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ABSTRACT 

 Model-based systems engineering (MBSE) is becoming the industry standard for 

systems engineering activities. To avoid design flaws and reduce rework and cost, the 

descriptive models developed using the modern MBSE tools need to be integrated with 

other engineering discipline models. The co-simulation approach envisioned for current 

MBSE tools facilitates the use of external solvers to solve mathematical expressions 

within the model. Indeed, integrating complex simulations to couple descriptive and 

physics-based models is a challenging task requiring quite a few adjustments to both 

models to produce an executable MBSE model. This thesis aims to enhance the use of 

one of the most advanced MBSE tools—Cameo Systems Modeler (CSM)—to be able to 

execute high-fidelity models of combat systems running in the Simulink development 

environment. Such an executable model should greatly improve and enhance feasibility 

of analysis of any combat mission during early system design phases. As an example, this 

thesis models a co-orbital engagement (COE) of two satellites and walks through all steps 

of the CSM-Simulink integration process. A shared workspace of MATLAB serves as a 

critical enabler for dealing with the data transfer. The thesis provides an example of how 

the developed integrated model can be used to analyze the COE mission and explore an 

effect of reshaping the design space via varying a set of mission requirements. 
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EXECUTIVE SUMMARY 

Model-based systems engineering (MBSE) is a “subset of digital engineering” that 

“supports the systems engineering activities of requirements, architecture, design, 

verification, and validation [1].” In MBSE, the systems engineers of a complex system 

create a descriptive model that serves as the single source of truth to avoid inconsistencies. 

The MBSE approach is rapidly replacing the traditional document-centric approach and 

becoming the industry standard to execute systems engineering activities. Despite this fact, 

to be truly effective, it is necessary to connect these descriptive models to other engineering 

disciplines’ physics-based models. This integration mitigates design flaws and helps the 

requirements verification, reducing rework and cost. According to [1], this integration of 

descriptive and physics-based models to produce high-fidelity executable system models 

remains challenging for digital engineering. 

In their conception, military systems are usually complex enough to require this 

sophisticated approach. The Department of Defense Digital Engineering Strategy 

acknowledges the necessity to “incorporate technological innovations into an integrated, 

digital, model-based approach” to transform its engineering practices and improve the 

military acquisition process to ensure technological superiority [2]. The strategy’s first goal 

is to formalize the development, integration, and use of models to support analysis and 

decisions [2]. This usage of models aims to facilitate decisions made during the early 

design stages without the necessity of mock-ups or physical testing. So, executable model 

analysis shortens the feedback loop and allows a quicker and cheaper way to evaluate 

countless more design variations than the design-build-test traditional approach [3]. 

There are currently two approaches for deriving executable models from static 

architecture views: co-simulation and model transformation [4]. Using the co-simulation 

approach, many commercial MBSE tools such as Cameo Systems Modeler (CSM), IBM 

Rhapsody, and Innoslate have implemented features that allow integration of the 

descriptive and other design disciplines’ models for simulation purposes. Several 

frameworks in the literature on transforming static architecture models into executable 

models describe model transformation [4]. One can consider model transformation more 
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complicated than co-simulation since it is less intuitive. According to [5], model 

transformation requires a “good knowledge of metamodels, and the link between the 

elements defined in the metamodel and concrete syntax.” Besides, the co-simulation level 

achieved in commercial tools seems to facilitate the design of executable models without 

requiring much effort from these software users, which is why this thesis focuses on this 

approach. Another option is workflow automation, currently available in tools such as 

Phoenix Integration Model Center and Dassault Systemes Process Composer. These tools 

do not co-simulate but automatically transforms the descriptive model. 

Specifically, this thesis is devoted to enhancing CSM, a traditional commercially 

available MBSE software, through its integration with multidomain simulations of 

system’s dynamics developed in MATLAB/Simulink development environment. To 

illustrate the proposed executable model approach, this thesis adopts the co-orbital 

engagement (COE) between satellites as the mission to be modeled to demonstrate the 

integration process and show how valuable an executable model can be even during early 

development phases. To this end, the following paragraph introduces the COE problem. 

Satellites contribute decisively to nations’ conduct of military operations, and 

warfare tactics rely more and more on space asset’s information. Space warfare is already 

a reality, and there is a myriad of anti-satellite (ASAT) weapons and techniques. From 

2015 to 2020, co-orbital ASAT weapons have been a topic in the headlines. These weapons 

put an interceptor into orbit that can realize maneuvers to alter its orbit, allowing the 

interceptor to get closer to its target [6]. Due to satellites’ complexity, their design requires 

more technological tools to ensure that stakeholder needs and user expectations are 

addressed in the best way possible, especially those used for military purposes. In the 

aerospace industry, the end-product and all the support operations necessary to place a 

satellite in orbit are so expensive that, in most cases, prototyping and testing of more than 

one design variant aspect are budget prohibitive. The emergence of new threats adds new 

challenges that require evaluating tactics and other operational aspects of a system, never 

tested before, in its early development stages. So, it is vital to ensure that the modeled 

design can satisfy mission requirements before the design team expends time and resources 

to prototype the system. 
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Based on publicly available information about COE, a vignette for the COE mission 

is presented and used for modeling a descriptive model of this mission in CSM. After that, 

this descriptive model is integrated with a legacy model that simulates two satellites’ 

behavior in COE [7]. This thesis revealed that the best approach is to use the physics-based 

models as black boxes nested in the CSM descriptive model to provide more flexibility for 

modelers and the use of a shared workspace in MATLAB, allowing the data exchange 

between the CSM and Simulink. In this approach, opaque actions in activity diagrams are 

the interface for inputs and outputs between the Simulink model and the CSM model. The 

integration is considered successful since, after the process explained in the thesis, the 

descriptive model rules the physics-based model and presents the simulation outputs for 

mission analysts. The user can simulate COE missions through a graphical user interface 

(GUI) or an instance table in the developed executable model. 

Despite the success in the integration, there are still some limitations related to the 

blocks’ value properties in the descriptive model. First, CSM does not support value 

properties written in the matrix form, which is considered a major limitation for coding in 

MATLAB. The updating of value properties in CSM and variables in the shared workspace 

also requires additional effort since unified modeling language (UML) commands are 

necessary. Another CSM GUI limitation is the lack of integration capability to display 

graphs and images generated in the MATLAB environment. The thesis presents ways to 

overcome these issues and other important technical details for those interested in 

integrating descriptive and physics-based models into executable models. 

This thesis recommends further studies scaling the developed model to include 

more complex simulations in the same descriptive model and explore their interaction. This 

interaction can occur so that the data and outputs generated by one physics-based model 

serve as inputs to the other physics-based model. This new interaction may require 

modification in designing the data flow in the developed model to keep the descriptive 

model updated. Additionally, this model would evolve to include a high-fidelity model 

developed in another Cameo Simulation Toolkit (CST) supported scripting language. 
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I. BACKGROUND AND PROBLEM FORMULATION 

This chapter explains the importance of the executable model-based systems 

engineering (MBSE) approach to assess behaviors of complex systems such as satellites 

correctly. After that, the chapter introduces the co-orbital engagement (COE) problem in 

the context of space warfare. It explains why this subject raises concerns for the operational 

maintenance of the current space infrastructure and how the topic impacts on future 

spacecraft design. The chapter ends by presenting an executable MBSE approach for COE 

missions and summarizes the thesis structure. 

A. EXECUTABLE MODEL-BASED SYSTEM ENGINEERING APPROACH 

According to [1], MBSE “is a subset of digital engineering” that “supports the 

systems engineering activities of requirements, architecture, design, verification, and 

validation.” The MBSE approach facilitates the maintenance, synchronization, and 

assessment of the information generated about a complex system and formalizes systems 

engineering processes using a model. The models developed using an MBSE tool are 

scalable and reusable, capable of evolving to support the system’s operation throughout its 

life cycle. Moreover, the use of a descriptive model as the single source of truth avoids the 

inconsistencies created when using the traditional document-centric approach. 

To truly avoid design flaws, however, it is necessary to connect these descriptive 

models to other engineering disciplines’ physics-based models, which can ultimately 

reduce rework and cost. This integration of descriptive and physics-based models to 

produce high-fidelity executable system models remains a challenge for digital  

engineering [1]. Executable system’s models accelerate the learning curve, enable higher-

quality models, and facilitate trade-offs aimed to optimize the system as a whole [2]. On 

the other hand, disconnected models lead to misinformation within the design team, non-

coherent or unrealistic design analysis, interface problems, and lack of integration between 

subsystems. 

For complex man-made systems, executable models also help the identification of 

a system’s emergent behaviors facilitating decisions made during the early design stages 
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without the necessity of expensive mock-ups or physical testing. In other words, executable 

model analysis shortens the feedback loop and allows a quicker and cheaper way to 

evaluate countless more design variations than is possible with the design-build-test 

traditional approach [3]. According to [4], this substitution of real-world activities by 

digital ones constitutes the art of digital acquisition. 

Specifically, according to [5], “the state of the art with regards to derivations of 

executable models from static architectures views is the two approaches of Model 

Transformation and Co-Simulation.” Current commercial MBSE tools such as the Cameo 

Systems Modeler (CSM), IBM Rhapsody, and Innoslate have features that allow 

integration of the descriptive and other design disciplines’ models for simulation purposes. 

These tools “provide out of the box support for co-simulation using scripting  

languages” [5] like Python and MATLAB/Simulink. The co-simulation approach provides 

a simpler way to create executable models and allows various domain experts to operate 

and test aspects of the system concurrently. This way of designing systems was unthinkable 

using the traditional document-centric approach or only static representations of them. 

Any model transformations use a process that generates “an equivalent model in a 

target language based on a specified mapping between the source and the target  

languages [5].” According to [6], model transformation requires a “good knowledge of 

metamodels, and the link between the elements defined in the metamodel and concrete 

syntax” makes model transformation a more complex task than the co-simulation approach. 

Several proposed approaches and frameworks in the relevant literature transform static 

architecture models into executable models [5]. Most of them aim to create executable 

models having SysML as the source language.  

Workflow automation is a more straightforward option for model transformation. 

This alternative is currently available in tools such as Phoenix Integration Model Center 

and Dassault Systemes Process Composer. These tools do not co-simulate but 

automatically transforms the descriptive model. This integration through automated 

workflows adds another software in the toolchain to produce an executable model. On the 

other hand, it does not require deep knowledge of metamodels. 
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Both ways to develop executable models present shortcomings and particular 

challenges. However, the co-simulation level achieved with commercial tools seems to 

facilitate the development of effective executable models without requiring much effort 

from these software users. This is the main reason why the co-simulation approach using 

two well-known industry tools is the one chosen to develop an executable model in this 

thesis. 

This thesis is devoted to enhancing the use of one of the most advanced MBSE 

tools, CSM, and executing high-fidelity models running in a development environment 

most domain engineers are using these days – MathWorks’s MATLAB/Simulink. As an 

illustration, this thesis adopts the Simulink co-orbital engagement model and shows how 

to effectively use it in the conceptual design of the COE missions. To this end, the 

following two sections introduce the COE problem. 

B. SPACE WARFARE 

Satellites have become indispensable for several modern human activities such as 

navigation, communications, and weather forecasts. Besides all these implementations of 

satellite technology taken for granted in modern society, satellites also represent a strategic 

and tactical advantage for the nations that have them, since they offer a global perspective 

of the operational picture during conflicts. In military use, satellites can determine the 

enemy’s troop movements, missile warning systems, and weapons’ guidance, and can be 

used in targeting enemies’ assets. These are just a few examples of exclusively military 

capabilities improved by satellites’ data. 

For these reasons, space technology contributes decisively to nations’ conduct of 

military operations, and warfare tactics rely more and more on the usage of space assets’ 

information. This dependency creates the necessity for these countries to ensure their space 

infrastructure is always active and updated. At the same time, this reliance on data obtained 

from satellites turns these spacecraft assets into a potential target for adversaries. 

Due to their inhospitable operational environment and systems’ characteristics, 

spacecraft have many vulnerabilities that can be exploited by adversaries. Even nascent 

space powers can exploit these weaknesses and use them as a leverage tool against 
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established powers [7]. Besides that, repairing a spacecraft in orbit is not economically 

viable yet, which means that even a simple malfunction in a support system can make a 

spacecraft useless. Replacement is not an easy option either. The production and the 

deployment of spacecraft involve various variables that make their replacement unfeasible 

on a tactical time scale. 

The protection of this critical infrastructure gained increasing attention after the 

2000s due to the major space powers’ demonstrations of new anti-satellite (ASAT) 

capabilities, such as the Chinese test of a direct ascent missile in 2007 [8] or the recent 

concerns raised by the possible Russian test of a co-orbital weapon in 2017 [9]. These 

offensive capabilities are driving the formulation of new requirements and tactics for 

satellites, which will significantly affect the next generation of satellites’ design. According 

to [8], artificial intelligence and improved sensors will increase the situational awareness 

for autonomous self-protection. Consequently, while military planners develop new tactics, 

spacecraft developers need to incorporate innovative design features and robustly assess 

their performance in the early stages of design. This is crucial, especially considering the 

weight and volume constraints imposed to reduce launch costs. 

Yet, it is a challenge to test the suitability of new tactics never used before for a 

complex system such as a satellite in a brand-new warfare domain and, simultaneously, to 

forecast their impacts in design and operational requirements. The best approach to 

overcome this issue is using modeling tools capable of representing systems and their 

missions both structurally and logically associated with physics-based simulations. MBSE 

is an approach that has many benefits for the development of complex systems, especially 

in the aerospace sector. Nevertheless, it is necessary to promote greater integration of the 

descriptive models generated through the MBSE approach and other models capable of 

capturing the physics involved in the appropriate use of these systems to create more robust 

model execution. 

The development of executable models can perfectly accomplish the task of 

integrating and testing both tactics and new designs, creating a common ground for 

technical and operational discussion. According to [10], recent analysis work has 

demonstrated the great potential of examining simultaneously operational system models 
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and system synthesis models. Besides, in the early system development life cycle, models 

are valuable since they allow a virtual analysis of solutions before engineering teams 

physically prototype them. These initial models can also mature to support their physical 

counterparts’ verification, validation, operations, modernization, and logistical support. 

The proper design of such an executable model involves a good understanding of 

both the system and its mission. So, it is crucial to identify the current threats to the system 

and their capabilities as a first step. The following section describes the present and near-

future status of co-orbital ASAT based only on publicly available information. 

C. EMERGING SPACE THREATS 

There is a myriad of ASAT weapons and techniques. From 2015 to 2020, co-orbital 

ASAT weapons became a notable topic in the headlines. These weapons put an interceptor 

into orbit that can realize maneuvers to alter its orbit, thus allowing the satellite to get closer 

to its target [11]. Co-orbital ASATs have versatility as one of their prime benefits [12]. 

They can eliminate their target using the kinetic energy in a direct “kamikaze-style” impact 

or release a cloud of fragments that will damage the target spacecraft similarly to a multiple 

debris’ collision. Since their modus operandi involves rendezvous and proximity 

operations (RPO), it is also possible for the ASAT to sabotage the target through a robotic 

arm capable of disassembling components or implanting small explosives; they can jam 

communications or use direct energy weapons. Co-orbital ASAT systems’ attacks can also 

be more surgical, generating less debris than direct-ascent missiles [13]. Furthermore, it is 

challenging to identify orbit objects’ hostile intentions, since their activities can be dormant 

long before the attack [14]. 

Depending on the nature of the attack, its linkage to a specific nation is not easy 

either [12]. Nevertheless, RPO require a high level of development in space technology, 

making this form of attack almost exclusively accessible to space’s leading powers. 

According to [15], only three countries have the technological maturity for co-orbital 

capabilities: Russia, China, and the United States. The assessment presented by [16] 

confirms this assumption for the current and near-future capabilities of those three nations, 

using only publicly available information for that. Figure 1 compiles the counterspace 
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capabilities of eight nations. Russia presents significant low Earth orbit (LEO) co-orbital 

ASAT capabilities, while China and the United States demonstrate some. For medium and 

geosynchronous Earth orbit (MEO/GEO) co-orbital ASAT capabilities, the three nations 

raised yellow alert flags, as highlighted in Figure 1. 

 
Figure 1. Overall counterspace capabilities assessment. Adapted from 

[16]. 

It is essential to highlight that RPO is a desired capability, since it improves the 

maintenance and inspection of space assets, making space exploration more economically 

viable. It is also easier for a space power to mask from other nations the development of 

new weapons through RPO, claiming that their tests aim on-orbit repairs [12]. In the past 

few years, some Russian and Chinese spacecraft have conducted unusual maneuvers in 

space that raised international suspicions that both nations are testing co-orbital 

engagement capabilities [17]. 

Since 2010, Russia has been conducting tests for rendezvous and close approaches 

in both LEO and GEO, which raised some concerns from other nations. An emblematic 

example is the Russian satellite “Luch” (Luch/Olymp for the U.S. Air Force). Luch has 

maneuvered to approach other satellites in the GEO belt since 2014, most of them 

communications satellites [17]. In 2018, the French Defense Minister accused the Russian 
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spacecraft of espionage when it made a “too close approach” to the Athena-Fidus, a dual 

use military telecommunications satellite that serves both French and Italian armed forces. 

The approach occurred as part of a Luch’s movement to get closer to Paksat-1R, a Pakistan 

communications satellite [17], [18]. According to [17], “Luch has parked near more than a 

dozen commercial communications satellites for periods ranging from a few weeks to nine 

months,” usually within their uplink window. Figure 2 shows Luch’s orbital history and 

the name of the satellites it visited. From 2014 to 2021, Luch visited 24 satellites from 

different countries. 

 
Figure 2. Compilation of Luch’s orbital history and satellites visited. 

Source: [17]. 

In addition to Luch’s suspicious movements, the activities of other satellites 

designated as Cosmos are most concerning, since they provide strong evidence of non-

destructive on-orbit weapons tests, and ASAT interceptors tests [9] [17]. For example, the 

RPO activities of Cosmos 2535 and Cosmos 2536 generated unexplained orbital debris 

[17]. Additionally, Cosmos 2543 deployed an object at high relative velocity of between 

140 and 186 meters per second on July 2015, and, similarly, Cosmos 2321 deployed 

Cosmos 2523 at high-speed on October 2017 [17]. United States Space Command stated 

that the Russian satellites presented space-based weapons’ characteristics [17]. Table 1 
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summarizes the recent Russian RPO since 2014. From June 2014 to October 2020, space 

observers could notice a series of unusual maneuvers from Russian satellites, including the 

emergence of debris in the vicinity of some of them. 

Table 1. Russian satellites’ suspicious co-orbital tests. Adapted from [17]. 

Date System(s) Notes 
Jun. 2014 – Mar. 2016 Cosmos 2499, 

Briz-KM R/B 
Cosmos 2499 did a series of maneuvers to bring 
it close to, and then away from, the Briz-KM 
upper stage. 

Apr. 2015 – Apr. 2017 Cosmos 2504, 
Briz-KM R/B 

Cosmos 2504 maneuvers to approach the Briz-
KM upper stage and may have had a slight 
impact before separating again. 

Mar. – Apr. 2017 Cosmos 2504, FY-
1C Debris 

After a year dormancy, Cosmos 2504 did a 
close approach with a piece of Chinese space 
debris from the 2007 ASAT test. 

Oct. 2014 – Feb. 2020 Luch, Multiple Luch parked near several satellites over nearly 
five years, including the Russian Express AM-6, 
U.S. Intelsat 7, Intelsat 401, Intelsat 17, Intelsat 
20, Intelsat 36, and French-Italian Athena-Fidus 
satellites. 

Aug. – Oct. 2017 
Cosmos 2521, 
Cosmos 2519, 
Cosmos 2523 

Cosmos 2521 separated from Cosmos 2519 and 
performed a series of small maneuvers to do 
inspections before redocking with Cosmos 
2519. Cosmos 2523 separated from Cosmos 
2521 but did not maneuver on its own. 

Mar. – Apr. 2018 Cosmos 2521, 
Cosmos 2519 

Cosmos 2521 conducted close approaches of 
Cosmos 2519. 

Dec. 2019 – Mar. 2019 
Cosmos 2542, 
Cosmos 2543, 

USA 245 

Cosmos 2542 released Cosmos 2543. Cosmos 
2543 did station keeping with Cosmos 2542, 
then raised its orbit to come within 30 km of 
USA 245 and establish repeated close 
approaches within 150 km, likely for the 
purpose of surveillance. Cosmos 2542 also 
made close approaches to USA 245. 

Jun. – Oct.2020 
Cosmos 2543, 
Cosmos 2535, 
Cosmos 2536 

Cosmos 2543 rendezvoused with Cosmos 2535 
and released a small object at high relative 
velocity. In Sept., Cosmos 2536 joined in the 
RPO with the other two and may have docked 
with Cosmos 2535. 
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According to a U.S.-China Economic and Security Review Commission report, in 

2015 [13], China has been conducting on-orbit demonstrations of rendezvous between 

satellites since 2010 [17]. The same commission [13] highlights that China’s manned space 

program could justify this space technology, since it has both military and non-military 

applications. However, the report also states that “the secrecy surrounding the tests suggest 

China also is using the tests to develop co-orbital counterspace technologies” [13].  

Table 2 summarizes the latest Chinese RPO demonstrations. China’s recent demonstrations 

are consistent for the purpose of satellite servicing and inspection but are also concerning 

due their suitability for offensive actions against another spacecraft. 

Table 2. Recent Chinese rendezvous and proximity operations. Adapted 
from [15]. 

Date System(s) Notes 

Jun. – Aug. 2010 SJ-06F, SJ-12 SJ-12 maneuvered to rendezvous with SJ-06F. 
Satellites may have bumped into each other. 

Jul. 2013 – May 2016 SY-7, CX-3, SJ-15 

SY-7 released an additional object that it 
performed maneuvers with and may have a 
telerobotic arm. CX-3 performed optical 
surveillance of other in-space objects. SJ-15 
demonstrated altitude and inclinations 
changes to approach other satellites. 

Nov. 2016 – Feb. 2018 SJ-17 
SJ-17 demonstrated maneuverability around 
the GEO belt and circumnavigated Chinasat 
5A. 

Jan. – Apr. 2019 TJS-3, TJS-3 AKM 

TJS-3 AKM separated from the TJS-3 in the 
GEO belt, and both performed small 
maneuvers to maintain relatively close orbital 
slots. 

 

Although it has no openly acknowledged co-orbital ASAT program or intent to 

develop such capability, the United States has the latent technological capability to develop 

this kind of attack in a relatively short time [19]. In fact, during the Delta 180 experiment 

in the 1980s, the United States conducted a successful co-orbital intercept [19]. Besides 

that, many RPO between satellites in both LEO and GEO demonstrate the country’s 

knowledge in tracking and targeting objects in space [19]. 
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Even though [16] has assessed that Japan has no co-orbital ASAT capability, that 

country has shown enough technological maturity to develop this capability in the near 

future. In April 2019, Japan deployed to Ryugu asteroid the Hayabusa-2 probe system 

equipped with a small carry-on impactor containing a 14-kilogram plastic explosive [20]. 

Hayabusa’s mission is to collect asteroid samples and bring them back to Earth [21]. It is 

relatively easy, however, to turn this capability into a co-orbital ASAT capable of 

exploding a deployed satellite. 

D. EMPLOYING THE EXECUTABLE MBSE APPROACH FOR COE 
MISSION DESIGN 

Now that the COE problem has been discussed, let us return to the discussion 

started in Section A. Due to satellites’ complexity, their design requires more technological 

tools to ensure that stakeholder needs and user expectations are addressed in the best way 

possible, especially the design of satellites used for military purposes. In the aerospace 

industry, the end-product and all the support operations necessary to place a satellite in 

orbit are so expensive that, in most cases, prototyping and testing of more than one design 

variant aspect are budget prohibitive. The emergence of new threats adds new challenges 

that require evaluating tactics and other operational aspects of the new, untested system, in 

its early development stages. So, it is vital to ensure that the modeled design can satisfy 

mission requirements before the design team expends time and resource prototyping the 

system. 

The best way to ensure that is the adoption of a model-based approach to identify 

design flaws, perform trade studies, and forecast the system’s emergent behavior by the 

design team. In fact, the Department of Defense Digital Engineering Strategy emphasizes 

the necessity to “incorporate technological innovations into an integrated, digital, model-

based approach” to transform its engineering practices to improve the military acquisition 

process and ensure technological superiority [22]. In this context, the strategy’s first goal 

is to formalize the development, integration, and use of models to support analysis and 

decisions [22]. 
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Use of MBSE approach requires determining the modeling language to standardize 

the communication among stakeholders, the modeling tool to construct the model, and a 

modeling process to guide the design team. So, there are several ways to implement the 

MBSE approach. In this thesis, the modeling language adopted is SysML, since this unified 

modeling language (UML) derived language has become a standard among MBSE 

practitioners [23], and the chosen modeling tool is CSM. The process is a simplified 

version of the Mission Engineering process presented in [24]. Figure 3 conveys the steps 

of this process. The first two steps from which all the modeling derives are the problem 

statement and the mission characterization and metrics. The problem statement presents a 

capability gap that the system aims to satisfy. The previous two sections cover most of the 

information necessary to understand the capability gap created by the vulnerability to COE 

ASAT weapons. In the second step, from the definition and understanding of the problem, 

subject matter experts create a vignette and define metrics to measure system success in 

this vignette to explore the system’s design-space. After that, the design team models both 

the mission and system architecture, defines requirements, and decide the appropriate 

simulations to use in the design of the analysis phase. This is the phase in which the 

executable model is designed. The last two steps address the simulation runs and the design 

decisions, as well as the conclusions are derived from them. The COE illustration (Figure 

3) presented in this thesis covers all these phases. 

 
Figure 3. Adopted process. Adapted from [24]. 

Other researchers and design teams have already reinforced the importance of 

executable models for satellites’ operations, such as the European Space Agency (ESA) 

e.Deorbit mission. European Space Agency (ESA) applied this philosophy since the first 
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phase of that project, where contractors were requested to model physical, logical, and 

functional architectures using MBSE and start simulations directly from the MBSE model 

[25]. Spangelo et al. [26] presented capabilities to improve the CubeSat missions’ design 

and operation using MBSE and SysML, highlighting the importance of interfacing SysML 

models integrated with analysis tools. Nevertheless, no current academic research 

discusses the same for military satellites. 

E. OBJECTIVES 

While there are many examples utilizing the MBSE approach in describing a 

system or its mission, no real attempt to incorporate a high-fidelity model into conceptual 

design has been documented. Thus, this thesis tackles the design of an executable model 

integrating a traditional MBSE tool (CSM) with a widely used external evaluator 

(MATLAB/Simulink) for the COE mission assessment, ensuring the necessary realism of 

the modeled system behavior. To address this problem, the thesis answers the following 

research questions: 

1. Is it possible to employ high-fidelity models integrated with descriptive models 

to improve the assessment of systems’ missions during preliminary design through 

executable MBSE models? 

2. Can CSM be integrated with MATLAB/Simulink models for the assessment of 

military satellite missions? 

3. What are the remaining challenges and current limitations in this kind of 

integration? 

4. What are the benefits of such an approach? 

Again, this thesis aims to demonstrate how assessing a specific satellite’s mission, 

such as the COE between two satellites, is facilitated during conceptual design using the 

executable MBSE approach that employ a high-fidelity model. This thesis covers all steps 

necessary to design an executable model using CSM and MATLAB/Simulink, a well-

known development environment in the aerospace industry. The thesis also demonstrates 
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the model’s use through a trade study analysis that considers both system and mission 

aspects. 

F. THESIS ORGANIZATION 

To address the research questions formulated in the previous section, the remainder 

of this thesis is organized as follows. 

Chapter II examines the COE mission’s descriptive model. This chapter presents 

the co-orbital engagement vignette and its modeling using a MBSE approach. It highlights 

the SysML diagrams used to represent the co-orbital engagement mission and its 

operational requirements. It also provides explanations about other SysML diagrams 

developed to support mission analysis. 

Chapter III presents important aspects of the high-fidelity Simulink model used to 

simulate a co-orbital engagement between two satellites. This simulator developed by [12] 

is used here for integration proof-of-concept purposes. Its integration with the descriptive 

model aims to provide system’ stakeholders with an executable model for their mission 

analysis. 

Chapter IV highlights the critical aspects of the integration of the two chosen 

modeling tools: CSM and MATLAB/Simulink. This chapter focuses on providing the 

technical details and best practice for those interested in integrating descriptive and 

physics-based models into executable models. 

Chapter V provides an example of the use of the executable model developed, and 

lastly, Chapter VI presents conclusions and recommendations for those interested in 

pursuing the development of executable MBSE models, and further work ideas based on 

this thesis’s conclusions. 
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II. DESCRIPTIVE COE MODEL 

This chapter starts with a brief description of CSM and the SysML language for 

readers not familiar with them. After that, it presents the developed COE evaluation 

vignette. In the context of the COE mission, this chapter proceeds by showing how general 

SysML diagrams can be applied to this specific mission derived from the evaluation 

vignette and other diagrams necessary to support the COE mission analysis. 

A. CAMEO SYSTEMS MODELER 

The Cameo Systems Modeler used in this thesis is one version of MagicDraw 

designed explicitly to support the MBSE approach. It provides a collaborative environment 

that allows design teams to visualize a system’s aspects in the most standard-compliant 

SysML diagrams; it hides the UML-related part with customizable menus [27], [28]. The 

CSM plug-in Cameo Simulation Toolkit (CST) enables validation and verification of a 

system’s dynamic aspects throughout user interaction and execution scenarios [28], [29]. 

CST integrates with external math engines, allowing external evaluators to evaluate 

opaque expressions in SysML activity and state machine diagrams [30]. MATLAB is one 

of the supported languages which permits the use of Simulink, the industry’s well-known 

multi-domain simulation environment, to analyze a system’s behavior using physical-

based models. The integration enhances the solver capabilities already embedded in CSM 

and makes all plotting and animated functions from MATLAB available to facilitate data 

analysis and decision making. The use of MATLAB as a solver only for mathematical 

expressions is quite simple. On the other hand, integrating complex physics-based 

simulations is more challenging, requiring certain technical details to fully integrate both 

models within an executable one. 

B. SYSML LANGUAGE AND DIAGRAMS 

According to [31], to properly represent systems structure and behavior, it is 

necessary to use a language that shares common properties with the phenomena we are 
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trying to convey. Due to that, systems engineers use modeling languages to improve 

communication within the design team and capture different perspectives of the system. 

There are a few modeling languages available. Among them, SysML is the 

dominant architecture modeling language, and it was developed specifically to support 

systems engineering activities such as specification, analysis, design, verification, and 

validation [23]. SysML is a general-purpose graphical modeling language derived from 

UML, which is commonly used in software engineering disciplines. The language is not 

only capable of representing system structures and behaviors, but also capturing a system’s 

requirements and parametrics through nine different diagrams. Figure 4 shows the SysML 

diagram taxonomy. 

 

 
Figure 4. SysML diagram taxonomy. Source: [32]. 

Each diagram has its own characteristics to present different views of the system. 

According to [33], the diagram addresses a particular purpose, and the modeler is free to 

choose what should or should not be shown in this view. The absence of an element in a 

diagram does not mean the element does not exist in the system [23], it only means that, 

for that view, the design information is not necessary or was chosen to not be modeled for 

a particular reason. Also, there is no obligation to use all the diagrams when describing a 

system or a particular aspect of the system. 
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Furthermore, SysML provides the necessary semantics to be integrated with other 

engineering analysis models [32]. The great advantage of using SysML language to model 

a system lies in the fact that it can be integrated as the source of information for other 

analysis and simulation tools [32]. The following section presents the descriptive model 

produced for the system’s mission analysis. 

C. EVALUATION VIGNETTE 

The vulnerability of satellites to co-orbital attacks is the system’s capability gap 

that needs analysis. Since this is a new threat, the development and test of new tactics are 

complex. Only through simulations can analysts verify their assumptions and which design 

parameters most affect them. However, to develop a simulation for this kind of analysis, it 

is necessary to characterize the system’s operation through a vignette and define the metrics 

used to assess the system. 

By definition, a vignette looks at one aspect of the scenario in which the system is 

inserted and operates, thus providing necessary information such as events, behaviors, 

systems interactions, and environmental factors [24]. A vignette is usually described 

textually in a paragraph or two, and graphically through a context diagram [34]. A proposed 

vignette aims to help the design team address the issue raised in the identification of new 

threats for the system. 

A co-orbital engagement involves, by definition, RPO, which means that one 

manner to avoid it is maneuvering to keep the distance between the hostile spacecraft and 

the target spacecraft. Space maneuvers imply fuel consumption, however, which is a 

critical resource associated with the satellite’s lifespan in the calculations. So, the 

development of tactics to avoid the co-orbital engagement between satellites directly 

impacts the spacecraft design itself. Considering the current space scenario described in 

the previous chapter, one possible vignette is as follows. 

During normal operations, the system of interest (SoI) detects another spacecraft’s 

unusual presence in its orbit. SoI assumes hostile intentions and classifies the target as an 

ASAT, since the detected spacecraft has initiated rendezvous maneuvers. The SoI also 

starts to maneuver, aiming to prevent the rendezvous. Considering the criticality of fuel, 
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the defender aims to use any opportunity to save fuel and maximize the attacker’s fuel 

consumption. The attacker can be equipped with a grappling arm or not. There is no 

interference from other spacecraft during the engagement. 

Figure 5 depicts a High-Level Operational Concept (Operational View, OV) Graph 

of the co-orbital engagement, highlighting the interactions between the two satellites and 

the Earth’s gravitational influence. From this vignette, the design team can derive 

operational requirements and measures of effectiveness at the system level that allow the 

design evaluation in this specific task. 

 
Figure 5. COE OV-1. 

Metrics are quantities used to examine, determine, and track a system’s 

performance and the value or utility it achieves in a mission [24] [35]. To track the system’s 

suitability for the mission, this example employs only two categories of metrics: measures 

of effectiveness (MoE) and measures of performance (MoP). While the MoEs measure 

success within the overall mission, the MoPs indicate individual systems’ or subsystems’ 

performance [24]. One MoE and three MoPs constitute the metrics employed in the design 

of analysis. The percentage of successful evasions is the MoE. The MoPs are the minimal 



19 

distance between the satellites, the defender’s fuel consumption trying to evade, and the 

attacker’s fuel consumption trying to engage. 

D. COE MISSION MODEL 

The descriptive model employs SysML diagrams to describe the necessary 

architectures in the design of analysis phase. A top-down approach is used, starting at the 

mission level and breaking it down into the system and subsystem levels. It is crucial to 

clarify how the developed model’s hierarchy applies these terms, since a system at one 

level can be a subsystem or a component at other levels [36]. The model’s hierarchy 

considers both satellites as systems and their part properties as subsystems. There is no 

further decomposition into the components level, although there is nothing in the model 

that prohibits this decomposition if necessary. The following paragraphs present the 

products produced in this phase in their logical production flow and justify the SysML 

diagram used in each case. There are also explanations of other SysML and UML diagrams 

produced to support the run model and conclusion phases. 

a) Mission Engineering Thread (MET): Missions are sets of operational tasks 

that need to be performed successfully for the mission’s successful completion [35]. The 

MET defines the chain of events that the subsystems interact with to complete tasks against 

threats to achieve success, providing a reference for analysis and evaluation [24]. This 

chain of events also shows the allocation of tasks to subsystems that will be part of the SoI 

architecture before its definition. The SysML diagram representing the MET is the activity 

diagram, since this behavioral diagram conveys a dynamic vision of the system that 

expresses sequences of behaviors and events. Figure 6 shows the developed MET. 
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Figure 6. Mission engineering thread. 

b) Mission and Systems Structural Decomposition: Block Definition Diagrams 

(BDD) convey the structural decomposition of the mission and both systems, and blocks 

only represent subsystems respecting the hierarchy just mentioned. Figure 7 illustrates the 

model’s hierarchical levels and presents how to identify them in the descriptive model. The 

figure depicts associated system levels and their counterparts in the model. There is no 

further decomposition below the subsystem level. 
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Figure 7. Model hierarchy and SysML representation of each level. 

The first BBD (Figure 8) aims to show every system, entity, and metric that 

compose the mission. This BDD is the context of the simulation explained in the next 

chapter, since this diagram provides a top view that encompasses all the elements analyzed. 

There is one block listing all physical constants employed in the simulation, and it also 

highlights the most important subsystems for this mission in each spacecraft. 

 
Figure 8. Co-orbital engagement mission structural decomposition. 
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The lower architectural level zooms in on the SoI and the ASAT structural 

decomposition. These BDDs expand the structure presented in the previous Mission BDD, 

showing generic and commonly found subsystems in satellites. Figure 9 shows the ASAT 

architecture. 

 
Figure 9. ASAT structural decomposition. 

Figure 10 conveys the SoI structural decomposition. The propulsion and the 

guidance, navigation, and control (GN&C) subsystems are the only two subsystems that 

send inputs to the simulator explained in Chapter III. The other subsystems presented in 

the decomposition reflect a typical space community decomposition adopted in [37]. 
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Figure 10. SoI structural decomposition. 

c) Operational Requirements: Systems engineering processes usually define 

requirements before the structural decomposition of the system. However, since this is a 

mission-driven example where the material solution is already defined, the inverted order 

is not a problem for the process adopted in this thesis. 

The requirement diagram conveys the text-based requirements and their 

relationship with other model elements [23]. They are useful to establish requirements 

traceability within the model. Figure 11 shows a simplified operational requirements 

diagram. These requirements reflect system-specific performance and quantify the MoPs 

previously defined. Usually, point values are not appropriate, and a range of values should 

be used instead [35]. The “objective” value is the design goal. The “threshold” value 

represents a superior or a lower limit not to question the utility due to the requirement 

aspect to which it refers to. 

For simplicity, only three requirements were included in this model to illustrate the 

benefits of using the MBSE approach to analyze different designs. The first one is the mass 

requirement, which is a driver for most space missions, and the other two requirements 

address the system’s goals related to the proposed vignette. The requirements diagram also 

shows that two subsystems, defined in the SoI structural decomposition, satisfy the 
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operational requirements: the tactics logic inside the GN&C subsystem and the propulsion 

subsystem. 

 
Figure 11. SoI operational requirements. 

 
d) Requirements Verification: A benefit of the MBSE approach is that it 

facilitates requirements checks. A parametric diagram is a SysML diagram capable of 

capturing system constraints through mathematical expressions, improving the analysis by 

automatically checking the fulfillment of the requirements. Since there are two 

requirements for mission success, a parametric diagram checks both (Figure 12). It also 

updates the Boolean value properties inside the MOE block to register success or failure 

considering the simulation results for a set of mission and system parameters. Another 

parametric diagram in the model is responsible for the mass roll-up of the SoI. The 

illustration later in Chapter V, however, does not consider the mass requirement, only the 

requirements related to the COE mission. 
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Figure 12. Parametric diagram for mission success or fail check. 

e) Analysis Support Diagrams: Mission analysis employs analytical and 

computational means using data and models [24]. Since using an external evaluator to 

facilitate this analysis is the goal of this thesis, it is necessary to create the environment for 

this integration within the descriptive model. With that in mind, two diagrams were created 

to provide the user interface and its logic in the usage of analytical tools to verify system 

performance. 

e1) State Machine Diagram: As in an activity diagram, state machine diagrams 

represent a dynamic view of the system which focuses on response changes to event 

occurrences [23]. Usually, a block owns the state machines diagram and executes this 

diagram within the context of a block’s instance [33]. The diagram defines block behavior 

changes due to the transition between different states and within a state [33]. 

Since the high-fidelity Simulink model described in Chapter III simulates both SoI 

and ASAT behavior in the co-orbital engagement, in the thesis’s example this behavioral 

diagram addresses the state’s transitions associated with the commands in the graphical 
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user interface (GUI) that aids the mission analysis. The diagram itself is designed in a 

logical sequence to use MATLAB/Simulink as an external evaluator. This diagram is 

further explained in Chapter IV. 

 
Figure 13. State machine diagram for the mission analysis. 

e2) User Interface Diagram: This is an extension diagram of UML supported by 

CSM. A User Interface (UI) Modeling diagram allows the prototype of user interfaces. 

This user-friendly graphical interface allows non-technical stakeholders to understand and 

profit from the model in their analysis and decisions. The GUI and its association with 

other parts of the descriptive model are described more fully in Chapter IV. 
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Figure 14. User Interface for co-orbital engagement assessment. 

e3) Instance Table Diagram: Despite all the benefits of a user interface, CSM has 

a better tool for the quicker exploration of the design space. The instance table is a 

MagicDraw native modeling tool table that allows a user to manage various instance 

specifications of the model simultaneously in a spreadsheet format [38]. In this example, 

each row of the instance table represents an instance of the analyzed block, and its columns 

represent the value properties of the block chosen for display. It is possible to edit values 

and run simulations directly from the table. Also, CSM exports the table’s data into .html, 

.cvs, or *.xlsx files [38], which facilitates the post-processing of the information generated 

in the model. Chapter IV further describes the table setting and its use. 

e4) Simulation Configuration Diagram: The simulation configuration diagram 

conveys elements in the model related with aspects of the simulation itself. In the 

descriptive model, this diagram nests two simulation configuration elements and an image 

switcher. The simulation configuration element helps the user to customize simulation 

options and the image switcher is a predefined UI configuration element that helps to 

provide animation representing states of the system. Chapter IV discusses the role of both 

the simulation configuration element and image switcher in the GUI. 

f) Model Overview: (Package Diagram) This diagram aims to facilitate navigation 

through the model (Figure 15). The better the organization, the more manageable the 
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control and reuse of the model. The package hierarchy is logically defined by the flow of 

the systems engineering activities related to the mission analysis. 

 
Figure 15. Model organization. 
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III. PHYSICS-BASED MODEL COE MODEL 

This chapter describes a high-fidelity model developed in the Simulink 

development environment to analyze COEs between two spacecraft [12]. It starts with 

contextualizing the necessity of this kind of modeling and where this physics-based model 

fits int the descriptive model. Then, the chapter provides a brief overview of the Simulink 

model itself and its relationship with the SoI’s and ASAT’s structural parts. The final 

section of the chapter emphasizes a few modifications that need to be made in the Simulink 

model to make it run in CSM. 

A. RELATIONSHIP BETWEEN THE DESCRIPTIVE AND PHYSICS-BASED 
MODELS 

The SysML behavior diagrams, introduced in Section D of the previous chapter, do 

not provide a physics-based representation of the system’s behavior. However, the 

conceptual design analysis may require this level of fidelity. This is definitely true for the 

space maneuvers that should be simulated exhaustively to guarantee the spacecraft design’s 

correctness at the mission level long before the construction of any prototype. 

While the descriptive model provides an overview of the entire mission, the 

physics-based model explained in this chapter represents the system behavior associated 

with the evasion tactic being tested and the maneuvers during evasion. The simulation 

considers GN&C parameters inside the tactics block and parameters from the propulsion 

subsystem that are crucial in a rendezvous maneuver. Hence, the Simulink model serves as 

an analytical tool to verify the fulfillment of mission requirements relative to these two 

subsystems’ design parameters. Figure 16 highlights the tasks the model covers within the 

MET. The only two tasks being assessed are the evasion tactic and the maneuvers to avoid 

the engagement. While the evasion tactic explicitly affects the overall mission parameters 

and requirements satisfaction, the maneuvers characteristics affect the design of both the 

GN&C and the propulsion subsystem. 

The physics-based model used in this study is a slightly modified version of the 

engagement simulator presented in [12]. Since the MBSE is scalable, the tasks allocated to 
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other subsystems can have their own analytical assessment tools and models, which are not 

within the scope of this thesis. Their integration with the descriptive model, however, 

follows the same procedures as those presented in Chapter IV. 

 
Figure 16. Tasks covered in the Simulink model. 

B. SIMULINK MODEL OVERVIEW 

The Simulink model this study uses represents two systems: one attacker (ASAT-

Red) and one defender (SoI-Blue). The dynamics of both systems are modeled using a state 

transition matrix developed from the Clohessy-Wiltshire (CW) equations. According to 

[39], the model’s core objective is to allow for rapid and sudden changes in spacecraft 

velocity; keeping a high degree of fidelity for the assessment of real-life engagements, this 

simulator is a starting point for tactics assessment. Its development did not consider use 

within an executable SysML model. Still, a modular approach was taken, which facilitated 

its integration with some minor modifications. Figure 17 conveys the model arrangement, 

the blocks in the descriptive model that send the inputs to their counterparts in Simulink, 

and the part that send outputs to MATLAB workspace.

Physics-Based Model 
run in Simulink 
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Figure 17. Illustration of interfaces existing between the CSM and Simulink models. Adapted from [12]. 
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The radial, in-track, cross-track (RIC) trajectory-based reference frame is the 

coordinate system adopted due to its suitability to RPO maneuvers. According to [39], the 

CW equations describe the spacecraft’s relative motion to a constant point in the coordinate 

system. This chosen constant point is the initial defender’s position, which remains 

stationary in the RIC frame [39]. However, the inertial reference frame disregards any 

defender’s maneuvers [39]. 

 
Figure 18. RIC trajectory reference frame. Source: [40]. 

The model uses a so-called “low-fidelity” propagator to estimate a spacecraft’s 

position considering orbital mechanics and their maneuvers [12]. This propagator only 

considers the Earth’s gravity and the velocity changes generated by the propulsion 

subsystem [12]. Nevertheless, [12] demonstrated that the model’s performance over a short 

time span is similar to high precision propagators such as the System Tool Kit’s Astrogator 

propagator. 

The simulation starts with both spacecraft a few kilometers apart. This distance is 

the initial condition of the problem and may indicate a sensor range, for example. Hanlon 

[12] tested various directions considering various relative positions between defender and 

attacker to develop a tactic that results in 30–50% savings in fuel consumption relative to 

the aggressor. In this model, both spacecraft were considered nearly identical, which is 

unrealistic but necessary for the comparison purpose.  



33 

In the model, the satellites’ maneuvers around each other are decided by their 

tactics block. The tactics blocks take the current SoI and ASAT configuration and establish 

a response considering the ASAT state, the own state, and the simulation remaining time 

[39]. At the same time, the outputs are thrust commands [39]. While the attacker tries to 

intercept the defender on the most effective trajectory considering the engagement’s 

remaining time, the defender uses the aforementioned fuel-saving approach. 

The RPO block transforms the tactics block’s commands into thrust commands for 

velocity changes; it tracks the fuel consumed and the spacecraft’s position and velocity 

relative to the target’s initial position [39]. Besides, according to [39], “it calculates what 

the state is in the next time step.” As usual, Simulink sends the data generated to the 

MATLAB workspace after each run. Initially, the user could visualize the simulation 

outputs for each engagement through a series of graphics produced in the MATLAB 

environment. This aspect changed in this thesis due to the factors considered relevant in 

this mission analysis and to take better advantage of the executable model developed. 

Chapter IV discusses the presentation of results in the executable model, while more 

information about this Simulink model can be found in [12], [39]. 

C. ORIGINAL MODEL MODIFICATIONS 

The Simulink model described in [12] is used in this thesis essentially  as a black 

box. It receives some systems’ parameters as inputs and returns MoPs and graphical 

representations as outputs. The few modifications implemented do not affect the already 

proven high-fidelity of the simulation. Instead, they allow for modification of the 

unrealistic assumption that both spacecraft are identical, which increases the level of 

realism. 

The first modification concerns the mass of the spacecraft. Hanlon assumed that 

both spacecraft have the same mass equal to 1 kilogram [12]. This characteristic is 

adjustable from the descriptive model, and it is one of the inputs when the model initializes. 

For example, SoI mass is ten times greater than the ASAT mass in the Chapter V 

demonstration. Other inputs further differentiate the attacker and the defender, helping to 

create more representational engagements. 
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The second modification is in the storage and presentation of the results. Originally, 

a .mat file stores all data produced in the simulation allowing the necessary manipulation 

of this data for analysis later. Although all the original data generated after the simulation 

is still available in the shared workspace, only the satellites’ minimum distance and their 

fuel consumption are displayed in the GUI for requirements verification. Also, the GUI can 

produce a graph that shows the trajectory of both spacecraft during the engagement. For 

further mission analysis, the GUI also includes two animations showing the kinematics of 

the engagement and the thrust of the propulsion subsystem. 

The meaning of simulation time is another aspect that deserves a discussion. When 

executing a SysML diagram in CSM, the simulation time shown in the CSM simulation 

console is not representing the simulation time considered inside the physics-based model. 

The simulation time is an input, and all the simulation occurs without user intervention. 

This limitation is not a CSM or an integration issue. Instead, it is a consequence of the 

model’s design. Figure 19 conveys a high-level data flowchart view of the simulation 

showing inputs and outputs adapted from [39]. The next chapter covers this data exchange 

in more detail. 

 
Figure 19. High-level view of the data flow between two environments. 
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IV. CSM/SIMULINK INTEGRATION 

This chapter explains the design of the executable model for COE mission analysis 

using the descriptive and physics-based models presented in the previous two chapters. It 

also covers the technical aspects and a few best practices related to the integration of and 

information flow between CSM and MATLAB/Simulink to develop an executable model 

using these tools. This chapter’s primary goal is to provide all the information necessary 

for integrating and using these tools, allowing effortless development of executable models 

dedicated to mission analysis in future works. 

A. DATA EXCHANGE 

The first step to enable this integration is to install the CST plug-in that allows 

external evaluators, as mentioned before. Also, MATLAB integration as a tool must occur 

to CSM to call and use it in CST [41]. This integration does not mean that CST will use 

MATLAB for every calculation in the model, since the built-in CST math engine is still 

available and is the default evaluator. Instead, it means that CST will correctly interpret 

MATLAB commands when they appear within the model. 

 
Figure 20. MATLAB integrated with CST. 

The design of the Simulink legacy model in question did not consider this kind of 

integration. So, the best alternative in this case is its use as a black box nested in the 

descriptive model. The key to a successful integration, in this case, is to assure that both 
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tools share the same MATLAB workspace. This is a better approach, since it minimizes 

interferences in the MATLAB code/Simulink model design. Cameo Systems Modeler 

creates its own hidden workspace when it uses MATLAB as an external evaluator. This 

hidden workspace will be disabled by calling the kill matlab command in the Simulation 

Console panel in the Simulation window provided by CST [42], [43]. Then, it is necessary 

to initiate MATLAB and convert the currently running session into a shared session. This 

sharing can be done by calling the matlab.engine.shareEngine command in MATLAB 

Command Window [43], [44]. After that, the descriptive model inside CSM is the one 

ruling any other model developed in the Simulink environment, and all the other commands 

will be called from CSM. Figure 21 shows a BDD that conveys the executable model’s 

structure. 

MATLAB/Simulink runs in the second plane to support the descriptive model, and 

any native MATLAB functions are automatically recognized. Simulink models, MATLAB 

scripts written as a function, or any other user-defined functions used in the executable 

model after the integration will be stored either in the CSM directory or in a path indicated 

as the Current Folder window in MATLAB. Otherwise, CST will not recognize these 

functions or models. 

 
Figure 21. BDD of the executable model. 

Now that both tools share a common place to write and read data, it is essential to 

know the options to include or the variables to delete in the shared workspace. There are 

three ways to do that: calling commands through the CST Simulation Console, using 



37 

activity diagrams with opaque actions, or using opaque behaviors inside states in a state 

machine diagram (Figure 22). An opaque action is an action that has a body (coding lines) 

and language (programming language) properties whose functionality is not specified 

within UML [45], [38]. These two properties allow writing and executing mathematical 

expressions in various programming languages [23], [46], making this the preferable way 

to execute MATLAB commands and functions and even the Simulink model. Additionally, 

activity diagrams are excellent to represent complex control logic and the most effective 

analysis tool in SysML [23]. Activity diagrams can also be incorporated as a behavior in a 

state machine diagram. For this reason, the descriptive model uses several activity 

diagrams to facilitate the information exchange. The other option is the opaque behavior 

which is another state’s behavior type with the same structure as the opaque actions and 

which executes MATLAB functions and commands in the same way. Figure 23 conveys 

an internal block diagram of the data flow within the executable model. 

 
Figure 22. Three ways to send data from CST to MATLAB:  

a) CST Console Panel; b) Opaque Actions;  
c) Behavior Type: Activity or Opaque Behavior. 
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Figure 23. Internal data block showing data flow. 

In addition to having a shared workspace, two other aspects are crucial to making 

the integration successful. The first one is ensuring that CSM gives the external evaluator 

enough time to run the simulation, calculate the requested outputs, and write them in the 

shared workspace to use them in CSM. This technical detail cannot be neglected; 

otherwise, the model will not run properly. It is only necessary to increase the timeout for 

external solvers in the CSM simulation options menu to address this issue [47]. This 

adjustment depends on the complexity and intensity of the calculations expected for the 

external solver. In this executable model, the timeout is set for six minutes, which is more 

than enough for the simulator to produce the requested outputs even for 24-hour period 

simulations (Figure 24). 
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Figure 24. External Solver Timeout. 

The second aspect is to guarantee that MATLAB receives the system data in the 

correct format and name. Usually, integer or real numbers represent the value properties 

describing aspects of the system. Besides, CSM does not support value properties written 

in a vector or matrix format, which are needed when working in the MATLAB/Simulink 

environment. Due to this, adjustments may be required using the opaque actions to write 

the inputs properly in the MATLAB workspace. Figure 25 shows an example of it in the 

descriptive model. The initial position and velocity of both spacecraft are necessary as 

inputs to start the simulation, and both data must be written as 1x3 matrices. To address 

that, an activity diagram containing an opaque action is embedded in this block. In fact, 

every block representing a subsystem also embeds a similar activity diagram to send inputs 

to the shared workspace, whether in the matrix form or not. This is necessary, since activity 

diagrams can only read the value properties of the block that serves as a context for them. 

This minor limitation must be considered when deciding where to declare properties of the 

system and its subsystems. 
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Figure 25. Example of variable adjustment using opaque actions. 

The naming of variables is another point worth mentioning. Descriptive models 

give the modeler the opportunity to declare systems’ properties in a more readable way 

than is usually provided in programming languages. This fact makes these models more 

understandable for all stakeholders, especially non-technical ones, than the hundreds of 

lines of code associated with a physics-based model like the one in question. Nevertheless, 

these opaque actions must match the value properties names and the simulator’s variables 

names to ensure that both models find the data they need in the shared workspace. 

B. GRAPHICAL USER INTERFACE 

As stated before, a GUI makes the executable model more user-friendly and the 

analysis of the system and its mission easier. The first step to build this GUI is creating a 

state machine diagram nested inside a block to be its classifier behavior. A block can have 

several diagrams representing its behavior. However, only one of them can be the block’s 

classifier behavior. In this example, the COE Mission block is in the top-level of the 

mission structure derived from the vignette. For this reason, the state machine diagram 

developed is nested inside this block and used as its classified behavior.  

In a state machine diagram, a state can have three kinds of behaviors: entry 

behaviors, do behaviors, and exit behaviors. An entry behavior is the first behavior 

executed whenever the state is entered, and an exit behavior is executed before a state is 
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exited [23], [33]. A do behavior is executed immediately after the entry behavior [23]. 

Activity diagrams can represent entry, do, and exit behaviors, which facilitates the 

execution of MATLAB commands within a specific state. So, each state in the diagram has 

at least one activity diagram representing behavior. Figure 26 conveys the arrangement in 

tiers of the diagrams. In the containment tree, all these activity diagrams are hierarchically 

below the COE Mission block for model organization purposes. This is not required, 

however, and the model’s organization can include a library to store them all to facilitate 

their reuse for a descriptive model integrated with more than one physics-based model. 

Triggers are one of the options to cause the transition between states [33]. A Signal 

event is one kind of trigger that represent that an asynchronous signal has arrived [33]. 

Since the state machine diagram’s main goal is to support the mission analysis GUI, signals 

are the best option to represent the user’s commands to the model. This procedure 

completes the design of the state machine diagram contributing a lot to make the model 

easier to use as an analysis tool that keeps MATLAB totally in the second plane. 

 
Figure 26. Relationship between the diagrams. 
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The next step is the design of the user interface diagram. To create this diagram, it 

is crucial to understand which parts of the model will be executed, which will serve as 

inputs, and which results are important to display. Having the BDD of the mission’s 

structure as a guide, the main frame called Mission Analysis in the UI diagram represents 

the Vignette block. Within this container, there are several panels representing the COE 

Mission block and its parts. Every button in the GUI is related to one signal event in the 

state machine diagram that is the classifier behavior of the COE Mission block. Both SoI 

and ASAT parameters shown in the GUI can be manipulated by users in their analysis 

either through sliders or by typing new values into the text fields reserved for them. The 

simulation time in the GUI is the one considered by the physics-based model and can be 

manipulated by the user as well. The three MoPs are displayed for user assessment of 

success or failure of each engagement run. Figure 27 shows the correlation between UI 

entities and the mission structure parts.
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Figure 27. Correlation between the UI entities and mission’s structure parts. 

 



44 

Some characteristics of the GUI deserve more discussion, since there are ways to 

overcome the CSM UI diagram’s limitation, and ways to leverage CSM and MATLAB as 

integrated tools or decisions made to facilitate the exploration of the design space. The first 

of them is the image that shows the simulation status. Located in the upper left corner of 

the GUI, this image changes according to the stage of the analysis. Even though CSM 

animates the state machine diagram to show the same information, follow that in the 

diagram when using a GUI is not practical. 

On the other hand, the decision to include this user visual aid has another purpose. 

CSM does not have any option that allows the locking of a button to be conditioned 

according to the current state of the system. This can lead to situations where the selection 

of an option by the user does nothing simply because it does not correspond to the signal 

event necessary to trigger a transition between states. There are seven different messages 

indicating the states where the user needs to press a button to trigger the transition (Figure 

28). States that do not need user intervention to change have no message. Another option 

is to use a similar visual aid with instructions about the options the user has in each one of 

the stages. In both cases, the element used is the image switcher, which is a CST feature 

that allows the representation of a specific stage through an image in the GUI. 
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Figure 28. Messages associated with each state in the GUI state machine 

diagram. 

The second noteworthy aspect is the updating of a block’s value properties during 

the analysis. A block’s value property can have a defined type and a default value. In this 

example, the default values in each of the BDDs correspond to the system’s current status. 

Besides, at the beginning of the analysis, the values displayed in the GUI, when they exist, 

are these default values. 

For exploring the design space and the impacts of changes in one or more system 

parameters, however, the analysis must allow for them to change quickly and without 

compromising the consistency within the model. The systems and mission’s parameters 

considered essential for this analysis are available in the GUI for user modification. 

Changes in the system’s parameter using one of the sliders or the GUI text fields only affect 

the blocks’ instance created by in CST for this analysis, updating their value property with 

these inputs. So, since these modifications in the GUI do not change the default values in 

the BDDs, they allow the assessment of different designs without introducing 

inconsistencies in the model as desired. From a data consistency perspective, this aspect is 
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excellent. On the other hand, it raises an integration issue. The shared workspace does not 

receive any updates from GUI automatically. 

In the initialization stage, the default values are sent to the shared workspace 

creating the input variables needed for the simulator to be ready to run. To modify these 

values, an activity diagram that uses both UML actions and MATLAB commands is 

necessary. First, the UML action called readStructuralFeatureAction retrieves the values 

set by the user in the GUI. After that, these values overwrite the variables already declared 

in the shared workspace through opaque actions using MATLAB commands. The necessity 

of this step accounts for the two different buttons to start the simulation. The first one runs 

the simulator using the values already available in the workspace, and the second one 

overwrites the variables in the workspace with the new user-defined new values. A similar 

procedure is required for the information generated by the simulator, since that information 

is not automatically updated in the descriptive model either. MoPs are an example of this 

kind of information. 

The three MoPs shown in the GUI have no values before the first run of the 

simulator. Based on the simulation’s results, an opaque action calculates the desired MoPs 

using MATLAB commands. Then these values are updated in the blocks’ instances created 

by CST through the addStructuralFeatureValueAction. The GUI always shows the updated 

values for the user. Figure 29 conveys how the information update process takes place in 

the executable model. 
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Figure 29. Information update flows from the descriptive model to the 

shared workspace. 

The third aspect concerns how to take advantage of the fact that MATLAB is the 

external evaluator for the executable model. The fact that all native MATLAB functions 

are available opens new possibilities for visualization of data and the ability to use 

graphical tools in the analysis of a descriptive model, which would otherwise, not be 

available. There are four buttons in the GUI that demonstrate these advantages. The first 

one is a save button that saves all the inputs and outputs of the run in an Excel spreadsheet 

for further analysis and comparisons. The other three buttons utilize some MATLAB 

graphical functions to recreate and display both ASAT and SoI trajectories. This graphical 

feature was not originally embedded in the Simulink model. However, the only data 

necessary to generate them were the outputs available in the shared workspace. This feature 

is significant for tactics assessment since it can show operational stakeholders how 

technical parameters influence specific aspects of the mission. 

One GUI limitation is that it cannot display figures generated in the MATLAB 

domain. The major inconvenience this limitation brings is that the figures can pop up in 

front of buttons or other important information on the GUI, or they may even stay hidden 
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behind the CSM window. Fortunately, overcoming this issue is quite simple. It is just 

necessary to use the proper MATLAB commands to ensure that the figure pops up in a 

convenient space on the screen. The GUI has a specific place reserved for presenting these 

graphics. Figure 30 shows how the MATLAB figure fits in the screen. 

 
Figure 30. GUI and MATLAB graphs. 

The last step in setting the GUI is to create a simulation configuration element in a 

Simulation Configuration Diagram to customize some options for running the simulation 

in the context of the Vignette block. The simulation configuration element has the Vignette 

block as the execution target and is the responsible of starting the GUI when the simulation 

runs. The same diagram nests the image switcher representing the states of the state 

machine diagram that rules the GUI. 

This step ends the necessary procedures for using the GUI to control the executable 

model. From the GUI, the user can control all the available simulation parameters. It is 

possible to improve the GUI to give the user other options. However, for the desired proof 

of concept, the options available are enough. The main limitation of the designed GUI is 

that it only runs one case at a time. If running of multiple cases is necessary, another CSM 

feature can handle it: the instance table diagram. 
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Figure 31. Simulation configuration diagram. 

C. THE INSTANCE TABLE 

Despite all GUI benefits, a faster analysis of the design space requires the use of 

the instance table diagram as mentioned in Chapter II. This diagram allows the 

management of multiple instances of the same mission in a spreadsheet-like format that 

enables modifications in the studied input parameters. Both the GUI and the instance table 

run the Simulink model to calculate and to show the user the results of the ASAT COE 

attempt. Nonetheless, there are a few modifications needed in the COE block to make the 

analysis from the table possible. 

First, a new BDD is created replicating the mission structure shown in Figure 8 in 

a new package called Trade Studies Analysis. This BDD reuses the same blocks defined 

before except for the COE Mission block, the modifications of which are explained in the 

next paragraph. It means that all value properties that serve as input for the simulator, and 

the activity diagrams responsible for sending and recovering data from the shared 

workspace are the same. 

The second modification is in the COE block classifier behavior that can no longer 

be the state machine diagram. This modification is necessary due to the design of the state 
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machine diagram that aims the user commands to transit between states as mentioned 

previously. Since the simulations from the table have no user intervention, another instance 

of this block is created, and the classifier behavior of this instance is changed for the 

activity diagram responsible for running the simulator and calculating the outputs. This 

activity diagram was originally used as a do behavior in the Simulation state of the state 

machine diagram. All the other activity diagrams representing all entry, do, and exit 

behaviors are not used in the instance table. This block was renamed as COE Trade Studies. 

The last modification aims to ensure that the readStructuralFeatureAction in this 

activity diagram is retrieving the value of the correct structural feature. This is only 

necessary for the newly created COE Trade Studies block. This modification can be easily 

done by dragging and dropping the part property of the new block into the corresponding 

feature action. 

In the instance table, the COE Trade Studies block is set as the classifier. Each row 

represents an instance of this block and the columns can show any value property from the 

block or its parts. The user can customize what he or she thinks is valuable for the analysis. 

Figure 32 shows the produced instance table displaying the initial position of the ASAT, 

how fast both SoI and ASAT maneuver, the SoI fuel consumption, how close the spacecraft 

gets to each other, and the mission status based on the operational requirements. 
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Figure 32. Example of the instance table. 

The setting of the instance table completes the design of the executable model and 

the analysis design. So, it marks the end of the third step of the process shown in Figure 3. 

Chapter V presents a demonstration using both the Instance Table and the GUI for the 

analysis of the effect of one subsystem parameter in the COE mission. 
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V. DEMONSTRATION OF MODEL EXECUTION 

This chapter presents an example of a tradeoff study performed to illustrate the 

process of verifying the suitability of choosing specific parameters for one of the 

subsystems. The chapter starts with the motivation for choosing some specific parameters 

to illustrate how to use the executable model in early design phases to simultaneously 

support the mission and system assessment. Then, it presents an example of how a batch-

run can be executed to identify critical scenarios where the default value does not meet the 

operational requirements (using the instance table). Next, these failure cases are further 

analyzed for changes in this specific parameter, also using the instance table. Finally, this 

chapter illustrates how the developed GUI helps in more detailed analysis of specific 

parameter configurations. 

A. CHOOSING OPTIMIZATION PARAMETERS 

From the vignette and requirements, the importance of saving fuel is evident when 

evading from an attacker spacecraft. Assuming that the GN&C subsystem embeds the 

tactics logic developed in [12] and is responsible for automatically evading from ASAT 

approaches, one crucial parameter is how frequently the SoI updates its position based on 

the attacker’s position. More frequent updates means undesired fuel consumption. The time 

between thrust events represent this update rate in the model. So, as a default, SoI activates 

its propulsion every 540 seconds while the ASAT does the same every 90 seconds. The 

analysis intends to verify that this updating rate is enough for evasion no matter the 

direction the attacker approaches from for a four-hour engagement. Design modifications 

and new requirements can derive from the analysis’s results to help the design team 

improve the system to increase successful evasions. 

B. BATCH-RUN EXAMPLE 

This batch-run example evaluates the mission’s success or failure based on the 

fulfillment of both requirements, assessing a combination of 26 different attack vectors and 

four initial distances between SoI and ASAT (Figure 33). Every other parameter in the 

mission keeps its default value. This first triage aims to identify the attack vectors 
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concerning the adopted tactics and possible flaws in the automatic maneuvering defense 

system. This step uses the instance table described in Chapter IV (Figure 32) to assess the 

104 different initial configurations (104 rows in the instance table). The SoI could not 

maneuver effectively to avoid the ASAT approximation in 24 situations. All failures 

occurred in the same plane, referred to from here as the critical plane. The instance table 

displays the result of each engagement. However, since the data in the instance table is 

exportable as a .xlsx file, it is simple to display the results using diagrams. Figure 34 

summarizes the results and highlights the critical plane to facilitate the visualization of the 

data in the table. 

 
Figure 33. ASAT initial positions (104 cases in total). 
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Figure 34. Critical plane concentrates all the failure cases. 

C. CRITICAL PLANE ANALYSIS 

Figure 35 zooms in the critical plane. This plane is where the radial coordinate is 

equal to zero. All the attack vectors show failures in this plane. This result reduces the trade 

space analysis to this plane. This section further studies these attack directions, verifying 

whether the results remain the same when the SoI updates its position faster than the default 

value used in the batch run. 
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Figure 35. Critical plane zoom-in displaying failure and success evasions. 

This time, the simulation considers only the ASAT 32 initial positions in the critical 

plane. Another 128 rows represent these initial conditions for four different time values 

between thrust events: 270, 180, 90, and 30 seconds. For updates every 270 and 180 

seconds, there is no improvement in the SoI performance, and the results are the same as 

with updates every 540 seconds. When the update rate is equal to the ASAT (90 seconds), 

the attack vectors parallel to the in-track axis are not a problem anymore. Yet, the other 

cases still fail. For 30 seconds between thrust events, there is no improvement from the 

previous results. In fact, there is a decrease in successful evasions, because the mission 

starts to fail due to not complying with the fuel requirement in two cases. Figure 36 displays 

the results. 
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Figure 36. Effect of the thrust event frequency. 

From the previous analysis, the best parameter value is 90 seconds. However, there 

are still six concerning attack vectors. Four vectors present failures within 12 kilometers 

between SoI and ASAT, which means that evasive maneuvers should start before this limit. 

On the other hand, SoI failed to prevent the ASAT approximation in all cases when the 

attack vectors were parallel to the cross-track axis. For this reason, this specific engagement 

scenario may need a deeper analysis; this, can be accomplished using the GUI presented in 

Chapter IV. The next section presents these studies. 

D. MORE DETAILED DESIGN ANALYSIS 

In the GUI simulation, the ASAT starts 8 kilometers away from the SoI in the cross-

track axis. During the four-hour engagement, the SoI’s position updating rate is 30 seconds. 

The minimal distance between them is less than two kilometers for this setting. Figure 37 

shows the GUI settings and the trajectory plot. 



58 

 
Figure 37. Results and trajectory plot for an engagement with ASAT and 

SoI 8 kilometers apart in the cross-track axis and 30 seconds between 
thrust events. 

By displaying an animation to the user, the simulation replay trajectory button 

clarifies better when the proximity requirement failed. This feature allows mission analysts 

to verify the seriousness of the failure and when it occurred in this situation. Figure 38 

shows the kinematic of the engagement. 

The minimum separation between the spacecraft occurs at the beginning of the 

engagement. It is possible to conclude that the satellites do not remain near each other for 

an extended period. In fact, after that, the SoI is capable of evading and remains distant 

from the ASAT. So, one can conclude that, in terms of evasion, this situation is acceptable, 

and the operational requirement established was very restrictive. Also, it is possible to infer 

that the SoI maneuver is correct since it tries to keep the ASAT in a different plane than 

the critical plane. The problem is that this maneuver does not occur quickly enough. 

Since fewer than two kilometers is too close in space terms, the GUI is further used 

to verify one combination that increases the distance between them in the ASAT’s initial 

approach attempt. Updating the SoI position every 10 seconds (considered here as the 

minimum value possible) and considering that the maneuvers start when the ASAT is 15 

kilometers away from it results in a minimum distance of approximately 3.5 kilometers. 

This new result increase means fewer opportunities for the ASAT to collect intel or attack 
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the SoI. On the other hand, it still does not fulfill the established proximity requirement. It 

means that this case requires studies considering in the influence of other parameters. 

 
Figure 38. Engagement kinematics: a) Instant where the closest proximity 

occurs; b) ASAT attempts to engage a second time without success; c) 
SOI evasion maneuver keeps it safe from ASAT; d) ASAT cannot get 

closer again in the four-hour period. 
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Figure 39. Results and trajectory plot for an engagement with ASAT and 
SoI 15 kilometers apart in the cross-track axis and 10 seconds between 

thrust events. 

E. EXAMPLE OF OUTCOMES SUPPORTED BY THE DEVELOPED 
MODEL 

Based on the example considered in this chapter, a systems engineer could conclude 

the following points about the mission design, which are now supported within the 

developed CSM/Simulink model.  

For a specific case of the ASAT being 10 times lighter than the SoI: 

• The mission is successful for more than 70% of the engagements 

simulated using the default parameters and the fuel-saving approach logic 

for maneuvers. 

• There is only one plane that raises concerns in this COE vignette. The 

critical plane is the one where the radial distance between the SoI and the 

ASAT is equal to zero. 

• Every possible hostile spacecraft must remain out of this critical plane. A 

possible solution for this is to increase the space situational awareness of 

the system to activate the tactics block embedded in the GN&C earlier. 
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This solution requires the elaboration of specific requirements for the 

sensors in the avionics subsystem. 

• Due to its particularity, COEs beginning with the ASAT in the critical 

plane require specific tactics to increase the radial distance through more 

effective maneuvers or even spending more fuel in these cases. 

• The proximity requirement could be revised to check whether it is not too 

restrictive. Even with the ASAT getting closer the SoI evaded it 

successfully. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis demonstrated how to enhance CSM, a traditional commercially 

available MBSE software, through its integration with multidomain simulations of 

systems’ dynamics developed in MATLAB/Simulink development environment. It is 

envisioned that such an integration between system’s representations modeled by systems 

engineers and by domain experts would allow a better understanding of system’s behaviors 

both statically and dynamically and as such enable a more effective and more realistic 

design process. 

To illustrate the proposed approach and give a sense of the resulting executable 

MBSE model, this thesis used the satellite COE problem and modeled this mission in CSM 

(using SysML diagrams) as well as in Simulink (using the blocks representing system 

dynamics). Both models were integrated into an single executable model, which potential 

in the conceptual design phase of a satellite system was demonstrated in assessing the 

overall COE mission effectiveness. 

The thesis answered the following research questions formulated in Chapter I 

Section E as follows. 

1. Is it possible to employ high-fidelity models integrated with descriptive 

models to improve the assessment of systems’ missions during preliminary design 

through executable MBSE models? 

SysML is very efficient in describing the system’s behaviors statically. 

Nevertheless, some systems such as satellites need a better way to describe their behavior 

dynamically, even in their early development phases. For that reason, a dynamic simulation 

is required to assess an emergent system’s behavior, verify and validate the preliminary 

design of the system. The development of executable models aims to fill that gap in the 

SysML representation. 

From the illustration provided in this thesis, it becomes clear that the assessment of 

a complex system’s design and its mission simultaneously is definitely facilitated by the 
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executable MBSE approach that employs high-fidelity embedded models. In the COE 

illustration, the developed descriptive model decomposes the SoI and its mission only at a 

high level, similarly to what happens in the early phases of any system’s design. Even 

though both SoI and COE mission can be further detailed, the developed model is suitable 

for the integration proposed. Besides, the outputs generated from it were meaningful to 

improve mission analysis, systems’ parameters sensibility analysis, tactics assessment, 

proposed operational requirements checking, and even new requirements-writing. 

2. Can CSM be integrated with MATLAB/Simulink models for the assessment 

of military satellite missions? 

By design, CSM was developed to allow MATLAB and other modeling software 

to be an external evaluator for mathematical expressions. However, the concern was if this 

capability is extendable for complex physics-based models such as the Simulink COE 

model used as an illustration in this thesis and what would it take to fully integrate both 

tools. It was shown that utilizing the MATLAB workspace such an integration becomes 

possible. As such, any legacy model developed by the domain expert(s) in the MATLAB/

Simulink development environment (with just a few minor modifications) can effectively 

be incorporated into and used within the MBSE approach. 

3. What are the remaining challenges and current limitations in this kind of 

integration? 

This thesis revealed that the best approach is to use the physics-based models as 

black boxes nested in the CSM descriptive model to provide more flexibility for modelers. 

Using this approach, both CSM and Simulink share a common place to write and read data 

necessary for their respective simulation tasks. Indeed, before the very first run, the model 

requires the procedures to create a shared workspace visible by both CSM and Simulink 

(Chapter IV). Unfortunately, at the moment this process cannot be automated because the 

matlab.engine.shareEngine command must be called from the command prompt in 

MATLAB and the kill matlab command from the CST console panel. 

Another limitation is that CSM does not support value properties written in the 

vector or matrix form. Considering that matrix operations and manipulations are one of the 
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strengths of MATLAB programming, this is considered to be a major limitation. One of 

possible solutions is the usage of activity diagrams (in CST) containing opaque actions. 

Unfortunately, this approach requires a good interaction between the engineers responsible 

for the descriptive model and the ones responsible for the physics-based model, since these 

diagrams create the interface that maps value properties to Simulink inputs. 

The updating of value properties in CSM and variables in the shared workspace 

also requires some additional efforts. This time, the activity diagrams need to mix the 

MATLAB commands inside opaque actions with UML structural feature actions. The 

problem here is that the design of these diagrams is less trivial than for those used to write 

inputs in the vector and matrix form since the design requires more profound knowledge 

of UML. This update issue is more evident in the CSM GUI since the user would want to 

change parameters to perform a proper analysis. 

The CSM GUI capability has some room for improvement too. The buttons require 

a feature that applies logic to lock them when their use is not needed or does not make 

sense. Another CSM GUI limitation is the lack of integration capability to display graphs 

and images generated in the MATLAB environment. To overcome that issue in this thesis, 

some MATLAB coding was necessary to ensure that the figures requested by the user do 

not pop up in the wrong place. 

Lastly, while the current version of CSM allows to conduct parametrical studies 

resulting in the so-called instance tables, the capability to present these data graphically is 

absent. 

4. What are the benefits of such an approach? 

Besides providing a more appropriate dynamic representation of the system’s 

behavior, the integration considered in this thesis also enhances data visualization for each 

simulation. This improvement is due to the vast MATLAB function library dedicated to 

plotting graphics and generating animations. More ways to present data means that all 

kinds of stakeholders can clearly understand the simulation and its results. Graphs also help 

enable exploration of the design space and the identification of configurations suitable for 

the established requirements. 
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Legacy models already developed for systems or mission analysis do not require 

enormous modifications for integration. Hence, the domain engineers do not have to 

change their modeling or acquire new skills to develop executable models within a design 

team. As already mentioned, the only pre-requisite is that the activity diagrams interface 

with the descriptive and the physics-based models correctly. Since Simulink is widely used 

for modeling in diverse domains, it has a comprehensive library of customizable blocks 

that become automatically available to systems’ modelers once the integration is set. 

To summarize, executable models work as a bridge between subject matter experts 

and operational, technical, and non-technical stakeholders, and provide more capabilities 

as compared to just the descriptive models. Even in the preliminary design, these models 

provide meaningful insights for the design team in a holistic system’s perspective without 

compromising information consistency. Besides, these executable models can evolve 

during the systems’ life cycle, and they present an excellent potential for developing more 

elaborated mock-ups or even training tools for systems operators. The illustration presented 

in this thesis proves that the procedures for creating an executable model using CSM and 

MATLAB/Simulink are the same for representing any system or mission desired. 

B. FUTURE WORK 

This thesis has presented all the steps necessary to design an executable model 

using CSM and MATLAB/Simulink models. The developed executable model, however, 

has only one Simulink model integrated with the descriptive model of the COE mission. 

Further work could include more Simulink models representing different aspects of the 

system (e.g., sensors) and their interaction. The interaction can occur so that the data and 

outputs generated by one model serve as inputs to the another. This new interaction may 

require some modification in how the data flow was is designed to keep the descriptive 

model updated. Additionally, this model could evolve to include a high-fidelity model 

developed in another CST-supported scripting language. This increment would allow the 

identification of which integration issues and limitations are raised in the executable model 

and direct how to overcome these issues. 
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