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A solution for the calculation of three-dimensional (3D) eigenrays based on Simplex optimization,

implemented in a 3D Gaussian beam model, is investigated in this paper. The validation and perfor-

mance of the solution were analyzed through comparisons against an equivalent (flat) two-

dimensional waveguide, and against results of a tank scale experiment presented in Sturm and

Korakas [(2013). J. Acoust. Soc. Am. 133(1), 108–118], in which cross-slope propagation in a

wedge waveguide with a mild slope was considered. It was found that the search strategy based on

Simplex optimization was able to calculate efficiently and accurately 3D eigenrays, thus providing

predictions of arrival patterns along cross-slope range, which replicated elaborate patterns of mode

shadow zones, intra-mode interference, and mode arrivals. A remarkable aspect of the search strat-

egy was its ability to provide accurate values of initial eigenray elevation and azimuth, within the

accuracy defined for the eigenray to arrive at the location of a given hydrophone.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5030922
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I. INTRODUCTION

Eigenrays can be defined as particular rays that for a

given waveguide geometry connect the source to the receiver

(Jensen et al., 2011). The accurate calculation of eigenrays is

a problem of great interest in underwater acoustics because

they can be used for faithful predictions of the received signal,

which is extremely sensitive to the ray travel time and ray

take-off angles. In two-dimensional (2D) waveguides, the

problem can be solved efficiently using root finder algorithms

in one dimension; in such cases, the problem can be stated as

searching for the zeros of a function, which depends only on

the elevation angles. The extension of such root finder algo-

rithms to find eigenrays in a three-dimensional (3D) wave-

guide is a cumbersome task that requires the search to take

place on the 2D plane of elevation and azimuth, and would be

guided mainly by the minimization of the distance between

the final position of the ray and the position of the hydro-

phone; besides, looking for the minima on the elevation/azi-

muth plane, unlike the one-dimensional search, cannot take

place along a particular direction due to the complex regime

of propagation, which often needs to account for out-of-plane

effects, non-linear internal waves or boundary features

(Buckingham, 1987; Tolstoy, 1996). The problem is also

computationally demanding, since it often relies on the shoot-

ing of a large amount of initial rays (Calazan et al., 2017).

Some of the approaches described in the literature relied on

interpolation (Xing et al., 2013), or ray computations using

spherical coordinates (Reilly et al., 2016); the latter was

noticed to be of low accuracy and less efficient than the equiv-

alent search using Cartesian coordinates; a drawback of the

previous discussions is that both considered basic idealized

waveguides and a single hydrophone. An analytic approach to

the problem was proposed in Maltsev (2001), which stated the

calculation of eigenrays as a variational problem. Thus, find-

ing an initial set of eigenrays for a receiver close to the source

allowed eigenrays to be found for an arbitrary receiver posi-

tion; caustics could be taken into account by considering a ray

amplitude, which was frequency dependent. However, the

numerical implementation of the method for general sound

profiles required the introduction of parameterized smoothing

functions, and the performance of the method accounting for

3D bathymetries was not considered. A summation approach,

based on the superposition of complex source beams, dis-

cussed in detail in Heilpern et al. (2007) and Gluk and

Heyman (2011), proposes to rely on beam shooting to avoid

eigenray calculations; to this end, the beams need to be prop-

erly collimated through the proper selection of beam parame-

ters for the given geometry of propagation. The discussion,

however, was limited to 2D propagation and did not account

for boundary reflections. In contrast, the approach considered

in this paper relies on a small set of parameters (which needs

to be determined only once) and is able to handle arbitrary 3D

effects, induced by either sound speed distributions or

bathymetries (or both). The computational strategy of

Simplex optimization was designed in order to rely on an effi-

cient selection, within the original region of candidates that

encloses a given receiver, such that the search can be accom-

plished efficiently with either a vertical or a horizontal array.

In fact, Simplex optimization guides the ray solution account-

ing for all environmental influences, finding take-off angles

that allow a given ray to pass nearby the receiver within a

user-defined distance. In this context, the method provides an

accurate estimate of travel time, which is fundamental to pre-

dict the channel impulse response.

The Simplex optimization was implemented in the

TRACEO3D Gaussian beam model (Rodriguez et al., 2017);

preliminary results were compared against predictions froma)Electronic mail: a53956@ualg.pt
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the 2D TRACEO model (Rodriguez et al., 2012) for an

equivalent (flat) waveguide. Results from a tank scale exper-

iment reported in Sturm and Korakas (2013) were considered

for validation and performance assessment. The organization

of this paper is as follows: Simplex-based eigenray search is

presented in Sec. II, the TRACEO3D model is compactly

described in Sec. III, while Sec. IV presents the experimental

model validation. Conclusions and future work are presented

in Sec. V.

II. THE EIGENRAY SIMPLEX-BASED SEARCH

The 3D search of eigenrays is composed of three differ-

ent strategies: first, to start the search determine a reliable

candidate region that encloses the receiver; second, apply

the general rules of Simplex optimization using the candi-

date region to find an eigenray; third, avoid the storage of

duplicated eigenrays. These strategies are discussed in the

following sections.

A. Selection of a reliable candidate region

Let h and / be the ray elevation and azimuth, respec-

tively. For a given set of receivers, the initial choice of take-

off angles (defined by a set of h and / at the source) depends

on many waveguide features, such as boundary variations

over the horizontal plane, source-receiver alignment, and the

existence or absence of environmental variations. In any

case, a given choice should aim at sweeping the waveguide

in such a way that a large number of rays should propagate

among all receivers, and thus enough eigenrays can be found

at every receiver to predict accurately the corresponding

impulse response. For a given receiver, a vertical plane is

calculated using the normal vector connecting the source to

the receiver, and the crossings of rays through the plane

determine the closest distance from each ray to the receiver.

Let hi and /j define the take-off angle of the (i, j)th ray; a

candidate search space is then build with the region defined

by the corners

hi;/j hi;/jþ1

hiþ1;/j hiþ1;/jþ1

" #
:

These corners are changed over iterations according to the

following rules:

• Fix i and increment j until the horizontal deviation of the

closest distance vanishes;
• Increment i and repeat the previous step until it covers the

vertical deviations.

At each iteration, a new search region is created; the

corresponding corners are used to divide the region in trian-

gles using four combinations

(1) ½hi;/j hiþ1;/j hi;/jþ1�;
(2) ½hi;/j hiþ1;/j hiþ1;/jþ1�;
(3) ½hi;/j hi;/jþ1 hiþ1;/jþ1�;
(4) ½hiþ1;/j hi;/jþ1 hiþ1;/jþ1�.

To determine which triangle contains the receiver, the

method calculates the barycentric coordinates k, which are

given by
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0
@
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xr

yr

zr

0
@

1
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where (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) represent the

coordinates of the triangle vertex, and (xr, yr, zr) are the coor-

dinates of the receiver. The search considers all triangles divi-

sions; it decides that the receiver lies inside a given triangle

when the components of the normalized k are all positive.

When this happens, the take-off angles (h, /) of the corre-

sponding vertex are considered for further Simplex optimiza-

tion. Figure 1 depicts the candidate region where a

hypothetical receiver is located at the first combination of

launching angles. Although the triangles overlap, the search

must consider all of them, until the one containing the

receiver is found. This selection step is fundamental in order

to overcome the chaotic distribution of vertex corners induced

by the waveguide. In the general case, rays from an initial nar-

row pyramid will end up producing an amorphous cloud of

corners near the receiver, with consecutive rays following

completely different paths. For instance, one corner can be

produced by a ray coming from the bottom, while another cor-

ner can be produced by a ray coming from the surface.

B. Simplex optimization

The Simplex method was developed as a general strategy

to optimize a function of N variables (Nelder and Mead,

1965). A simplex can be idealized as a geometric figure in N
dimensions, defined by a set of Nþ 1 points; for instance, a

simplex is a triangle in two dimensions, and in three dimen-

sions a simplex is a tetrahedron. The method can be able to

FIG. 1. Candidate region with four corners, represented as asterisks, and

coordinates (xk, yk, zk) where a given ray intersects the vertical plane associ-

ated to the receiver. The region is divided into triangles (dashed lines), and

barycentric coordinates (solid lines) k1, k2, and k3 are used to determine

which triangle contains the receiver.
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achieve convergence in few iterations, and requires few func-

tion evaluations, a feature which is important when dealing

with complicated objective functions (Lagarias et al., 1998).

Within the context of eigenray search the objective

function to be minimized can be defined as

f ðh;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr � xðh;/Þ½ �2þ
yr � yðh;/Þ½ �2þ
zr � zðh;/Þ½ �2

vuuuut ; (2)

where x(h, /), y(h, /), and z(h, /) represent the ray coordi-

nates on the vertical plane of the receiver. The selection of a

candidate region delivers a high quality initial guess suited

for the simplex algorithm, which will compute a point

between each vertex of the triangle and its centroid. The new

point will produce a simplex with the same triangular shape

inside the initial region. Additionally, overlapping triangles

can be used to restart the optimization in regions in which

the convergence is failing. Once the simplex is started, it

uses three operations called reflection, contraction, and

expansion, based on the simplex centroid, to determine a

new vertex with smaller values of f(h, /). The optimization

stops when the value of the function at a latest vertex is

below a predefined threshold, and the corresponding pair

(h, /) is used to calculate the eigenray. Associated with

those operations, there is a set of reflection, expansion, and

contraction coefficients: a, c, and b, respectively. During ini-

tial tests for a single receiver, the algorithm achieved a

remarkable convergence with a¼ 1.5, c¼ 1.65, and b¼ 0.5.

Those values were found to guarantee the convergence of

the method for all eigenray calculations of the different

experimental configurations considered. It should be noticed

that parallel tests using swarm optimization, with different

combinations of its own specific parameters, failed often to

achieve the desired accuracy, besides requiring significant

amounts of computational time.

C. Avoiding storage of duplicated eigenrays

A blind application of Simplex optimization can lead to

the calculation of the same eigenray using different candi-

date regions. To avoid this, the following additional tests

were introduced:

• Once an eigenray is found, it is verified that the corre-

sponding pair (h, /) lies inside the candidate region. If the

condition is not fulfilled the eigenray is discarded.
• As eigenrays are being calculated, the corresponding

information regarding (h, /) together with surface and

bottom reflections are stored in memory; each new eigen-

ray is compared against those in memory and discarded if

already present.

A final procedure for sorting the computed eigenrays by

time is required to represent the channel impulse response.

III. THE TRACEO3D GAUSSIAN BEAM MODEL

The Simplex based eigenray search was implemented in the

TRACEO3D Gaussian beam model (Rodriguez et al., 2017),

which is a 3D extension of the TRACEO model (Rodriguez

et al., 2012). TRACEO3D relies on the 3D solution of the

Eikonal equations to calculate ray trajectories, and on the

solution of the dynamic equations to calculate ray ampli-

tudes (�Cervenỳ and P�senč�ık, 1979; Collins and Kuperman,

1991; Jensen et al., 2011; Popov, 2002). For a given eigen-

ray, such amplitude can be written as

AðsÞ ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c sð Þ
c 0ð Þ

cos h 0ð Þ
det Q sð Þ

s
exp �ixs sð Þ½ �; (3)

where s corresponds to the ray arc length, and c(s) and s(s)

stand for the sound speed and travel time along the ray,

respectively; the complex matrix QðsÞ describes the beam

spreading.

IV. VALIDATION

The accuracy and efficiency of the Simplex based eigen-

ray search in three-dimensions was intensively tested with

comparisons against an equivalent 2D waveguide, and

against results from a tank scale experiment. The experiment

and comparisons are discussed in the following sections.

A. The tank scale experiment

Environmental measurements and geometric parameters

from the tank scale experiment discussed in Korakas et al.
(2009) and Sturm and Korakas (2013) were considered for the

validation of model predictions. The inner tank dimensions

were 10 m long, 3 m wide, and 1 m deep. The source and the

receiver were both aligned along the across-slope direction, as

shown in Fig. 2. The transmitted signal was a five-cycle pulse

with a Gaussian envelope, with a frequency spectrum showing

a main lobe centered at 150 kHz and 100 kHz bandwidth. The

bottom was filled with sand and a rake was used to produce a

mild slope angle a � 4.5�. Bottom parameters corresponded

to cp¼ 1700 m/s, q¼ 1.99 g/cm3, and ap¼ 0.5 dB/k. The

receiver was located at 10 mm depth from the surface, bottom

FIG. 2. Cross-slope geometry: a correspond to the bottom slope, D(0) is the

bottom depth at the source position, zs stands for the acoustical source depth

where the double circle indicates its position, and the synthetic horizontal

array is located along the Y-axis.
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depth at source position stands for D(0)¼ 48 mm. The ASP-H

data set of cross-slope propagation is composed of time sig-

nals, recorded at a fixed receiver depth denominated zr, and

source/receiver distances starting from Y¼ 0.1 m until

Y¼ 5 m in increments of 0.005 m, providing a sufficiently fine

representation of the acoustic field in terms of range. Three

different source depths were considered, namely zs¼ 10 mm,

19 mm, and 26.9 mm, corresponding to data subsets refer-

enced as ASP-H1, ASP-H2, and ASP-H3, respectively. Sound

speed in the water was considered constant and corresponded

to 1488.2 m/s for ASP-H1 and 1488.7 m/s for ASP-H2 and

ASP-H3. For simulations purposes, a scale factor of 1000:1 is

required to properly account in the model for the frequencies

and lengths of the experimental configuration. Thus, experi-

mental frequencies in kHz become model frequencies in Hz,

and experimental lengths in mm become model lengths in m.

For instance, an experimental frequency of 150 kHz becomes

a model frequency of 150 Hz, and an experimental distance of

10 mm becomes a model distance of 10 m. Sound speed

remains unchanged, as well as compressional and shear

attenuations.

B. Numerical predictions and comparisons

A preliminary set of comparisons was performed

between TRACEO3D and TRACEO considering the experi-

mental setup described in the previous section. Models pre-

dictions were obtained for a source frequency of 150 Hz.

The horizontal array was idealized starting at 0.1 km until

5 km in increments of 0.1 km. A synthetic five-cycle pulse

with a Gaussian envelope was considered as the emitted sig-

nal. The received signal was computed using the model out-

put of amplitudes and delays for each receiver range and

depth. Only frequencies between 100 Hz and 200 Hz were

considered; outside this interval, the acoustic field was set to

zero. The signal in the time domain was calculated using the

inverse Fourier transform.

Preliminary TRACEO3D predictions failed to produce

satisfactory results using the parameters provided by the

refinement discussed in Sturm and Korakas (2013); there-

fore, alternative geometries were considered. The configura-

tion shown in Table I was found to replicate best the results

presented in Fig. 3 from the above reference. 3D predictions,

together with equivalent TRACEO calculations for a flat

waveguide, are shown in Fig. 3. Simple visual inspection

shows that the given set of parameters allows TRACEO3D

[see Figs. 3(d)–3(f)] to predict the features visible in the

experimental data, such as the numbers and position of the

modes, as well as mode shadow zones, intra-mode interfer-

ence, and mode arrivals. The only exception was the

attempted replication of the ASP-H3 data set; it is believed

that most of the discrepancies are due to the proximity of the

source to the bottom in the corresponding geometry.

As suggested in Weinberg and Burridge (1974),

Harrison (1979), and Buckingham (1987), such 3D effects

can be explained based on ray/mode analogies. A mode can

be considered as a standing wave in the vertical plane, and

as a traveling wave describing a hyperbolic path on the hori-

zontal plane, with the ray propagating itself initially upslope;

at some point in range, the hyperbolic path crosses the

across-slope direction. This analogy is fundamental for the

discussion that follows. Predictions of normalized ampli-

tudes for 2D and 3D calculations, regarding the ASP-H1

configuration, are shown in Fig. 4. The 3D results in the fig-

ure also indicate the modes in the (h, /) plane, allowing to

determine take-off angles for different modes. The dashed

lines represent approximately the edges of the shadow zones

for each mode, with each shadow zone being a complex

function of different parameters, such as frequency, wedge

slope, and bottom properties. The across-slope direction

where the source is aligned with the synthetic horizontal

array is taken as /¼ 0; this angle increases towards the

wedge apex.

The waveforms presented in Fig. 3(a) correspond to 2D

predictions for the ASP-H1 configuration, with a source

depth of 6.7 m. At short ranges, the predicted time signals

seem to merge altogether. Above a certain range, they start

to be separated, increasing the relative time delay between

them as the receiver moves away from the source. As a

receiver approaches the range of 5 km, late arrivals progres-

sively lose more energy. Similar patterns can be seen in the

other two configurations [see Figs. 3(b) and 3(c)]. The ASP-

H1 2D prediction is further supported by Figs. 4(a)–4(e), in

which the behavior of amplitudes over range exhibits a typi-

cal distribution for a flat waveguide: amplitudes can be seen

to decrease steadily over elevations h, while the number of

eigenrays increases with range. Such steady decay can be

explained by taking into account that 2D eigenrays are con-

fined exclusively to the vertical plane, and thus bounce often

off the bottom, losing more and more energy as elevation

and range increase. A completely different pattern can be

seen in Fig. 3(d), in which the waveforms were calculated

accounting for full 3D effects. The figure shows an interest-

ing pattern of mode arrivals: above 2 km, the modes M1 and

M2 exhibit well resolved first and second arrivals, and the

time delay between them decreases as the receiver moves

away from the source; near 2 km, the expected first and sec-

ond arrivals from mode M3 merge together, and the mode

quickly vanishes due to the transition of M3 into a shadow

zone; additionally, as range decreases below 2 km, modal

refraction on the horizontal plane is such that the mode M4

becomes well resolved in time, but exhibiting only a single

arrival. Similar modal patterns can be seen in Figs. 3(e) and

3(f). All mentioned features can be explained in more detail

in Figs. 4(f)–4(j), which show that higher order modes are

more intensively refracted at short ranges due to their large

initial elevation h; such modes rapidly bounce the bottom at

the critical angle and thus vanish (i.e., enter a shadow zone)

after being absorbed. Low order modes, on the other hand,

are able to produce first and second arrivals at larger ranges

TABLE I. Geometric parameters used in numerical predictions of the wave-

guide used in ASP-H data sets.

zs (m) zr (m) D(0) (m) Slope (%)

ASP-H1 6.7 11.0 43.9 4.5

ASP-H2 15.0 11.0 43.9 4.5

ASP-H3 27.0 11.0 43.9 4.5
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due to an interesting combination of propagation conditions:

for a single “small” elevation h, one can find a pair of azi-

muths /1 and /2 (with /1</2), in which the ray with take-

off angles (h, /2) propagates over shallower regions, but

bounces more often off the bottom than the ray propagating

with angles (h, /1), and therefore leaks energy more rapidly.

Thus, the entire 3D set of eigenray, travel time, and ampli-

tude calculations allows the establishment of a remarkable

connection between eigenray azimuth/elevation (h, /), mode

order n, and receiver range r, with the parameters (h, /, n)

increasing simultaneously as r decreases. These general con-

clusions, based mostly on ray theory, coincide with the dis-

cussion presented in Korakas et al. (2009). Obviously, there

are some amplitude discrepancies between the results shown

in Figs. 3(d) and 3(f) and those presented in Fig. 3 from

Sturm and Korakas (2013); the discrepancies were in fact

expected. During the calculations of arrival patterns, differ-

ent synthetic pulses were considered besides the Gaussian

(a) (b) (c)

(d) (e) (f)

FIG. 3. Arrival pattern predictions calculated with TRACEO (top) and TRACEO3D (bottom) for the geometry presented in Table I; four modes can be identi-

fied regarding 3D predictions for the ASP-H1 configuration.
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one; it was found that the structure of propagating modes

was highly sensitive to the particular choice of emitted sig-

nal. Such sensitivity can perhaps explain the usage of the

recorded transmitted signal, instead of the synthetic one, to

predict the arrival patterns shown in Sturm and Korakas

(2013). A final insight into the problem can be found in the

comparison of eigenrays, calculated with TRACEO for the

flat case, and calculated with TRACEO3D for the wedge

waveguide (see Fig. 5). At a first glance, there seems to be a

perfect one-to-one correspondence of eigenrays in terms of

elevations h, and thus one could expect both 2D and 3D

amplitudes to exhibit a similar correspondence. In fact, that

is not the case; in the wedge waveguide, most eigenrays

propagating up then down slope are bouncing on regions

where bottom depth is smaller than the one of the 2D wave-

guide; as a consequence, instead of spreading progressively

over elevations as shown in Fig. 4(b), the amplitudes of

arrivals become clustered between the limits of an elevation

interval, as shown in Fig. 4(g).

V. CONCLUSIONS AND FUTURE WORK

The discussion presented in this paper demonstrated the

feasibility of using the Simplex method to find 3D eigenrays.

The method was implemented in the TRACEO3D Gaussian

beam model, and the corresponding validation was carried

out against predictions from the 2D TRACEO model, and

against results from a tank scale experiment. The 3D predic-

tions exhibited a remarkable similarity with most experimen-

tal features, replicating mode shadow zones, intra-mode

interference, and mode arrivals; important connections in the

ray/mode equivalence framework were noticed. TRACEO

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

FIG. 4. Predictions of normalized amplitudes versus launching angles for the ASP-H1 configuration over range: TRACEO (left); TRACEO3D (right). The cor-

responding regions where modes can exist are indicated over the (h, /) plane. The dashed lines stand roughly for the critical launching angle.
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predictions, unsurprisingly, were found to be valid only close

to the source. The proposed method allows an efficient and

accurate calculation of 3D eigenrays by determining values

of the corresponding take-off angles, which lead to the

shooting of rays passing as close as desired to the position of

a given receiver after multiple boundary reflections. Minor

discrepancies found in the comparisons against experimental

results are believed to be related to signal processing issues,

and to ray theory being applied on the edge of its validity.

Yet such discrepancies are completely independent of the

proposed method of eigenray search, which was found to be

extremely efficient and robust.

Future work will be oriented to the calculation of eigen-

rays in typical ocean environments, with complex bathyme-

tries like sea canyons, or complex sound speed fields like the

one produced by an upwelling regime. There are also theoreti-

cal methods that can be incorporated into the TRACEO3D

model in order to improve its accuracy at those frequencies,

which are considered too low for classical ray theory to be

applied. Finally, to reduce significantly the time of computa-

tions, a parallel version of TRACEO3D based on the architec-

ture of graphic processing units is currently underway.
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