forensics, 7 (2), pp. 105-146.

- WANG, R.; WANG, J.; LI, F.; YANG, S.; TAN, L. 2016. Vertical Distribution and indications of lipid biomarkers in the sediment core from East China Sea. Continental Shelf Research, v. 122, pp. 43-50.

- WARREN N.; ALLAN I.J.; CARTER, J.E.; HOUSE, W.A.; PARKER, A. 2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments: a review. Applied Geochemistry, 18 (2), pp. 159–194.

- WEIJERS, J.W.H.; SCHOUTEN, S.; SCHEFUß, E.; SCHNEIDER, R.R.; DAMSTE, J.S.S. 2009. Disentangling marine, soil and plant organic carbon contributions to continental margin sediments: A multi-proxy approach in a 20,000 year sediment record from the Congo deep-sea fan. Geochimica et Cosmochimica Acta, 73, pp. 119–132.

- WHITEHEAD, K. 2008. Marine Organic Geochemistry, pp. 261-302. In: EMERSON, S.; HEDGES, J. Chemical Oceanography and the Marine Carbon Cycle -- Cambridge University Press, 453p.

WITT, G. 1995. Polycyclic aromatic hydrocarbons in water and sediments of the Baltic Sea. Marine Pollution Bulletin, 31, pp. 237-248.

- WHO (WORLD HEALTH ORGANIZATION). 1998. Selected non-heterocyclic polycyclic aromatic hydrocarbons. Environmental Health Criteria No. 202, Geneva.

- XING, L.; ZHANG, H.; YUAN, Z. SUN, Y.; ZHAO, M. 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Continental Shelf Research, 31, pp. 1106–1115.

- XING, L.; ZHAO, M.; GAO W.; WANG, F.; ZHANG, H.; LI, L.; LIU, J.; LIU, Y. 2014. Multiple proxy estimates of source and spatial variation in organic matter in surface sediments from the southern Yellow Sea. Organic Geochemistry, 76, pp. 72–81.

- YOSHINAGA, M.Y.; SUMIDA, P.Y.G.; WAKEHAM, S.G. 2008. Lipid biomarkers in surface sediments from an unusual coastal upwelling area from the SW Atlantic Ocean. Organic Geochemistry, 39, pp. 1385-1399.

- YUNKER, M.B.; MACDONALD, R.W.; VINGARZAN, R.; MITCHELL, R.H.; GOYETTE, D.; SYLVESTRE, S. 2002. Polycyclic aromatic hydrocarbons in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, pp. 489-515.

- ZERO HORA. Chuva no Espírito Santo já é a maior da história em 90 anos. Disponível em https://gauchazh.clicrbs.com.br/geral/noticia/2013/12/chuva-no-espirito-santo-ja-e-a-maior-da-historia-em-90-anos-4373685.html. Último acesso em 15/11/2018.

- ZHANG, P.; SONG, J.; FANG, J.; LIU, Z.; LI, X.; YUAN, H. 2009. One century record of contamination by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in core sediments from the Southern Yellow Sea. Journal of Environmental Sciences, v. 21, pp. 1080-1088.

- ZIMMERMAN, A.R.; CANUEL, E.A. 2002. Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnology and Oceanography, 47, pp. 1084–1093.

- ZHOU, W.; ZHENG, Y.; MEYERS, P.A.; JULL, A.J.T.; XIE, S. 2010. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China. Earth and Planetary Science Letters, 294, pp. 34-46.

APÊNDICE A-1: Distribuição individual de n-alcanos e isoprenóides no testemunho BIOMT1 – PC CABO FRIO

Concentrações em (ng.g ⁻¹)	T1-01	T1-02	T1-03	T1-04	T1-05	T1-06	T1-07	T1-08	T1-09	T1-10	T1-11	T1-12	T1-13	T1-14	T1-15	T1-17	T1-19	T1-21	T1-23
Naftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>14,16</td><td>1,56</td><td>1,75</td><td>1,83</td><td>2,08</td><td>1,85</td><td>1,68</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<></td></lq<>	14,16	1,56	1,75	1,83	2,08	1,85	1,68	<lq< td=""><td><lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<></td></lq<>	<lq< td=""><td>35,28</td><td>14,07</td><td>5,63</td><td>9,84</td></lq<>	35,28	14,07	5,63	9,84
1 Metilnaftaleno	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>6,66</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	6,66	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>75,88</td><td>17,64</td><td>12,35</td><td>24,67</td></lq<>	ND	ND	ND	75,88	17,64	12,35	24,67
2 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>30,51</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>30,51</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>30,51</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	30,51	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td>ND</td><td><lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<></td></lq<>	1,48	1,98	1,60	ND	<lq< td=""><td>ND</td><td>251,18</td><td>51,51</td><td>40,06</td><td>69,94</td></lq<>	ND	251,18	51,51	40,06	69,94
C1-N	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>37,17</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>37,17</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>37,17</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>37,17</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	37,17	ND	<lq< td=""><td><lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,48</td><td>1,98</td><td>1,60</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<></td></lq<>	1,48	1,98	1,60	<lq< td=""><td><lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>327,06</td><td>69,15</td><td>52,41</td><td>94,61</td></lq<>	ND	327,06	69,15	52,41	94,61
C2-N	1,50	5,15	<lq< td=""><td>1,67</td><td>6,25</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,67	6,25	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,52</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<></td></lq<>	2,52	<lq< td=""><td><lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<></td></lq<>	<lq< td=""><td>133,33</td><td>27,93</td><td>21,73</td><td>65,93</td></lq<>	133,33	27,93	21,73	65,93
C3-N	1,29	1,87	<lq< td=""><td>1,12</td><td>2,18</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,12	2,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,26</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,26	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,64</td><td><lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<></td></lq<>	3,64	<lq< td=""><td><lq< td=""><td>7,89</td></lq<></td></lq<>	<lq< td=""><td>7,89</td></lq<>	7,89
C4-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bifenil	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>28,49</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	28,49	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,16</td><td>1,55</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<></td></lq<>	2,16	1,55	<lq< td=""><td><lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<></td></lq<>	<lq< td=""><td>20,26</td><td>8,99</td><td>3,60</td><td>10,85</td></lq<>	20,26	8,99	3,60	10,85
2,6 dimetilnaftaleno	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>3,84</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>3,84</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,84	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>126,74</td><td>27,93</td><td>21,73</td><td>56,90</td></lq<>	ND	126,74	27,93	21,73	56,90
Acenaftileno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,45</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	2,45	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenafteno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12,32	<lq< td=""><td>2,10</td><td>5,35</td></lq<>	2,10	5,35
Fluoreno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,34</td><td><lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,34</td><td><lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,34</td><td><lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,34	<lq< td=""><td>1,02</td><td><lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,02	<lq< td=""><td><lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,92</td><td>1,43</td><td>2,82</td><td>0,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,92	1,43	2,82	0,86	<lq< td=""><td><lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>32,91</td><td><lq< td=""><td>6,56</td><td>27,94</td></lq<></td></lq<>	32,91	<lq< td=""><td>6,56</td><td>27,94</td></lq<>	6,56	27,94
C1-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzotiofeno	ND	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,16</td><td>1,66</td><td>2,97</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<></td></lq<>	2,16	1,66	2,97	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<></td></lq<>	<lq< td=""><td>5,61</td><td>ND</td><td>ND</td><td>3,97</td></lq<>	5,61	ND	ND	3,97
C1-DBZT	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
C2-DBZT	1,02	<lq< td=""><td><lq< td=""><td>5,12</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,12</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	5,12	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
C3-DBZT	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,01</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,01	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
Fenantreno	0,61	0,71	1,07	2,25	0,77	4,76	3,47	3,68	19,40	19,47	25,41	9,70	5,45	5,14	5,60	40,72	18,53	9,53	24,42
C1-FEN	<lq< td=""><td>1,40</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td>1,04</td><td>0,99</td><td><lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,40	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td>1,04</td><td>0,99</td><td><lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td>1,04</td><td>0,99</td><td><lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td>1,04</td><td>0,99</td><td><lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,96</td><td>1,04</td><td>0,99</td><td><lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,96</td><td>1,04</td><td>0,99</td><td><lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,96	1,04	0,99	<lq< td=""><td>2,09</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	2,09	<lq< td=""><td>ND</td><td><lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>2,23</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	2,23	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C2-FEN	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C3-FEN	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C4-FEN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,13</td><td>1,01</td><td>3,29</td><td>1,73</td><td>2,01</td><td>2,04</td><td>2,21</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<></td></lq<>	1,13	1,01	3,29	1,73	2,01	2,04	2,21	<lq< td=""><td><lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<></td></lq<>	<lq< td=""><td>49,81</td><td>27,33</td><td>18,74</td><td>56,54</td></lq<>	49,81	27,33	18,74	56,54
Fluoranteno	0,80	2,24	1,43	ND	3,48	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>4,51</td><td>2,94</td><td>4,31</td><td>7,28</td><td>3,78</td><td><lq< td=""><td>7,04</td></lq<></td></lq<>	4,51	2,94	4,31	7,28	3,78	<lq< td=""><td>7,04</td></lq<>	7,04
Pireno	6,55	22,43	24,15	<lq< td=""><td>46,35</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	46,35	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,56</td><td>3,62</td><td>39,59</td><td>25,66</td><td>37,54</td><td>14,46</td><td>6,93</td><td><lq< td=""><td>10,69</td></lq<></td></lq<>	3,56	3,62	39,59	25,66	37,54	14,46	6,93	<lq< td=""><td>10,69</td></lq<>	10,69
C1-PIR	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C2-PIR	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Benzo(a)antraceno	1,74	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,16</td><td><lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,16	<lq< td=""><td>3,37</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,37	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno	1,28	1,27	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,30</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,30	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-CRIS	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C2-CRIS	1,00	1,60	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Benzo(b)fluoranteno	1,99	2,33	1,17	0,98	1,68	3,38	2,76	6,26	3,76	7,09	4,94	4,70	3,33	2,72	2,74	2,44	<lq< td=""><td>1,65</td><td><lq< td=""></lq<></td></lq<>	1,65	<lq< td=""></lq<>
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Benzo(a)pireno	1,83	2,09	<lq< td=""><td><lq< td=""><td>1,39</td><td>3,43</td><td>1,64</td><td>4,97</td><td>2,53</td><td>6,63</td><td>5,53</td><td>2,74</td><td>2,40</td><td>2,02</td><td>1,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,39</td><td>3,43</td><td>1,64</td><td>4,97</td><td>2,53</td><td>6,63</td><td>5,53</td><td>2,74</td><td>2,40</td><td>2,02</td><td>1,80</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,39	3,43	1,64	4,97	2,53	6,63	5,53	2,74	2,40	2,02	1,80	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Perileno	4,91	6,14	<lq< td=""><td>4,99</td><td>5,08</td><td>7,59</td><td>6,42</td><td>15,38</td><td>11,10</td><td>20,86</td><td>13,46</td><td>14,56</td><td>7,61</td><td>6,82</td><td>4,32</td><td>2,74</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	4,99	5,08	7,59	6,42	15,38	11,10	20,86	13,46	14,56	7,61	6,82	4,32	2,74	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(e)pireno	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>1,34</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	1,34	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-cd)pireno	1,38	1,81	<lq< td=""><td><lq< td=""><td>1,91</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,91</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,91	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,95</td><td><lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,95	<lq< td=""><td><lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,03</td><td>2,55</td><td>2,40</td><td>2,04</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	3,03	2,55	2,40	2,04	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzo(a,h)antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
Benzo(g,h,i)perileno	1,12	1,25	<lq< td=""><td><lq< td=""><td>1,28</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,28</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,28	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,21</td><td>1,69</td><td>1,53</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,21	1,69	1,53	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

APÊNDICE A-2: Tabela de distribuição individual de HPAs parentais e alquilados no testemunho BIOMT1 – PC CABO FRIO

APÊNDICE B-1: Série histórica de vazões máximas no Rio Doce entre os anos de 1969 e 2014

APÊNDICE B-2: Série histórica de vazões máximas no Rio Doce entre os anos de 1938 e 2014

Prof. (CM)	Σ HPAS (mg kg ⁻¹)	Atividade 210 Pb (Bg kg ⁻¹) *	Taxa calculada $(cm ano^{-1})$	ANO-TENTATIVA	OBSERVAÇÃO
1	1,49	86.4	12	2016	LAMA SAMARCO
2	1,21	96.2	12	2016	LAMA SAMARCO
3	1,00	121.6	12	2016	LAMA SAMARCO
4	1,25	94.0	12	2016	LAMA SAMARCO
5	1,43	102.6	ND	2015	-
6	2,20	81.0	ND	2014	-
7	3,20	91.6	ND	2013	ENCHENTES DE 2012/13
8	1,88	88.2	ND	2007	-
9	1,49	91.3	ND	2002	-
10	4,67	91.6	ND	1997	ENCHENTES DE 1996/97
11	6,26	126.7	ND	1996	ENCHENTES DE 1996/97
12	1,18	80.6	ND	1994	-
13	1,75	304.4	ND	1992	-
14	1,99	80.1	ND	1990	-
15	2,24	79.1	ND	1988	-
16	2,01	89.3	ND	1986	-
17	5,33	98.7	ND	1985	ENCHENTES DE 1984/85
18	2,39	78.0	0,56	1983	-
19	2,78	87.7	0,56	1981	-
20	2,94	97.3	0,56	1980	-
21	2,13	115.2	0,56	1978	-
22	2,25	83.5	0,56	1976	-
23	2,31	73.6	0,56	1974	-
24	2,40	93.7	0,56	1973	-
25	2,11	93.9	0,56	1971	-
26	0,58	75.2	0,56	1969	-
27	1,90	89.4	0,56	1967	-
28	3,53	83.9	0,56	1965	-
29	1,62	72.4	0,56	1964	-
30	1,53	85.2	0,56	1962	-
31	1,65	92.7	0,56	1960	-
32	1,47	82.7	0,56	1958	-
33	1,71	87.6	0,56	1956	-
34	1,83	91.5	0,56	1955	-
35	3,04	95.3	0,56	1953	-
36	2,56	85.5	0,56	1951	-
37	2,81	NA	0,56	1949	-
38	2,02	46.0	0,56	1947	-
40	2,51	97.6	0,56	1944	-

APÊNDICE B-3: Cronologia-tentativa no testemunho BIOMT3 – PC DOCE

ND: Não determinada (não foi possível calcular a taxa de sedimentação).

NA: Não analisada. * Atividade do ²¹⁰Pb total. Para obter o ²¹⁰Pb_{ex}, deve-se subtrair a atividade do ²¹⁰Pb_s. Atividade do ²¹⁰Pb_s = 84,31 Bq.kg⁻¹.

** As taxas de sedimentação entre 18 e 40 cm de profundidade consistem da taxa média determinada por França (2019, comunicação pessoal).

APÊNDICE B-4: Distribuição individual de n-alcanos e isoprenóides no testemunho BIOMT3 – PC DOCE

					2				-		1								
Concentrações em (ng.g ⁻¹)	T3-01	T3-02	T3-03	T3-04	T3-05	T3-06	T3-07	T3-08	T3-09	T3-10	T3-11	T3-12	T3-13	T3-14	T3-15	T3-16	T3-17	T3-18	T3-19
Naftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>9,14</td><td><lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	9,14	<lq< td=""><td>9,53</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	9,53	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>16,25</td><td><lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	16,25	<lq< td=""><td>13,60</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	13,60	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	14,10	ND	<lq< td=""><td><lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>8,27</td><td>61,72</td><td>5,33</td><td>57,17</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	8,27	61,72	5,33	57,17	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-N	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>14,10</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	14,10	ND	<lq< td=""><td><lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>8,27</td><td>77,97</td><td>5,33</td><td>70,77</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	8,27	77,97	5,33	70,77	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-N	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	9,17	<lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	7,09	45,76	<lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	28,54	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-N	<lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,48</td><td>13,86</td><td><lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	4,48	13,86	<lq< td=""><td>8,68</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	8,68	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-N	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Bifenil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2,6 dimetilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>9,17</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	9,17	<lq< td=""><td><lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>7,09</td><td>45,76</td><td><lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	7,09	45,76	<lq< td=""><td>28,54</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	28,54	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftileno	9,50	<lq< td=""><td><lq< td=""><td>4,63</td><td><lq< td=""><td>6,72</td><td>8,61</td><td>7,99</td><td>8,08</td><td>28,60</td><td>27,05</td><td>4,93</td><td>8,14</td><td>8,90</td><td>8,32</td><td>7,56</td><td>21,68</td><td>12,30</td><td>12,23</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,63</td><td><lq< td=""><td>6,72</td><td>8,61</td><td>7,99</td><td>8,08</td><td>28,60</td><td>27,05</td><td>4,93</td><td>8,14</td><td>8,90</td><td>8,32</td><td>7,56</td><td>21,68</td><td>12,30</td><td>12,23</td></lq<></td></lq<>	4,63	<lq< td=""><td>6,72</td><td>8,61</td><td>7,99</td><td>8,08</td><td>28,60</td><td>27,05</td><td>4,93</td><td>8,14</td><td>8,90</td><td>8,32</td><td>7,56</td><td>21,68</td><td>12,30</td><td>12,23</td></lq<>	6,72	8,61	7,99	8,08	28,60	27,05	4,93	8,14	8,90	8,32	7,56	21,68	12,30	12,23
Acenafteno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluoreno	<lq< td=""><td><lq< td=""><td>9,64</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>9,64</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	9,64	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>6,13</td><td>9,19</td><td><lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	6,13	9,19	<lq< td=""><td>7,67</td><td>9,13</td><td>9,08</td><td><lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<></td></lq<>	7,67	9,13	9,08	<lq< td=""><td>7,20</td><td>6,77</td><td><lq< td=""></lq<></td></lq<>	7,20	6,77	<lq< td=""></lq<>
C1-FLU	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>6,42</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	6,42	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-FLU	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-FLU	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzothiophene	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-DBZT	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
C2-DBZT	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	ND	ND	<lq< td=""></lq<>
C3-DBZT	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno	22,23	19,15	28,91	12,85	11,11	20,49	23,33	17,91	18,77	39,29	57,25	11,12	28,68	33,61	20,92	22,50	45,23	32,37	31,06
C1-FEN	20,44	<lq< td=""><td><lq< td=""><td>6,61</td><td><lq< td=""><td>12,86</td><td>12,49</td><td>10,93</td><td>6,55</td><td>24,42</td><td>35,87</td><td>7,72</td><td>7,96</td><td>8,77</td><td>10,34</td><td>8,49</td><td>20,97</td><td>10,31</td><td>8,12</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>6,61</td><td><lq< td=""><td>12,86</td><td>12,49</td><td>10,93</td><td>6,55</td><td>24,42</td><td>35,87</td><td>7,72</td><td>7,96</td><td>8,77</td><td>10,34</td><td>8,49</td><td>20,97</td><td>10,31</td><td>8,12</td></lq<></td></lq<>	6,61	<lq< td=""><td>12,86</td><td>12,49</td><td>10,93</td><td>6,55</td><td>24,42</td><td>35,87</td><td>7,72</td><td>7,96</td><td>8,77</td><td>10,34</td><td>8,49</td><td>20,97</td><td>10,31</td><td>8,12</td></lq<>	12,86	12,49	10,93	6,55	24,42	35,87	7,72	7,96	8,77	10,34	8,49	20,97	10,31	8,12
C2-FEN	8,41	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>6,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	6,99	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-FEN	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-FEN	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
Antraceno	10,77	<lq< td=""><td>9,11</td><td>33,78</td><td><lq< td=""><td>33,60</td><td>11,79</td><td>42,04</td><td>7,41</td><td>71,83</td><td>41,59</td><td>23,74</td><td>14,91</td><td>21,52</td><td>17,84</td><td>13,33</td><td>29,71</td><td>19,30</td><td>21,10</td></lq<></td></lq<>	9,11	33,78	<lq< td=""><td>33,60</td><td>11,79</td><td>42,04</td><td>7,41</td><td>71,83</td><td>41,59</td><td>23,74</td><td>14,91</td><td>21,52</td><td>17,84</td><td>13,33</td><td>29,71</td><td>19,30</td><td>21,10</td></lq<>	33,60	11,79	42,04	7,41	71,83	41,59	23,74	14,91	21,52	17,84	13,33	29,71	19,30	21,10
Fluoranteno	15,38	<lq< td=""><td><lq< td=""><td>22,32</td><td>24,32</td><td>46,52</td><td>87,54</td><td>29,31</td><td>23,34</td><td>86,26</td><td>136,96</td><td>21,61</td><td>19,08</td><td>11,33</td><td>30,73</td><td>32,27</td><td>84,21</td><td>23,38</td><td>20,10</td></lq<></td></lq<>	<lq< td=""><td>22,32</td><td>24,32</td><td>46,52</td><td>87,54</td><td>29,31</td><td>23,34</td><td>86,26</td><td>136,96</td><td>21,61</td><td>19,08</td><td>11,33</td><td>30,73</td><td>32,27</td><td>84,21</td><td>23,38</td><td>20,10</td></lq<>	22,32	24,32	46,52	87,54	29,31	23,34	86,26	136,96	21,61	19,08	11,33	30,73	32,27	84,21	23,38	20,10
Pireno	230,23	89,52	90,66	269,57	338,18	457,53	1096,16	413,58	328,17	1080,73	1672,07	310,85	269,48	190,54	388,72	322,06	1152,80	409,97	411,56
C1-PIR	110,93	31,62	40,43	69,06	43,54	105,70	105,49	110,56	76,20	311,03	350,45	73,38	86,53	69,84	78,98	80,61	202,00	93,84	100,26
C2-PIR	17,30	<lq< td=""><td>12,27</td><td><lq< td=""><td><lq< td=""><td>14,44</td><td>32,35</td><td><lq< td=""><td>15,40</td><td>52,49</td><td>124,47</td><td>8,80</td><td><lq< td=""><td>10,24</td><td>9,88</td><td>10,23</td><td>37,41</td><td>13,69</td><td>35,05</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	12,27	<lq< td=""><td><lq< td=""><td>14,44</td><td>32,35</td><td><lq< td=""><td>15,40</td><td>52,49</td><td>124,47</td><td>8,80</td><td><lq< td=""><td>10,24</td><td>9,88</td><td>10,23</td><td>37,41</td><td>13,69</td><td>35,05</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>14,44</td><td>32,35</td><td><lq< td=""><td>15,40</td><td>52,49</td><td>124,47</td><td>8,80</td><td><lq< td=""><td>10,24</td><td>9,88</td><td>10,23</td><td>37,41</td><td>13,69</td><td>35,05</td></lq<></td></lq<></td></lq<>	14,44	32,35	<lq< td=""><td>15,40</td><td>52,49</td><td>124,47</td><td>8,80</td><td><lq< td=""><td>10,24</td><td>9,88</td><td>10,23</td><td>37,41</td><td>13,69</td><td>35,05</td></lq<></td></lq<>	15,40	52,49	124,47	8,80	<lq< td=""><td>10,24</td><td>9,88</td><td>10,23</td><td>37,41</td><td>13,69</td><td>35,05</td></lq<>	10,24	9,88	10,23	37,41	13,69	35,05
Benzo(a)antraceno	176,69	21,05	98,80	381,31	333,91	906,16	998,82	628,05	350,42	1502,37	2046,55	377,66	324,64	274,45	573,69	430,66	1283,55	503,99	522,64
Criseno	41,51	21,96	25,63	79,76	64,11	183,21	178,75	106,41	72,71	224,43	267,31	65,50	69,45	61,70	111,08	89,37	208,21	96,53	93,71
C1-CRIS	13,37	<lq< td=""><td><lq< td=""><td>15,15</td><td>13,97</td><td>43,92</td><td>50,55</td><td>23,73</td><td>20,13</td><td>104,97</td><td>136,89</td><td>23,24</td><td>23,14</td><td>23,43</td><td>30,97</td><td>24,94</td><td>76,74</td><td>36,22</td><td>49,22</td></lq<></td></lq<>	<lq< td=""><td>15,15</td><td>13,97</td><td>43,92</td><td>50,55</td><td>23,73</td><td>20,13</td><td>104,97</td><td>136,89</td><td>23,24</td><td>23,14</td><td>23,43</td><td>30,97</td><td>24,94</td><td>76,74</td><td>36,22</td><td>49,22</td></lq<>	15,15	13,97	43,92	50,55	23,73	20,13	104,97	136,89	23,24	23,14	23,43	30,97	24,94	76,74	36,22	49,22
C2-CRIS	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>10,17</td><td>11,47</td><td><lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<></td></lq<>	10,17	11,47	<lq< td=""><td>5,50</td><td>7,85</td><td><lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<></td></lq<>	5,50	7,85	<lq< td=""><td>5,31</td><td>13,68</td><td>5,13</td><td>8,79</td></lq<>	5,31	13,68	5,13	8,79
Benzo(b)fluoranteno	165,18	233,94	136,17	69,08	117,83	95,23	142,91	112,90	116,37	350,74	440,74	81,62	210,84	334,78	219,67	241,85	521,82	261,12	375,91
Benzo(k)fluoranteno	40,91	71,21	33,87	29,40	34,50	39,87	52,61	35,09	36,47	93,15	112,93	21,10	53,45	54,16	73,95	70,41	111,84	83,47	61,32
Benzo(a)pireno	218,61	228,09	150,67	56,84	87,09	70,82	140,55	73,63	99,85	288,75	362,13	48,35	174,51	285,91	148,79	171,59	385,21	253,13	376,38
Perileno	304,27	318,53	253,56	81,53	176,99	97,92	164,50	123,31	152,46	377,03	443,13	87,65	267,91	353,51	203,74	244,97	508,60	305,12	378,74
Benzo(e)pireno	81,99	58,20	52,76	79,94	96,28	69,25	106,46	108,76	94,04	171,86	218,04	45,08	102,15	125,42	123,69	127,70	314,42	158,01	186,50
Indeno(1,2,3-cd)pireno	63,65	78,62	40,98	50,03	50,51	60,07	75,96	62,77	49,60	81,83	116,63	30,63	75,41	66,23	54,43	91,24	157,73	56,98	84,01
Dibenzo(a,h)antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>14,05</td><td><lq< td=""><td>25,11</td><td>26,26</td><td>20,19</td><td>19,66</td><td>58,04</td><td>66,21</td><td>12,01</td><td>23,21</td><td>27,30</td><td>29,92</td><td>31,24</td><td>90,34</td><td>30,15</td><td>43,41</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>14,05</td><td><lq< td=""><td>25,11</td><td>26,26</td><td>20,19</td><td>19,66</td><td>58,04</td><td>66,21</td><td>12,01</td><td>23,21</td><td>27,30</td><td>29,92</td><td>31,24</td><td>90,34</td><td>30,15</td><td>43,41</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>14,05</td><td><lq< td=""><td>25,11</td><td>26,26</td><td>20,19</td><td>19,66</td><td>58,04</td><td>66,21</td><td>12,01</td><td>23,21</td><td>27,30</td><td>29,92</td><td>31,24</td><td>90,34</td><td>30,15</td><td>43,41</td></lq<></td></lq<>	14,05	<lq< td=""><td>25,11</td><td>26,26</td><td>20,19</td><td>19,66</td><td>58,04</td><td>66,21</td><td>12,01</td><td>23,21</td><td>27,30</td><td>29,92</td><td>31,24</td><td>90,34</td><td>30,15</td><td>43,41</td></lq<>	25,11	26,26	20,19	19,66	58,04	66,21	12,01	23,21	27,30	29,92	31,24	90,34	30,15	43,41
Benzo(g,h,i)perileno	109,57	73,93	64,45	65,45	97,68	85,11	87,04	100,71	115,72	190,66	247,15	38,80	97,09	120,92	95,03	109,11	297,91	135,73	163,17

APÊNDICE B-5: Tabela de distribuição individual de HPAs parentais e alquilados no testemunho BIOMT3 – PC DOCE

					,														j /	
Concentrações em (ng.g ⁻¹)	T3-20	T3-21	T3-22	T3-23	T3-24	T3-25	T3-26	T3-27	T3-28	T3-29	T3-30	T3-31	T3-32	T3-33	T3-34	T3-35	T3-36	T3-37	T3-38	T3-40
Naftaleno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-N	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-N	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-N	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-N	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bifenil	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2,6 dimetilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftileno	12,90	9,23	8,29	8,94	10,43	10,59	4,62	11,19	14,83	7,80	7,59	6,48	6,07	7,17	9,45	11,12	<lq< td=""><td><lq< td=""><td>3,30</td><td>5,05</td></lq<></td></lq<>	<lq< td=""><td>3,30</td><td>5,05</td></lq<>	3,30	5,05
Acenafteno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Fluoreno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>5,08</td><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>5,08</td><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>5,08</td><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5,08</td><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	5,08	<lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,46</td></lq<></td></lq<>	<lq< td=""><td>2,46</td></lq<>	2,46
C1-FLU	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-FLU	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-FLU	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Dibenzotiofeno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-DBZT	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td></lq<>	ND
C3-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno	27,04	22,81	21,80	17,23	31,03	6,45	<lq< td=""><td>13,48</td><td>60,09</td><td>7,48</td><td>13,82</td><td>19,14</td><td>9,59</td><td>14,30</td><td>17,83</td><td>26,33</td><td>29,28</td><td>19,23</td><td>20,99</td><td>24,51</td></lq<>	13,48	60,09	7,48	13,82	19,14	9,59	14,30	17,83	26,33	29,28	19,23	20,99	24,51
C1-FEN	9,20	6,74	8,01	7,37	8,26	<lq< td=""><td><lq< td=""><td>3,96</td><td><lq< td=""><td><lq< td=""><td>4,36</td><td>3,72</td><td>4,10</td><td>3,80</td><td>5,20</td><td>10,94</td><td>6,88</td><td>10,59</td><td>5,00</td><td>9,24</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,96</td><td><lq< td=""><td><lq< td=""><td>4,36</td><td>3,72</td><td>4,10</td><td>3,80</td><td>5,20</td><td>10,94</td><td>6,88</td><td>10,59</td><td>5,00</td><td>9,24</td></lq<></td></lq<></td></lq<>	3,96	<lq< td=""><td><lq< td=""><td>4,36</td><td>3,72</td><td>4,10</td><td>3,80</td><td>5,20</td><td>10,94</td><td>6,88</td><td>10,59</td><td>5,00</td><td>9,24</td></lq<></td></lq<>	<lq< td=""><td>4,36</td><td>3,72</td><td>4,10</td><td>3,80</td><td>5,20</td><td>10,94</td><td>6,88</td><td>10,59</td><td>5,00</td><td>9,24</td></lq<>	4,36	3,72	4,10	3,80	5,20	10,94	6,88	10,59	5,00	9,24
C2-FEN	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-FEN	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-FEN	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antraceno	16,27	12,56	19,43	12,61	37,68	3,89	<lq< td=""><td>5,90</td><td>21,56</td><td>3,49</td><td>6,21</td><td>8,09</td><td>4,70</td><td>6,28</td><td>9,16</td><td>13,35</td><td>10,29</td><td>8,97</td><td>6,54</td><td>11,13</td></lq<>	5,90	21,56	3,49	6,21	8,09	4,70	6,28	9,16	13,35	10,29	8,97	6,54	11,13
Fluoranteno	33,83	20,84	26,20	29,78	13,11	23,09	<lq< td=""><td>14,73</td><td>7,23</td><td>9,21</td><td>13,12</td><td>5,53</td><td>13,02</td><td>7,51</td><td>10,11</td><td>37,33</td><td>11,68</td><td>39,04</td><td>10,87</td><td>21,03</td></lq<>	14,73	7,23	9,21	13,12	5,53	13,02	7,51	10,11	37,33	11,68	39,04	10,87	21,03
Pireno	441,23	309,20	353,26	409,50	287,24	202,35	25,91	186,53	148,34	106,65	223,84	121,86	219,25	143,98	225,78	575,47	278,86	466,36	213,57	359,65
C1-PIR	85,53	75,26	83,06	68,60	88,05	74,26	12,29	81,49	109,06	51,01	77,87	60,41	46,61	54,94	77,02	138,41	94,18	96,75	66,30	104,39
C2-PIR	32,64	22,40	22,88	24,24	30,43	15,72	<lq< td=""><td>19,43</td><td>18,96</td><td>11,31</td><td>16,98</td><td>19,42</td><td>11,59</td><td>17,61</td><td>23,12</td><td>37,60</td><td>17,20</td><td>22,03</td><td>10,78</td><td>19,90</td></lq<>	19,43	18,96	11,31	16,98	19,42	11,59	17,61	23,12	37,60	17,20	22,03	10,78	19,90
Benzo(a)antraceno	757,99	535,37	548,07	608,38	407,07	685,09	82,30	446,19	105,18	313,86	303,62	191,39	283,41	243,94	274,48	579,26	365,52	790,14	194,29	538,21
Criseno	129,89	83,73	109,10	110,62	81,21	120,84	21,05	73,07	50,13	58,34	52,18	46,19	48,40	52,33	54,42	94,07	69,13	123,05	48,24	100,04
C1-CRIS	57,53	41,10	44,92	50,35	47,90	49,84	<lq< td=""><td>41,35</td><td>15,42</td><td>29,75</td><td>35,32</td><td>26,93</td><td>24,61</td><td>28,34</td><td>38,04</td><td>54,63</td><td>44,97</td><td>59,10</td><td>24,70</td><td>51,32</td></lq<>	41,35	15,42	29,75	35,32	26,93	24,61	28,34	38,04	54,63	44,97	59,10	24,70	51,32
C2-CRIS	7,82	5,86	5,92	7,43	10,06	7,18	<lq< td=""><td>8,46</td><td>17,48</td><td>5,67</td><td>6,95</td><td>10,30</td><td>5,59</td><td>9,57</td><td>9,86</td><td>13,99</td><td>15,85</td><td>9,38</td><td>9,21</td><td>13,04</td></lq<>	8,46	17,48	5,67	6,95	10,30	5,59	9,57	9,86	13,99	15,85	9,38	9,21	13,04
Benzo(b)fluoranteno	345,67	257,16	264,93	260,22	342,76	222,43	88,24	259,15	845,23	254,36	207,78	294,38	222,35	291,66	303,49	372,95	434,50	285,73	378,89	408,23
Benzo(k)fluoranteno	62,21	41,51	46,33	48,88	53,07	41,08	19,67	38,14	220,81	39,54	45,85	47,03	34,24	44,61	42,19	62,79	63,41	56,47	61,49	63,66
Benzo(a)pireno	297,42	225,19	240,65	207,52	354,02	207,82	68,39	240,19	778,97	247,20	188,75	306,92	123,18	263,25	251,51	331,02	370,28	256,78	302,65	46,70
Perileno	325,58	262,86	255,61	238,57	352,47	225,30	107,72	294,01	515,68	277,58	224,30	320,22	215,18	321,73	296,29	405,58	467,20	309,97	433,54	454,29
Benzo(e)pireno	176,86	123,59	129,55	128,49	134,00	135,60	61,79	116,55	143,71	94,43	84,79	91,98	120,08	105,23	126,23	216,07	145,64	160,93	110,36	168,87
Indeno(1,2,3-cd)pireno	88,16	52,36	64,24	60,60	78,92	62,74	28,78	56,18	373,90	60,61	43,40	68,58	47,11	58,91	60,73	96,19	98,36	76,17	81,38	95,62
Dibenzo(a,h)antraceno	48,02	35,64	38,81	37,35	47,60	44,94	11,84	32,44	39,25	33,85	24,15	26,28	28,45	32,34	31,41	30,83	46,54	41,65	31,35	47,79
Benzo(g,h,i)perileno	174,51	141,79	127,23	132,26	159,60	119,93	64,30	108,87	203,15	108,69	89,25	97,35	99,29	112,18	118,56	183,33	164,52	171,68	126,36	162,60

APÊNDICE B-5: Tabela de distribuição individual de HPAs parentais e alquilados no testemunho BIOMT3 – PC DOCE (continuação)

APÊNDICE B-6: Histogramas: distribuição individual de HPAs parentais e alquilados no testemunho BIOMT3 – PC DOCE

0

۰.

ساليا

BaA C1-CRIS C2-CRIS BlbJF BlaJP PER BlaJP DlahJA BlghJP BlghJP

ıllı

C1-PIR C2-PIR

BIOMT3-11 - 10-11 cm

BIOMT3-13 - 12-13 cm

2500

0

350

300

50

С

Ι.

Стания с

APÊNDICE C-1: Série histórica de vazões máximas no Rio de Contas entre os anos de 1935 e 2013

APÊNDICE C-2: Distribuição individual de n-alcanos e isoprenóides no testemunho BIOMT6 – PC CONTAS

BIOMT6-11 - 10-11 cm

L.

BIOMT6-13 - 12-13 cm

n-C22

n-C23 n-C24 h-C26 n-C27 1-C29

1-C25 n-C28

n-C11 n-C12 n-C13 n-C13 n-C15 n-C15 n-C15 n-C15 n-C17 Pristano n-C18 n-C18 n-C18 n-C18 n-C18 n-C18 n-C18 n-C18 n-C13 n-C14 n-C13 n-C14 n-C13 n-C14 n-C15 n-C14 n-C15 n-C

300

250

150

100

50

0

250

200

150

100

50

0

ng.g-1 (peso seco)

ng.g-1 (peso seco) 200

Concentrações em (ng.g ⁻¹)	T6-01	T6-02	T6-03	T6-04	T6-05	T6-06	T6-07	T6-08	T6-09	T6-10	T6-11	T6-12
Naftaleno	2,35	2,51	2,74	1,51	2,89	2,48	1,86	<lq< td=""><td>2,27</td><td>1,78</td><td>2,73</td><td><lq< td=""></lq<></td></lq<>	2,27	1,78	2,73	<lq< td=""></lq<>
1 Metilnaftaleno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2 Metilnaftaleno	<lq< td=""><td>1,13</td><td>1,38</td><td><lq< td=""><td>1,12</td><td>1,36</td><td><lq< td=""><td><lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,13	1,38	<lq< td=""><td>1,12</td><td>1,36</td><td><lq< td=""><td><lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,12	1,36	<lq< td=""><td><lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<>	1,80	0,95	1,35	<lq< td=""></lq<>
C1-N	<lq< td=""><td>1,13</td><td>1,38</td><td><lq< td=""><td>1,12</td><td>1,36</td><td><lq< td=""><td><lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,13	1,38	<lq< td=""><td>1,12</td><td>1,36</td><td><lq< td=""><td><lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,12	1,36	<lq< td=""><td><lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,80</td><td>0,95</td><td>1,35</td><td><lq< td=""></lq<></td></lq<>	1,80	0,95	1,35	<lq< td=""></lq<>
C2-N	<lq< td=""><td><lq< td=""><td>1,16</td><td><lq< td=""><td>1,12</td><td>1,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,16</td><td><lq< td=""><td>1,12</td><td>1,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,16	<lq< td=""><td>1,12</td><td>1,14</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,12	1,14	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,96</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,96</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,96</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,96	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-N	<lq< td=""><td><lq< td=""><td>1,42</td><td><lq< td=""><td>1,27</td><td>1,20</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,07</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,42</td><td><lq< td=""><td>1,27</td><td>1,20</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,07</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,42	<lq< td=""><td>1,27</td><td>1,20</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,07</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,27	1,20	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,07</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,07</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,07</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	1,07	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-N	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bifenil	3,71	3,84	4,07	2,85	3,25	4,19	<lq< td=""><td>1,24</td><td>1,89</td><td>1,28</td><td>1,13</td><td><lq< td=""></lq<></td></lq<>	1,24	1,89	1,28	1,13	<lq< td=""></lq<>
2,6 dimetilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Acenaftileno	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Acenafteno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
C1-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzotiofeno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C1-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno	<lq< td=""><td>1,29</td><td>1,13</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,29	1,13	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,87</td><td><lq< td=""></lq<></td></lq<>	0,87	<lq< td=""></lq<>
C1-FEN	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-FEN	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-FEN	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-FEN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Fluoranteno	1,35	1,84	1,17	<lq< td=""><td>1,83</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,30</td><td>1,11</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,83	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,30</td><td>1,11</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,30</td><td>1,11</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,30</td><td>1,11</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,30</td><td>1,11</td></lq<></td></lq<>	<lq< td=""><td>3,30</td><td>1,11</td></lq<>	3,30	1,11
Pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,47</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,47	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,67</td><td>5,31</td><td>2,26</td><td><lq< td=""></lq<></td></lq<>	2,67	5,31	2,26	<lq< td=""></lq<>
C1-PIR	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,68</td><td><lq< td=""></lq<></td></lq<>	2,68	<lq< td=""></lq<>
C2-PIR	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(a)antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,06</td><td><lq< td=""></lq<></td></lq<>	3,06	<lq< td=""></lq<>
Criseno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,47</td><td><lq< td=""></lq<></td></lq<>	2,47	<lq< td=""></lq<>
C1-CRIS	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-CRIS	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(b)fluoranteno	2,88	3,65	2,24	1,17	2,95	2,34	2,91	2,74	3,05	3,05	4,59	3,69
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""><td>2,32</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,32</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,32	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(a)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,50</td><td><lq< td=""></lq<></td></lq<>	3,50	<lq< td=""></lq<>
Perileno	66,92	79,30	57,19	35,86	47,97	34,85	41,31	34,98	32,95	31,18	32,14	30,28
Benzo(e)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,99</td><td><lq< td=""></lq<></td></lq<>	1,99	<lq< td=""></lq<>
Indeno(1,2,3-cd)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,75</td><td><lq< td=""></lq<></td></lq<>	2,75	<lq< td=""></lq<>
Dibenzo(a,h)antraceno	ND	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Benzo(g,h,i)perileno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>2,41</td><td><lq< td=""></lq<></td></lq<>	2,41	<lq< td=""></lq<>

APÊNDICE C-3: Tabela de distribuição individual de HPAs parentais e alquilados no testemunho BIOMT6 – PC CONTAS

In LINDICL C 5. 1	ubbiu ub u	istiitouişuo	marviada		purchais c	uiquiiuuo	s no testen		1110 10) (commu	içu0)
Concentrações em (ng.g ⁻¹)	T6-13	T6-14	T6-15	T6-18	T6-20-F2	T6-22	T6-24	T6-26	T6-30	T6-33	T6-36	T6-39
Naftaleno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
2 Metilnaftaleno	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-N	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C2-N	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C3-N	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C4-N	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Bifenil	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2,6 dimetilnaftaleno	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>
Acenaftileno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenafteno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""></lq<>
C1-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzotiofwno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C1-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-FEN	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C2-FEN	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
C3-FEN	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C4-FEN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antraceno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fluoranteno	<lq< td=""><td>1,93</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,93	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pireno	<lq< td=""><td>13,28</td><td><lq< td=""><td><lq< td=""><td>4,59</td><td><lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	13,28	<lq< td=""><td><lq< td=""><td>4,59</td><td><lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>4,59</td><td><lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<></td></lq<>	4,59	<lq< td=""><td>3,57</td><td><lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<></td></lq<>	3,57	<lq< td=""><td>7,57</td><td>2,92</td><td><lq< td=""><td>2,02</td></lq<></td></lq<>	7,57	2,92	<lq< td=""><td>2,02</td></lq<>	2,02
C1-PIR	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
C2-PIR	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND
Benzo(a)antraceno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-CRIS	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
C2-CRIS	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND
Benzo(b)fluoranteno	2,37	1,79	2,68	1,62	0,74	1,21	<lq< td=""><td>1,72</td><td><lq< td=""><td>0,79</td><td>0,68</td><td><lq< td=""></lq<></td></lq<></td></lq<>	1,72	<lq< td=""><td>0,79</td><td>0,68</td><td><lq< td=""></lq<></td></lq<>	0,79	0,68	<lq< td=""></lq<>
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Benzo(a)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Perileno	31,51	26,57	27,69	29,32	19,74	27,14	29,06	27,98	15,28	28,41	26,32	16,47
Benzo(e)pireno	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND
Indeno(1,2,3-cd)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td></lq<>	ND	ND
Dibenzo(a,h)antraceno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perileno	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND

APÊNDICE C-3: Tabela de distribuição individual de HPAs parentais e alguilados no testemunho BIOMT6 – PC CONTAS (continuação)

APÊNDICE C-4: Histogramas: distribuição individual de HPAs parentais e alquilados no testemunho BIOMT6 – PC CONTAS

Fonte: Produzido pelo autor por meio de consulta ao portal Hidroweb e download do programa Hidro, versão 1.3 (compilação 1.3.0.6) (ANA, 2018)

APÊNDICE D-2: Distribuição individual de n-alcanos e isoprenóides no testemunho BIOMT7 – PC S. FRANCISCO

M L D C L D J	1 abera ac	/ uisuituitę	ao marvia		15 parentai	.s c arguna				100101	ICI ICIDC	20	
Concentrações em (ng.g ⁻¹)	T7-01	T7-02	T7-03	T7-04	T7-05	T7-06	T7-07	T7-08	T7-09	T7-10	T7-11	T7-12	
Naftaleno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
1 Metilnaftaleno	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	ND	ND	<lq< td=""></lq<>	
2 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
C1-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C2-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C3-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C4-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bifenil	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
2,6 dimetilnaftaleno	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td></lq<></td></lq<>	<lq< td=""><td>ND</td></lq<>	ND	
Acenaftileno	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td></lq<>	ND	
Acenafteno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Fluoreno	ND	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	ND	<lq< td=""></lq<>	
C1-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C2-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C3-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibenzotiofwno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C1-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C2-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
C3-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Fenantreno	6,72	3,57	2,42	1,57	3,08	1,38	2,71	2,18	1,98	1,58	2,29	1,38	
C1-FEN	5,41	1,27	1,22	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
C2-FEN	8,92	3,26	2,87	2,15	5,11	<lq< td=""><td>3,14</td><td>2,27</td><td>1,99</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	3,14	2,27	1,99	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
C3-FEN	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
C4-FEN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Antraceno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Fluoranteno	5,43	1,13	1,83	0,97	2,32	0,85	<lq< td=""><td>1,02</td><td>1,16</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,02	1,16	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Pireno	5,63	6,43	2,32	2,10	1,66	0,00	0,00	3,46	2,22	2,18	1,88	2,28	
C1-PIR	3,80	2,63	2,18	2,46	2,86	1,73	2,08	3,19	2,21	<lq< td=""><td>1,87</td><td><lq< td=""></lq<></td></lq<>	1,87	<lq< td=""></lq<>	
C2-PIR	1,43	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,87</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,87</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,87</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,87</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,87	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Benzo(a)antraceno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Criseno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
C1-CRIS	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
C2-CRIS	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Benzo(b)fluoranteno	9,30	10,84	10,31	8,86	8,22	7,83	6,79	7,61	6,17	3,20	3,93	4,18	
Benzo(k)fluoranteno	<lo< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lo<></td></lo<></td></lo<>	<lo< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lo<></td></lo<>	<lo< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lo<>	<lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<></td></lo<></td></lo<></td></lo<>	<lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<></td></lo<></td></lo<>	<lo< td=""><td><lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<></td></lo<>	<lq< td=""><td><lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<></td></lq<>	<lo< td=""><td><lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<></td></lo<>	<lo< td=""><td><lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<></td></lo<>	<lo< td=""><td><lq< td=""><td><lo< td=""></lo<></td></lq<></td></lo<>	<lq< td=""><td><lo< td=""></lo<></td></lq<>	<lo< td=""></lo<>	
Benzo(a)pireno	2,46	2,78	2,39	2,04	<lq< td=""><td>1,69</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,69	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Perileno	89,88	103,19	98,99	109,60	84,89	69,86	93,78	83,73	65,59	65,36	57,21	56,25	
Benzo(e)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	
Indeno(1,2,3-cd)pireno	2,45	4,47	5,10	4,09	3,29	3,64	2,33	ND	ND	ND	ND	<lq< td=""></lq<>	
Dibenzo(a,h)antraceno	1,82	ND	ND	1,65	3,01	3,11	ND	ND	ND	ND	ND	ND	
Benzo(g,h,i)perileno	1,44	<lq< td=""><td>2,27</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2,27	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>	

APÊNDICE D-3: Tabela de distribuição individual de HPAs parentais e alguilados no testemunho BIOMT7 – PC SÃO FRANCISCO

		3		r						• • •		
Concentrações em (ng.g ⁻¹)	T7-13	T7-14	T7-15	T7-18	T7-20	T7-22	T7-24	T7-26	T7-30	T7-33	T7-36	T7-39
Naftaleno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
1 Metilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
2 Metilnaftaleno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C4-N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bifenil	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
2,6 dimetilnaftaleno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Acenaftileno	ND	ND	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND
Acenafteno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoreno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-FLU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzotiofwno	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C1-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C2-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C3-DBZT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fenantreno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-FEN	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
C2-FEN	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
C3-FEN	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
C4-FEN	ND	ND	ND	ND	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Antraceno	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td><lq< td=""><td>ND</td></lq<></td></lq<>	ND	ND	<lq< td=""><td>ND</td></lq<>	ND
Fluoranteno	1,43	1,59	3,06	1,93	1,96	<lq< td=""><td><lq< td=""><td>3,74</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>3,74</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3,74	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Pireno	0,00	0,00	0,00	3,96	4,65	1,97	4,16	6,19	<lq< td=""><td><lq< td=""><td><lq< td=""><td>3,05</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>3,05</td></lq<></td></lq<>	<lq< td=""><td>3,05</td></lq<>	3,05
C1-PIR	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>1,57</td><td>ND</td><td>ND</td><td>1,71</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,57</td><td>ND</td><td>ND</td><td>1,71</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,57</td><td>ND</td><td>ND</td><td>1,71</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,57</td><td>ND</td><td>ND</td><td>1,71</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	1,57	ND	ND	1,71	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
C2-PIR	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,63</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,63</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,63</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>1,63</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>1,63</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	1,63	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Benzo(a)antraceno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Criseno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
C1-CRIS	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
C2-CRIS	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	ND	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Benzo(b)fluoranteno	2,28	2,39	1,74	2,12	1,74	1,63	1,95	1,13	3,75	2,22	1,61	2,34
Benzo(k)fluoranteno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Benzo(a)pireno	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td>ND</td><td><lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	ND	<lq< td=""><td><lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>ND</td><td><lq< td=""></lq<></td></lq<>	ND	<lq< td=""></lq<>
Perileno	46,20	43,53	37,89	36,65	21,04	26,98	36,93	28,83	56,25	50,04	54,17	44,45
Benzo(e)pireno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Indeno(1,2,3-cd)pireno	2,25	1,78	1,76	1,93	1,47	<lq< td=""><td>1,86</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1,86	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Dibenzo(a,h)antraceno	ND	ND	ND	<lq< td=""><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></lq<>	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perileno	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>

APÊNDICE D-3: Tabela de distribuição individual de HPAs parentais e alquilados no testemunho BIOMT7 – PC SÃO FRANCISCO (continuação)

APÊNDICE D-4: Histogramas: distribuição individual de HPAs parentais e alquilados no testemunho BIOMT7 – PC S. FRANCISCO

