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Resumo

Os submarinos sao considerados extremamente estratégicos para qualquer forga naval
devido a sua capacidade furtiva. Emergir a superficie ou na cota periscopica é uma tarefa
necessaria para identificar os contatos visuais através do dispositivo do periscopio. Essa
manobra possui muitos procedimentos e geralmente tem que ser rapida e agil, para evitar
a exposicao. Nesta dissertacao, apresentamos e implementamos uma nova arquitetura
para periscopio de submarinos, desenvolvida para futuras operacoes da frota naval brasi-
leira. Nosso sistema consiste em uma sonda que esta conectada ao submarino e carrega
uma camara 360°. Projetamos e obtemos as imagens dentro da embarcagao usando dispo-
sitivos VR / XR tradicionais. Também propomos e implementamos uma eficiente técnica
de reconhecimento de objetos baseada em visao computacional usando imagens sintéticas,
com o objetivo de estimar ¢ exibir os navios detectados de forma eficaz ¢ precisa. Para
tanto, construimos e disponibilizamos um conjunto de dados composto por 99.000 ima-
gens. Por fim, também estimamos as distancias dos elementos classificados, mostrando
todas as informacgoes em uma interface baseada em AR. Embora a sonda seja conectada
com fio, ela permite que a embarcacao fique em posicoes profundas, reduzindo sua expo-
si¢ao ¢ introduzindo uma nova forma de manobras submarinas.Validamos nossa proposta
através de um experimento de experiéncia do usuario com 19 submarinistas especialistas
em operagoes de periscopio.

Palavras-chave: computer vision, deep learning, mixed reality, object detection, peris-
cope, synthetic data, submarine, transfer learning.



Abstract

Submarines are considered extremely strategic for any naval army due to their stealth
capability. Periscopes are considered crucial sensors for the vessel and submerging emer-
ging to the surface or periscope depth is a required task in order to identify visual contacts
through this device. This maneuver has many procedures and usually has to be fast and
agile, to avoid exposure. In this paper we present and implement a novel architecture for
real submarine’s periscopes, developed for future Brazilian naval fleet operations. Our
system consists of a probe that is connected to the craft and carries a 360 camera. We
project and take the images inside the vessel using traditional VR/XR devices. We also
propose and implement an efficient Computer Vision-based MR technique to estimate and
display detected vessels in an effective and precise way using synthetic images. For so, we
built and make available a dataset composed of 99,000 images. Finally, we also estimate
distances of the classified elements, showing all the information in an AR-based interface.
Although the probe is wired-connected, it allows that the vessel stands in deep positions,
reducing its exposure and introducing a new way for submarine maneuvers and operati-
ons. We validate our proposal through a user experience experiment using 19 experts in
periscope operations.

Keywords: computer vision, deep learning, mixed reality, object detection, periscope,
synthetic data, submarine, transfer learning.
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Capitulo 1

Introduction

Brazil has an extensive maritime area, with unquestionable importance in different

fields:

e One of main means of transport for the country’s foreign trade;
e Diversity of natural resources such as fishing and marine biodiversity;
e Main oil and gas reserves and other mineral resources;

e Big Influence on the Brazilian and world climate.

As it has an area equivalent to 67% of our terrestrial territory, with a size and biodi-

versity similar to that of the Green Amazon, it was called the BLUE AMAZON [7].

The Brazilian sea holds immense reserves of oil and gas, in addition to other non-
living resources (salt, gravel, sand, phosphorus, cobalt crusts, sulfides and poly metallic
nodules;, among others) that represent important sources of wealth for the country, in
addition to contain a wide variety of marine organisms of biotechnological value that have
properties with wide applications, mainly in the areas of pharmaceuticals, cosmetics, food

and agriculture.

The Interministerial Commission for the Resources of the Sea - CIRM |[8], guides the
development of activities aimed at the effective use, exploration and sustainable use of
natural resources in AMAZONIA AZUL and international areas, in accordance with the
interests of Brazil and through its programs, encourages the training of human resources
in the area of Marine Sciences, stimulates the development of research and innovation in
different areas of knowledge, in addition to contributing to the expansion of a maritime
mentality in the Brazilian population, arousing interest in the importance of the sea and

the rational and sustainable use of its resources.
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In addition to oil, the National Department of Mineral Production (DNPM) has alre-
ady notified the Brazilian government of the potential for extracting metals with high eco-
nomic valuen like nickel, copper, cobalt and manganese, located at great depths, around

4,000 meters.

The Navy maintains that, despite Brazil being in an area theoretically free of major
conflicts, acting on the international scene based on the legitimacy given by International
Government Organizations, requires efficient monitoring and surveillance. History shows
that if a State has a valuable asset, over which there is imminent greed or demand from
other actors, there is a situation of insecurity for this nation, which must surround itself

with dissuasive means of power.

In this scenario, we propose a novel submarine monitoring and surveillance periscope,
merging concepts of Augmented Reality, Computer Vision and 360 videos. Our proposal

opens new possibilities for submarine activities.

1.1 Motivation

Submarines are among the most capable and strategic naval units to operate in areas
where the enemy exercises some degree of control. The procedure adopted by many
countries suggests that submarine actions are the priority in enemy monitoring, not only
for reducing the control exercised by them but also for supporting other forces’ actions.
Also, the availability and presence of submarines significantly increase dissuasion potential

due to the uncertainty of its actual position [11].

Submarines have their own operating characteristics and owe their special contribution

to naval actions and operations to three intrinsic characteristics, known as basic features.

1. Ability to Hide: Which provides greater discretion in position and identification
than to any other vessel, allowing the submarine to carry out its tactical actions in

waters under enemy control.

2. Relative Independence of Surface Environmental Problems: which allows
when the submarine operates in immersion, in adverse weather conditions, mainly

regarding the state of the sea.

3. Three-Dimensional Mobility: which allows the submarine to explore the en-

vironmental conditions of sound propagation to carry out the attack, the evasion
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and deception maneuvers, necessary to break the sonar contact, or even as an anti-

torpedic measure, as can be seen in Fig. 1.1.

CAMADA MAIS FRIA

Figura 1.1: Sound propagation 3d exploration. Adapted from: [32]

One critical maneuver for submarines is the periscope observation, which requires the
ship to navigate at periscope depth (Fig. 1.2). This exposition is strategically dangerous
because the submarine can be detected by nearby enemies visually or by radar, becoming
vulnerable. The periscope observation is made using a long periscope, a piece of optical
equipment capable of rotating 360°, giving a panoramic view of the surface. Due to the
degree of danger, this exposure should occur for just a few seconds and must be conducted
by a trained officer operating the periscope which is assigned to identify contacts in visual

range considered potential hazards during that short period.

Submarine Discretion Fee (SDF) is defined as a percentage ratio between the sum
of the indiscretion periods (mast exposed) and the total submarine operation time. The
objective of the submarine commander is to accomplish his mission as obtaining the

minimum possible SDF.

The Brazilian navy adopts the technique called “perisher,” which was developed by
the British royal navy [6]. This technique was developed to maximize the amount of
information obtained from the periscope while minimizing the exposure. Intermittent
exposure reduce radar and visual detection probability. In the “perisher,” the technique to
perform a horizon scan takes 30 seconds, only to check if there is any hazard at the field of
view, without any further observation of the detected contacts. A posterior investigation
of each contact is made during 20 seconds on each one for identifying the elements,
estimating the bow angle, measuring the distance with a stadiometer, and calculating the

interval of observation, i.e., based on the contact’s distance and its maximum speed, the
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Figura 1.2: Periscope exposure at periscope depth [9].

periscope officer mentally calculates the maximum amount of time to observe the contact

again putting the submarine in risk.

1.2 Objectives

The main objective of this dissertation is to propose a Augmented Reality (AR) peris-
cope device, which is a novel and powerful solution capable of decreasing the periscope’s
exposure time and drastically increasing the observation tasks through Computer Vision
techniques. Our solution is based on a wired probe that carries a high-resolution 360°
camera and is connected to a commercial Head-Mounted Display (HMD) device, operated
inside the submarine. We use different Computer Vision and Deep Learning techniques for
surface elements classification and distance inference, which have potential to dismiss the
use of conventional stadiometer requirement. This information is showed inside the HMD
through Augmented Reality (AR) based interfaces, allowing fast and accurate decision

making processes.

Deep Neural Networks (DNNs) have shown significant improvements in several appli-

cation domains, including Image and Signal Processing. In Computer Vision, a specific
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type of DNN, known as Convolutional Neural Networks (CNNs), has revolutionized the
state of the art of object detection and recognition, achieving faster and more accurate

results [19].

We also propose the inclusion of different navigation information at the HMD display

using Augmented Reality (AR) strategies.

We believe that our proposal will introduce a new way of operating periscopes and

performing submarines operations in near future.

1.3 Contributions

Our main contributions can be summarized as:

e A proposal for a new architecture for submarines periscope using Augmented Vir-

tuality HMD devices and approaches;

A solution for ship classification in images taken from a periscope point of view;

A ship distance estimation solution for recognized ships;

An open dataset composed of 99,000 synthetic images of five (strategic) classes of

ships.

e A user experience experiment that validates the usage of VR/AR devices for peris-

cope operations.

1.4 Dissertation Organization

The chapters of this dissertation are divided as described below.

Chapter 2 we presents the correlating fields of knowledge that inspired our work, and

discuss a similar solution also based on synthetic images for the training process.

Chapter 3 summarizes our proposal, presenting our novel periscope architecture, our
proposed classification strategy, our object distance estimation approach, and our deve-

loped software functionality.

Chapter 4 shows our results and details about our training stage. It holds all experi-
mental evaluation, associated studies, analysis and a user experience test with submarine

officers. The complete questionnaire is at Appendix A.
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Finally, in Chapter 5 we conclude our work and discusses future possibilities of our

proposal.



Capitulo 2

Background and Related Works

As our work is multidisciplinary some concepts must be explained so that experts from
different areas can be introduced to basics concepts from other areas to fully understand
the dissertation, in the following sections we describe some of those concepts and correlate

them with current works on the academy.

2.1 Background

2.1.1 Submarine and Navigation Issues

The International Regulations for Preventing Collisions at Sea (COLREGs) defines
several rules to prevent collisions [13]. This is particularly dangerous to the submarine
because there is a significant probability that other ships are not aware of the submarine’s

position.

Therefore, an extreme reality (XR) solution with a visual camera that can recognize
dangerous elements from a deeper depth can cause a significant impact on navigation

security.

Safety Quota is the minimum depth that will be safe for the submarine to travel
when close to a surface unit, in order to ensure a separation between the ship’s keel and

the top of the submarine’s sail, as can be seen at fig. 2.1

The techniques used for operation of the periscope were developed as a trade-off: the
goal was to maximize information acquisition with the least possible submarine indiscre-
tion. Some of these techniques began to be developed as early as World War I, when most

submarine attacks were performed within the visual range, in a very close approach to
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|
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Figura 2.1: Example of safety quota

surface ships. Modern submarine weapons and sensors have ranges beyond the horizon,
making it very unlikely that a submarine will get as close to surface vessels (contacts) as
was typically the case until World War II. However, the skills necessary to maneuver a
submarine safely in the presence of several surface contacts, using only stopwatches and

mental agility, remain valuable for the training of a submariner.

The periscope is the only sensor capable of providing a complete set of data about
the tactical situation around the submarine in a matter of a few seconds. However, as
an optical sensor, it has all limitations naturally imposed by the light spectrum. The
range of a periscope is geometrically limited at sea due to the Earth’s curvature, and
it is susceptible to atmospheric conditions influencing visibility. However, despite those
disadvantages, periscopes continue to be of paramount importance to ensure the safety

to the dived submarine, and to collect or confirm tactical information.

Due to the inherent margin of errors and uncertainty of other passive sensors, the
periscope is the only sensor able to resolve with conviction the potentially questionable
data sets acquired by other sensors. The operator is able to collect reliable information
about the surrounding tactical situation in a matter of seconds, calculate the geographical
position of the submarine and reveal the identity of targets. The information collected
by a periscope usually can be used right away, because they are useful without the need

of further processing (other than human interpretation)

Stanton et al. [35] presentes all challenges, risks, and strategic solutions related to
submarine operations. Our work is inspired by the related issues presented in the docu-
ment, where it is shown that standing at sea level breaks the submarine’s invisibility and

makes it vulnerable to other vessels and aircraft. Stanton et al. [35] also explains why
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the transition from deep to periscope depth is one of the most dangerous operations due
to the potential to collide with surface vessels, our probe will allow the submarine to see
at surface level from the safety quota. One of our main objectives is to minimize these

risks, maximizing the surveillance operations.

2.1.2 Virtual Reality and Mixed Reality

Virtual reality involves creating an entirely digitally rendered, immersive environment
on a simulation from the real world. Sensors allows a user to manipulate and move objects

using controllers, head-mounted displays, and headsets.

The beginning of Virtual Reality occurred in the 50s with the invention of Sensorama
[38] as can bee seen in fig. 2.2. It was a incredible technology for the time, including a

stereoscopic color display, fans, odor emitters, stereo-sound system, and a motion chair.

|

‘H' ..ml' al

L 'IIMHL ””"l\

Figura 2.2: The Sensorama, from U.S. Patent 3050870

Despite being established as an emerging technology as far back, the accessibility of
VR since the years 2000 has established again as a growing technology for several areas

like training and storytelling.

Augmented reality refers to the overlaying of virtual content onto elements from the
real world. In this scenario, the real world is central, while digital details are layered in

to supplement reality.
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Augmented Reality has been growing on interest from researchers and industries with
its recent advances in hardware and software. Its capability to superimpose virtual models
over the physical world and form a mixed reality scene is sufficient to create unique gaming

and educational experiences including boat navigation experience [22].

According to [23], the Reality-Virtuality Continuum is constituted by different levels of
immersion, going from the Real Environment, Augmented Reality, Augmented Virtuality
and Virtual Reality. While our solution resides at the Augmented Reality stage, we use

Augmented Virtuality devices as interfaces.

Mixed reality MR is a technology that uses both AR and VR approaches, creating a

seamless blend between real-world elements and virtual content.

360° videos are captured with omni-directional cameras or a collection of cameras in

such a way that they allow viewers to look in all directions.

Immersive technologies, consist of multi sensory digital experiences involving AR, VR,

MR, and 360° videos.

2.1.3 Computer Vision and Deep Learning

Deep Neural Networks (DNN) have shown significant improvements in many applica-
tions, including computer vision. In computer vision, a specific DNN, known as Convolu-
tional Neural Networks (CNN), has revolutionized the state of the art of object detection

and recognition [34].

Most of the object detection solutions available in the literature characterize directing

classifiers or locators to perform the detection.

We chose one of the most accurate fast and precise CNN available at the time, to prove
our concept. Other CNN could be fit to our propose but our goal is to prove the concept.
Although we did not conduced tests with others networks, since our classification results
achived almost 100% of precision for the trained vessels, we considered that almost no

difference would be achieved by the other.

"You Only Look Once" (YOLO) [29, 30, 31, 5] meets all the requirements for our
proposal, such as the need for real-time processing and to be robust to changes in lighting.
Besides that, YOLO v4 [5] is a state-of-the-art, real-time object detection system suitable
for our needs. YOLO v4 is an object detector which can be trained on a single GPU with

a smaller mini-batch size. Making it simpler to train the model.
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The idea behind The YOLOv4 framework [5] is that a single neural network is applied
to a full image. This allows YOLO to reason globally about the image when generating
predictions. It is a direct development of MultiBox, but it turns MultiBox from region
proposal into an object recognition method by adding a softmax layer in parallel with
a box regressor and box classifier layer. It divides the image into regions and predicts

bounding boxes and probabilities for each region.

The YOLO network divides the image into a S x S grid of cells, where S is a hyper-
parameter defined by the user according to his needs and the characteristics of the input
dataset. For each grid cell, YOLO predicts B bounding boxes for detected objects and
computes C class probabilities of the objects whose centers fall inside the grid cells. The

number of classes C' depends on the training dataset, while B is also provided by the user.

To date, five architectures have been proposed by the authors of YOLO: the original
YOLO [29], YOLO v2 [30], YOLO 9000 [30], YOLO v3 [31] and YOLO v4 |[5]

Figure 2.3 shows the YOLO model, detaching its detection stage as a regression
problem. On the left, we have the input image subdivided into a grid. The estimated
bounding boxes (above) and the most likely class for a given cell (below) are illustrated in
the center. On the right we have the bounding boxes that delimit the most likely objects

detected (i.e., a dog, a bicycle, and a car).

Ll'q:l

5 x5 grid on input ;‘ y,i - Final detectlons

KREA
.

Class probability map

Figura 2.3: A high-level representation of the YOLO’s model. Image from [29].

All YOLO versions are implemented with variations of the deep architecture called
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darknet |28]. The original YOLO [29] has 24 convolutional layers followed by 2 fully con-
nected layers, the custom architecture of YOLO v2 [30] has 30 layers, while YOLO v3 [31]

is a 106-layer network.

During training, YOLO uses differential weight for confidence predictions from boxes
that contain object and boxes that do not contain objects, penalizing errors in small and
large objects differently by predicting the square root of the bounding box width and
height.

2.1.4 Fine Tuning

Fine-tuning [26] is one of the most used approach for transfer learning when working
with deep learning models. It starts with a pre-trained model on the source task, usually
on generic datasets, like the MS COCO dataset [21], and trains it further on the specific
dataset, specializing it on the desired new task. Compared with training from scratch,
fine-tuning a pre-trained convolutional neural network on a target dataset can significantly

improve performance, while reducing the target labeled data requirements [39].

We used the fine-tuning strategy to train our model. For so, as showed in 2.4 we
took the YOLOv4 network trained on the MS COCO dataset [21] and specialized its
training on our new synthetic dataset. The first few convolutional layers learn low-level
features (curves, color, edges, blobs). As we progress through the network, it learns more
mid/high-level features or patterns. We freeze these low-level features trained on the
MS COCO and only retrain high-level features needed for our new image classification
problem, replacing the classification layer with our setting, with a different number of
classes. The last few layers of the deep network can be fine-tuned while freezing the
parameters of the remaining initial layers to their pre-trained values. This is driven by a
combination of limited training data in the target task and the empirical evidence that
initial layers learn low level features that can be directly shared across various computer

vision tasks.

2.2 Related Work

Although we believe our work is the first to introduce the use of a 360° camera and
Virtual Reality (VR) based periscope, other works take advantage of the combination of
these technologies for surveillance and security. [12] presents the information needs and

the capabilities of piloting and navigation as the paper addresses the need to assess the
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Figura 2.4: Theoretical Fine-tuning strategy, only the layers in red are trained.

impact of immersive technology on safe and effective marine transportation using Wea-
rable, Immersive Augmented Reality (WIAR), establishing the link between technology
decision support and improved navigational safety facing the problems inherent in techno-
logy introduction in marine transportation.|20] Presented an Image-based ship detection
using deep learning, it uses a CNN to detect objects and then classify as ship, speedboat,
and buoy.

[18] presents a systematic review analyzing the publication type, the AR device, which
information elements are visualized and how the information is displayed, based on the
information, we displayed on the XR device basic information, like own ship speed and

relative heading.

Detecting moving objects in video streaming is essential for complex applications,
such as object tracking and video retrieval. Moving object detection finds elements in the

foreground in order to extract helpful information from the environment.

The literature on XR periscope or Computer Vision applied for submarines’ periscope
is almost nonexistent. Still, this problem faces similar issues with detecting cars or traffic
signs using a camera in autonomous or semi-autonomous vehicles. [10| has proposed a
method to generate artificial traffic-related training data for deep traffic light detectors,
offering a solution using deep neural networks for problems associated with autonomous
driving. Concerning vessel detection and classification, [16] proposed a novel probabilistic
ship detection and classification system based on deep learning using a dataset of images
available at the web. However, the annotation data from different classes of ships are not
vast and not trivial to be solved, as will be seen further as we used a synthetic dataset the
annotation was made in a semi-automatic way, and in the same way we produced images

from all angles of cach ship.

Availability of domain-specific datasets is an essential problem in object detection.

Datasets of inshore and offshore maritime vessels are no exception, with a limited number
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of studies addressing maritime vessel detection on such datasets. Ship detection in a tra-
ditional setting depends extensively on human monitoring, which is highly expensive and
unproductive. Moreover, the complexity of the maritime environment makes it difficult

for humans to focus on video footage for prolonged periods of time [33].

In this work, we intend to detect vessels in images using Computer Vision techniques.
In order to create a dataset, we used the Bridge Navy Simulator for producing a set of
renderings of strategic ship classes for submarines operations, in Fig 2.5 we can see a
overview of the Bridge simulator. Similarly, [36] proposed a synthetic dataset to classify
ships from satellite images. We took a similar approach developing a dataset composed of
synthetic images with a different camera position, constrained to the submarine periscope
point of view. Maritime vessel detection from satellite was employed in many studies,
a review from 2018, has gathered a large number of papers about classification from

satellites images [15].

Figura 2.5: Navy Bridge Simulator, used for extracting synthetic images for the proposed
classifier.

As discussed in [27], transfer learning techniques reduce the need for large datasets
due to the generalization ability of the parameters learned by the lower layers of the CNN
from public datasets, like MS COCO [21]. We used a pre-trained YOLOv4 [5] CNN to
get such parameters and train the weights of the classification layers with our synthetic

datasct.
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An Periscope for Submarines with
Extended Visual Classification

Section 3.1 describes our novel periscope architecture, and the following sections des-
cribes how it is implemented, detailing our proposed classification strategy, our training
dataset, our object distance estimation approach and our developed software functionali-

ties.

3.1 Proposed Solution

We propose a novel generation of submarine periscopes based on a high resolution
360° camera mounted in a floatable probe, coupled to a Virtual Reality HMD device.
The probe is projected in such a way that it can be dragged by an underwater vehicle
(submarine). It has a precise hydrodynamic to achieve stability in the camera image and
enough height to extend the horizon line and detect surface elements and vessels. The
360° video is streamed to the HMD device, placed inside the submarine. The movement
of the HMD performs the selection of the 360° video area being viewed by the periscope
operator and processed by the Computer Vision module. AR features are inserted in the

image, including vessel type, bearing, and distance calculation information.

The submarine velocity at deep waters is around 5 knots. In this sense, the probe
was developed in such a way that it has stability and hydrodynamics at this speed. In
order to avoid wave and water drops interference in the images, the camera was projected
to be mounted at 40 centimeters above sea level. The camera is attached to a protected
HMDI cable that connects the devices with the submarine. Fig.3.1 shows the schematic

view of our solution, and Fig. 3.2 shows our operational-developed probe, with the camera
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Figura 3.1: Overview of the proposed solution.

mounted at the top, and Fig. 3.3 shows the probe being placed in water for in field test.

Figura 3.2: Probe Mockup with a 360° camera.

The targeted areas of interest are processed by deep learning algorithms using CNN
for feature classifications (Section 3.2). The CNN is trained with a dataset composed of
99,000 synthetic images (Section 3.3) of ships generated using the Brazilian Navy Bridge
Simulator, from the Naval Systems Analysis Center (CASNAV). We made the generated
dataset open access and collaborative, suitable for future extensions.Our dataset is open
access, collaborative and can be accessed at [1]. Although we have built our system for
the set of vessels considered most important for the Brazilian submarine operations, it is
straightforward to expand and include more vessel models in this dataset. The distance
to each target is estimated by the relationship between the actual known height of the

detected and classified vessels and the vessel’s size in the recorded image (Section 3.4).
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Figura 3.3: Probe Mockup on water.

3.2 Classification Stage

Once the images are transmitted to the submarine, we apply different Computer Vi-
sion approaches for enhancing and detecting features above the sea, based on the YOLOv4

framework [5], which is explained in details on section 2.1.3.

After the training stage, as we input an image, the CNN returns several axis-aligned
bounding boxes. Each bounding box is defined by (z,y), w, and h, where (z,y) is the
center of the box, and w and h are its width and height, respectively. By multiplying
the conditional class probability and the individual box confidence predictions, we get the
class-specific confidence score for each box and use this data to draw the boxes on the
output image. The height of the box and additional information about the ship’s class

are used to calculate the object distance.

3.3 Training Data

Due to the periscope’s positioning and our 360° camera elevation above water, it is
plausible to state that the objects on the surface necessarily cross the horizon line. All
of our training data was generated with this concept in mind, and the virtual camera
used in the simulated scenario positioned about 40 centimeters above water level. Fig. 3.4

illustrates this point of view and configuration.

We developed an application in order to extract synthetic images of five classes of ships
already implemented from the CASNAV simulation system. Samples of generated images

for each ship class can be seen in Fig. 3.5 to Fig. 3.9. For each ship class, we generated
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Figura 3.4: Periscope point of view, adapted from [24]

one image for each degree step in a bow angle (from 0° to 359°). This set was combined
with different backgrounds and distance conditions, as described in Table 3.1, leading
to 3,960 images per class and 19,800 in total. For each “closest” positioning distance,
we generated the image with and without background, so our CNN network could learn
to detect small details available at each vessel. Images without background means that
besides the ship, the image also contains water and sky. Image with background means
that it also has land behind the vessel. Although our database contains only 5 types of

vessels, our system allows to easily extend it with other categories.

The synthetic dataset including the above-mentioned 19,800 images is quite repetitive,
since we assume 1° steps in bow angle and too clean renderings (i.e., without noise). Doing
so, we noticed that our results presented large overfitting rates. To avoid this, we included
in our dataset new images generated through data augmentation strategies. We found
that the following types of data augmentation were the most relevant in our dataset:
Gaussian noise, impulsive noise, blur, shadow, shear, and small rotations restricted to

angles that can be included by sea waves movement.

We generated four augmented images for each synthetic image in the initial collection
of renderings, assuming random values defined between a minimum and a maximum
parameter for each original image. By doing so, we end up with a synthetic image dataset

composed of 99,000 images. Fig. 3.10 shows an example of an augmented synthetic image.
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Distance (in meters)
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PassengerShi Yes v Y ’
g P No v v v v Y
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YardShip No v Vv Vv V v v

Tabela 3.1: Artificial images generated for fine-tuning the CNN. We consider five classes
(Ship Type), the presence or the absence of background (Bg), and different distances of

the object to the camera.

Figura 3.5: Container Ship

In order to fine-tune our CNN model, it is necessary to have all the data with precise

annotation. Due to the large number of images, it was impossible to label them one by

one manually, so we implemented an approach for tagging them in a semi-automatic way.

The script was developed in Autolt [2] and after the user inputs the position of each ship

in each distance at 90°, 60°, and 30°, it calculates and generates a file for each image in

the YOLO’s annotation format:

class x y width height
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Figura 3.6: Ferry

Figura 3.7: Frigate

3.3.1 Vessel Classification Software

In order to make possible a large and incremental image database , we proposed
a pipeline composed by a classification Vessel system. This system has a test-bed user
interface with additional functionalities and composed by two modules: a Data Acquisition
Module (DAQ) and a Graphical User Interface (GUI).

Data Acquisition Module (DAQ) This module consists of a set of Python scripts
for CNN calculating and GPU processing using OpenCV [25], an open-source Computer

Vision and Machine Learning software library. This module assists in building an image
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Figura 3.8: Passenger Ship
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Figura 3.9: Yard Ship

dataset of real vessel images.

Graphical User Interface (GUI): This module was developed using Autolt [2] for
the GUI, whose control panel is presented in Fig. 3.11. With the GUI module, the user
can choose parameter values like the maximum frame rate for video sequence acquisition,
the camera used (with previously calculated focal length f) and filters in the displayed
results. With this interface, the user can also enable the DAQ module to capture images
to populate a dataset with real vessel images. When the DAQ is enabled, the system
loads the public COCO trained weights on the CNN model, filtering detection for only
reporting objects of the boat class. Once the user annotates the ship type that he/she
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Figura 3.10: Example of augmented synthetic image used for training the classification
module. This image includes Gaussian noise and blur.

is observing, the system starts to save the video frames at the frame rate chosen by
the user, and includes the location of the bounding box given by the CNN and the
ship class in the respective annotation file. The idea of this procedure is to acquire
real data for further improvement of the trained detection and classification model. The
communication between the GUI module and Python modules are through console in/out

comunication

3.4 Distance Estimation Stage

The optical periscope calculates the distance of a known object by a stadimetric ran-
gefinding method, which is a process based on triangulation in which the angle subtended
by a target of known height (usually waterline to masthead height) is measured by verti-
cally displacing the fields of view in each half of a split lens. This optically measured angle
and the operator-inserted target height are used to estimate the distance to the target in

yards (a.k.a. target range). A typical stadiometer split image can be seen in Fig. 3.12.

The formula to manually compute the target range (T'R) is:

_ TargetHeight X Focal Length

TR
StadimeterSplit

(3.1)

The distance from objects is the most important calculation when the submarine is

at periscope depth and detects a vessel. The faster and precise the distance is calculated,
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Figura 3.11: The control panel of the Graphics User Interface (GUI) of our system.

the less time the periscope has to be hoisted. We have developed a stadimeter-inspired
method for estimating the distance of ships of known classes through the classified image
results. Our approach is based on triangle similarity, where three parameters are necessary

to calculate the ship distance:

1. Height of the object in the 3-dimensional space (H): Once we have classified
the vessel, it is possible to retrieve its known height since this information is usually

available to the periscope officer.

2. Height of the object in the image (P): After the application of the detection
and classification model, we get as a result the axis-aligned bounding box of each
detected ship and its respective confidence score indicating how good the detection
is. We assume that the height of the bounding box is the height P of the object in

image space, measured in pixels.

3. Camera focal length (f): It can be found in the camera’s specifications or esti-
mated using one of the methods explained below. As depicted in Fig. 3.13, it can

be computed as:

f= % X cot (%) : (3.2)

where « is the field of view angle, and W is the image width. Our approach for
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Figura 3.12: Typical stadiometer split image, The image was extracted from the periscope
manual [17].

computing the focal length is:
PxD

f==

where D is a known distance of an object used for calibration, P is the height (in

(3.3)

pixels) of the object in the image, and H is the known height of the object’s class

in the 3-dimensional space.

As mentioned in Section 3.2, the bounding box of each detected object is defined by
(z,y), w, and h, where (x,y) is the location of center of the bounding box, and w and
h are its width and height, in pixels. As the heights of the trained classes are known,

after the model returns a bounding box with an appropriate confidence level, it becomes

Lens Image Plane
A

Field of View (q) < : w

v
<---Focal Length (f) >

Figura 3.13: Camera geometry.
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possible to calculate the distance of a target object to the submarine using:
fxH
D = , 3.4
- (3.4)

where P = h by construction.
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Experiments and Results

Figure 4.1 shows a flow chart of the steps. The first stage is called Database Ge-
neration and is composed by the simulator data generation and acquisition, followed by
the data augmentation, training and data set validation. The second stage is named as
Model Configuration and Training and starts with the image labeling process through
our developed system, the Yolo framework execution and training the data into the cloud
environment. Finally, the third stage is the final user process, composed by the real

time CNN classification and Data Acquisition for enhancing the classified data with new

1mages .
Ships Models Simulator construction
development and images generations
—_—
(Autodesk , 3ds Max) {Unity)
Training and Image Augumentation
Validation division
(Python) (Pythen)

Database Generation

Image Labelling Zg{l‘%\éﬁrl;llt?:r:sl
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Figura 4.1:

Model Configuration and Training

I

User Interface CNN Calculation

(Autolt) —

l

DAQ Module

(Python)

{Autolt)

User Interface

Steps Flow Chart
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The following subsections describe the chosen tools for the system development, how
we have implemented the proposed system, trained our detection and classification model,
evaluated our results using synthetic and natural images, and performed tests simulating

real conditions. Our Solution is summarized by the following steps:

1. 3D Ship Modeling: Ship Models were developed with Autodesk and 3DS Max;

2. Images generation: The images were extracted from our Bridge Simulator, that

is built in Unity;

3. Augmentation and dataset division : A Python script was developed to perform

image augmentation and dataset division in training and validation datasets;
4. Image labelling: An Autolt script was developed to label the images;

5. Model training: The configuration files and images were uploaded in the cloud,

for training the model through Google Colab;
6. CNN and user interface: The CNN classification is performed;.

7. Data Acquisition (DAQ): The DAQ module was developed in Autolt.

4.1 Chosen Tools

In order to implement and test our solution we choose some tools to make a working
prototype, In the next subsections we appoint the software and hardware used in our

implementation.

4.1.1 YOLO V4

As mentioned in section 2.1.3, for the vessel classifications we choose the YOLO

architecture.

The input image is divided into an S = § grid. If the center of an object falls into this
grid cell,that cell is responsible for detecting that object. Each grid predicts a number
of bounding boxes and confidence scores for those boxes. Confidence here is defined as
Probability of an Object multiplied by the thresholded IoU score, where IoU scores that
are less than 0.5 mean that the confidence is close to zero.The bounding box is defined

by z, y, w, h where z, y are the center of the box and w and h are the height and
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width, By multiplying the conditional class probability and the individual box confidence

predictions, it is possible to get the class-specific confidence score for each box

4.1.2 Python

Python is a high-level, interpreted, scripted, imperative, object-oriented, functional,
dynamic typing, and strong programming language. It currently has an open source
community development model managed by the nonprofit Python Software Foundation.

In our proposal we adopted Phyton for processing the input images.

4.1.3 OpenCV with CUDA

We adopted OpenCV for image processings tasks. The OpenCV DNN module sup-
ports deep learning inference on images and videos. It does not support fine-tuning and
training. OpenCV (Open Source Computer Vision Library) [25] originally developed by
Intel in 2000, is a multiplatform library, completely free for academic and commercial use

for application development in the fields of Computer Vision and image analysis.

Modern GPU accelerators has become powerful and featured enough to be capable to
perform general purpose computations (GPGPU). Significant part of Computer Vision is
image processing, the area that graphics accelerators were originally designed for. Other
parts also suppose massive parallel computations and often naturally map to GPU archi-
tectures. So it’s challenging but very rewarding to implement all these advantages and

accelerate OpenCV on graphics processors.

4.1.4 CASNAV Simulator

The simulator was build on UNITY. The Ship models were developed in Blender
and Autodesk 3ds Max. The simulator was used for capturing the synthetic images of
the vessels, allowing a complete control of the virtual camera positioning, background

conditions and lighting variations.

4.1.5 GoPro Fusion

For purpose of this study and conception test, we used a Gopro Fusion 360 camera

for data aquisition, installed at the top of our built probe.
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The GoPro Fusion is a spherical camera that can capture video at up to 5.2K/30p
or 3K/60p. Since it "over-captures'it is possible to turn spherical content into traditio-
nal stills and videos. It also features with an advanced "gimbal-like"image stabilization

system.

4.2 Model Configuration and Training

As described in Section 3.3, the dataset was generated using synthetic data from
the CASNAYV Bridge simulator and extended through the data augmentation approaches.
Before training the model, the dataset was randomly divided in a training dataset with

79,200 images and a wvalidation dataset, composed of 19,800 images.

The model was trained using the publicly available Darknet, which is an open-source
neural network framework written in C and CUDA. It includes the implementation of a

consolidated state-of-the-art object detector, YOLOvVA4.

In order to improve the dataset labeling process, we developed a program that semi-

automatize it. Fig 4.2 shows an example of labeled image produced by our program.

Figura 4.2: Labeled Image

We have used default values for almost all YOLOv4 hyperparameters. The only
exceptions are: the input image size, which was set to 640 x 352 pixels; the batch size
was set to 64 and subdivision to 16; the size of the last convolutional filters before each
of the YOLO layers was set to 30, which is the result of classes + 5 x 3 1, as it depends

on the number of classes according to Darknet documentation. The model was retrained

"Where 5 and 3 are constants.
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using 70K iterations, keeping the weights for every 10K iterations. The number of steps
was set to 56K following the recommendation of 80% for the number of batches for this

hyperparameter.

The other necessary files are:

e obj.data: contains information like the number of classes and the path of others

configurations files;
e obj.names: contains the name of the classes on the correct order;

e train.txt and test.txt: hold the relative paths to all our training images and valida-

tion images.

After all the configuration files were prepared and the dataset labeled the model was
trained and the fine-tuning strategy was applied, so the weights for the convolutional layers
(yolov4.conv.137) of the YOLOv4 network trained on the coco dataset was downloaded.
By using these weights, it helps the custom object detector to be more accurate and not

having to train as long.

All training and interference processes were performed on Google Colab Professional
[4], which is a research project for prototyping machine learning models on powerful
hardware options such as GPUs and TPUs. It provides a serverless Jupyter notebook
environment for interactive development. The hardware used to train our model was:
Intel(R) Xeon(R) CPU @ 2.00GHz, 26GB RAM, 200GB Hard Drive and a NVIDIA Tesla
V100-SXM2-16GB GPU.

4.3 Data Acquisition Interface

In order to improve the labeling process, we developed a dedicated tool, as shown
in fig. 4.3. Its main objective is to allow the visualization of a video in real time with
recognition boxes around the objects defined at each frame. These boxes have on their
top the type of recognized object (in this case the ship type) and its distance in meters.
A second function of the tool is to allow the images with the boxes in the saved objects
to be stored for logging or event recording purposes. Finally, this program also intends to
store the original images and their reconnaissance parameters, so users can include and

train new vessels in the future.

The system saves the object type, its position, length, height and distance in compa-

tible format for injection into the YOLO v4 system to enhance model training.
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Figura 4.3: System for helping vessels classification

Our tool has the following funcionalities:

1.

Capture: Defines the folder used as the workspace and storage of the captured

images;

Maximum FPS: Maximum amount of frames to be captured from the video,
which will be delivered to the pyhton module for recognition. The actual amount

captured may be less if the recognition speed is less than the FPS.

Max Saves: Defines how many images per second will be saved when the options to
keep captured images for further training (third function of the program, activated
by option 6) and/or keep Recognized images for log or record (second program
function, option 9) is ON. This rate will be less than or equal to the actual captured

frame rate.

Screen Capture: Defines the location of the screen where the capture will be made

and its size.

PLAY': Activates capture, possible image display with recognition and any selected

saves

Keep Capture and Recon: Informs that the third function of the program must
be activated, that is, save the images and their recognition parameters for further

training. The frame rate per second is set in option 3.



4.4 C(Classification Results 32

7. Show Recon Images : Plots the images that have recognition objects .

8. Include lines on the Label Files: Include the lines with parameters of the

bonding box on the label files.

9. Keep Recognition Images: Keep on the hard drive the images that has detected
objects

10. Filters: Apply filters on the images before CNN recognition

11. Cameras: Select a predefined camera described in the configuration file, with its

focal length parameters.

4.4 Classification Results

The model was tested either with the validation dataset and with real vessel images,
always restricted to the point of view of the periscope. Following we describe in details

cach step.

4.4.1 Detection and Classification

For measuring the results we used the Mean Average Precision (mAP) approach. After
the model training, we noticed a fast convergence to an optimal average loss, as can be

seen in Fig. 4.4.

The mAP results stabilized when using 10K iterations or more. After running the
model with different weights on real data previously acquired, it was empirically defined

that the best achieved result was at 20K iterations.

Ship Type mAP  TruePositive FalsePositive

Container Ship  99.96% 4,877 4
Ferry 99.99% 4,973 2
Frigate 99.99% 4,988 8
Passenger Ship  100.00% 255 0
Yard Ship 99.98% 4,877 10

Tabela 4.1: Results of Mean Average Precision (mAP).

The precision results can be checked in Table 4.1. The global model results are:
Precision = 1.00, Recall = 1.00, F1-score = 1.00, True Positive = 19,787, False Positive
= 24, False Negative = 13, and Average IoU (Intersection over Union) = 0.90.
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Figura 4.4: Average loss at 12K iterations.

We believe that this good mAP result is related to the similarity of training and
validation datasets and because the best weights were at 20K interactions. It is well-
known that with the increase of iterations, the model might present overfitting. However,
it is important to remember that the operational CNN will be applied to real images and
not to synthetic ones, which are very different from the training dataset and not prone
to this overfitting issue.However, The confusion matrix can be seen at Figure 4.5 and

confirms the information from Map analysis.
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Figura 4.5: Confusion Matrix.

Figures 4.6 to 4.10 show examples of the model applied to synthetic images from
the validation dataset. As theoretically predicted in the mAP analysis, it is possible to
see that the model achieves a very good grade of precision and classification even with

greater distance and different bow angles.
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Figura 4.6: Container Ship, Distance = 2000 Yards, Bow Angle = 15
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Figura 4.7: Ferry, Distance = 4000 Yards, Bow Angle = 160

Figura 4.8: Frigate, Distance = 2000 Yards, Bow Angle = 210

Real world image testing We also tested our model on real images of the same
kind of vessels and achieved good results, as can be seen in Figures 4.11 to 4.15.The
vessels were detected in all the images, and the most likely class associated with each of
the detections are to the correct class of ship. As can be seen in Fig. . 4.13, our solution

detected both Frigate and Yard Ship, due to similarities on both class of vessels.
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Figura 4.9: Passenger Ship, Distance = 4000 Yards, Bow Angle = 332

Figura 4.10: Yard Ship, Distance = 4000 Yards, Bow Angle = 332

4.4.2 Field Testing

Finally, we tested our classification model using images captured from our XR pe-
riscope device. The probe uses a GoPro Fusion camera that captures video at up to
5.2K/30p or 3K/60p. Since it over-captures, it is possible to convert spherical content
into traditional stills images and videos sequences. This camera has an advanced “gimbal-

like” image stabilization system that prevents the inclusion of movement artifacts in the
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Figura 4.11: Container Ship

Figura 4.12: Ferry

captured images.

We tested our solution, including software, equipment, and probe, with a Yard Ship
of the Brazilian navy. Fig. 4.16 and Fig. 4.17 illustrates the detection, classification
and distance estimation of the target ship in two frames of the video sequence. Note
that results are consistent even under challenging weather conditions, with poor natural
lighting due to a cloudy/raining day and image distortions resulting from the camera

lenses being often wet with saltwater.
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Figura 4.14: Passenger Ship
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Figura 4.15: Yard Ship

It is possible to see a Yard Ship at 15.38 and 62.69 meters, respectively. This test was

performed using frames of a video captured by our probe

Figura 4.16: Yard Ship at 15.38 meters
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i Ship, 0.96 of Confidence

-y

62.69 Meters from Sub

Figura 4.17: Yard Ship at 62.69 meters

4.5 XR Periscope User Experience

In order to validate our XR periscope proposal as a whole, we developed an experi-
mental scenario and procedures. Although the submarine community is not very large,
with the help of the Brazilian navy we were able to perform a simulation and question-
naires with 19 experienced submarine officers. The tests were conducted at the Brazilian
center for submariner training, in the same simulator where the officers are training as
periscope officers. All the participants are males, submariners with ages from 25 to 54.

A preliminary test was developed with 2 officers to calibrate the procedure.
The procedures and results are described in the following sections.

The experiment consists in a scenario where the submarine officer is told that he
has to perform a horizontal scan procedure with the XR Periscope. We formulated the

following hypothesis in order to validate our proposal:

e Hypothesis 1 - The XR Periscope improves the security in the procedure to return

to periscope depth;

e Hypothesis 2 - The submarine tasks that involve observation of points and vessels

of interest can be performed from the security quota with the XR Periscope;

e Hypothesis 3 - The ship recognition, classification and distance estimation improves

the navigation process;
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e Hypothesis 4 - The XR Periscope contributes to lower the general Submarine Dis-
cretion Fee (SDF).

Since there isn’t yet a tactical and safety procedure defined by the Navy to use the
equipment, we were not allowed to conduce the experiment using a recal submarine. For
this reason, we recorded a set of videos with the probe and used the 360 videos with the
VR device, simulating the environment of a real periscope operation. We decided that for
this test proposal the duration of the video was 45 seconds, similar as the maneuver with
the optical periscope, which has to be 30 seconds according to the perisher technique.
Once the image recognition procedure was performed, 90 sequential frames were saved to

be used experimentally with the virtual reality glasses, resulting on a 2 FPS rate.

In order to visualize and manage these images in virtual reality, the Unity platform
[14] was used. In order to give the freedom of the head movement, we developed a simple

scenario composed of a sphere and the 360 video projected on it through a skybox.

We implemented this visualization solution using a sphere with inverted normals and

projected the video sequences into it, as shown in 4.18.

In this way, we positioned the main camera of the project (which will be the user’s
head in the VR glasses) in the center of the sphere, giving the impression of being in a

360° environment determined by the selected image.

Figura 4.18: Skybox

To perform the scene change, a simple algorithm was created that moves to the
next photo every "X"seconds, changing the original 2D texture of the inverted material
mentioned above, through a list of 360° images generated by the algorithm, thus giving a

sense of continuity in the scene and extremely lightly simulating a sense of movement.

The relative direction of the user’s head in relation to the front of the vessel is calcula-
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ted, which is displayed in the simulation along with its heading and speed at each instant.
To perform this calculation we use the y position of the camera in relation to a fixed offset
determined by the photo that indicates the position of the front of the vessel in relation to
the original point of rotation of the photo image. This value can be recalculated with the
variation of the images and undergo minor changes.The (simulated) submarine heading

and speed are also displayed.

A radial light point was included with the camera in the center of the sphere, so that
the image brightness could be controlled evenly at all points, adjusting according to the
best view of the scene. Thus, when running the simulation, we have a sequence of images
treated in 360° around the user, showing how they would be visualized through the use

of image recognition and augmented reality.

In order to reproduce a real situation, we created a fictional scenario, using the most
likeable phraseology and procedures of a submariner as possible. All participants have
large experience with periscope operation. Each officer was told as the simulation began

that

The submarine is in a fictitious location; the commander informed the periscope officer
that he should perform a horizon scan from a security quota. The commander informs the
periscope officer that he must use a new system that is in the final stages of development by
CASNAV and UFF University, the XR Periscope. The Procedure developed by COMFORS
indicates that the system must be hoisted to the surface from a depth of 42 meters as in

fig. 3.1 for a time of 45 seconds with a maximum speed of 5 knots.

Figure 4.19 shows the user visualization on the XR device with the heading, speed
and relative bearing information in blue. Also, the recognized objects are highlighted

with its distance estimation.

After the procedure, each officer filled a survey, considering his experience using a
Likert scale [37]. Questions 1 asks the level of experience of the user with the horizon
scan procedure, and question 2 the experience with virtual reality. As can be seen in fig.
4.20 the users have a good experience with the optical periscope horizon scan and median

level of experience with virtual reality.

Questions 3, 4 and 6 are related to our hypothesis 1 and 2:

e Question 3 - Does the XR Periscope helps in compiling the tactical scenario?;

e Question 4 - Assuming the XR periscope can be launched from the security quota,
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317.69 Meters from Sub

Figura 4.19: User Interface of the XR device

HQl1 mQ2

62,50%

0,00% 0,00% 0,00%
Strongly disagree disagree neutral Strongly agrees
Q1 0,00% 0,00% 25,00% 12,50% 62,50%
Q2 0,00% 12,50% 31,25% 25,00% 31,25%

Figura 4.20: Q1,Q2

could it be useful for increasing security in returning to the periscope quota?;

e Question 6 - Could XR periscope be used to perform secondary tasks?.

As can be seen in Fig. 4.21, for Question 4, 93.75% of the users strongly agree and
6.25% agree that the XR Periscope would be helpful to increase the security in the pro-
cedure to return to periscope depth. This result agrees with Question 3, not rejecting
Hypothesis 1. In the same table, in Question 6, 100% of the users strongly agree that
the XR Periscope can be used to perform secondary tasks. Secondary tasks are the ones

described in Hypothesis 2, not rejecting it either.
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HQ3 mQ4 mQ6

100,00%
93,75% 93,75%

0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Strongly disagree disagree neutral agree Strongly agrees
Q3 0,00% 0,00% 0,00% 6,25% 93,75%
Q4 0,00% 0,00% 0,00% 6,25% 93,75%
Q6 0,00% 0,00% 0,00% 0,00% 100,00%

Figura 4.21: Q3,Q4,Q6

Question 8 asks: “Did the classification and distance of the contacts provided by the

XR Periscope help compile the tactical scenarios 7. It is a direct answer to Hypothesis 3,

and as can be seen in Fig. 4.22, 87.5% of the users strongly agree and 12.5% of the users

agree, not rejecting this hypothesis.

In Question 7, 93.75% of the users strongly agree and 6.25% agree that the XR

Periscope increases navigation security.

EHQ7 mQ8
93,75%
87,50%
12,50%
6,25%
0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Strongly disagree disagree neutral agree Strongly agrees
Q7 0,00% 0,00% 0,00% 6,25% 93,75%
Q8 0,00% 0,00% 0,00% 12,50% 87,50%

Figura 4.22: Q7,Q8
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Question 9 asks if the information is clearly displayed. Since 87.5% of the users
strongly agree and 12.5% agree with this question, we assume that the interface is user-
friendly. At last, Question 5 asks if the use of the XR Periscope helped in the decision-
making process in the exercise, and 75.0% of the users strongly agree and 6.25% agrees
with that question, showing that the equipment can be useful in the decision-making

process. The results for Questions 5 and 9 can be seen in Fig 4.23.

mQ5 mQ9

87,50%

6,25%
0,00% 0,00% 0,00%
Strongly disagree disagree neutral agree Strongly agrees
Qs 6,25% 0,00% 12,50% 6,25% 75,00%
Q9 0,00% 0,00% 0,00% 12,50% 87,50%

Figura 4.23: Q5,Q9




Capitulo 5

Conclusions and Future Work

5.1 Conclusion

In this work we proposed a novel periscope solution, based on XR and computer vision
technologies. Our user experience tests confirmed that our approach can be an efficient

and in the neat future substitute the traditional submarines periscopes.

In relation to the computer vision features, our results were able to confirm that
artificial datasets were a viable alternative to the intent of performing object detection
and classification in this specific scenario, where there are no real datasets available yet.
Additionally, this type of dataset showed to be less costly and faster to produce, easier
to manipulate and label than real images. Since the presence of simulators in the Navy
force is consolidates, we claim that our solution allows more precise and robust datasets

in the future.

The Data Aquisition Module (DAQ) functions give us great possibilities to improve
the trained detection and classification model as we will be able to train the CNN using the
artificial images together with real data. The DA(Q automatizes the tasks of collecting
and labeling data, collecting real images at different real-life conditions that otherwise

would be very difficult to manage.

Although we present the complete solution for a real submarine operation, our work
still lacks tests in a real submarine at the sea. Those test would be really costly due
to the harsh environment and high pressures that the submarine operate, an operation

procedure of the equipment must be studied and authorized by the submarine force yet.

Even though the existence of possible bias on the user experience tests, like a low FPS

rate, not being able to test in the real environment and the fact that the developers were
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present during the test, The obtained results confirm that the XR periscope solution can
be very useful to improve the safety of a submarine conduction, considerably increasing
its operational efficiency by reducing the submarine discretion fee. It can also bring a
profound revision on the “perisher” technique by using disruptive technology as it helps

the commander decision process.

Our technique can be adapted and used in other vessels and cases, like port entrances,
monitoring points of interest at sea, or as part of the control system of automatic vessels.
The rendering of other vessel classes can be easily implemented and included in the dataset

of synthetic images to increase the spectrum of the detection and classification model.

Besides that, other functionalities can be casily developed, such as the estimation of
the closest approach point, bow angle, and GODEX 3], which is the maximum period of
time that the submarine can stay at periscope depth without risk of collision with other
vessels, which is the maximum period of time that the submarine can stay at periscope
depth without risk of collision with other vessels. Those functionalities depend on a series
of parameters such as ship speed and direction, other vessels’ directions and draught,

adaptation to different conditions like night vision, infrared images, etc.
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APENDICE A - User Experience

(Questionnaire

The following questionnaire, fig. A.1, was applied on 19 submarine officers on the 09

and 10 of August 2021.

the questions are in Portuguese.

[PERGUNTAS DE AVALIACAO:
Respondanuma escalade 1 a 10 de acordo com suas impressdes.

1. Graude experiénciacomo procedimento apresentado (VH)

NADA MUITO

2. Graude experiéncia comrealidade virtual.

NADA MUITO

NADA MUITO

4. Assumindo que o XRP possa ser lancado a partir da cotade seguranca, ele poderiaser
util para o aumento da seguranga no retorno a cota periscopica?

NADA MUITO

5. No quadro tatico simulado, o XRP influenciou a decisio de manobra?

| NADA MUITO

7. OXRP aumentariaa seguranca danavegacio?

NADA MUITO

8. Aclassificacdo e distancia dos contatos, fornecida pelo XRP, auxiliou na compilacdo do
quadro titico?

NADA MUITO
9. Asinformagdesapr stio de facil
NADA MUITO

10. O senhor visualiza alguma outra utilidade para o XRP?

Comentdrios

NOME:,

Data: fAGOf2021

Figura A.1: User Experience Questionnaire - in Portuguese



