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ABSTRACT 

The employment of unmanned aerial vehicles is currently a fact in modern 

warfare. The benefit of using drones as a swarm, working together to accomplish a task, 

will help save lives; however, the communication among drones within a swarm is a 

challenge with the available technology due mainly to the power requirements to operate 

in a small device. Inspired by the massive machine-type communication 5th generation 

mobile networks, this work offers a novel method of identification and ranging for drones 

in swarm. The 5G communication channel’s preamble with a Zadoff-Chu (ZC) sequence 

is expected to provide low power and less interference between devices and yet yield 

good mean-square error results when a matched filter is applied. Simulations 

considering different numbers of drones within a swarm embedded in noisy and 

Doppler-affected environments demonstrate promising results even in poor 

scenarios with small signal-to-noise ratio and high Doppler frequency shift, 

especially when the batch of ZC sequences’ root indexes are selected into a special 

group. 
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CHAPTER 1:
Introduction

The employment of unmanned aerial vehicles (UAV) is prevalent in modern warfare. Fur-
thermore, multiple drones working together to accomplish a task, also known as a swarm,
can help save lives; however, the communication among drones within a swarm is a chal-
lenge with the available technology. This challenge is due mainly to the limited electrical
power available to operate all sensors and electronics in a small device.

One possible solution to this problem is to use the communication channel for exchanging
data containing relevant information about the drones within a swarm.

This work details computer simulations to evaluate the practical applicability of a Zadoff-
Chu (ZC) sequence, extensively used in 5th generation mobile network (5G) communica-
tions, to carry information about the identification and position of drones in a swarm.

1.1 Background
Modern warfare took a major step forward in the protection of lives when drones were used
in operations for the first time. In a context where the main purpose is to protect a nation’s
interest and lives, the future of war will be defined by the level of technology applied in
UAV in service.

The operation of a swarm of drones, instead of just one drone, would increase the range of
missions that could be accomplished, such as by increasing payload carried into and out of
battle. In such missions, drones would most likely be operating in environments embedded
in noise, and drones are susceptible to a shift in frequency caused by the Doppler effect.

This thesis work analyses the use of the preamble, located in 5G communication packets,
that in this case would carry a ZC sequence with identification and position information
regarding a reference drone. Most specifically, this research establishes a method to get that
information by applying a matched filter (MF).

Matched filters are widely used in radar systems, employed primarily for detection. Here,
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the well-known cross correlation, when applied to a ZC sequence and samples containing
this same ZC sequence, acts as a matched filter. The results obtained for this filter exhibit
a peak exactly at the point where the ZC sequence starts at the sample vector. Given the
expected results for the matched filter, it is possible to evaluate the influence of the noise and
the Doppler effect by changing these parameters when the drones are operating in scenarios
with these adversities.

1.2 Related Work
The employment of drones in combat zones is relatively novel, starting during the Cold
War [1], and modern studies have investigated the applications of many drones working
together and how efficient they can be as a swarm [2].

Qiannan Cui, Peizhi Liu, Jinhua Wang, et al., in their 2017 study [3], provided an approach
for trying to determine the best network to manage mesh swarms: mobile ad hoc networks
(MANET) or vehicular ad hoc networks (VANET). Their approach separated the swarm
into small groups, with each group having a mother drone that manages the communication
with other drones’ groups.

The research of Luji Cui, Hao Zhang, et al. [4], in 2015, showed promising results of
estimating range using a 60 GHz orthogonal, frequency-division multiplexing (OFDM)
system with the Guard Interval as a communication channel. Also in 2015, Vincent Savaux
and Faouzi Bader [5] implemented a mean-square error (MSE) based method to analyze
the performance of the OFDM channel. Finally, Min Hua, Mao Wang, et al. [6] analyzed
the Doppler effect in the timing performance of a ZC sequence in their 2014 work.

The work presented in this thesis is a combination of all the research just mentioned, using
MSE plots to analyze the performance of ZC sequences as a way to identify and range
drones operating in a swarm, within a noisy and Doppler-affected environment.

1.3 Objective
In this thesis, we consider ZC sequences with a length of 839 symbols. A simulation
algorithm was created to replicate real-world scenarios for the swarm. The parameters
changed during the performance of the algorithm included the size of the swarms, the

2



position of the drones in the layout, the packet preamble, the load of noise, and the amplitude
of the Doppler effect. The main purpose of this work was to manipulate those parameters,
analyze the results, and select sets of the root index of a ZC sequence (R) as best or worst
to mitigate errors in ranging unmanned aerial vehicles operating in a swarm.

1.4 Thesis Organization
In Chapter 2, we present the theoretical background of themathematics andmethods applied
in the simulations. This math and methods background includes the basics of 5G, and the
particularities of ZC sequences, as well as the applicability of the cross-correlation as
an MF to identify and range UAVs in a swarm deployed in a noisy and Doppler affected
environment. In Chapter 3we discuss the scenarios that were simulated and their algorithms,
showing and explaining the reasons why the parameters that were changed were changed,
concluding with the performance results and whether they showed what was expected. In
the conclusion, Chapter 4, we provide a brief summary and discussion of the results of
simulations and propose some ideas for future work.

3
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CHAPTER 2:
UAV Communication System

The communication among drones is the core of this research because ultimately, poor
communications will prevent a swarm of drones from being effective. In this chapter we
explain the features of a 5G-inspired communication system for drones and, at the same
time, explore the effect of the different factors in this channel.

The math behind the methods used in this thesis, and some assumptions made for drone
distributions and their positioning, are also provided in this chapter.

2.1 Basics of 5G Communication
A possible solution for drone communication problem is the new 5G technology, which pro-
vides communication between a large number of devices using the feature known as massive
machine-type communication (mMTC), which boasts low cost and low energy consump-
tion [7], necessary features in a dense environment of drones. A swarm of communication
drones is shown in Figure 2.1.

Figure 2.1. Drone communication using 5G mMTC.
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Considering that 5G uses OFDM, the information is divided into several slots, called
symbols, in both the time domain and frequency domain, as shown in Figure 2.2.

Figure 2.2. Time-frequency representation of OFDM. Source: [8].

The concatenation of symbols in the time domain for 5G is given by a sequence of Preamble,
Symbol (or symbols), and Guard Interval. The Preamble is also known as the physical
random-access channel (PRACH), and it can be located in Figure 2.2 as the sym 0 sequence.
Depending on its format, the 5G preamblemay have two supported sequence lengths: a short
length !'� = 139 and a long length !'� = 839 [9]. Drones sending preamble information
to a 5G mMTC cloud are shown in Figure 2.3. In a real situation, the preambles are not
synchronized, and there is noise and Doppler effect associated with this signal.

Figure 2.3. Drones sending the preamble information to a cloud network.
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The preamble in the 5G communication protocol provides synchronization information to
the uplink [7]. Since the drones do not need synchronization, the preamble can be used for
another purpose – for instance, containing a sequence with the identification information of
each drone. Nonetheless, it needs to be determined which kind of number sequence sent as
the preamble would provide a good signal-to-noise ratio (SNR) feature and simultaneously
provide ranging information for the drone sending this information. The answer to this
question is the ZC polyphase sequence, a good option since it has ideal properties for this
application.

The ZC sequence was implemented in the preamble field in this research, and how the
information for range and identification is included is explained in the next sections.

2.2 Polyphase Sequences
The core of the development of this thesis is a very specific family of sequences, the
Polyphase Sequences. These kinds of sequences have some specific correlation properties
that make them very useful in several places in 5G communications [7].

A given sequence ( = 10, 11, ..., 1=−1 is a polyphase sequence if every number in the
sequence is a complex # Cℎ root of unity, that is, if there exists a positive integer N such that
each |0#

:
| = 1, where G ∈ C [10].

1= = 4
− 9=2c
# (2.1)

where:

• = is the sequence position for 0 ≤ = < # , and
• # is the sequence length.

2.2.1 The Zadoff-Chu Sequence
Initially studied in 1972 by David C. Chu [11], the ZC sequence is a family of polyphase
sequences commonly used as the sounding reference signals (SRS) in 5G communications.
The ZC sequences are particular cases of polyphase sequences, where the factor = is

7



separated into two factors, < and ?=, where < is any integer co-prime with an odd number
# , and ?= is the =Cℎ pronic number: =(= + 1).

A ZC sequence is given by [4], [7], [11]:

0= =


4
9 c ?==

2
# = 4

− 9 c'=2
#/� ; 0 ≤ = < #/� , #/� even

4
9 c ?=<(=+1)

# = 4
− 9 c'<(=+1)

#/� ; 0 ≤ = < #/� , #/� odd
(2.2)

where:

• < is some positive integer that is co-prime with #;
• # is odd; and
• ?= is =Cℎ pronic number (defined as =(= + 1)) for 0 ≤ = < #/� .

Since ?=, or, as referred to starting here as R, defines the generation of 'Cℎ root ZC sequence
with length #/� [12], R can provide an identification for the drones. The preamble length
upper limit, !'� = 839, allows the identification of 839 individual drones and represents
the maximum swarm size.

These sequences were initially introduced by Robert Frank, in 1962 [13]. The construction
of the sequence was initially described as follows:

M =



1 2 3 · · · #

2 4 6 · · · 2#
3 6 9 · · · 3#
...

...
...

. . .
...

# 2# 3# · · · #2


. (2.3)

The numerals in Equation 2.3 work as basic phase angles and can be defined as: 2c</#
(< is co-prime with #). The sequence is then created by:

0= = 4
9 2c<
# ×Md=/#e,<>3 (=,#) . (2.4)

8



The drawback of Frank’s sequence is that it is restricted to a length that must be a perfect
square. David Chu extended this idea to a code of any length N, demonstrating mathe-
matically a valuable property of a ZC sequence, the constant-amplitude, zero autocorre-
lation (CAZAC) property [11], [13], [14]. (Note that although the preceding requirement
is odd, Chu also provided a separate formula if N is even.) The sequence is said to be a
constant-amplitude (CA) sequence if for any R it has a constant amplitude |0= | = 1 [13], as
shown in Figure 2.4.

Figure 2.4. |0= | x = for various values of R.

A good reason to use CA sequences is that they provide accurate channel estimation [15]
and have a power-saving feature very useful in a swarm of drones.

On the other hand, a given sequence is said to be zero autocorrelation (ZAC) if it has an ideal
periodic autocorrelation [14]. A large autocorrelation in the distance from zero to a series
of numbers (lag) : = 0, which is a demonstration for the ZAC property of the ZC sequence
is shown in Figure 2.5. In the next section, we explain this property of ZC sequences as well

9



as explain why it is important in this work.

Figure 2.5. Auto-correlation '-- of a ZC sequence.

2.3 The Matched Filter Application
"The necessary and sufficient condition for a sequence to be CAZAC is that its discrete
Fourier transform (DFT) have constant amplitude" [14]. As is known, the DFT of a constant
is a delta function [16]:

F (1) = X(=). (2.5)

Since the ZC sequences have a constant amplitude equal to one, the DFT of the sequence
is a delta function located at a lag equal to zero. This shows an important feature of a ZC
sequence, which is its zero circular autocorrelation, since

10



F
(
F −1 (0=) × F −1 (0=)∗

)
= 0= ~ 0= (2.6)

is true.

It is also known that the linear cross-correlation is given by [17]:

'-. [:] = �{G [=] ~∗ [= − :]} =
∞∑

==−∞
G [=] ~∗ [= − :] (2.7)

where, in this research:

• G [=] is a ZC sequence;
• ~[= − :] is a larger vector with G [=] inserted in it; and
• : is the position, or lag, where G [=] is located in ~[=].

When linear cross-correlation is applied to a ZC sequence and a larger vector containing
this sequence, the cross correlation works as a matched filter [18], matching the position
where the ZC sequence was inserted, placing a delta with amplitude #/� = 839 (Figure
2.6).
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Figure 2.6. '-. of a ZC sequence and a vector of zeros containing this same
sequence.

This peak of amplitude 839, in an environment without noise or Doppler effect (elements
added to our environment in the next sections), will always be the greatest peak identified
in the resultant linear cross correlation.

2.4 UAV Swarms Communication
Knowing that the maximum peak of the cross correlation '-. is located at the lag repre-
senting the position of a drone, an algorithm can be applied to calculate this position in
terms of distance, for example.

2.4.1 Ranging the Drones
Suppose a drone A receives the preamble transmitted by another drone B. Suppose also that
drone B has an embedded algorithm able to apply the cross correlation between B’s known
ZC sequence of length #/� = 839 and the sample received; therefore, we expect that the
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resultant '-. contains a maximum value exactly at the distance between the drones � and
� in terms of the lag : . Therefore, the distance between A and B can be determined by:

�8BC0=24�,� = 5 ("0G ('-. [:])) = 5
(
"0G

(
'0/� ,( [:]

) )
. (2.8)

It is important to note that this work starts from here to identify G [=] as the ZC sequence
0/� [=] and the larger sample containing 0/� , ~ [=], as B [=].

2.4.2 Identifying the Drones
As said previously, the ZC sequence can be used to identify the drones in the swarm. Given
the factors #/� and R, the sequence of numbers is always the same. Considering the length
of the sequences fixed in #/� = 839, the only variable factor in the sequence is the root
index R. Since R should be in the interval 0 < ' < #/� , there are just 838 possible ZC
sequences of length #/� = 839. Given that fact, the drones can have a memory bank
with all sequences used in the swarm, where the root index R identifies each drone. After a
sample sequence is received, the drone would apply an internal algorithm for the linear cross
correlation '0/� ,( [:] and identify the drone by applying the correct 0/� for the specified
R since the maximum peak occurs only for the specific ZC sequence.

In Figure 2.7, we see a signal containing two hypothetical drones, identified by the root
indices ' = 17 and ' = 19, located at samples 3,215, and 4,702. Applying the cross
correlation between the samples B[=] and the ZC sequence 0�/ with ' = 17, we can
identify the position of the drone at sample 3, 215. The same method also works for another
drone, identified by ' = 19 at sample 4, 702.
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Figure 2.7. Drone identification.

2.4.3 ZC Sequences Orthogonality
Another important characteristic of ZC sequences is their inherent orthogonality. This
characteristic, if it exists, implies a low level of interference between the devices using it,
and this is one more favorable reason to use these sequences in this research. A sufficient
condition to prove the orthogonality of two sequences is that the cyclic cross correlation
between these two sequences has a constant value equal to 0/�1 ~ 0/�2 = 1/

√
#/� [19]. In

this work #/� = 839; therefore, the constant value expected for the cyclic cross correlation
is 0.0345.
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Figure 2.8. Orthogonality in ZC sequences.

The result in Figure 2.8 shows that ZC sequences are orthogonal to each other. Since the
number of drones will be large, the orthogonality property is desired, considering the low
interference level between the drones. Employing ZC sequences in the communication
between the drones will provide low interference among them.

Given all the positive features of the ZC sequences – that is, they are CAZAC and orthogonal
– these sequences are ideal for the application studied in this work. In view of the preamble
as a possible identification candidate for each drone, this identification parameter can be
used to find the location of the drones using a ZC sequence containing this information.

2.5 Noise and Doppler Effect in UAV Swarms
A perfect environment was defined for this research as one without noise interference or
Doppler effect, but in a real situation, the swarm of drones would be exposed to many kinds
of undesirable elements. In the next sections, we show some important aspects of these
elements and explore their influence on the swarms analyzed here.
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2.5.1 Noise in the Swarm
To account for the noise that would be present in a real environment, for this research
we changed the SNR of the sample B[=] by adding white Gaussian noise (noise ∈ C).
Initially, the noise was added directly to the sample using the MATLAB function 0|�=().
Unfortunately, this approach to add the noise does not account for the imaginary part of the
signal, =(B[=]) = 1, and the function �,�# () adds pure real noise to B[=],<(B[=]) = 0.
The SNR in this research assumes a signal power %B8�=0; = 1 dB and the addition of the
correct noise for both parts, real and imaginary, was made as follows:

SNR;8=40A = 10SNR/10 (2.9a)

%=>8B4 =
%B8�=0;

SNR;8=40A
(2.9b)

%=>8B4−A40; = %=>8B4−2><?;4G =
%=>8B4

2
(2.9c)

f =
√
%=>8B4−A40; (2.9d)

#>8B4C>C0; = f0 + 9f1 (2.9e)

where:

• SNR is a;

• a is a random vector of numbers distributed over the function 5 (G) = 1
f
√
(2c)

4
− (G−`)

2

2f2

of the length of B[=]; and
• b is another random vector of numbers distributed over the function 5 (G) =

1
f
√
(2c)

4
− (G−`)

2

2f2 of the length of B[=].

Adding the value of the total noise to the signal B[=], this sample vector has the correct
noise distributed between real and complex parts.

B=>8B~ [=] = B[=] + #>8B4C>C0; (2.10)
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2.5.2 Doppler Effect in the Swarm
Another undesired factor present in mobile communications environment is the Doppler
effect. "It is well known that this effect occurs due to the relative speed between the elements
in the communication system. The Doppler effect is directly proportional to the magnitude
of the relative speed" [20]. In this work, the elements involved in the communication system
are the drones, and since they are moving, and enclosed in the swarm, the Doppler effect,
though small, affects the information sent between the drones.

The Doppler effect here was applied to the frequency, where a shift in frequency of the
observed signal can be represented in the frequency domain as:

0/� (=) = A= · 2>B((| + |3)=) = A= · 2>B(2c( 5 + 53)=). (2.11)

Since the signal is orthogonal, the difference between the frequencies cannot be greater than
Δ 5 = 5 − 53 = 1/)( [20], where )( is the sampling period for the drones; therefore, it is
possible to set some conditions for the Doppler effect applied to the signal B[=]:

5�>??;4A = 50 ·
(
{ + {0
{ − { 5

)
. (2.12)

Setting 1/)( = 5( = 839 ksymbols per second (ksps), for a sequence of length #/� = 839,
will be ) = 1 ms. From Fourier theory, we see that the first null for a rectangular acquisition
window is located at 1,000 Hz. This frequency is the worst case for the Doppler shift
5�>??;4A that can occur for a 5( = 839 ksps.
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Figure 2.9. Fourier transform of a gate signal. Adapted from [21].

The frequency-shifting property for the Fourier transform is well known and is given by [16]:

4 9l0= · 0/� [=] ←→ �/� · (4 9 (l−l0)). (2.13)

Combining the Doppler frequency 5�>??;4A and the sample frequency 5( into Equation 2.2,
using Equation 2.13 as support, we get:

0/��>??;4A [=] = 0/� [=] · 4
92c

5�>??;4A

5(
=
. (2.14)

Since the Doppler frequency is a function of the relative speed of the drone, as shown in
Equation 2.12, and lamentably this speed will not be known, the worst case for the Doppler
shift employed was 5�>??;4A = 1, 000 Hz. Once this work adopted a 5( = 839 ksps, it
became apparent that Equation 2.14 would be changed as in Equation 2.15. A factor U
varying from 0 to 1 was assigned to Doppler shift. The best case of Doppler shift, 0 Hz,
was assigned as U = 0 and the worst case of Doppler shift, 1,000 Hz as U = 1. A digital
frequency U was used in this thesis as a Doppler factor:

0/��>??;4A [=] = 0/� [=] · 4 92c
1000

839000= = 0/� [=] · 4 92c
U

#/�
=
. (2.15)
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The addition of Doppler effect to a ZC sequence 0/� directly disturbs the result of the
matched filter '0/� ,B [:]. Depending on how large U is, side peaks appear next to the correct
largest peak pointing to the correct distance /�?>B. Now, the previous power for the matched
filter is shared between the correct maximum and side maximums, which have amplitudes
almost as large as the correct peak. In Figure 2.10, we see the presence of side peaks for
matched results of two ZC sequences with R = 19, one of them with Doppler effect and
another without Doppler effect.

Figure 2.10. Comparison between matched filter results for ZC sequence
without Doppler effect and ZC sequence with Doppler effect.

In Section 3.1.4, we explain how this power is shared as well as explain how the choice of
the root index R can influence the MSE results.
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2.6 The Monte Carlo Method
The Monte Carlo method is widely employed to solve mathematics problems of a prob-
abilistic nature and evaluate the statistics of a given data base [22]. According to [23],
"the analytical evaluation of a statistic is based on the theoretical development of its sam-
pling distribution. Monte Carlo simulation offers an alternative to analytical mathematics
for understanding a statistics sampling distribution and evaluating its behavior in random
samples. Monte Carlo simulation does this empirically using random samples from known
populations of simulated data to track a statistics behavior." Since this thesis is using random
variables for some scenarios, as will be explained in Section 3.1, when some parameters
will be changed over statistical distributions, it is a reasonable approach to use the Monte
Carlo method, where for each iteration, a new set of random data is created.

A simplified algorithm of the Monte Carlo method applied in this work, where  represents
the number of trials running in the simulation, is shown in Figure 2.11.

Figure 2.11. Monte Carlo algorithm.
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2.7 Ranging Accuracy
As to possible errors in the communication between the drones, because this work considers
B[=] embedded in a noisy and Doppler affected environment, a valuable method to estimate
the ranging accuracy is to verify the number of errors that occur after employing the
matched filter. A satisfactory approach to evaluate the performance of the ranging estimator
is applying an MSE algorithm for every  trials.

The procedure of acquisition of MSE via the differences between correct distances :̂= and
estimated distances :=, used in this research, is given by:

MSE =

(
:̂1 − :1

)2
+

(
:̂2 − :2

)2
+ . . . +

(
:̂� − :�

)2

 
(2.16)

where:

• � is the number of drones in the simulation;
• :̂= is the distance estimated by the matched filter between the reference drone and
drone R#;

• := is the correct distance between the reference drone and drone R#; and
•  is the total number of trials.

2.7.1 Ranging for Real Applications
In a real application, the range obtained from the method studied in this work would be a
bi-dimensional distance. This distance could be obtained considering the propagation speed
as the speed of light, 2 = 3 × 108 m/s, and a maximum symbol rate of (' = 16, 800, 000
symbols/s for 5G applications [24]. With these parameters for speed and symbol rate, the
minimum distance resolution for this method is:

3<8= =
2

('
=

3 × 108

16, 800, 000
= 17.85 m (2.17)

It should be noted that the distance resolution of Equation 2.17 may be insufficient for some
applications. For such cases, it may be necessary to utilize a different communications
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standard (i.e., not 5G) in order to meet requirements.
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CHAPTER 3:
Computer Simulations

In this chapter, particular aspects of the simulations performed for this thesis are described,
including which parameters out of the possible set of parameters were used, and how they
were changed. At the end of this chapter, we show the results obtained and provide a brief
discussion.

3.1 Scenarios of Unmanned Aerial Vehicle Swarms
The universe of possibilities is very extensive when designing applications for unmanned
aerial vehicles. In this work, scenarios with swarms of drones were planned using the 5G
OFDM preamble to calculate the distance information [9], which is used to calculate the
distance to a reference drone. The proposal here was to find a range estimation where every
drone in the swarm could compute its distance from other drones. This research focuses on
the number of errors, given by the MSE, in the distance between the drones, evaluating the
distance information after changes in the parameters of the scenarios and ZC sequences.

To aid in the understanding of the scenarios, it should be noted that one drone, receiving
the preambles of all other drones in the scenario, is considered as the point-of-view of
a hypothetical reference drone. The other drones, which are sending the preambles, are
referred to here as R#, indicating that they have a different root index, not necessarily
the number indicated by #; therefore, a robust vector of samples B[=] containing 10, 000
samples, initially a vector of all zeros, and all the ZC sequences for each drone R# were
inserted into B[=]. In Figure 3.1, we see the aspect of a ZC sequence with ' = 10 generated
in MATLAB, and by randomly inserting this sequence into a vector B[=] of 10,000 samples,
it is possible to verify the ZAC property evident in Figure 3.1.
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Figure 3.1. MATLAB created absolute values of a randomly positioned ZC
sequence.

The information acquired from the preamble, given as a position in B[=], is treated as the
distance between the reference drone and the R# drone. With this distance data, the Monte
Carlo iterative scenario is applied considering one hypothetical reference drone and � other
drones (the existence of the reference drone is only hypothetical in this work). This means
that the distance from the other drones to the reference drone, named /�?>B in this work, is
computer generated. Furthermore, the information is not actually being transmitted between
drones. In a real scenario, all drones would receive information about all other drones in
the swarm. A hypothetical example of how the ZC sequences of five R# drones would be
randomly distributed over B[=] is shown in Figure 3.2.
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Figure 3.2. Reference drone receiving information from other drones (� = 5,
without noise and Doppler effect).

In this work, four parameters were changed for the various scenarios of samples B[=]:

• Distance between the reference drone and other R# drones;
• Number of drones in the scenario;
• The noise and Doppler effect to which the channel is exposed; and
• Root index R for the ZC sequences.

The number of trials  were executed for each simulation performing a Monte Carlo
experiment, as described in Section 2.6.

In addition, the length of the ZC sequence was established as #/� = 839, since the 3GPP TS
38.211 standard [9] allows PRACH preambles of prime length 139 and 839, as referenced
in Section 2.1.

3.1.1 Parameter Changed: Distance between Reference and Other
Drones

This work treats the distance between the reference drone and other drones as randomly
uniform distributed values. For graphing purposes, this distance is identified as /�?>B. The
other drones, identified by R#, were distributed between the positions 1 and # − #/� =
9, 161, since 839 free spaces should exist to write the ZC sequence. The inclusion of the
ZC sequence of length #/� was done by inserting it in a random position of a data vector
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with length # , as described in Figure 3.3. It is important to observe that the /�?>B is the
starting point of the sequence, and there are 838 points after it.

Figure 3.3. Drones in different /�?>B or all drones in the same /�?>B.

As studied in Section 2.7, the change in the environment could cause mismatches in ranging
for the drones. Given these possible mismatches, two different cases for the positions were
considered:

• D Drones in different positions; and
• All D drones in the same random position.

A characteristic B[=] for � = 20, without noise or Doppler effect, with drones positioned
in different random positions and positioned at a same random position, is shown in Figure
3.4.
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Figure 3.4. |B[=] | within drones positioned in different /�?>B and positioned
at the same random /�?>B.

3.1.2 Parameter Changed: Number of Drones D
The number of drones � in the simulation environment was changed to the following
quantities: 1, 2, 4, 5, 10, 20, 50 and 100. It is expected that increasing the number of drones
in the scenario affects the error count and, consequently, the MSE given by Equation 2.16.
How the UAVs were arranged for simulations performed in this research is shown in Figure
3.5

Figure 3.5. Graph representation of swarms of UAVs.

This research does not exclude the possibility that the same /�?>B could be allocated to
more than one drone R# or would overlap samples of others drones ZC sequence. This
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method allows some drones to have the same distance from the reference drone.

Figure 3.6. Overlap of ZC sequences.

A scenario with � = 5, where drones '1 and '4 are seen by the reference drone almost at
the same distance, caused an overlap of the two sequences, as shown in Figure 3.6.

The number of drones in the scenariowas considered for theMSEEquation 2.16 calculations
since the greater the number of drones in the scenario, the greater the multiplication factor
for the errors. To mitigate this multiplication factor, this work considered a division by �
for every MSE calculation, as shown in the revised equation for MSE.

MSE =

(
:̂1 − :1

)2
+

(
:̂2 − :2

)2
+ . . . +

(
:̂� − :�

)2

 · � . (3.1)
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3.1.3 Adding Noise and Doppler Effect to s[n]
In addition, in trying to make the simulations close to the real environment observed for
the swarms, noise and Doppler effect were added to B[=]. For all scenarios and simulations,
B[=] was initially generated as a vector of zeros, and then the ZC sequences and noise were
added.

The method of addition of the Doppler effect to a ZC sequence 0/� [=] is shown in Section
2.5.2. Since similar speeds are expected for all drones in the swarm, the factor U (Equa-
tion 2.15) was randomly chosen from [0, 0.05, 0.1, ..., 0.45, 0.5], considering a maximum
Doppler frequency of 0.5 · 5�>??;4A . The Doppler effect was added individually to each
drone, and then each 0/� was added to B[=] in a randomly chosen /�?>B position.

On the other hand, and different from the procedure to add the Doppler effect, the entire
B[=] were embedded in noise. For each number � of drones, an SNR was chosen from the
following: −10, −5, 0, 5, 10, 15 and 20. For each Monte Carlo trial, one SNR was selected
from this set, and we expected that changes in SNR would affect the number of errors and
the MSE.
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Figure 3.7. B[=] with noise and Doppler effect for � = 20.

3.1.4 Parameter Changed: R
As seen in Equation 2.2 and in Sections 2.3 and 2.5.2, the parameter R, the root index
of the ZC sequence, can be changed. This change, especially when 0/� is affected by
Doppler, directly affects the output of the matched filter. Notice that each drone has a tag
R; the matched filter output of the noisy and Doppler affected data, with the expected ZC
sequence, changes depending on the R selected.

After simulations where SNR is zero and Doppler effect U = 0.5, it was possible to see that
the amplitude and distance between the correct peak and side peaks is deterministic, always
being the same for a given R. As a matter of fact, this distance between the correct maximum
peak and the secondmaximumpeak is given by the greatest common divisor (GCD) between
the investigated R and the length #/� :

�8BC2_?40:B = |��� (', #/�) |. (3.2)
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In Figure 3.8, we see how the distance between two consecutive peaks of the matched filter
change for a specific R. An evaluation of the errors from three perspectives enables us to
define the best set of Rs or worst set of Rs possible:

• Distance error between two peaks;
• Difference between the amplitudes of two peaks; or
• Vector distance between the amplitudes of two peaks.

Figure 3.8. Changes in the distance between two maximum peaks due to
changes in R , for U = 0.5.

We also observe in Figure 3.8 that the greater the distance error, the smaller the amplitude of
the side peak and the greater the amplitude error. On the other hand, the smaller the distance
error, the greater the amplitude of the side peak and the smaller the amplitude error. The
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various perspectives on the errors are shown in detail in Figure 3.9.

Figure 3.9. Error perspectives for selection of best and worst Rs.

Since the aim of this work is to obtain errors in the distance between drones, the error used
here was the one from the perspective of the distance between two maximum peaks. Given
the length of the ZC sequences is #/� = 839, the possible number of Rs is 838. Therefore,
establishing a fixed /�?>B, it was possible to calculate all the distance errors between the
two maximum peaks of the matched filter results for all R, and Figure 3.10 was obtained.
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Figure 3.10. Error perspectives for selection of best and worst Rs.

The Rs were then sorted by the growth of the distance errors into a vector, and the best set
of Rs was selected from the beginning of this vector, while the worst set of Rs was selected
from the end of this vector.

Considering the selection just mentioned, three cases for the simulations were created:

• Simulations for random R;
• Simulations for best R; and
• Simulations for worst R.

These simulations consider the random R, bad R and good R selected from the range
[1, ..., 838], as ' = 839 is not a valid root for #/� = 839, the case studied in this research.
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3.2 Algorithm for Computer Simulations
Following the change in parameters as described in Section 3.1, six scenarios were created
for this thesis project. These scenarios included changes for R and the distance between the
reference drones and other drones, /�?>B. Parameters Rs were selected in different sets as
random, best or worst. The distance /�?>B were selected in different sets as random or same
position. The algorithm applied in this work selects the types of parameters to be used, and
then creates the sample vector B[=]. Then, the algorithm performs the Monte Carlo trial, as
shown in Figure 3.11.

Figure 3.11. Flowchart with the preset algorithm.

Given these preset parameters, the result produced by this study was the MSE. Since
this research has many random variables in the process of evaluation of the MSE, it was
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necessary to use a Monte Carlo model for the simulations. In this case, every time a new set
of variables was randomly created (for instance, if the previously defined parameters were
changed) a new iteration was performed and the data for errors saved. Based on the data
saved, the number of iterations defined here for theMonte Carlo method was  = 1, 000 and
the MSE was calculated using Equation 2.16. The flow chart of the Monte Carlo method
applied to the preset data is shown in Figure 3.12.

Figure 3.12. Flowchart with the Monte Carlo algorithm used in simulations.

The simulations in this thesis examine six different scenarios, changing the parameters R
and /�?>B:

• Simulations for random /�?>B and R;
• Simulations for the same /�?>B and random R;
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• Simulations for random /�?>B and best Rs;
• Simulations for the same /�?>B and best Rs;
• Simulations for random /�?>B and worst Rs; and
• Simulations for the same /�?>B and worst Rs.

After all MSE calculations were complete for each scenario with D drones, a combined
MSE plot was generated, combining all the SNRs and numbers of drones D.

3.3 Performance Results
The results obtained in this research employed  = 1, 000 iterations for the Monte Carlo
method and B[=] with # = 10, 000 samples. Three assumptions about the error behavior
were created from the changed parameters for the number of drones D, Root index R, and
positions /�?>B:

• Number of drones D: It was expected that since the number of samples # is fixed,
the increase in the number of drones would imply more mismatches between the
correct position and the received position. These mismatches would happen more
often because of the addition of recurring noise, which raises the number of errors,
and consequently increases the MSE;

• Root index R: The difference between the magnitude resulting from the matched filter
for a different R when there is a large Doppler effect produces mismatches for the
correct peak located where this is expected to find the position of the ZC sequence.
Essentially, for a bad R, more errors are expected, which increases the MSE; and

• Positions /�?>B: In this work, two positioning methods were considered: one case
where every R# drone has a different random distance from the reference drone; and
another case where every R# drone has the same random distance from the reference
drone. A large number of errors is expected for the second case, since the noise will
be applied in the same position and, thus, multiplied by D.

Note that a logarithmic function was applied to the resultant MSE when U is random. Since
the MSE results in these cases have a large difference between a smaller number of drones,
when compared with a larger number of drones, it seem more appropriate show the results
in semi-log. Observe that the discontinuities are in fact MSE = 0: no errors occur; and as
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long as ;>� (0) = �, semi-log plots ignore them.

3.3.1 Random /�?>B and Rs
For the case of random /�?>B and random R, the analysis of Figure 3.13 shows that higher
levels of noise and low SNR produce many errors, even for a small number of drones.

(a) Linear Combined MSE (b) Logarithmic Combined MSE

Figure 3.13. Combined MSE for different D drones. In this case, each drone
has a different R , and the drones are randomly positioned in a large vector.

3.3.2 Same /�?>B and Random Rs
For the case of all /�?>B located at the same position and random R, the analysis of Figure
3.14 again shows that higher levels of noise and low SNR, produce many errors, even for a
small number of drones. Since all the drones are in the same position, and all the noise that
affects the sequences 0/� are added, it is possible to observe the increase of errors even for
lower SNR.
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(a) Linear Combined MSE (b) Logarithmic Combined MSE

Figure 3.14. Combined MSE for different D drones. In this case, each drone
has a different R , and the drones are located in the same position in a large
vector.

3.3.3 Random /�?>B and Best Rs
For the case of random /�?>B and best R, the analysis of Figure 3.15 shows again that higher
levels of noise and low SNR produce many errors but now the count of errors is lower when
the number of drones is small. For a large swarm of drones, � = 50 and � = 100, the
number of errors is still large for lower SNR but decreases for higher SNR when compared
with the scenario with random R. The errors obtained for small swarms, even those of small
order, are due to the random Doppler-effect worst cases associated with errors count.
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(a) Linear Combined MSE (b) Logarithmic Combined MSE

Figure 3.15. Combined MSE for different D drones. In this case, the set of
R selected is the best and the drones are located in different positions in a
large vector.

3.3.4 Same /�?>B and Best Rs
For the case of all /�?>B located at the same position and best R, the analysis of Figure 3.16
shows a decrease in performance since all the drones are in the same position, especially for
large SNR when compared with the scenario with /�?>B randomly distributed. For a large
swarm of drones, � = 50 and � = 100, the number of errors is still large for higher SNR.
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(a) Linear Combined MSE (b) Logarithmic Combined MSE

Figure 3.16. Combined MSE for different D drones. In this case the set of
R selected is the best and the drones are located in same position in a large
vector.

3.3.5 Random /�?>B and Worst Rs
For the case of random /�?>B and worst R, the analysis of Figure 3.17 shows an increase
in performance for small swarms, even without the count of errors. For a large swarm of
drones, � = 50 and � = 100, the number of errors is still large for higher SNR, although
the errors simply disappear for small swarms. This is expected since the approach for this
work considers the distance between peaks of matched filter results to find the best and
worst Rs. As far as the distance between these two maximums, the smaller is the secondary
peak, which improves the performance for lower SNR.
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(a) Linear Combined MSE (b) Logarithmic Combined MSE

Figure 3.17. Combined MSE for different D drones. In this case, the set of
R selected is the worst and the drones are located in different positions in a
large vector.

3.3.6 Same /�?>B and Worst Rs
For the case of all /�?>B located at the same position and worst R, the analysis of Figure
3.18 shows an increase in performance for small swarms, even without counting errors.
For a large swarm of drones, � = 100 and � = 50, the number of errors is still large for
higher SNR, including now � = 20 swarms with a large count of errors, although the errors
simply disappear for small swarms. Again, this is expected since the approach for this work
considers the distance between peaks of matched filter results to find the best and worst
Rs. As far as the distance between these two maximums, the smaller is the secondary peak,
which improves the performance for lower SNR.
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(a) Linear Combined MSE (b) Logarithmic Combined MSE

Figure 3.18. Combined MSE for different D drones. In this case, the set of
R selected is the worst and the drones are located in the same position in a
large vector.

3.3.7 Simulations with U = 0 and U = 0.5
This section provide results from simulations that were performed for U = 0 and U =

0.5, intending to reproduce an environment without Doppler shift and with the maximum
Doppler shift treated in this work, respectively.

• U = 0
From Figures 3.19, 3.20, and 3.21, we see that the MSE results for all ZC sequences
containing a Doppler shift U = 0 have an outstanding performance of near-zero errors
for almost any scenario simulated. These results shows that the Doppler shift is the
major source of errors in the scenarios.
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(a) Drones in Different /�?>B (b) Drones in the same /�?>B

Figure 3.19. Linear combined MSE for random R and U = 0.

(a) Drones in Different /�?>B (b) Drones in the same /�?>B

Figure 3.20. Linear combined MSE for best set of Rs and U = 0.
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(a) Drones in Different /�?>B (b) Drones in the same /�?>B

Figure 3.21. Linear combined MSE for worst set of Rs and U = 0.

• U = 0.5
From Figures 3.22, 3.23, and 3.24, we see that the MSE results for all ZC sequences
containing a Doppler shift U = 0.5 have a slightly worse performance, especially for
poor SNR and large swarms. These results are expected since the Doppler shift makes
a large negative contribution to the errors.

(a) Drones in Different /�?>B (b) Drones in the same /�?>B

Figure 3.22. Linear combined MSE for random R and U = 0.5.
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(a) Drones in Different /�?>B (b) Drones in the same /�?>B

Figure 3.23. Linear combined MSE for best set of Rs and U = 0.5.

(a) Drones in Different /�?>B (b) Drones in the same /�?>B

Figure 3.24. Linear combined MSE for worst set of Rs and U = 0.5
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CHAPTER 4:
Conclusion

This chapter provides a summary of the work done in this thesis and proposes areas for
future work.

4.1 Summary
This work investigated how some variables, such as the number of drones, the structure
of the packet preamble, the distribution of the drones in a swarm, or even the degree of
environmental noise, affect the ability of UAVs to communicate in a swarm.

By using the MSE as a quality measure, we verified that, for a Doppler shift with a random
U, the number of errors in communication increases in direct proportion to the increase in
the number of drones in the swarm, and the number of errors increases when the scenario
is embedded in low SNR. This is due to the confusion that is sometimes created when the
matched filter is applied, generating an incorrectly measured position.

It is also possible to observe that when the drones are in the same position, obviously in
a hypothetical scenario, the number of errors increases by a factor of ten for any R, be it
random, worst, or best. This issue most likely occurs due to the noise behavior given by the
repetitive addition of noisy signals, hence scaling the errors.

One more verification we accomplished was that both the set of best Rs and the set of worst
Rs show better results than the set of random Rs. This can be explained by the reduction in
the amplitude of side-peak occurrences generated for the worst set. The larger the difference
between the amplitudes of the main and side peaks, the smaller the probability of incorrect
detection, especially in good SNR environments.

Overall, the prime source of errors identified in this research was the noise in the environ-
ment, especially for high density swarms.

These results improve our knowledge about the factors that influence communication in a
swarm of UAVs and provide useful data for future studies on methods for mitigating errors
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in similar scenarios.

4.2 Further Research
This work shows that the number of errors increases as the number of drones in a swarm
increases or when drones are placed hypothetically at the same distance from the reference
drone. One question that might be researched is: How can these factors be eliminated?

The answer to that question may be present in machine learning techniques, which can
provide ways to mitigate these errors. The input of a neural network, for instance, would
include the random data of position and the desired output, and the correct position of
the drone, which could mitigate the problems associated with the SNR and the number of
drones.

Another aspect not verified in this work is the sub-sampling effect, which can cause a power
division of the peak identified in the matched filter. This approach could be considered in
future work, since this scenario is certainly plausible.

As explained in Section 2.7.1, real applications using the method proposed in this thesis
would have issues if using a 5G network due to its limited symbol rate. Another proposal
of future work would be to address this limitation, going deeper into 5G technology and
looking for some alternative with a faster symbol rate.

The last, but not least, desirable application for this study would be a real implementation
with small UAVs provided with 5G communication, flying together in small swarms.
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APPENDIX: 
MATLAB Code

A.1 MSECombBestRDiffPosFdRand.m Scenario Code
This code is an example of the simulations performed in this work, generating a plot of
combinedMSE for the selection of best Rs, located in different /�?>B for a random Doppler
effect.

1 % The s i s work
2 % P r o f e s s o r : John Roth
3 % Stud en t : LT Madjer Ma r t i n s
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
5 % Mul t i d rone s im u l a t i o n by chang ing a R f o r D d rone s
6 % Cr e a t i n g each N samples ZC sequence s e p a r a t e l y and t h en

a pp l y i n g dopp l e r
7 % s e p a r a t e l y a l s o . Adding a l l c l e a n N samples s equence s and

t h en a pp l y i n g
8 % the no i s e ( complex ) .
9 % Combined MSE

10 % Execu t i ng t h e a l g o r i t hm f o r t h e D R’ s i n 1000 ( t r i a l s ) and
g e t t h e

11 % r e s u l t s o f MSE f o r each SNR (−10 −5 0 5 10 15 20)
12 % Here I ’m choos i ng t h e D b e s t Rs
13 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
14

15 c l e a r a l l ;
16 c l o s e a l l ;
17 t S t a r t = t i c
18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
19 % Pa r ame t e r s i n i c i a l i z a t i o n s
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20 Drones = [1 2 4 5 10 20 50 100 ] ; % drone # d i n t h e space d =
[ 1 ,D] D = # of d rone s

21 %u = 1 ;
22 % Nth r o o t . R and Nzc must be p r i o n i c ( on ly common d i v i s o r

i s 1 )
23 % Nzc = l e n g t h o f s equence
24 Nzc = 839 ; % l e n g t h o f s equence
25 c o l o r s = [ ’ r ’ ’ b ’ ’ y ’ ’ g ’ ’ c ’ ’m’ ] ;
26 % Cr e a t i n g R f o r D d rone s
27 % Nth r o o t . R and Nzc must be p r i o n i c ( on ly common d i v i s o r

i s 1 )
28 R_primes = 1 : Nzc −1; % I exc l ude 839
29 % R = randperm ( l e n g t h ( R_primes ) ,D) ; % Prov i d e R w i t h ou t

r e p e t i t i o n s
30

31 N = 10000 ; % t h e e n t i r e d a t a w i l l have 10000 samples
32 t r i a l s = 1000 ;
33 SNR = [−10 −5 0 5 10 15 2 0 ] ;
34

35 f o r Dk = 1 : l e n g t h ( Drones )
36 t i c
37 D = Drones (Dk) ;
38

39 % [G,U,V] = gcd (A,B) r e t u r n s A.∗U + B.∗V = G.
40 %[~ , Rinv ] = gcd (R , Nzc ( 4 ) )
41 % U = Rinv , U g i v e s t h e number o f p o i n t s be tween t h e

p o s i t i o n o f b e g i n i n g
42 % of ZC seq w i t h ou t d opp l e r e f f e c t and t h e p o s i t i o n o f

b e g i n i n g of ZC seq
43 % wi th dopp l e r e f f e c t .
44 % [G,U,V] = gcd ( R_primes , Nzc ) ;
45 % mod_U = mod (U, Nzc ) ;
46 % [B, I ] = s o r t (mod_U , ’ descend ’ ) ;

50



47 % I = I ( 1 :D) ;
48 % R = R_primes ( I ) ;
49

50 % Bes t c a s e o f Rs from t h e v e c t o r So r t ed_R_Bes t_ to_Wors t
. mat

51 R_temp = lo ad ( ’ So r t e d_R_be s t _ t o_Wor s t . mat ’ ) ;
52 R = R_temp . R_so r t ed ( 1 :D) ;
53

54 f _ d o p p l e r = 0 : 0 . 0 5 : 0 . 5 ;%0 : 0 . 1 : 1 ; % % 11 e l emen t s
55

56 % Res e t i n g some v a r i a b l e s
57 a_ z c_dopp l e r = [ ] ;
58 MSE_combined = z e r o s ( 1 , l e n g t h (SNR) ) ;
59 s i g n a l = [ ] ;
60 dopp l e r = [ ] ;
61 ZC_po s i t i o n s = [ ] ;
62

63 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
64 % k = t r i a l s , N = # of samples , kk = SNRs
65 % Data s t r u c t u r e
66 % s i g n a l ( k , kk )
67 % For − l oop SNRs
68 % s i g n a l = s t r u c t w i th f i e l d s :
69 % SNR:
70 % − t r i a l :
71 % ZCSeq_pos : v e c t o r wi th d imens ion D (# of d rone s )
72 % dopp l e r :
73 % da t a : ( s amples wi th bo th d rone s zc sequence added

wi th n o i s e and a p p l i e d
74 % dopp l e r )
75 % −Rx ( d ) :
76 % − l a g s ( d ) :
77 % −max_val ( d ) :
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78 % −I_max ( d ) :
79 % e r r o r :
80

81 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
82 % For − l oop SNRs
83 % pa r poo l ( l e n g t h (SNR) )
84 f o r k = 1 : l e n g t h (SNR)
85

86 e r ro r_ sum = z e r o s ( 1 ,D) ;
87

88 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
89 % For − l oop 1000 t r i a l s
90 f o r kk = 1 : t r i a l s
91

92 %−−−−−− C r e a t i n g t h e ZC sequence s s e p a r a t e l y
93 a_zc_N = z e r o s (D,N) ;
94 % Find i ng a v e c t o r wi th D p o s i t i o n s o f ZC

sequence s
95 ZCSeq_pos = r a n d i (N−Nzc , 1 ,D) ;
96 s i g n a l ( k , kk ) . ZCSeq_pos = ZCSeq_pos ;
97 % c r e a t i n g t h e zc s equence s s e p a r e t e l y
98 f o r d =1:D
99 a_zc ( d , 1 : Nzc ) = zadof fChuSeq (R( d ) , Nzc ) ;

100 end
101

102 % Pu t t i n g t h e zc sequence a t ZCSeq_pos
103 %fo r m = 1 : Nzc
104 f o r d = 1 :D
105 %a_zc_N ( d , ZCSeq_pos ( d ) +m) = a_zc_N ( d ,

ZCSeq_pos ( d ) +m) + a_zc ( d ,m) ;
106 a_zc_N ( d , ( ZCSeq_pos ( d ) : ZCSeq_pos ( d ) +Nzc −1) )

= a_zc ( d , 1 : Nzc ) ;
107 end
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108 %end
109 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
110 % f i g u r e
111 % p l o t ( abs ( a_zc_N ( 1 , : ) ) )
112

113 %−−−−−− Apply ing dopp l e r t o each pu re zc
sequence and then , add

114 % them
115 l = [ 0 :N−1 ] ;
116 a_z c_no i s y = z e r o s ( 1 ,N) ;
117 f o r d = 1 :D
118 % choos i ng a random dopp l e r e f f e c t u s i n g

r a n d i ( ) f o r each drone
119 s i g n a l ( k , kk ) . d opp l e r ( d ) = f _ d o p p l e r ( r a n d i (

l e n g t h ( f _ d o p p l e r ) ) ) ;
120 a_ z c_dopp l e r ( d , : ) = a_zc_N ( d , : ) .∗ exp (1 i ∗2∗ p i

. ∗ ( s i g n a l ( k , kk ) . d opp l e r ( d ) / Nzc ) .∗ l ) ;
121 a_z c_no i s y = a_zc_no i s y + a_z c_dopp l e r ( d , : ) ;

% p r e p a r i n g t o app ly n o i s e
122 end
123

124 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
125 % f i g u r e
126 % p l o t ( abs ( a _ z c_no i s y ) )
127

128 %−−−−−− C r e a t i n g t h e complex no i s y s i g n a l f o r N
samples Zadoff −chu

129 % sequence
130 s i g n a l ( k , kk ) . SNR = SNR( k ) ;
131

132 s igPwr = 1 ; %rms ( a_z c_no i s y ( 1 , : ) ) ^ 2 ; %Show t h a t
t h e power o f our s i g n a l i s 1
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133 l i nea rSNR = 10^(SNR( k ) / 1 0 ) ; %Conve r t d e c i b e l −
va l u ed SNR to a r e g u l a r r a t i o v a l u e

134 nsPwr = s igPwr / l inea rSNR ; %Find r e q u i r e d complex
n o i s e power

135 r ea lNsPwr = nsPwr / 2 ; %remember t h a t t h i s i s t h e
same va l u e as t h e complex n o i s e power

136 s i g = s q r t ( r ea lNsPwr ) ; %s t d d e v i a t i o n o f t h e
r e a l and imag i n a r y n o i s e components

137 c o r r e c tN o i s e = s i g ∗ r andn ( 1 , l e n g t h ( a_ z c_no i s y
( 1 , : ) ) ) . . .

138 + 1 i ∗ s i g ∗ r andn ( 1 , l e n g t h ( a_ z c_no i s y ( 1 , : ) ) ) ;
139

140 a_z c_no i s y ( 1 , : ) = a_z c_no i s y ( 1 , : ) + c o r r e c tN o i s e
;

141 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
142 % f i g u r e
143 % p l o t ( abs ( a _ z c_no i s y ) )
144

145 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
146 % Matched f i l t e r and e r r o r s
147 s i g n a l ( k , kk ) . d a t a = a_z c_no i s y ;
148 f o r d = 1 :D
149 [Rx ( d , : ) , l a g s ( d , : ) ] = x c o r r ( a_zc_no i sy , a_zc

( d , : ) ) ;
150 %s i g n a l ( k , kk ) . Rx ( d , : ) = Rx ( d , : ) ;
151 %s i g n a l ( k , kk ) . l a g s ( d , : ) = l a g s ( d , : ) ;
152 %p l o t ( l a g s ( d , : ) , abs (Rx ( d , : ) ) )
153

154 % Find i ng t h e g r e a t e s t Rx ( Not u s i n g Rinv )
155 [ max_val ( d ) I_max ( d ) ] = max ( abs (Rx ( d , : ) ) ) ;
156 %s i g n a l ( k , kk ) . max_val ( d ) = max_val ( d ) ;
157 %s i g n a l ( k , kk ) . I_max ( d ) = I_max ( d ) ;
158
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159 % I s u b t r a c t N and add 1 because t h e x c o r r
doub l e t h e number o f samples and

160 % c e n t e r i n 0 (# o f samples = 2N + 1)
161 s i g n a l ( k , kk ) . e r r o r ( d ) = ( ( I_max ( d ) − N + 1)

− ZCSeq_pos ( d ) ) ^ 2 ;
162 e r ro r_ sum ( d ) = e r ro r_ sum ( d ) + s i g n a l ( k , kk ) .

e r r o r ( d ) ;
163

164 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
165 % Pr e p a r i n g d a t a t o save :
166 dopp l e r ( k , kk , : ) = squeeze ( s i g n a l ( k , kk ) .

d opp l e r ( : ) ) ;
167 ZC_po s i t i o n s ( k , kk , : ) = ZCSeq_pos ;
168 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
169

170 end
171 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗%
172

173 end % For − l oop t r i a l s
174

175 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
176

177 % Ca l c u l a t i n g t h e mean squ a r e e r r o r f o r each SNR k
178 f o r d = 1 :D
179 MSE_combined ( k ) = MSE_combined ( k ) + e r ro r_ sum ( d )

;
180 end
181

182 end % For − l oop SNRs
183

184 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
185

186 MSE = MSE_combined / ( t r i a l s ∗D) ;
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187

188 f i g u r e
189 p l o t ( abs ( a_ z c_no i s y ) )
190

191 s t r _ s a v e a s = ’ Noisy_BestR_%d_drones . png ’ ;
192 s t r _ s a v e a s = s p r i n t f ( s t r _ s a v e a s , D) ;
193 s a v e a s ( gcf , s t r _ s a v e a s , ’ png ’ )
194

195 f i g u r e
196 p l o t (SNR,MSE)
197 t i t l e ( [ ’MSE combined f o r ’ num2s t r (D) ’ d r one s and f_ {

dopp l e r } = 0 .5∗U[0 , 1 ]∗ f_0 ’ ] )
198 x l a b e l ( ’SNR’ )
199 y l a b e l ( ’Mean Square E r r o r ’ )
200 %legend ( ’ Drone 1 R = 17 ’ , ’ Drone 2 R = 23 ’ , ’ Drone 3 R =

53 ’ , ’ Loca t i on ’ , ’ n o r t h e a s t ’ )
201 s e t ( gcf , ’ name ’ , ’MSE f o r a no i s y s i g n a l unde r d opp l e r

e f f e c t w i th D d rone s ’ , ’ n umb e r t i t l e ’ , ’ o f f ’ )
202

203 % I didn ’ t app ly t h e subsamp ly ing d i v i s i o n o f power
204 % I ’m j u s t g e t t i n g maximums
205 e l apsedT ime = t o c
206

207 s t r _ s a v e a s = ’MSE_BestR_%d_drones . png ’ ;
208 s t r _ s a v e a s = s p r i n t f ( s t r _ s a v e a s , D) ;
209 s a v e a s ( gcf , s t r _ s a v e a s , ’ png ’ )
210

211 % Saving t h e workspace
212 s t r _wk s_ s av e = ’MSE_BestR_%d_drones . mat ’ ;
213 s t r _wk s_ s av e = s p r i n t f ( s t r _wks_save , D) ;
214 s ave ( s t r _wks_save , ’R ’ , ’ ZC_po s i t i o n s ’ , ’ d opp l e r ’ , ’SNR’ , ’

MSE’ , ’ e l apsedT ime ’ )
215
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216 end % D i f f e r e n t # o f Drones
217 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
218

219 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
220 % S c r i p t t o r e ad eve ry MSE f o r each drone and p l o t i t

t o g e t h e r
221 s t r _ l o a d = ’MSE_BestR_%d_drones . mat ’ ;
222 % s t r _ t i t l e = ’Combined MSE f o r d i f f e r e n t number o f d rone s −

Bes t R , Random ZC p o s i t i o n s ’ ;
223 s t r _ t i t l e = ’ ’ ;
224 s t r _ s a v e a s = ’MSE_Combined_BestR_DiffPos_FdRand . png ’ ;
225 Read_All_MSE (SNR, Drones , s t r _ l o a d , s t r _ t i t l e , s t r _ s a v e a s )
226

227 tEnd = t o c ( t S t a r t )

A.2 ReadAllMSE.m Code
This code is a function that obtains the results for each D swarm, generated in scenario
Code, and combines them together in just one plot.

1 % The s i s work
2 % P r o f e s s o r : John Roth
3 % Stud en t : LT Madjer Ma r t i n s
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
5 % f u n c t i o n t o r e ad eve ry MSE f o r each drone and p l o t i t

t o g e t h e r
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7 f u n c t i o n save_OK = Read_all_MSE (SNR, d , s t r _ l o a d , s t r _ t i t l e ,

s t r _ s a v e a s )
8

9 %SNR = [−10 −5 0 5 10 15 2 0 ] ;
10 %d = [1 2 4 5 10 20 50 100 ] ;
11 %s t r _ l o a d = ’MSE_comb_%d_drones . mat ’ ;
12 num_ f i l e s = l e n g t h ( d ) ;

57



13 c o l o r = [ ’−xb ’ ; ’−xc ’ ; ’−xr ’ ; ’−xm ’ ; ’−ob ’ ; ’−oc ’ ; ’−or ’ ; ’−
om ’ ] ;

14 f i g u r e
15 f o r k = 1 : num_ f i l e s
16 s t r _ d _ l o a d = s p r i n t f ( s t r _ l o a d , d ( k ) ) ;
17 d a t a ( k ) = l o ad ( s t r _ d _ l o a d ) ;
18 s emi logy (SNR, d a t a ( k ) .MSE, c o l o r ( k , : ) )
19 ho ld on
20 end
21 l e g end ( ’ 1 Drone ’ , ’ 2 Drones ’ , ’ 4 Drones ’ , ’ 5 Drones ’ , ’ 10

Drones ’ , . . .
22 ’ 20 Drones ’ , ’ 50 Drones ’ , ’ 100 Drones ’ )
23 x l a b e l ( ’SNR’ )
24 y l a b e l ( ’ Combined MSE’ )
25 %s t r _ t i t l e = ’Combined MSE f o r d i f f e r e n t number o f d rone s −

Random R, Random ZC p o s i t i o n s ’ ;
26 t i t l e ( s t r _ t i t l e )
27

28 %s t r _ s a v e a s = ’MSE_Combined_All_RandomR_DiffPosi t ions . png ’ ;
29 s a v e a s ( gcf , s t r _ s a v e a s , ’ png ’ )
30

31 save_OK = 1 ;
32

33 end

A.3 BestWorstR.m Code
This code provides support for understanding the sorting procedure for the R following the
creation of a vector with sorted R.

1 c l e a r a l l ;
2 c l o s e a l l ;
3

4 D = 1 ;
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5 SNR = 100 ; % a lmos t No no i s e
6 Nzc = 839 ;
7 N = 10000 ;
8 f _ d o p p l e r = 0 . 5 ; % Worst c a s e o f d opp l e r
9 ZCSeq_pos = r a n d i (N−Nzc , 1 ,D) ; % D random p o s i t i o n s

10 a_z c_no i s y = [ ] ;
11 Rxx = [ ] ;
12 l a g s = [ ] ;
13 f o r R = 1 :838
14 a_z c_no i s y = C r e a t e a _ a _ z c _ no i s y _ d opp l e r (D, Nzc ,N,

ZCSeq_pos , SNR, f _dopp l e r ,R) ;
15 a_zc = zadof fChuSeq (R , Nzc ) ;
16 [ Rxx (R , : ) , l a g s (R , : ) ] = x c o r r ( a_zc_no i sy , a_zc ) ;
17 [ y , x ] = s o r t ( abs ( Rxx (R , : ) ) , ’ de scend ’ ) ;
18 d i s t _ 2 p e a k s (R) = abs ( x ( 1 ) − x ( 2 ) ) ; % D i s t a n c e d i f f e r e n c e
19 d i f f _ 2 p e a k s (R) = abs ( y ( 1 ) − y ( 2 ) ) ; % Ampl i tude

d i f f e r e n c e
20 v e c t o r _ 2p e a k s (R) = s q r t ( ( d i s t _ 2 p e a k s (R) ^2 ) +( d i f f _ 2 p e a k s (

R) ^2 ) ) ;
21 d i s t _ c o r r e c t _ p e a k (R) = abs ( x ( 1 ) −ZCSeq_pos−N+1) ;
22 end
23

24 f _ d o p p l e r = 0 . 2 5 ;
25 f o r R = 1 :838
26 a_z c_no i s y = C r e a t e a _ a _ z c _ no i s y _ d opp l e r (D, Nzc ,N,

ZCSeq_pos , SNR, f _dopp l e r ,R) ;
27 a_zc = zadof fChuSeq (R , Nzc ) ;
28 [ Rxx (R , : ) , l a g s (R , : ) ] = x c o r r ( a_zc_no i sy , a_zc ) ;
29 [ y , x ] = s o r t ( abs ( Rxx (R , : ) ) , ’ de scend ’ ) ;
30 d i s t _ 2p e ak s _025 (R) = abs ( x ( 1 ) − x ( 2 ) ) ;
31 d i f f _ 2p e ak s _025 (R) = abs ( y ( 1 ) − y ( 2 ) ) ;
32 vec t o r _2peak s_025 (R) = s q r t ( ( d i s t _ 2p e ak s _025 (R) ^2 ) +(

d i f f _ 2p e ak s _025 (R) ^2 ) ) ;
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33 end
34

35 f _ d o p p l e r = 0 . 0 5 ;
36 f o r R = 1 :838
37 a_z c_no i s y = C r e a t e a _ a _ z c _ no i s y _ d opp l e r (D, Nzc ,N,

ZCSeq_pos , SNR, f _dopp l e r ,R) ;
38 a_zc = zadof fChuSeq (R , Nzc ) ;
39 [ Rxx (R , : ) , l a g s (R , : ) ] = x c o r r ( a_zc_no i sy , a_zc ) ;
40 [ y , x ] = s o r t ( abs ( Rxx (R , : ) ) , ’ de scend ’ ) ;
41 d i s t _ 2p e ak s _005 (R) = abs ( x ( 1 ) − x ( 2 ) ) ;
42 d i f f _ 2p e ak s _005 (R) = abs ( y ( 1 ) − y ( 2 ) ) ;
43 vec t o r _2peak s_005 (R) = s q r t ( ( d i s t _ 2p e ak s _005 (R) ^2 ) +(

d i f f _ 2p e ak s _005 (R) ^2 ) ) ;
44 end
45

46 f i g u r e
47 s u b p l o t ( 3 , 1 , 1 )
48 p l o t ( d i s t _ 2 p e a k s )
49 t i t l e ( ’ e r r o r be tween t h e d i s t a n c e o f 2 peaks f o r each R ,

f _ d o p p l e r = 0 . 5 ’ )
50 s u b p l o t ( 3 , 1 , 2 )
51 p l o t ( d i s t _ 2p e ak s _025 )
52 t i t l e ( ’ e r r o r be tween t h e d i s t a n c e o f 2 peaks f o r each R ,

f _ d o p p l e r = 0 .25 ’ )
53 s u b p l o t ( 3 , 1 , 3 )
54 p l o t ( d i s t _ 2p e ak s _005 )
55 t i t l e ( ’ e r r o r be tween t h e d i s t a n c e o f 2 peaks f o r each R ,

f _ d o p p l e r = 0 .05 ’ )
56

57 f i g u r e
58 s u b p l o t ( 3 , 1 , 1 )
59 p l o t ( d i f f _ 2 p e a k s )
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60 t i t l e ( ’ e r r o r be tween t h e amp l i t u d e o f 2 peaks f o r each R ,
f _ d o p p l e r = 0 . 5 ’ )

61 s u b p l o t ( 3 , 1 , 2 )
62 p l o t ( d i f f _ 2p e a k s _025 )
63 t i t l e ( ’ e r r o r be tween t h e amp l i t u d e o f 2 peaks f o r each R ,

f _ d o p p l e r = 0 .25 ’ )
64 s u b p l o t ( 3 , 1 , 3 )
65 p l o t ( d i f f _ 2p e a k s _005 )
66 t i t l e ( ’ e r r o r be tween t h e amp l i t u d e o f 2 peaks f o r each R ,

f _ d o p p l e r = 0 .05 ’ )
67

68 f i g u r e
69 s u b p l o t ( 3 , 1 , 1 )
70 p l o t ( v e c t o r _ 2p e a k s )
71 t i t l e ( ’ v e c t o r e r r o r be tween 2 peaks f o r each R , f _ d o p p l e r =

0 . 5 ’ )
72 s u b p l o t ( 3 , 1 , 2 )
73 p l o t ( v e c t o r _2peak s_025 )
74 t i t l e ( ’ v e c t o r e r r o r be tween 2 peaks f o r each R , f _ d o p p l e r =

0 .25 ’ )
75 s u b p l o t ( 3 , 1 , 3 )
76 p l o t ( v e c t o r _2peak s_005 )
77 t i t l e ( ’ v e c t o r e r r o r be tween 2 peaks f o r each R , f _ d o p p l e r =

0 .05 ’ )
78

79 [ d i s t _ 2 p e a k s _ s o r t e d , R _ d i s t _ s o r t e d ] = s o r t ( d i s t _ 2 p e a k s , ’
a scend ’ ) ;

80 [ d i s t _ 2 p e a k s _ s o r t e d _ 025 , R_d i s t _ s o r t e d _ 025 ] = s o r t (
d i s t _2peak s_025 , ’ a s cend ’ ) ;

81 [ d i s t _ 2 p e a k s _ s o r t e d _ 005 , R_d i s t _ s o r t e d _ 005 ] = s o r t (
d i s t _2peak s_005 , ’ a s cend ’ ) ;

82

83 R_d i s t _ s o r t e d ( 1 : 1 0 )
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84 R_d i s t _ s o r t e d _ 025 ( 1 : 1 0 )
85 R_d i s t _ s o r t e d _ 005 ( 1 : 1 0 )
86

87 R_d i s t _ s o r t e d − R_d i s t _ s o r t e d _ 025
88 R_d i s t _ s o r t e d − R_d i s t _ s o r t e d _ 005
89

90 f i g u r e
91 s u b p l o t ( 3 , 1 , 1 )
92 p l o t ( d i s t _ 2 p e a k s _ s o r t e d )
93 s u b p l o t ( 3 , 1 , 2 )
94 p l o t ( d i s t _ 2 p e a k s _ s o r t e d _ 0 2 5 )
95 s u b p l o t ( 3 , 1 , 3 )
96 p l o t ( d i s t _ 2 p e a k s _ s o r t e d _ 0 0 5 )
97 t i t l e ( ’ D i s t a n c e t h e 2 l a r g e s t peaks s o r t e d ’ )
98

99 f i g u r e
100 p l o t ( d i s t _ c o r r e c t _ p e a k )
101 t i t l e ( ’ e r r o r f o r maximum peak f o r R_{xy} and c o r r e c t ZC_{ pos

} ’ )
102

103 % Saving t h e workspace
104 s t r _wk s_ s av e = ’ So r t ed_R_Bes t_ to_Wors t . mat ’ ;
105 s ave ( s t r _wks_save , ’ R _ d i s t _ s o r t e d ’ ) ;
106

107

108 %−−−−−Func t i o n t h a t c r e a t e s [ n]−−−−−−
109 f u n c t i o n a _ z c _no i s y _dopp l e r = C r e a t e a _ a _ z c _ no i s y _ d opp l e r (D,

Nzc ,N, ZCSeq_pos , SNR, f _dopp l e r ,R)
110

111 i f R == 0
112 R_primes = 1 : Nzc −1; % I exc l ude 839
113 R = randperm ( l e n g t h ( R_primes ) ,D) ; % Prov i d e R w i t h ou t

r e p e t i t i o n s
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114 end
115

116 %−−−−−− C r e a t i n g t h e ZC sequence s s e p a r a t e l y
117 a_zc_N = z e r o s (D,N) ;
118

119 % c r e a t i n g t h e zc s equence s s e p a r e t e l y
120 f o r d =1:D
121 a_zc ( d , 1 : Nzc ) = zadof fChuSeq (R( d ) , Nzc ) ;
122 end
123

124 % Pu t t i n g t h e zc sequence a t ZCSeq_pos
125 %fo r m = 1 : Nzc
126 f o r d = 1 :D
127 %a_zc_N ( d , ZCSeq_pos ( d ) +m) = a_zc_N ( d , ZCSeq_pos ( d ) +m) +

a_zc ( d ,m) ;
128 a_zc_N ( d , ( ZCSeq_pos ( d ) : ZCSeq_pos ( d ) +Nzc −1) ) = a_zc ( d , 1 :

Nzc ) ;
129 end
130 %end
131 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
132 % f i g u r e
133 % p l o t ( abs ( a_zc_N ( 1 , : ) ) )
134

135 %−−−−−− Apply ing dopp l e r t o each pu re zc sequence and then ,
add

136 % them
137 l = [ 0 :N−1 ] ;
138 a _ z c _no i s y _dopp l e r = z e r o s ( 1 ,N) ;
139 f o r d = 1 :D
140 % choos i ng a random dopp l e r e f f e c t u s i n g r a n d i ( ) f o r

each drone
141 a_ z c_dopp l e r ( d , : ) = a_zc_N ( d , : ) .∗ exp (1 i ∗2∗ p i . ∗ ( f _ d o p p l e r

/ Nzc ) .∗ l ) ;
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142 a _ z c _no i s y _dopp l e r = a _ z c _no i s y _dopp l e r + a_ z c_dopp l e r ( d
, : ) ; % p r e p a r i n g t o app ly n o i s e

143 end
144

145 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
146 % f i g u r e
147 % p l o t ( abs ( a _ z c_no i s y ) )
148

149 %−−−−−− C r e a t i n g t h e complex no i s y s i g n a l f o r N samples
Zadoff −chu

150 % sequence
151

152 s igPwr = 1 ; %rms ( a_z c_no i s y ( 1 , : ) ) ^ 2 ; %Show t h a t t h e power o f
our s i g n a l i s 1

153 l i nea rSNR = 10^(SNR/ 1 0 ) ; %Conve r t d e c i b e l − va l u ed SNR to a
r e g u l a r r a t i o v a l u e

154 nsPwr = s igPwr / l inea rSNR ; %Find r e q u i r e d complex n o i s e power
155 r ea lNsPwr = nsPwr / 2 ; %remember t h a t t h i s i s t h e same va l u e

as t h e complex n o i s e power
156 s i g = s q r t ( r ea lNsPwr ) ; %s t d d e v i a t i o n o f t h e r e a l and

imag i n a r y n o i s e components
157 c o r r e c tN o i s e = s i g ∗ r andn ( 1 , l e n g t h ( a _ z c _no i s y _dopp l e r ) ) . . .
158 + 1 i ∗ s i g ∗ r andn ( 1 , l e n g t h ( a _ z c _no i s y _dopp l e r ) ) ;
159

160 a _ z c _no i s y _dopp l e r = a _ z c _no i s y _dopp l e r + c o r r e c tN o i s e ;
161

162 end
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