
UNIVERSIDADE FEDERAL FLUMINENSE

VICTOR BEZERRA ALENCAR

Prov-Dominoes: An Exploratory Analysis Approach
for Provenance Data

NITERÓI

2020

UNIVERSIDADE FEDERAL FLUMINENSE

VICTOR BEZERRA ALENCAR

Prov-Dominoes: An Exploratory Analysis Approach
for Provenance Data

Dissertação de Mestrado apresentada
ao Programa de Pós-Graduação em
Computação da Universidade Federal
Fluminense como requisito parcial para
a obtenção do Grau de Mestre em
Computação. Área de concentração:
Engenharia de Sistemas e Informação (ESI).

Orientador:
Leonardo Gresta Paulino Murta

Coorientador:
José Ricardo da Silva Júnior

Coorientadora:
Vanessa Braganholo Murta

NITERÓI

2020

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Sandra Lopes Coelho - CRB7/3389

A368p Alencar, Victor Bezerra
 Prov-Dominoes : An Exploratory Analysis Approach for
Provenance Data / Victor Bezerra Alencar ; Leonardo Gresta
Paulino Murta, orientador ; José Ricardo da Silva Júnior,
coorientador. Niterói, 2020.
 78 f.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2020.

DOI: http://dx.doi.org/10.22409/PGC.2020.m.05183272484

 1. Análise exploratória de dados. 2. Proveniência. 3.
Gpu. 4. Produção intelectual. I. Murta, Leonardo Gresta
Paulino, orientador. II. Silva Júnior, José Ricardo da,
coorientador. III. Universidade Federal Fluminense. Instituto
de Computação. IV. Título.

 CDD -

VICTOR BEZERRA ALENCAR

Prov-Dominoes: An Exploratory Analysis Approach for Provenance Data

Dissertação de Mestrado apresentada

ao Programa de Pós-Graduação em

Computação da Universidade Federal

Fluminense como requisito parcial para

a obtenção do Grau de Mestre em

Computação. Área de concentração:

Engenharia de Sistemas e Informação (ESI).

Aprovada em novembro de 2020.

BANCA EXAMINADORA

Prof. Leonardo Gresta Paulino Murta – Orientador, UFF

Profa. Vanessa Braganholo Murta – Coorientadora, UFF

Prof. José Ricardo da Silva Júnior – Coorientador, IFRJ

Prof. Daniel Cardoso Moraes de Oliveira – UFF

Profa. Emanuele Marques dos Santos – UFC

Niterói

2020

For Landa, my beloved companion.

Acknowledgments

I would like to thank my parents and brother for supporting me along the way.

I am grateful to my cousins, aunts, uncles, and grandparents for providing me won-

derful moments.

This dissertation would not have been possible without the help, patience, and coun-

sels of my advisors, Leonardo, José Ricardo, and Vanessa. Also, I would like to thank

Troy, for priceless help and counsels.

I want to thank my fellow postgraduate students in the computer science department

for promoting a stimulating and welcoming academic and social environment.

I would like to acknowledge the financial, academic and technical support of the

Universidade Federal Fluminense, Brazilian Navy, and CASNAV.

Noteworhly, my deepest appreciation goes to Landa, to whom I dedicate this entire

dissertation.

And lastly, I thank God for putting all those people and institutions on my way.

Resumo

Proveniência, o registro da história de uma informação, tem se tornado cada vez mais
relevante para a compreensão, auditoria e reprodução de tarefas computacionais. Os pro-
cessos de análise de proveniência muitas vezes podem ser custosos para o usuário devido
ao grande volume de dados, aos múltiplos relacionamentos e às informações implícitas
em meio a esses dados. Algumas ferramentas existentes fornecem suporte à análise de
proveniência com base em diagramas de vínculo entre nós, contando com recursos de
visualização sobre arestas e vértices. Outras são ferramentas baseadas em fluxos de tra-
balho, como VisTrails e Taverna. No entanto, nenhuma delas suporta a exploração de
dados de proveniência implícitos, como as inferências das restrições do modelo de dados
PROV. Neste trabalho, apresentamos Prov-Dominoes, uma ferramenta projetada para
explorar dados de proveniência interativamente. Prov-Dominoes promove as relações de
proveniência entre entidades, atividades e agentes em elementos de primeira classe, repre-
sentados por peças de dominó. Além disso, permite aos usuários combinar tais peças de
dominó visual e interativamente, usando GPU. Prov-Dominoes foi avaliado em estudos de
caso distintos a fim de observar sua relevância. Foi possível descobrir relações implícitas
em um conjunto de dados de características de animais, identificar os parâmetros que
influenciaram os resultados da execução de um fluxo de trabalho e destacar as atividades
essenciais em uma casa inteligente. Também avaliamos o desempenho de combinações se-
quenciais executadas em Prov-Dominoes ao lidar com dados de proveniência com milhares
de relações, contrastando suas execuções em GPU e CPU. Os resultados mostraram que,
para um grande conjunto de dados, GPU superou CPU em duas ordens de magnitude.

Palavras-chave: análise exploratória de dados, proveniência, gpu.

Abstract

Provenance, the record of the history of a piece of information, has become increasingly
relevant to understanding, auditing, and reproducing computational tasks. The prove-
nance analysis processes can often be overwhelming to the user due to the large volume of
data, the multiple relationships among data, and the implicit information buried into the
data. Some existing tools provide provenance analysis support based on node-link dia-
grams, relying on visualization features over edges and vertices. Others are workflow-based
tools, such as VisTrails and Taverna. However, none of them support the exploration of
implicit provenance data, such as the inferences of the PROV Data Model Constraints.
In this work, we introduce Prov-Dominoes, a tool designed to explore provenance data
interactively. Prov-Dominoes promotes the provenance relationships among entities, ac-
tivities, and agents into first-class elements, represented by domino tiles. Moreover, it
allows users to combine and compose such domino tiles visually and interactively, us-
ing GPU. We evaluated Prov-Dominoes over distinct case studies, helping us to observe
Prov-Dominoes in action. We were able to uncover implicit relationships in a dataset of
animal characteristics, identify the parameters that influenced workflow execution results,
and highlight essential activities in a smart home. We also evaluated the performance of
sequential combinations executed in Prov-Dominoes when dealing with provenance data
with thousands of relations, contrasting their executions in GPU and CPU. The results
showed that, for a large data set, GPU outperformed CPU by two orders of magnitude.

Keywords: exploratory data analysis, provenance, gpu.

List of Figures

2.1 PROV-DM Types and Relations. Figure taken from Closa et al. [20]. . . . 18

2.2 Provenance graph of beer production according to PROV-DM notation. . . 18

2.3 PROV-N fragment related to parts of Figure 2.2. 19

3.1 Core and Type domino tiles. 23

3.2 PROV-N and matrix enclosing the wasGeneratedBy expressions from the

guiding example. 24

3.3 Matrix enclosing entity-type expressions from the guiding example (PROV-

N). 25

3.4 Matrix visualization of the wasDerivedFrom domino tile of the guiding

example (a), and its centrality graph (b). 26

3.5 Domino tiles combinations through: the left (left-multiplication) (a); or

the right (right-multiplication) (b); the top (sum) (c); and the bottom

(subtraction) (d). 27

3.6 Transposition of a domino tile. 27

3.7 Domino tile combination: WGB [E|Ac] × USD [Ac|E], resulting in a WDF

[E|E] domino tile. 28

3.8 WGB [E|Ac] (a); WGB + WGB (b); and (c) WGB − WGB. 29

3.9 The WDF matrix visualization (a) and the same matrix after the transitive

closure operation (b). 31

3.10 [E|T] representing some beers and their types (a). [E|T] × [E|T]T = [E|E]

(b). [E|E] after Cluster Sorting (c). 32

4.1 Prov-Dominoes’ architecture. 34

4.2 Exploration Provenance Script. 35

List of Figures vii

4.3 Prov-Dominoes GUI: Command History (a); Domino Tiles List (b); Canvas

(c); and Visualization Tabs (d). 36

4.4 WGB combined with USD (in the top), producing WDF (in the bottom):

[E|Ac] × [Ac|E] = [E|E] (a); and WDF matrix content (b). 37

5.1 Head Workflow and its executed modules. 42

5.2 Provenance graph taken from ProvStore. 44

5.3 Classes x Activities ([Ag|T]T × [Ac|Ag]T = [T|Ac]). 45

5.4 Ruling Activities x Classes. 46

5.5 EPS of the analysis on entities (a); Resulting domino tile and matrix:

outputs in the rows, and inputs and outputs in the columns. The columns

represent entities that took part in the output (row) generation (b). 48

5.6 Activities communicating to each other (a); and Activities (rows) associated

with agents (b). 51

5.7 Eigenvector centrality graph on activities. 52

5.8 CPU-GPU Comparison with speedups. 56

5.9 CPU-GPU Comparison (Group 1) on the commands time stack. 57

5.10 CPU-GPU Comparison (Group 2) on the commands time stack. 58

List of Tables

2.1 “PROV-DM Relations at a Glance” [40] with trigrams. 21

5.1 Exploratory Practices addressing research questions of the effectiveness

evaluation. 54

List of Abbreviations and Acronyms

DAG Directed Acyclic Graph . 12

GPU Graphical Processing Unit . 14

CPU Central Processing Unit . 14

UCI University of California, Irvine . 14

GUI Graphical User Interface .15

IPAW International Provenance and Annotation Workshop 17

OPM Open Provenance Model . 17

W3C World Wide Web Consortium .17

PROV-DM PROV Data Model . 17

PROV-N PROV Notation . 18

EPS Exploration Provenance Script . 34

CUDA Compute Unified Device Architecture . 35

LA4J Linear Algebra for Java . 35

WfMSs Workflow Management Systems .62

MDS Multidimentional Scaling . 63

PCA Principal Component Analysis . 63

HPC High-Performance Computing . 66

Contents

1 Introduction 12

1.1 Motivation . 12

1.2 Goals . 13

1.3 Research Methodology . 14

1.4 Contributions . 15

1.5 Organization . 15

2 Background 17

2.1 Provenance and PROV . 17

2.1.1 Guiding Example . 18

2.1.2 PROV-DM Types . 19

2.1.3 PROV-DM Relations . 19

2.2 Dominoes, Matrices and GPU . 21

3 Prov-Dominoes 22

3.1 Dominoes Game Metaphor . 22

3.2 Matrix Representation . 23

3.3 Domino Tile Visualizations . 25

3.4 Domino Tiles Combinations . 26

3.5 Domino Tile Transformations . 30

4 Implementation 33

4.1 Prov-Dominoes Architecture . 33

Contents xi

4.2 Prov-Dominoes GUI . 35

5 Evaluation 39

5.1 Effectiveness . 40

5.1.1 Materials and Methods . 40

5.1.2 Results and Discussion . 43

5.1.3 Exploratory Practices . 52

5.2 Efficiency . 54

5.2.1 Materials and Methods . 54

5.2.2 Results and Discussion . 56

5.3 Threats to Validity . 58

6 Related Work 60

6.1 Provenance Visualization Analysis . 60

6.2 Provenance Data Analysis . 62

6.3 Provenance and GPU . 64

7 Conclusion 65

7.1 Contributions . 65

7.2 Limitations . 66

7.3 Future Work . 67

References 69

Appendix A -- PROV-N from the guiding example 73

Appendix B -- List of all EPS commands 74

Appendix C -- Efficiency Evaluation EPS 75

Chapter 1

Introduction

1.1 Motivation

The problem of systematically capturing and managing the provenance1 for computational

tasks has increasingly received attention because of its relevance to a wide range of do-

mains and applications [30], such as bioinformatics, astronomy, and engineering. Without

provenance, it becomes difficult to reproduce and share results, solve problems collabora-

tively, validate results with different input data, and understand the process used to solve

a particular problem. Additionally, data products’ longevity becomes limited without

precise and sufficient information about its generation process, which tends to diminish

its value significantly [52].

The provenance of objects (digital or not) can be represented by a Directed Acyclic

Graph (DAG) of causality, enriched with annotations [43]. This type of graph is useful

for understanding the process of entities’ generation. In the graph, the edges point to the

past, indicating what has been done so far. It is worth noting that the provenance graph

differs from a data or control flow graph, where the edges point to what will be executed

in the future.

During the provenance analysis, the researcher must make explicit any implicit infor-

mation that could otherwise be inferred only from context [46]. Although the visualization

of provenance in the form of graphs is common, such structures can be limited when there

is a need to combine data to uncover implicit information. Besides, provenance graphs

can be composed of thousands of vertices and edges, revealing challenges such as the

competence to obtain holistic perspectives over large provenance data. Moreover, when

performing explorations on large provenance graphs, navigating on this structure becomes
1Information about entities, activities, and people involved in producing a piece of data or thing [39].

1.2 Goals 13

compromised, opening an avenue for more concise ways of visualization analysis.

Most of the existing provenance tools to assist exploratory analysis [37, ?, 3, 26, 38]

are based on node-link diagrams, relying on visualization features over edges and vertices

for their comprehension. Other tools, such as VisTrails [9] and Taverna [33], provide

infrastructure for data exploration and visualization through workflows. Both workflows

and node-link diagrams do not support provenance data combinations. For instance, they

do not allow the derivation of implicit provenance data, such as constraints [13]. By

unveiling implicit data, new analysis possibilities may arise. Besides that, they do not

scale well for large provenance data, where the navigation starts to become unfeasible.

1.2 Goals

Given the aforementioned motivation, the aim of this work is to present a new approach

for provenance data analysis. We introduce Prov-Dominoes, an approach for interactive

explorations of provenance data through the dominoes game’s metaphor. Prov-Dominoes

allows fast exploration of implicit information in provenance data. Each existing relation-

ship in the provenance data among entities, activities, and agents is represented by a basic

domino tile, which can be visually and interactively combined with other existing tiles

to produce derived tiles. For instance, users can combine a basic tile that contains the

entities used by activities with another basic tile that contains the entities generated by

activities, producing a derived tile that contains the entities derived from other entities.

Under the hood, Prov-Dominoes represents domino tiles as matrices, as they allow

fast data combination and concise visualizations. According to Wu et al. [55], “matrix

visualization is a graphical technique that can simultaneously explore the associations

of up to thousands of subjects, variables, and their interactions, without first reducing

dimension”. When analyzing large provenance graphs, matrix visualization allows a more

concise visualization of the relationships on the graph, without extensive navigation on a

large graph structure.

Summing up our goals on exploring large provenance data:

• Benefit from concise visualizations towards holistic perspectives;

• Interactively combine data to enrich analysis;

• Expose implicit data to ease information extraction; and

1.3 Research Methodology 14

• Boost performance by taking advantage of parallel processing such as Graphical

Processing Unit (GPU).

1.3 Research Methodology

We defined two research questions in this work in order to achieve our goals. The first

research question addresses an effective evaluation broken down into three sub-questions.

The second research question addresses an efficiency evaluation. Then, our evaluation has

as main objective to answer the following research questions:

• How effective is Prov-Dominoes in supporting exploration of provenance data?

– How Prov-Dominoes uncovers implicit information?

– How Prov-Dominoes provides a holistic perspective?

– How Prov-Dominoes supports concise analysis?

• How efficient is Prov-Dominoes when running in GPU in comparison to Central

Processing Unit (CPU)?

We evaluated Prov-Dominoes over four distinct case studies, designed as an attempt

to answer the above research questions.

The first case study uses provenance from the University of California, Irvine (UCI)

[27] Zoo dataset, which contain animal characteristics. This case study aimed at analyzing

the capabilities of Prov-Dominoes on extracting implicit and holistic relations from data.

The second case study uses provenance from a VisTrails’ workflow sample called

"Head." The workflow gathers data from The Visible Human Project [1] to render both

bones and skin of a head into a volumetric image. This case study aimed to assess the

aid of Prov-Dominoes on understanding which activities and parameters were essential to

the results obtained by the workflow execution.

The third case study uses provenance captured from a smart home service, where we

investigate which activities are central to the service’s functioning. Finally, the last case

study relies on a large provenance data collected from Twitter to contrast GPU and CPU

performances.

In the fourth case study, we collected large provenance data from Twitter to subside a

performance assessment of Prov-Dominoes, contrasting GPU and CPU processing modes

1.4 Contributions 15

of the tool.

1.4 Contributions

This work introduces a novel approach for exploratory analysis of provenance data (Sec-

tion 3.1). Based on domino tile combinations, the user can visually and interactively

explore data. Additionally, we identified a set of agnostic exploratory practices (Section

5.1.3) that serve as an exploration guideline that is independent of the provenance domain.

The concise visualizations (Section 3.3) used in our approach proved assistful to ex-

ploratory analysis of provenance data. While unveiling implicit data, new avenues of

visualization analysis and combinations arises. The matrix visualization enabled pattern

data detection and rapid identification of large data relationships.

The explorations performed in the case studies of the effectiveness evaluation (Sec-

tion 5.1) showed the potential of Prov-Dominoes for providing a holistic understanding

of the relations between agents and activities and unveiling relevant implicit informa-

tion. Moreover, we show how applying provenance inferences (Section 3.4) can enrich

provenances scarce in distinct relations.

Approaching provenance data as matrices (Section 3.2) allowed fast data combinations

by taking benefit from GPU. The performance assessment (Section 5.2) over the efficiency

case study showed that GPU was 127 times faster in executions involving combinations

of thousands of relations.

1.5 Organization

This work is organized in five other chapters, besides this introduction. Chapter 2 provides

some background about provenance and GPU. Additionally, Chapter 2 presents a guiding

scenario that is explored throughout the following chapters.

Chapter 3 introduces Prov-Dominoes. We detail the dominoes game metaphor and its

possibilities. Moreover, we explain how Prov-Dominoes represent provenance concepts,

and how they can be visualized, combined, and transformed.

Chapter 4 details the Prov-Dominoes architecture, and its Graphical User Interface

(GUI). We discuss the three layers of the architecture and how each of its components

orchestrate together. Finally, we overview the tool’s GUI, highlighting its main parts and

1.5 Organization 16

features.

In Chapter 5, we present three distinct case studies to evaluate Prov-Dominoes con-

sidering the research questions described in Section 1.3. Besides, we detail the exploratory

practices presented as methods to address the research questions and share the results of

our explorations.

Chapter 6 presents the related work and highlights how Prov-Dominoes distinguishes

itself from other provenance tools, and Chapter 7 concludes this work, presenting its

contributions, limitations, and future work.

Chapter 2

Background

2.1 Provenance and PROV

Provenance is well understood in the context of art or digital libraries, where it respectively

refers to the documented history of an art object or the documentation of processes in a

digital object’s life cycle [21]. In 2006, at the International Provenance and Annotation

Workshop (IPAW) [32], the participants were interested in data provenance, documenta-

tion, derivation, and annotation. As a result of the Provenance Challenges [44] presented

at IPAW, the Open Provenance Model (OPM) [42] was created. In 2013, another prove-

nance model was developed as a World Wide Web Consortium (W3C) [5] effort, named

PROV [39], which can be viewed as the successor of OPM.

PROV has defined a provenance data model, called PROV Data Model (PROV-DM) [4],

to support the interoperability and interchange of provenance in heterogeneous environ-

ments such as the web. At its core, PROV-DM describes the use and production of

entities by activities, which may be influenced in various ways by agents [4]. According to

the PROV-DM, entities, activities, and agents are PROV-DM Types. Such types relate

to each other through PROV-DM Relations, as shown in Figure 2.1. PROV-DM defines

both types and relations as PROV-DM Concepts, and represents provenance using such

provenance concepts.

In this chapter, we introduce the fundamental aspects of PROV-DM, considered cru-

cial to this work. The Sections 2.1.2 and 2.1.3, respectively, refer to the types and relations

concepts of provenance. This discussion is supported by a guiding example, detailed in

Section 2.1.1.

2.1 Provenance and PROV 18

Figure 2.1: PROV-DM Types and Relations. Figure taken from Closa et al. [20].

wasAssociatedWith

Mashing

Water

Boiling

Hops

Fermentation Beer

Wort Hopped
Wort

John

Barley

Yeast

Bill Priming
Sugar

used

us
ed

wasAssociatedWith wasAssociatedWith

actedOnBehalfOf

wasGeneratedBy

wasG
eneratedBy

wasGeneratedBy

us
ed

use
d used

used

us
ed

wasInformedBy wasInformedBy

Figure 2.2: Provenance graph of beer production according to PROV-DM notation.

2.1.1 Guiding Example

The concepts that will be used throughout this work consider that John (an agent) is

learning with Bill (also an agent) how to make Beer (an entity). In Figure 2.2, we show a

provenance graph where Bill is responsible for Boiling and Fermentation (both activities)

and delegates Mashing (another activity) to John, in order to produce the main entity,

Beer (highlighted in black).

Provenance graphs, such as the one in Figure 2.2, can be textually represented using

the PROV Notation (PROV-N) [17], a syntax designed to write PROV-DM instances.

The notation adopts a functional-style syntax consisting of a predicate name (referring

to a PROV-DM Concept) and an ordered list of terms. The predicate and its terms

compose a PROV-N expression. The expressions in the PROV-N fragment shown in

Figure 2.3 (PROV-N for this example is available in full at Appendix A) represents some

2.1 Provenance and PROV 19

...
1 activity(Mashing)
2 activity(Boiling)
3 activity(Fermentation)
4 entity(Barley , [prov:type="Grain "])
5 entity(Wort , [prov:type=" Liquid "])
6 entity(Hopped_Wort , [prov:type=" Liquid "])
7 entity(Beer , [prov:type=" Liquid "])
8 wasGeneratedBy(Wort , Mashing)
9 wasGeneratedBy(Hopped_Wort , Boiling)
10 wasGeneratedBy(Beer , Fermentation)
11 agent(Bill)

...

Figure 2.3: PROV-N fragment related to parts of Figure 2.2.

parts of the provenance graph in Figure 2.2. We can see that the expression whose

predicate name is a PROV-DM Relation has at least two terms separated by a comma,

e.g.: wasGeneratedBy(Beer, Fermentation). The first indicates the origin of the edge in

the provenance graph and the second its destiny.

2.1.2 PROV-DM Types

According to PROV-DM, “an entity (E) is a physical, digital, conceptual item or anything

with some fixed aspects” [4]. An activity (Ac) “is something that occurs over a period of

time and acts upon or with entities” [4]. An agent (Ag) “is something that bears some

form of responsibility for an activity taking place, for the existence of an entity, or for

another agent ’s activity” [4]. In the example from Figure 2.2, Barley is an entity, Mashing

is an activity, and Bill is an agent.

Additionally, to each entity, activity, or agent, PROV-N provides an expression to

define a set of attribute-value pairs, as in line seven of Figure 2.3. One of such attributes,

the “prov:type”, provides typing capabilities: Beer is defined as an entity of type “Liquid”.

2.1.3 PROV-DM Relations

According to PROV-DM, there are seven core relations of provenance: generation (was-

GeneratedBy), usage (used), communication (wasInformedBy), derivation (wasDerived-

From), association (wasAssociatedWith), attribution (wasAttributedTo), and delegation

(actedOnBehalfOf). Two of these relations, wasGeneratedBy and used, represent explicit

interactions between activities and entities. The wasGeneratedBy relation indicates the

end of the production of an entity by an activity. Such an entity “did not exist before the

2.1 Provenance and PROV 20

generation and becomes available for use after the generation” [4]. The effect of ending

production is instantaneous [4]. In the guiding example in Figure 2.2, Wort wasGenerat-

edBy Mashing. The used relation indicates the use of an entity by an activity. The effect

of this use is also instantaneous [4]. In our guiding example, Mashing used Water.

Two other relations, wasInformedBy and wasDerivedFrom, represent implicit interac-

tions between activities and entities. The wasInformedBy relation indicates the exchange

of unspecified entities between two activities, a1 and a2, where a2 uses an entity gen-

erated by a1. Such communication implies that a2 depends on a1, since a2 requires an

entity generated by a1 [4]. In the guiding example from Figure 2.2, Boiling wasInformedBy

Mashing, since the Boiling activity uses the wort generated by the Mashing activity. The

wasDerivedFrom relation is the transformation of an entity into another entity, an up-

date of an entity resulting in another entity, or the construction of a new entity based on

pre-existing entities [4]. In our guiding example, we see that Mashing used Water and

Wort wasGeneratedBy Mashing. Although there is no explicit expression indicating that

the Wort entity was derived from the use of Water, by inference [15] we could enrich the

graph indicating that Wort wasDerivedFrom Water.

Three relations, wasAssociatedWith, wasAttributedTo, and actedOnBehalfOf, repre-

sent interactions that involve agents. The wasAssociatedWith relation indicates that an

agent played a role in an activity [4]. In the guiding example, Fermentation wasAssoci-

atedWith Bill. The wasAttributedTo relation indicates that an entity was generated by

some activity associated with a given agent. Such a relation is useful when the activity is

not known or is irrelevant [4]. In our example, we could enrich the graph indicating that

Wort wasAttributedTo John, because John is associated with the activity that generated

the Wort. The actedOnBehalfOf relation indicates the assignment of authority and re-

sponsibility for an agent to carry out a specific activity as a delegate or representative of

the consigning agent. The consigning agent has some responsibility for the activity carried

out by his delegate or representative [4]. In our guiding example, John actedOnBehalfOf

Bill.

Summarizing, while not all PROV-DM Relations are binary, they all involve two

primary elements, referred to as subject and object [4]. Table 2.1 indexes the seven core

relations according to their two primary elements [40].

2.2 Dominoes, Matrices and GPU 21

Table 2.1: “PROV-DM Relations at a Glance” [40] with trigrams.

Relation Subject Object Trigram
wasGeneratedBy Entity Activity WGB

used Activity Entity USD
wasDerivedFrom Entity Entity WDF

wasAssociatedWith Activity Agent WAW
wasAttributedTo Entity Agent WAT
wasInformedBy Activity Activity WIB
actedOnBehalfOf Agent Agent AOB

2.2 Dominoes, Matrices and GPU

The domino-matrix abstraction was first introduced by Dominoes [23], a tool designed

to assist exploratory analysis on Git repositories. Dominoes uses parallel processing to

efficiently process large matrices representing relationships among Git repository data

(e.g., developers, commits, modified files). For instance, the combination of two tiles is

achieved by multiplying the underlying matrices in GPU. Similarly to the dominoes game,

where two tiles can only be combined if they have compatible edges, two matrices can

only be multiplied if they have compatible rows/columns. Such efficient GPU processing

is possible because matrix multiplication is a highly parallel operation with little reuse of

input data [28].

Besides multiplication, the use of matrix as an underlying data structure to represent

domino tiles also allows for other operations, such as transitive closure and centrality.

These two operations are possible for adjacency matrix, which is a square matrix used

to represent a finite graph [31]. Transitive closure can be thought of as establishing a

data structure that makes it possible to solve reachability questions (can I get to x from

y?) efficiently [53]. Centrality indices are answers to the question “What characterizes an

important vertex?” The answer is given in terms of a real-valued function on the vertices

of a graph, where the values produced are expected to provide a ranking which identifies

the most important nodes [6].

The possibility of representing a graph as a matrix acts as a link between data analysis

and visualization analysis. Interchanging between the two for different analysis perspec-

tives contributes to enrich the analysis.

Chapter 3

Prov-Dominoes

In this chapter, we present Prov-Dominoes1, our exploratory analysis tool for provenance

data. Prov-Dominoes is compatible with the PROV-N notation, allowing its adoption

in different domains and applications. Throughout this section, we detail the dominoes

game metaphor along with its features, the Prov-Dominoes’ architecture, and its GUI.

Sections 3.1 to 3.5 show how Prov-Dominoes represents PROV-DM Concepts and how

they can be visualized, combined, and transformed. Section 4.1 presents the technologies

and architectural components of the tool. Finally, Section 4.2 provides an overview of the

tool’s GUI, highlighting its main parts and features.

3.1 Dominoes Game Metaphor

We took the dominoes game as an inspiration to represent the elements in a provenance

graph. Examining a provenance graph, we observe that the vertices are PROV-DM Types

and the edges PROV-DM Relations. Thus, we took into account the following facts when

designing Prov-Dominoes:

• The connections in a provenance graph are directed, associating a subject PROV-

DM Type (e.g., Mashing) to an object PROV-DM Type (e.g., Water); and

• Each connection encloses a PROV-DM Relation (e.g., Mashing used Water, in

Figure 2.2).

Consequently, each domino tile in Prov-Dominoes represents a PROV-DM Relation

with the subject and object of the relation in the left and right edges, respectively. Then,
1Prov-Dominoes is available at https://gems-uff.github.io/prov-dominoes.

https://gems-uff.github.io/prov-dominoes

3.2 Matrix Representation 23

Ac Ac

W
 I B

Ac E

U
 S

 D

Ac Ag

W
 A

 W

Ag Ag

A
 O

 B

E Ac

W
 G

 B

E Ag

W
 A

 T

E E

W
 D

 F

E T

En T

Ac T

A
c T

Ag T

A
g T

entity(e, [prov:type = t])

agent(ag, [prov:type = t])

activity(ac, [prov:type = t])

Figure 3.1: Core and Type domino tiles.

we nominate such a domino tile with an uppercase trigram (three capital letters) that

indicates which PROV-DM Relation the tile is representing. The trigrams are based

on the main letters of the relation names defined by PROV-DM, thus enabling rapid

identification of the underlying PROV-DM Relation (e.g., USeD→USD, as shown in the

“trigram” column of Table 2.1). Finally, we refer to the domino tiles through their trigrams

and subject-object edges (e.g., WGB[E|Ac] represents a relation wasGeneratedBy, which

associates entities with activities).

The seven core PROV-DM relations were shaped as seven core domino tiles. Addi-

tionally, we developed three provenance type domino tiles to represent types of agents,

activities, and entities expressed by the “prov:type” attribute, one for each PROV-DM

Type: agent-type [Ag|T], activity-type [Ac|T], and entity type [E|T]. For instance, the

fourth line of Figure 2.3 indicates that the entity (E) Barley is of type (T) Grain. The

core and type domino tiles are depicted in Figure 3.1.

3.2 Matrix Representation

Each core domino tile is represented as a matrix associated with a PROV-DM Relation.

As each PROV-DM Relation has an expression in PROV-N, whose predicate name is the

relation’s name, the matrix can be built based on the PROV-N expressions associated with

3.2 Matrix Representation 24

Figure 3.2: PROV-N and matrix enclosing the wasGeneratedBy expressions from the
guiding example.

the PROV-DM Relation. PROV-N expressions have two required terms for representing

relations. Thus, porting to a matrix representation, the first required term composes a

row, and the second required term composes a column.

For instance, in Figure 3.2, the expression in the 22th line (wasGeneratedBy(Wort ,

Mashing)) has the predicate wasGeneratedBy (referring to the generation relation) and

two required terms (Wort and Mashing). The first required term (Wort) becomes a row

index in the WGB matrix, representing an instance of entity (E, subject of the generation

relation). The second required term (Mashing) becomes a column index in the WGB

matrix, representing an instance of activity (Ac, object of the generation relation). The

cell WGBi,j of the matrix is set by counting the number of expressions with the same pair

of required terms. In this case: WGBWort,Mashing = 1. The 23th and 24th lines have the

same wasGeneratedBy predicate, then their pair of terms (Hopped_Wort, Boiling) and

(Beer, Fermentation) are set: WGBHopped_Wort,Boiling = 1 and WGBBeer,Fermentation = 1,

respectively. The resulting matrix that encloses the wasGeneratedBy expressions from

the guiding example (PROV-N) is shown in Figure 3.2 (matrix).

In the case of domino tiles’ type, the same idea of pair of indexes to map cells work,

where the PROV-DM Type indexes the row, and the value of the defined “prov:type” in-

dexes the column. For instance, in the 4th line (entity(Water , [prov:type="Liquid"]))

3.3 Domino Tile Visualizations 25

Grain Liquid



Water 0 1
Barley 1 0
Hops 0 0
Yeast 0 0

Priming_Sugars 0 0
Wort 0 1

Hopped_Wort 0 1
Beer 0 1

Figure 3.3: Matrix enclosing entity-type expressions from the guiding example (PROV-N).

of Figure 3.2, the cell EnTWater,Liquid of the matrix EnT enclosing entity-type [E|T] is set

to one. The resulting matrix that encloses the entity-type expressions (lines 4 to 11) in

Figure 3.2 is shown in Figure 3.3.

3.3 Domino Tile Visualizations

Prov-Dominoes has two kinds for content visualization of the domino tiles: matrix and

centrality graph. They were chosen due to their concise visualization properties. The

matrix visualization is a tabular representation of the matrix, where the cells are colored

according to their values. Grey indicates zero, blue indicates the maximum value present

in the matrix, and white indicates the minimum value different from zero. Values between

maximum and minimum are colored in shades of blue (from blue to white).

For instance, consider the underlying matrix of the domino tile wasDerivedFrom,

whose generation is represented by Figure 3.7 and explained in Section 3.4, shown in

Figure 3.4.a. The blue cells illustrate the maximum value (1), indicating that Wort

was derived from Water and Barley. Such matrix visualization allows a more concise

identification of the relationships on the graph without extensive navigation on a large

graph structure.

The centrality graph visualization is an eigenvector centrality implementation. Cen-

trality measures indicate that some nodes are more important (central) than others in a

graph. The idea of centrality was first introduced in the context of social systems, where

the location of an individual in the network may correlate with its influence or power in

group processes [22]. The eigenvector centrality (also called prestige score [57]) measures

such importance through recursive connections. A high eigenvector score means that a

3.4 Domino Tiles Combinations 26

Figure 3.4: Matrix visualization of the wasDerivedFrom domino tile of the guiding example
(a), and its centrality graph (b).

node is connected to many nodes with high scores [47]. Because this centrality visual-

ization requires a graph, it only makes sense for adjacency matrices encoded in double

domino tiles (with the same subject-object edges). When analyzing the square matrix

of a double domino tile, it is not clear which cells have more importance over others, as

the cell’s value only accounts for occurrence. The centrality graph provides scores for an

importance perspective.

For example, Figure 3.4.b exhibits the eigenvector centrality graph for the wasDerived-

From domino tile of our guiding example. The graph suggests Hopped_Wort as the most

important entity in beer production. The nodes are colored in shades of blue, where the

higher score node is blue and the lower white. Such specific centrality graphs focus on just

one PROV-DM Type (e.g., entities, in Figure 3.4.b) and provide a shorter visualization

compared to the whole provenance graph. Besides, the nodes’ score provide means to

navigate such reduced graphs in a more consistent direction, following the high or low

centrality scores.

3.4 Domino Tiles Combinations

In Prov-Dominoes, data combination is achieved by merging two domino tiles into one.

Figure 3.5 illustrates the three existing types of combinations: by approaching part-equal2

2Only the edges and dimensions being approached should be equal.

3.4 Domino Tiles Combinations 27

Figure 3.5: Domino tiles combinations through: the left (left-multiplication) (a); or the
right (right-multiplication) (b); the top (sum) (c); and the bottom (subtraction) (d).

Figure 3.6: Transposition of a domino tile.

domino tiles horizontally (multiplication-merge) in the left as in Figure 3.5.a or the right

as in Figure 3.5.b; by approaching two equal3 domino tiles in the top (sum-merge), as

in Figure 3.5.c; and by approaching two equal domino tiles in the bottom (subtraction-

merge), as in Figure 3.5.d.

As multiplication-merge requires the merging edges to be the same, resembling the

dominoes game when leaning two domino tiles, users may need to transpose (reverse the

edges) the domino tile to match edges or to take benefit from other perspective during

visualization. Figure 3.6 shows such domino tile transposition. The transposition process

starts when the user double-clicks the domino tile, issuing a transposition of its underlying

matrix (e.g., USD → USDT).
3Equality of edges and dimensions.

3.4 Domino Tiles Combinations 28

Figure 3.7: Domino tile combination: WGB [E|Ac] × USD [Ac|E], resulting in a WDF
[E|E] domino tile.

When approaching edges horizontally, Prov-Dominoes performs matrix multiplica-

tion, deriving a new matrix for the resulting domino tile, as shown in Figure 3.7. The

multiplication takes into account: PROV-DM Type match (object of the first domino tile

matches the subject of the second) and dimension match (number of columns in the first

domino tile matrix equals to the number of rows of the second). Before the multiplication,

Prov-Dominoes sorts the columns of the first matrix and the rows of the second. Such

a sorting assures that all elements appear in the same order in both tiles for a correct

semantic interpretation.

For instance, the example shown in Figure 3.7 consists of a derivation inference [15].

The domino tile in the left-hand side shows entities generated by activities (WGB [E|Ac]),

and the domino tile in the right-hand side shows activities that used entities (USD [Ac|E]).

When multiplying both, by connecting the activity side, the generated domino tile shows

entities derived from other entities (WDF [E|E]). By using the matrix visualization over

the new domino tile, we can see that only the generated entities have some cells filled:

Hopped_Wort, Wort, and Beer. In the columns we can see the entities that took part in

the generation of the row entities: Hopped_Wort (row) was derived from Wort (column)

and Hops (column), Wort (row) was derived from Water (column) and Barley (column),

and Beer (row) was derived from Hopped_Wort, Yeast, and Priming_Sugars. This allows

analysis that would otherwise be difficult to make just by looking at the corresponding

provenance graph.

Two other inferences of the PROV-DM Constraints can be obtained by combining

domino tiles. The combination of USD [Ac|E] and WGB [E|Ac] by approaching the E

edges produces a domino tile corresponding to WIB [Ac|Ac] (wasInformedBy) [12]. The

3.4 Domino Tiles Combinations 29

Figure 3.8: WGB [E|Ac] (a); WGB + WGB (b); and (c) WGB − WGB.

combination of WGB [E|Ac] and WAW [Ac|Ag] (wasAssociatedWith) by approaching the

Ac edges produces a domino tile corresponding to WAT [E|Ag] (wasAttributedTo) [11].

Once new data arise from combinations, portions of provenance are unveiled, providing a

more holistic perspective for provenance analysis.

The sum-merge and subtraction-merge require the edges and dimensions of both

domino tiles to be equal. While approaching the domino tiles, the edges’ letters be-

come green (edges’ letters match) or red (edges’ letters do not match). When green, the

domino tiles are merged if the dimensions of the approached edges also match, and a new

domino tile arises with the same edges and dimensions of the previous two. Under the

hood, Prov-Dominoes performs the sum (top-approach) or subtraction (bottom-approach)

of the matrices. To ensure the match of rows and columns, Prov-Dominoes previously

sorts rows and columns of both domino tiles.

For instance, the example shown in Figure 3.8 illustrates the sum and subtraction

of domino tile WGB [E|Ac] (Figure 3.8.a) with itself. Figure 3.8.b exhibits the matrix

visualization of the resulting sum and Figure 3.8.c exhibits the matrix visualization of the

resulting subtraction.

3.5 Domino Tile Transformations 30

3.5 Domino Tile Transformations

In this section, we describe transformations available on Prov-Dominoes. These trans-

formations affect only the matrix’s content beneath a domino tile, without affecting its

external view. Such content-only transformations may reveal implicit information about

the data. They are organized as follows:

• Operations: affect cell values or matrix dimensions;

• Filters: filter (by setting cell value to zero) cells according to some filtering rule;

and

• Sorting: rearrange cells by moving rows and columns.

In the following list, we briefly summarize the domino tile transformations available

in Prov-Dominoes, except for transitive closure and cluster sorting, which we detail in

the following. We refer to Ai,j as a cell with row index i and column index j of a generic

matrix A that represents a given domino tile:

• Binarize: Ai,j ≤ 0⇒ Ai,j = 0 and Ai,j > 0⇒ Ai,j = 1;

• High-Pass Filter (HPF): Ai,j ≤ v ⇒ Ai,j = 0, where v is a cutoff value;

• Low-Pass Filter (LPF): Ai,j ≥ v ⇒ Ai,j = 0, where v is a cutoff value;

• Trim: Eliminates empty rows and columns;

• Aggregate Rows/Columns : Reduces rows/columns to one dimension (sum of the

rows/columns);

• Z-score: Sets standard deviations from the column average on cells sharing the same

column;

• Word on Row/Column: Ai,j = 0 if the row/column label of the cell does not match

a word (or regular expression); and

• Sort by Row/Column Group: Rearranges cells by grouping together non-zero cells

in a row/column. The bigger the group, the closer to the top (if a row group) or to

the left (if a column group).

3.5 Domino Tile Transformations 31

Figure 3.9: The WDF matrix visualization (a) and the same matrix after the transitive
closure operation (b).

Transitive closure is an allowed operation for a double domino tile (i.e., tiles with the

same element in both sides) enclosing an adjacency matrix. The transitive closure of an

adjacency matrix is the reachability4 matrix. Typically, generating the transitive closure

is the process of creating the reachability matrix, where Ai,j = 1 if a path exists from

vertex i to j and Ai,j = 0 otherwise. Our approach generates an adapted reachability

matrix. Instead of setting one when there is a path between i and j, we set 1/n, where

n represents the number of steps necessary to get from i to j. This provides an intuitive

visualization of node’s distance, as the shades of blue are lighter for nodes distant from

each other. Moreover, we assume each vertex can reach itself in one step.

Consider the example from Figure 3.9, where Figure 3.9.a shows the matrix of the

WDF [E|E] domino tile produced from our guiding example. Figure 3.9.b shows the

same matrix after the transitive closure operation. In Figure 3.9.b, we can see that the

last row (Beer) is transitively derived from all ingredients of the beer provenance, as

expected. The blue cells indicate ingredients that were participating in the last step of

the beer production. The cells in shades of blue indicate indirect influences to the beer

production. For instance, because Water and Barley were the first ingredients in the beer

production, they have lighter blue shades. In fact, they are 3 steps distant to the Beer

entity : (Water, Barley) → Wort, Wort → Hopped_Wort, and Hopped_Wort → Beer.

Furthermore, the transitive closure operation enables another inference of the PROV-
4In graph theory, reachability refers to the ability to get from one vertex to another within a graph.

3.5 Domino Tile Transformations 32

Figure 3.10: [E|T] representing some beers and their types (a). [E|T] × [E|T]T = [E|E]
(b). [E|E] after Cluster Sorting (c).

DM Constraints, the delegation inference [14]. For instance, in Figure 2.2, there is no

connection between Bill (an agent) and Mashing (an activity). The delegation inference

states that, because Bill has one delegate (John), he is also associated with the activity

(Mashing) of his delegate. If we combine WAW [Ac|Ag] with the transitive closure of

AOB [Ag|Ag] (actedOnBehalfOf) by approaching the Ag edges, we obtain a new domino

tile that is the same WAW [Ac|Ag], but considering the delegation inference. Thus, the

cell of Mashing and Bill) is set to one.

The Cluster Sorting is a rearrange method that brings cells sharing the same row

or column closer, leaving empty cells grouped (to the right above the diagonal or the

left below the diagonal). In Figure 3.10.a, we show an entity-type [E|T] domino tile

representing some beer brands and their types. In Figure 3.10.b, we have the resulting

matrix of [E|T] × [E|T]T = [E|E], a domino tile representing pairs of beer brands (cells)

sharing the same type. After the rearrange produced by the Cluster Sorting, we obtain

the matrix of Figure 3.10.c. We can see the block formations over the diagonal. The first

3x3 block groups the pale lager beers, the second 2x2 block groups wheat beers, and the

last 2x2 block groups blonde ales.

Chapter 4

Implementation

In this chapter, we discuss the Prov-Dominoes architecture and its GUI. We discuss the

three layers of the architecture and how each of its components orchestrate together

to achieve the goals mentioned in Section 1.2. Finally, we overview the tool’s GUI,

highlighting its main parts and features.

4.1 Prov-Dominoes Architecture

The architecture of Prov-Dominoes has three layers: data layer, processing layer, and

presentation layer. The data layer is responsible for reading the supported input files and

parsing the data in the files to matrices for domino tiles assembling. The processing layer

provides the algorithms for matrix combinations and transformations, both for GPU and

CPU. These two layers are depicted in Figure 4.1 and are described in this section. The

presentation layer is discussed later, in Section 4.2.

The data layer has three inner components: Prov-Matrix, Domino Tile Parser, and

Script Processor. The Prov-Matrix component is in charge of converting PROV-N expres-

sions into matrices, one matrix per distinct PROV-DM Relation stated in the PROV-N

file, as mentioned in Section 3.1. After the matrices are built, they are sent to the Domino

Tile Parser. The Domino Tile Parser component is responsible for assembling the domino

tile, both in terms of its matrix content and its non-graphical structures, such the labels

for the matrix and dimension types. After this process, the domino tile data structure is

available for the presentation layer, where the domino tiles are drawn and manipulated.

The Script Processor component is responsible for building and managing the history

of commands in a tree data structure. Each exploratory-related action performed by

4.1 Prov-Dominoes Architecture 34

Figure 4.1: Prov-Dominoes’ architecture.

the user is referred as a command1. Such command history functions as the provenance

of the derived domino tiles, enabling the user to keep track and navigate through their

explorations. The Script Processor enables the user to export the commands that led

to the derived domino tiles (i.e., their provenance) to an Exploration Provenance Script

(EPS). Similarly, the Script Processor allows the user to import the EPS to reproduce

previous explorations.

In Figure 4.2, we show an example of an EPS. The first commands LOAD, ADD,

MOVE, and TRANSPOSE are represented by nodes 1, 2, 3 and 4. The command of

node 2 (p1 = ADD(USD)) has an identifier: “p1”. The “p1” identifier indicates that

the ADD command produced a domino tile (a copy of USD as result of ADD(USD))

that was stored in “p1”, allowing further commands to access such result by referring to

“p1”, as in the forth command: TRANSPOSE(p1). After the forth command, the next

command UNDO(n = 2) represents two undo performed in sequence, invalidating the n

last commands and moving backward n nodes in the history tree. Commands performed

after UNDO will imply a new branch created in the history tree, as in command p2 =

ADD(WGB), attributed to node 5.

The processing layer consists of two matrix processing components, in CPU and GPU,

that operate in a mutually exclusive processing mode. They are responsible for process-

ing matrix-related transformations: operations, filters, and sorting. The CPU processing
1A list of all commands is available at Appendix B.

4.2 Prov-Dominoes GUI 35

Figure 4.2: Exploration Provenance Script.

component uses the open-source java library Linear Algebra for Java (LA4J)2. The li-

brary provides Linear Algebra primitives (matrices and vectors) and algorithms for Java.

The GPU processing component is implemented in Compute Unified Device Architec-

ture (CUDA)3, a parallel computing platform and API model created by NVIDIA. The

asterisks in Figure 4.1 indicate the matrix-related transformations that were implemented

in CUDA:

• Operations: addition, subtraction, transposition, multiplication, transitive closure,

z-score, and binarization;

• Filters: HPF and LPF.

The purpose of GPU usage is to enable faster processing when dealing with large

provenance data, where CPU may be limited and not perform satisfactorily. All transfor-

mations are executed in CPU, if GPU is not available in the computer.

Aiming at enriching the current architecture, we considered to develop a plugin to

import log application files as provenance for analysis in the tool. We were able to

complete functions for converting logs into PROV-N expressions, however it was not

incorporated into the architecture due to time and scope restrictions. Nevertheless, we

released such converter as a separate Java API called log2prov4.

4.2 Prov-Dominoes GUI

The Prov-Dominoes GUI uses Java FX for its graphical components and has four main

panels (see Figure 4.3): Command History Tree, Domino Tiles List, Canvas, and Visual-

ization Tabs. TheCommand History Tree lies in the top area, as shown in Figure 4.3.a.
2http://la4j.org.
3https://developer.nvidia.com/cuda-zone.
4https://github.com/gems-uff/log2prov.

http://la4j.org
https://developer.nvidia.com/cuda-zone
https://github.com/gems-uff/log2prov

4.2 Prov-Dominoes GUI 36

Figure 4.3: Prov-Dominoes GUI: Command History (a); Domino Tiles List (b); Canvas
(c); and Visualization Tabs (d).

The domino tiles assembled from the provenance files or EPS are exhibited in theDomino

Tiles List, bottom left in Figure 4.3.b. By double-clicking a domino tile in the Domino

Tiles List, the clicked domino tile goes to the Canvas in Figure 4.3.c, where combinations

and transformations are performed.

Inspired by the History Tree in VisTrails [9], new nodes arise in the Command History

Tree as the user manipulates domino tiles in the Canvas. A node in the Command History

Tree can be selected to go back to a particular state. The “Reproduce” button resets the

Domino Tiles List and Canvas and performs a sequential execution of commands from

node one to the selected node.

Right-clicking a domino tile in the Canvas drops down a context menu, as illustrated

in Figure 4.3.c. The Matrix and Centrality Graph visualizations are available under the

sub-menu Visualizations. When selected, these visualizations are presented in a Visual-

ization Tab, as shown in Figure 4.3.d.

To better illustrate the features of Prov-Dominoes, let us consider an hypothetical

scenario where Sofia wants to join her friend John (agent of our guiding example in

4.2 Prov-Dominoes GUI 37

Figure 4.4: WGB combined with USD (in the top), producing WDF (in the bottom):
[E|Ac] × [Ac|E] = [E|E] (a); and WDF matrix content (b).

Section 2.1.1 to also learn with Bill how to make beer. As a test, Bill gives the Beer

provenance to Sofia and ask her to identify which other ingredients are present in the

hopped wort, besides wort and hops.

After loading the Beer provenance in Prov-Dominoes, Sofia realizes that there is no

domino tile relating the ingredients (entities) to each other (i.e, a domino tile with E on

both edges), as depicted in Figure 4.3b. Thus, she decides to produce such domino tile

by inserting and combining WGB with USD in the Canvas. The combination produces a

domino tile with entities on both edges, as shown in Figure 4.4.a.

Sofia decides then, to observe the underlying matrix of the produced WDF domino

tile. She sees the matrix contents as in Figure 4.4.b and realizes that she is seeing only

direct derivations related to each ingredient. For example, the row Hopped_Wort is a

direct derivation of the columns Wort and Hops. However, she realized that indirect

derivations are missing. In his question to Sofia, Bill already mentions Wort and Hops as

ingredients present in the Hopped_Wort.

Sofia realizes that she needs to check if any other ingredients in the columns can reach

Wort or Hops in the rows, implying that she needs the corresponding reachability matrix

from the one in Figure 4.4.b. In order to produce such reachability matrix, she applies the

transitive closure operation as in Figure 4.3.c, obtaining the reachability matrix displayed

in Figure 4.3.d. Now, in the row Hopped_Wort, two new ingredients appear as indirect

participants of Hopped_Wort : Water and Barley, the answer to Bill’s question to Sofia.

4.2 Prov-Dominoes GUI 38

Besides loading the provenance file, Sofia executed four steps to get to the answer she

was seeking. Figure 4.3.a lists all the steps performed by Sofia. The first one was the

provenance loading. Second and third, the insertion of WGB and USD into the canvas for

manipulation. The forth step was the combination between the WGB and USD. The fifth

and last step was the transitive closure operation. Moreover, Sofia can share her findings

by exporting (option “Export to script...” in “Prov-Dominoes” menu) her explorations.

Chapter 5

Evaluation

In this chapter we present and discuss the research questions over which we evaluate

Prov-Dominoes. Our assessment first focus on an effectiveness evaluation, addressed over

three distinct case studies. After that, we present an efficiency evaluation through large

data processing, which considers thousands of relations collected from Twitter.

The following Research Questions are considered:

RQ1: How effective is Prov-Dominoes in supporting interactive exploration

of provenance data? As discussed in Chapter 1, making explicit any implicit prove-

nance information is an aspect of provenance analysis. Thus, we considered the capability

of uncovering implicit data (i.e., making it explicit) an effective aspect in supporting inter-

active exploration of provenance data. Moreover, as provenance data may be abundant in

explicit information, we considered the capability of providing holistic perspectives over

(possibly abundant) information another effective aspect to guide explorations. Addi-

tionally, we consider concise analysis a requirement, whose benefits would integrate both

strict (implicit and explicit) and holistic data, altogether compounding effective support

for interactive explorations. Thus, we broke down effectiveness into three sub-questions:

RQ1.1: How Prov-Dominoes uncovers implicit information? Provenance

data may have implicit information buried into the data, hindering its perception. Un-

covering such information may enrich the interactive exploration of provenance data.

RQ1.2: How Prov-Dominoes provides a holistic perspective? Similarly, big

picture analyses, provided by a holistic perspective of the data, may contribute to provide

a wholesome comprehension of the data domain. We analyze if the explorations performed

using Prov-Dominoes are capable of extracting such holistic perspectives.

RQ1.3: How Prov-Dominoes supports concise analysis? We assess if the

5.1 Effectiveness 40

matrix and eigenvector centrality graph visualizations provided by Prov-Dominoes are

capable of integrating strict and holistic information, thus assisting the explorations.

Furthermore, as discussed in Chapter 1, analyzing provenance graphs start to become an

overwhelming task as the number of edges and vertices grows. Providing concise ways

to visualize graphs may not only benefit the analysis on larger graphs, as discussed in

Section 3.3, but also potentially assist pattern identifications regarding the arrangements

of cells in a matrix. Moreover, the eigenvector centrality graph may benefit the analysis by

per-type observations. For instance, first analyzing the centrality of agents, then entities,

and then activities.

RQ2: How efficient is Prov-Dominoes when running in GPU in compar-

ison to CPU? In general, GPU applications are expected to perform faster than its

counterpart in CPU, due to its parallel architecture. However, it is not straightforward to

know from which data volume GPU processing starts to become faster than CPU (i.e., the

point where data processing hides memory transfer latency) for a particular application,

and the magnitude of the speedup (CPU time / GPU time). We analyzed how faster

is Prov-Dominoes in the GPU mode in comparison to the CPU mode when processing

thousands of relations and from which data volume on it becomes faster.

In the following sections, we describe the corpus and discuss the results of our ex-

plorations, first for the effectiveness evaluation (RQ1), then for the efficiency evaluation

(RQ2).

5.1 Effectiveness

In this section we present three distinct case studies as an attempt to answer RQ1.1,

RQ1.2, and RQ1.3. First, we describe the materials and methods of the case studies,

and then we present and discuss the results. In the end, in Section 5.1.3, we summon

some exploratory practices frequently observed in the case studies.

5.1.1 Materials and Methods

We selected three different case studies in order to observe how Prov-Dominoes supports

exploratory analyses in different domains. For each case study, we designed exploratory

tasks for information extraction, considering their domains.

The first case study (Animals) used data from a UCI [27] dataset about animals

5.1 Effectiveness 41

and was selected because of the general knowledge readers may have about the domain,

easing the understating of potential findings. Despite not yet a provenance, we present

such simple dataset as an instructive study paving the way to the other two provenance

case studies. The exploratory tasks focus on identifying activity patterns among animal

classes and outlining the ruling activities of each animal class.

The selected Zoo [29] dataset contains 101 animal entries associated with 15 Boolean

attributes and two categorical attributes. The first categorical attribute refers to the ani-

mal class: mammal, bird, reptile, fish, amphibian, insect, or other. The second categorical

attribute refers to the number of animal’ legs: 0, 2, 4, 5, 6, or 8. For matrix indexing,

we unfolded the categorical attributes into separated Boolean values. The remaining

attributes refer to animal activities.

When parsing the dataset to the PROV-N notation, we represented the animals as

agents, their classes (animal type) as agent-types, and their actions as activities. We

used the wasAssociatedWith(Ac, Ag) PROV-N expression to represent that animal activ-

ities (Ac) were associated with animals (Ag). We used the “prov:type” attribute (e.g.,

agent(pitviper, [prov:type=“reptile”])) to relate an animal to its class. As result,

Prov-Dominoes generated two domino tiles: WAW [Ac|Ag] and agent-type [Ag|T].

The second case study (Workflow) uses provenance from a VisTrails’ workflow

called “Head.” We wanted to lean on a provenance generated by a Workflow Management

System (WfMS) to check if our explorations could contribute to a better understanding

of the provenance. The exploratory tasks aim at understanding which activities and

parameters were essential to the workflow execution results. For this case study, we

adopted member checking by inviting the workflow’s author to provide feedback about

our explorations.

The chosen Head Workflow gathers data derived from “The Visible Human Project” [1]

corresponding to a person’s head and renders its bones and skin as a volumetric image.

When exporting the Head Workflow from VisTrails to PROV-N, apparently only the

executions of the last exploration is available. The last exploration in the sample is called

“volume rendering,” that is the one we considered for analysis. The modules used in the

execution are based on the Visual Toolkit (VTK) [51] and depicted in Figure 5.1.

The exported provenance maps the modules as activities, the inputs and outputs as

entities, and the executors of the workflow as agents. The provenance visualization of the

workflow in VisTrails focuses on module (activities) connections, as shown in Figure 5.1.

Each edge connecting two modules indicates that the output (entity) produced by the

5.1 Effectiveness 42

Figure 5.1: Head Workflow and its executed modules.

5.1 Effectiveness 43

source module was used as input (entity) by the target module. However, we do not see

such entities in Figure 5.1, as they are kept implicit. Furthermore, additional parameters

one module may have, are also kept implicit. As the “volume rendering” exploration was

executed only by the workflow’s author, we refrain from agent analysis in this case study.

The third case study (Smart Home) uses provenance captured from a smart

home service called MiJia1. We chose such a case study as an example of the potential of

provenance on smart devices and the internet of things. We downloaded the provenance

captured by a user of such smart home service from ProvStore2, a free service for storing,

viewing, and collaborating on provenance data. The exploratory tasks investigate which

activities are central to the smart home service’s functioning and which agents are behind

its operation.

The MiJia (Mi Home) Smart Home Service consists of a series of Xiaomi3 smart devices

operating together in a building. The smart devices communicate with a multi-functional

gateway responsible for integrating them. The user can control and interact with smart

devices through a MiJia app on her smartphone. The data generated by the service is

recorded as PROV-N, where device data are represented as entities, commands issued to

the devices as activities, and devices as agents. The captured provenance has expressions

about four devices: a temperature sensor (“Sensor1”), a humidity sensor (“Sensor2”), and

two unspecified devices (“Device1” and “Device2”), as shown in Figure 5.2. Additionally,

there are two agent-types: prov:SoftwareAgent and prov:Person. The former encompasses

the agents “Server” (operating on the cloud) and “Application” (operating on the user’s

smartphone), and the latter encompass the agent “User”.

5.1.2 Results and Discussion

In this section, we detail how transformations and visualizations articulated together

during exploratory tasks in each case study.

In theAnimals case study, to address the first exploratory task (identifying activity

patterns among animal classes), we combined domino tiles aiming to relate animal classes

and their activities, as follows: [Ag|T]T × [Ac|Ag]T = [T|Ac] (classes and their activi-

ties). After the combination, we rearranged the cells for pattern analysis. The matrix

visualization of the resulting domino tile is shown in Figure 5.3.
1http://home.mi.com/index.html.
2https://openprovenance.org/store/documents/2148.
3https://www.mi.com

http://home.mi.com/index.html
https://openprovenance.org/store/documents/2148
https://www.mi.com

5.1 Effectiveness 44

sh
s:

de
ri

ve
dD

at
a

sh
s:

A
pp

li
ca

ti
on

w
as

A
tt

ri
b

u
te

d
T

o

sh
s:

vi
su

al
iz

e

w
as

G
en

er
at

ed
B

y

sh
s:

d
es

c
A

 a
u

d
io

 f
o

r
h

u
m

id
it

y
 w

ar
n

in
g

.
sh

s:
v

al
u

e
h

tt
p

s:
//

ex
am

p
le

.m
p

4

sh
s:

re
su

lt
D

at
a

sh
s:

D
ev

ic
e1

w
as

A
tt

ri
b

u
te

d
T

o

sh
s:

ex
ec

ut
e

w
as

G
en

er
at

ed
B

y

sh
s:

v
al

u
e

{s
ta

tu
s:

 s
u

cc
es

s,
 s

ta
te

:
O

p
en

}

sh
s:

al
er

tD
at

a

w
as

D
er

iv
ed

F
ro

m

sh
s:

an
al

yz
e_

al
er

t

w
as

G
en

er
at

ed
B

y

sh
s:

v
al

u
e

{s
ev

er
it

y
:

w
ar

n
in

g
, i

n
fo

:
'H

u
m

id
it

y
 i

s
7

5
%

, h
ig

h
er

 t
h

an
 6

0
%

. P
le

as
e

o
p

en
 t

h
e

D
ev

ic
e2

!''
}

sh
s:

ra
w

D
at

a_
hu

m
2

sh
s:

co
ll

ec
t2

w
as

G
en

er
at

ed
B

y

sh
s:

co
ll

ec
tA

tT
im

e
2

0
1

9
-1

1
-0

9
T

1
6

:4
6

:3
0

sh
s:

v
al

u
e

4
2

%

sh
s:

ra
w

D
at

a_
hu

m
1

w
as

G
en

er
at

ed
B

y

sh
s:

co
ll

ec
tA

tT
im

e
2

0
1

9
-1

1
-0

9
T

1
6

:4
5

:3
0

sh
s:

v
al

u
e

7
5

%

sh
s:

co
m

m
an

dD
at

a

sh
s:

cr
ea

te

w
as

G
en

er
at

ed
B

y

sh
s:

d
es

c
O

p
en

 D
ev

ic
e2

sh
s:

m
id

dl
eD

at
a

sh
s:

S
er

ve
r

w
as

A
tt

ri
b

u
te

d
T

o

w
as

D
er

iv
ed

F
ro

m
w

as
D

er
iv

ed
F

ro
m

sh
s:

an
al

yz
e_

da
ta

w
as

G
en

er
at

ed
B

y

sh
s:

v
al

u
eH

u
m

{n
o

w
H

u
m

:
7

5
%

, a
vg

H
u

m
:

4
2

%
, m

ax
H

u
m

:
7

5
%

, m
in

H
u

m
:

4
0

%
}

sh
s:

v
al

u
eT

ep
{n

o
w

T
em

:
2

4
.6
℃

, a
vg

T
em

:
2

4
.5
℃

, m
ax

T
em

:
2

5
.0
℃

, m
in

T
em

:
2

0
.1
℃

}

sh
s:

ra
w

D
at

a_
te

p2

sh
s:

co
ll

ec
t1

w
as

G
en

er
at

ed
B

y

sh
s:

co
ll

ec
tA

tT
im

e
2

0
1

9
-1

1
-0

9
T

1
6

:4
5

:3
0

sh
s:

v
al

u
e

2
5

.1
℃

sh
s:

co
nfi

gD
at

a2

w
as

D
er

iv
ed

F
ro

m

sh
s:

m
od

if
y

w
as

G
en

er
at

ed
B

y

sh
s:

v
al

u
e

[H
u

m
id

it
y

 >
 7

0
%

 =
>

 O
p

en
 D

ev
ic

e2
]

sh
s:

ra
w

D
at

a_
te

p3

w
as

G
en

er
at

ed
B

y

sh
s:

co
ll

ec
tA

tT
im

e
2

0
1

9
-1

1
-0

9
T

1
6

:4
6

:0
0

sh
s:

v
al

u
e

2
3

.9
℃

sh
s:

co
nfi

gD
at

a1

sh
s:

v
al

u
e

[H
u

m
id

it
y

 >
 8

0
%

 =
>

 O
p

en
 D

ev
ic

e2
]

sh
s:

ra
w

D
at

a_
te

p1

w
as

G
en

er
at

ed
B

y

sh
s:

co
ll

ec
tA

tT
im

e
2

0
1

9
-1

1
-0

9
T

1
6

:4
5

:0
0

sh
s:

v
al

u
e

2
4

.6
℃

u
se

d

w
as

A
ss

o
ci

at
ed

W
it

h

w
as

A
ss

o
ci

at
ed

W
it

h
w

as
A

ss
o

ci
at

ed
W

it
h

u
se

d
u

se
d

w
as

A
ss

o
ci

at
ed

W
it

h

u
se

d
w

as
A

ss
o

ci
at

ed
W

it
h

u
se

d
w

as
A

ss
o

ci
at

ed
W

it
h

u
se

d
u

se
d

u
se

d
u

se
d

u
se

d
w

as
A

ss
o

ci
at

ed
W

it
h

u
se

d
w

as
A

ss
o

ci
at

ed
W

it
h

sh
s:

m
o

d
if

y
A

tT
im

e
2

0
1

9
-1

1
-0

9
T

1
6

:5
0

:0
0

p
ro

v
:t

y
p

e
p

ro
v

:S
o

ft
w

ar
eA

g
en

t
sh

s:
d

es
c

h
tt

p
s:

//
h

o
m

e.
m

i.
co

m

sh
s:

S
en

so
r1

ac
te

d
O

n
B

eh
al

fO
f

sh
s:

se
n

so
rI

D
H

1
G

1
D

1
S

0
0

1

sh
s:

S
en

so
r2

ac
te

d
O

n
B

eh
al

fO
f

sh
s:

se
n

so
rI

D
H

1
G

1
D

1
S

0
0

2

sh
s:

ad
d

re
ss

1
9

2
.1

6
8

.1
.1

0
sh

s:
d

ev
ic

eI
D

H
1

G
1

D
1

sh
s:

p
ro

to
co

l
Z

ig
b

ee

p
ro

v
:t

y
p

e
p

ro
v

:S
o

ft
w

ar
eA

g
en

t
sh

s:
d

es
c

M
iJ

ia
 p

ro
v

id
es

 y
o

u
 w

it
h

 h
ig

h
-q

u
al

it
y

 s
m

ar
t

h
o

m
e

se
rv

ic
es

sh
s:

D
ev

ic
e2

sh
s:

ad
d

re
ss

1
9

2
.1

6
8

.1
.1

3
sh

s:
d

ev
ic

eI
D

H
1

G
1

D
2

sh
s:

p
ro

to
co

l
W

IF
I

sh
s:

U
se

r

p
ro

v
:t

y
p

e
p

ro
v

:P
er

so
n

fo
af

:n
am

e
Z

h
an

g
S

an

p
ro

v
:t

y
p

e
p

ro
v

:R
ev

is
io

n

Figure 5.2: Provenance graph taken from ProvStore.

5.1 Effectiveness 45

Figure 5.3: Classes x Activities ([Ag|T]T × [Ac|Ag]T = [T|Ac]).

The first two vertical lines of the matrix in Figure 5.3 indicate that all classes lay eggs

and hunt, although mammals and insects rarely lay eggs and hunt, respectively. From

now on, we discuss highlights per column, from left to right, and top-down inside the

column. In the following column, we highlighted a cell indicating that only insects do not

handle tail. The findings in the remaining highlighted cells are orderly summarized as

follows:

• Only fishes do not breathe air;

• Only insects do not feed underwater;

• Mammals and birds do not produce venom;

• Mammals rarely fly;

• Only mammals and fishes aim fins;

• Only birds produce feathers; and

• Only mammals produce milk.

To address the second exploratory task (outlining the ruling activities among animal

classes), we applied the Z-score operation for dispersion analysis to the prior generated

[T|Ac] domino tile. As the cell values represent standard deviations, negative cells indicate

below average, zero indicates average, and positive cells indicate above average. Then, we

applied the Binarize transformation to obtain the ruling activities of each animal class.

After this transformation, the remaining filled cells represents activities that occur on

5.1 Effectiveness 46

Figure 5.4: Ruling Activities x Classes.

average or above average in an animal class. To eliminate the class “other”, we filtered

(Word on Column) the columns with a regular expression containing all classes except

“other”, and trimmed the resulting Z-score domino tile. Finally, we grouped (Sort by

Row/Column Group) the ruling activities (rows) to ease visualization according to the

number of shared activities among classes (columns).

Figure 5.4 shows the resulting domino tile of our second exploration. Above the

first black line, we can see the ruling activities shared among five classes. The ruling

activities shared among four classes are above the second black line. Above the third,

we see the ruling activities shared among two classes. The remaining ruling activities are

class-specific. In the columns, we can see that the classes mammal and insect are the ones

with more (8) and less (4) ruling activities, respectively. Two of the 15 original Boolean

attributes do not appear in the table: “produces_venom” and “allows_domestication.”

Moreover, from the six-leg types (0, 2, 4, 5, 6, and 8), two types are absent in the table:

movements with 5 and 8 legs.

5.1 Effectiveness 47

RQ1.1. How Prov-Dominoes uncovers implicit information?

In the provenance, there were no data directly relating activities to animal classes.

Such relation was made explicit by exploring the combination between activities and

agent-types (animal classes): [Ag|T]T × [Ac|Ag]T = [T|Ac]. By unveiling the implicit

data about activities and animal classes, further explorations, such as ruling activities,

became possible.

RQ1.2. How Prov-Dominoes provides a holistic perspective?

The matrix of Figure 5.4 provided us with a big picture view of animal classes and

their ruling activities, contributing to a clear comprehension of the domain.

RQ1.3. How Prov-Dominoes supports concise analysis?

The concise matrix visualizations used in our explorations enabled pattern identi-

fications such as vertical lines indicated in Figure 5.3 and dense/sparse regions as

above/below the third black line in Figure 5.4, respectively. Moreover, the gray color

and blue shades in Figure 5.3 smoothly guided our attention to absent, low, or high

occurrences in the matrix, easing the analysis.

In the Workflow case study, we decided to focus on entities (input parameters and

outputs) to address the exploratory task of understanding which activities and parameters

were essential to the workflow, as they represent connecting bounds between activities

(modules). Thus, we explored derivation inference to relate entities to each other: WGB

[E|Ac] × USD [Ac|E] = WDF [E|E] [15]. We then applied the transitive closure operation

in the WDF domino tile to investigate dependencies amongst entities. We filtered the

rows of the resulting domino tile to exhibit only outputs. Thus, in the rows, we have

outputs, and in the columns, we have entities (inputs and outputs) that took part in the

output (row) generation. Finally, we trimmed the domino tile to eliminate empty rows

and columns. The EPS expressing the resulting domino tile is shown in Figure 5.5.a and

its resulting matrix is shown in Figure 5.5.b.

The two vertical lines in Figure 5.5.b indicate column entities that took part directly

or indirectly in almost any output, except for the “vtkCamera” output. The left vertical

line is the output of the download module, which gathers the dataset from the Visible

Human Project. The right vertical line is the download URL parameter where the dataset

is located. Such entities suggest two conditions without which the workflow could not

proceed: internet connection and correctness of the URL.

5.1 Effectiveness 48

Figure 5.5: EPS of the analysis on entities (a); Resulting domino tile and matrix: outputs
in the rows, and inputs and outputs in the columns. The columns represent entities that
took part in the output (row) generation (b).

5.1 Effectiveness 49

The horizontal line in Figure 5.5.b refers to the most indirectly dependent output,

which is the output of the “vtkRenderer.” Such output depends on all inputs and in-

termediate outputs, making it sensitive to errors propagated by other parameters or in-

termediate activities. Thus, errors or undesired results detected in the output of the

“vtkRenderer” module are harder to debug. Such dependencies also suggest that the

“vtkRenderer” module is an aggregation activity, the final destination to prior derived

entities, where they may be assembled or processed together, potentially representing a

macro aspect or goal of the workflow.

Moreover, in the matrix of Figure 5.5.b, we counted the rows with more direct de-

pendencies (blue cells, cell value = 1), and two rows arose: the outputs of “vtkCamera”

and “vtkVolumeProperty.” Both rows have four direct dependencies. Direct dependency

is a measure of coupling, useful to determine how complex the testing of various parts of

a design are likely to be [19]. According to Yadav and Khan [56], coupling increases the

complexity of the system, which makes the system difficult to understand and maintain.

Such coupling remarks suggest that “vtkCamera” and “vtkVolumeProperty” are activities

complex to maintain and understand.

In order to support our analysis, we interviewed the workflow’s author and asked her

to evaluate whether our analysis correctly highlights relevant parts of the workflow. The

answer was the following: “Yes, because the analysis highlights the main components of the

workflow. The “vtkRenderer” module is the one that draws the “Head”. The module where

I specify how the elements will be drawn is the “vtkVolumeProperty”. The “vtkCamera”

sets an observer on the scene and tells it where to look. Without the “vtkCamera”, it would

not be possible to see what the “vtkRenderer” module drew.”

Then, we asked if the analysis was useful. The reply was: “I considered it extremely

useful, especially to see the parameters actually used by the modules and have information

on how they are influencing the workflow’s execution. In the workflow view of VisTrails,

we can see only the modules. Also, in the matrix, it is easier to recognize coupled modules

than in the workflow view. Even in this case, as it is a relatively simple workflow! Imagine

one with more connections. It would be much harder to perceive this information in the

workflow view! ”

5.1 Effectiveness 50

RQ1.1. How Prov-Dominoes uncovers implicit information?

In the provenance, there was no data directly relating entities (inputs and outputs) to

each other. Such relation was made explicit by the derivation inference: WGB [E|Ac]

× USD [Ac|E] = WDF [E|E]. By unveiling entity derivations, further explorations on

entity dependencies became possible.

RQ1.2. How Prov-Dominoes provides a holistic perspective?

As stated by the workflow’s author, the analysis on the matrix of Figure 5.5 was capa-

ble of highlighting the main components of the workflow, contributing to a wholesome

understanding of the workflow execution.

RQ1.3. How Prov-Dominoes supports concise analysis?

The concise matrix visualization used in our explorations enabled pattern identifi-

cations such as the horizontal and vertical lines indicated in Figure 5.5, easing the

analysis. Moreover, the blue shades in the rows indicated direct dependencies, as-

sisting the dependency analysis. Finally, as stated by the workflow’s author, the

visualization provided by Prov-Dominoes is more scalable for workflows with many

connections than a plain workflow view.

In the Smart Home case study, we applied the communication inference to address

the exploratory task of uncovering activities central to the functioning of the smart home

service. The following matrix multiplication was used to obtain activities communicating

to each other: USD [Ac|E] ×WGB [E|Ac] = WIB [Ac|Ac] [12]. In Figure 5.6.a, we see the

resulting matrix of theWIB [Ac|Ac] domino tile. The activities in the row (e.g., “visualize”)

follow the activities in the column (e.g., “analyze_alert”). We exhibit an extended version

of the domino tile WAW [Ac|Ag] in Figure 5.6.b to observe which devices are behind

activities. The original WAW [Ac|Ag] had no activities associated with “Device1”, however

“Sensor1” and “Sensor2” are delegates of “Device1” as stated by the AOB [Ag|Ag] domino

tile. By combining WAW [Ac|Ag] × AOB [Ag|Ag] = [Ac|Ag] we obtain the indirect

activities associated with “Device1”. Then, we add up the resulting domino tile to the

original WAW [Ac|Ag] to produce the extended version in Figure 5.6.b. We can see that

the only agents associated with more than one activity are “Device1” (two activities) and

“Server” (three activities), highlighting the former as a responsible agent and suggesting

the latter as a demanded agent.

Analyzing together both domino tiles of Figure 5.6, we realize that temperature (“Sen-

5.1 Effectiveness 51

Figure 5.6: Activities communicating to each other (a); and Activities (rows) associated
with agents (b).

sor1”) and humidity (“Sensor2”) were collected (“collect1” and “collect2” activities) by the

sensors (“Sensor1” and “Sensor2” agents), as we can see in Figure 5.6.b. Then the col-

lected information was analyzed (“collect1” and “collect2” inform “analyze_data” in Fig-

ure 5.6.a) by the “Server” (“analyze_data” is associated with “Server” in Figure 5.6.b).

After the analyses of the collected information from sensors, an alert analysis follows:

“analyze_alert” was informed by “analyze_data” in Figure 5.6.a, also performed by the

“Server” (in Figure 5.6.b, “analyze_alert’ is associated with “Server”). Finally, the “visu-

alize” activity (“visualize” was informed by “analyze_alert” in Figure 5.6.a) was executed

by the “Application” agent (“Application” issues “visualize” in Figure 5.6.b), on the users’

smartphone. To summarize: the “Server” analyzed temperature and humidity collected

by the sensors and decided to issue an alert that was visualized on the “Application” in

the user’s smartphone.

Next, we analyze the activities centrality through the eigenvector centrality graph

available in Prov-Dominoes for square matrices to measure the importance of the ac-

tivities. The resulting graph is exhibited in Figure 5.7. The graph presents the activity

“analyze_data” with the highest centrality score (stronger blue shade), suggesting it as the

most important activity. Observing the graph together with the matrix of Figure 5.6.b,

we can see the activities with higher score are issued by the agent “Server”, suggesting a

dependence of an agent operating from the cloud.

5.1 Effectiveness 52

Figure 5.7: Eigenvector centrality graph on activities.

RQ1.1. How Prov-Dominoes uncovers implicit information?

In the provenance, there was no data direct relating activities (commands issued

to devices) to each other. Such relation was made explicit by the communication

inference: USD [Ac|E] × WGB [E|Ac] = WIB [Ac|Ac]. After uncovering activity

communications, the centrality analysis of activities became possible.

RQ1.2. How Prov-Dominoes provides a holistic perspective?

The centrality graph in Figure 5.7 along with the matrices of Figure 5.6 assisted

in providing a wholesome understanding of what the provenance of the smart home

represents. Altogether, the analysis indicated how the collections from the sensors

subsided a decision from an agent operating from a cloud (“Server”) to issue an alert

visualized on the user’s smartphone.

RQ1.3. How Prov-Dominoes supports concise analysis?

The original provenance graph of Figure 5.2 has around four dozen boxes. In contrast,

the centrality graph in Figure 5.7 has only eight nodes, from which it is possible

to observe the collections from sensors (“collect1” and “collect2”) and, together with

the matrix of Figure 5.6.b, realize which agents are responsible for such activities,

respectively: the sensors and the “Server”. Altogether, such concise analysis needs

fewer elements to be observed, yet retaining central information to the provenance

understanding.

5.1.3 Exploratory Practices

This section discusses transformations and visualizations that were articulated together

during the explorations, working as agnostic Exploratory Practices. Moreover, we sum-

5.1 Effectiveness 53

marize how such practices relate to the research questions of the effectiveness evaluation.

Exploring Combinations (EP1): We realized that exploring combinations involv-

ing provenance inferences, or just domino tiles targeted for analysis, allowed us to enrich

domino tiles or derive new ones for all case studies by making implicit data explicit. As

new data are uncovered, new exploration avenues unfold, contributing to a richer anal-

ysis. In particular, the following provenance inferences revealed themselves effective in

unveiling implicit data:

• USD [Ac|E] × WGB [E|Ac] = WIB [Ac|Ac] [12] and

• WGB [E|Ac] × USD [Ac|E] = WDF [E|E] [15].

Centrality Analysis (EP2): Provenance graphs with many nodes and annotated

elements such as the one in Figure 5.2 may overwhelm the user’s capability to visually

extract knowledge. The centrality analysis provides a per-type approach to analyze prove-

nance data by visualizing reduced graphs such as the centrality graphs of activities, agents,

or entities. Moreover, such a concise perspective provides indications of importance on

the nodes, as discussed in Section 3.3. For the Smart Home case study, we were able

to identify important activities by employing centrality analysis.

Dependency Analysis (EP3): Dependency analysis is a useful technique that has

many applications in software engineering and component-based systems (CBS) [2]. For

theWorkflow case study, where a series of components (modules) articulate together to

perform some task, we employed the transitive closure operation to subside a dependency

analysis. The analysis was capable of highlighting relevant parts of the workflow and

providing an understanding of parameter influences.

Sparsity and Patterns Analysis (EP4): The matrix visualization itself provides

an environment for sparsity and pattern analysis. The former can visually indicate the

degree of matrix sparsity and provide an idea of data entropy. When done after sorting

domino tiles, the latter may uncover patterns in rows and columns. Altogether, cell

rearrangements and matrix visualization played an effective role in exploring the first two

case studies, revealing patterns that assisted the analysis.

Dispersion Outlook (EP5): By applying the Z-score operation for the first case

study, we realize how assistful it was in providing a holistic perspective of the domain,

rather than a pure data dispersion view. The standard deviation and other transforma-

tions, such as binarization and filters, provided together effective ways to shape data for

a holistic analysis.

5.2 Efficiency 54

Table 5.1: Exploratory Practices addressing research questions of the effectiveness evalu-
ation.

Case Study RQ1.1 RQ1.2 RQ1.3
First (Animals) EP1, EP4 EP5, EP6 EP4

Second (Workflow) EP1, EP4 EP3, EP6 EP4
Third (Smart Home) EP1 EP2 EP2, EP4

Dimension Reduction (EP6): For the first two case studies, we realized that re-

moving empty rows/columns with the Trim operation reduced the matrix and facilitated

pattern identification among cells. However, it is important to interpret the empty rows/-

columns before proceeding with such a reduction to avoid losses of relevant information.

An empty row or column is a pattern itself and may carry relevant meaning.

We summarize in Table 5.1 the exploratory practices observed in each case study

for each research questions of the effectiveness evaluation. We can see that Exploring

Combinations (EP1) and Sparsity and Patterns Analysis (EP4) were employed

in all case studies, to answer different research questions, suggesting them as effective

exploratory practices for unveiling implicit data (RQ1.1) and supporting from concise

analysis (RQ1.3), respectively.

5.2 Efficiency

In this section, we present the efficiency evaluation. For such analysis, we process thou-

sands of provenance relations in both GPU and CPU to answer RQ2. First, we describe

the materials and methods, and then we present and discuss the results.

5.2.1 Materials and Methods

The corpus of this evaluation consists of thousands of tweets (a post on Twitter) collected

to measure how Prov-Dominoes performs on different processing modes and over increas-

ing data volumes. We used a free subscription of the Twitter API to collect data, limiting

the searches to seven days.

As the COVID-19 pandemic was a growing interest in social networks, we decided to

collect tweets about Brazilian officials managing policies to mitigate the pandemic. The

collected tweets subsided a sentiment analysis during the time frame from 05/20/2020 to

05/27/2020. We could collect more than four thousand tweets in this context.

5.2 Efficiency 55

When parsing the data to provenance, we identified the tweets as entities, the users

as agents, and publishing the tweets as activities. We categorized the users according

to their influential scope (their followers), by using the “prov:type” attribute and the

hashtags used in a publishing were set as an activity-type. We used "::" as a separator to

handle multiple hashtags:

activity(pub..., [prov:type = "#hashtag1::#hashtag2"]).

As result, Prov-Dominoes generated five domino tiles: WAW [Ac|Ag], WGB [E|Ac], WAT

[E|Ag], activity-type [Ac|T] (hashtags), and agent-type [Ag|T] (number of followers).

The explorations focused on an exploratory task described in an EPS available in

Appendix C. The exploratory task aimed at providing a perspective on the influential

scope of users mentioning the Executive leaders. Initially, the EPS targeted only the

full collection of 4,176 tweets both on CPU4 and GPU5. Further, we decided to split

the original collection into eight subsets of tweets, grouped according to their orders of

magnitude6 (m):

• Group 1 (m = 2): 100, 200, 300, and 500; and

• Group 2 (m = 3): 1000, 2000, 3000, and 4,176.

The reason for different collection sizes was to understand the curve behavior in

different modes over increasingly data volume as well as different orders of magnitude.

Then, we organized a drill where we ran the EPS targeting each subset upwardly. For

instance, a drill executes the EPS targeting subset 100, then 200, then 300, until subset

4,176, then we collect the aggregated time of the drill (sum of the timings of the executions

of all subsets). As we were interested in evaluating the processing, rather than the memory

management, we run the drill five times, eliminating extreme values and computing the

average of the remaining three in order to mitigate the memory management impact. For

all drills, we ran Prov-Dominoes in “auto-load” mode, where Prov-Dominoes executes the

EPS after booting. Moreover, we set tuning and telemetry parameters to “true”. The

former avoids the optional matrix sorting before multiplication and the latter outputs

execution times on the JVM (Java Virtual Machine) console.
4Intel Core i5 @ 2.90 GHz, 8 GB RAM.
5NVidia GeForce GT 1030, 2GB of dedicated RAM and 4GB of shared RAM.
6N = a× 10b, where 1 ≤ a < 10 and b is the order of magnitude.

5.2 Efficiency 56

Figure 5.8: CPU-GPU Comparison with speedups.

5.2.2 Results and Discussion

The combined results of the drills on CPU and GPU are depicted in Figure 5.8. The

execution times are in logarithmic scale. The numbers between the bars, rounded to the

nearest integer, indicate the speedup between the processing modes, representing how

many times GPU was faster than CPU. GPU was approximately 127 times faster for

the largest tweet collection than CPU. CPU was marginally (less than 100 milliseconds)

faster for 100 and 200 tweets. In this case, GPU was slower because memory transfer adds

time to the GPU execution. Such overhead is a common bottleneck between integrated

CPU-GPU applications. From 300 tweets on, GPU becomes faster as the combinations

and transformations time in CPU starts to exceed the memory transfer overhead. For 500

tweets, GPU already performs more than two times faster. For the complete dataset of

4,176 tweets, Prov-Dominoes runs in 5 seconds in GPU, a quite reasonable time for real-

time exploratory analyses when compared to 11 minutes in CPU. Such time difference

clearly shows that the GPU processing feature of Prov-Dominoes was paramount for

allowing interactive explorations over large datasets, previously almost impracticable in

CPU.

Going further, we discuss the results within magnitude groups for the individual

commands used in Prov-Dominoes. We observe in Figure 5.9 stacked bars representing

executions times of the commands in EPS 2 for GPU and CPU side by side. For instance,

5.2 Efficiency 57

Figure 5.9: CPU-GPU Comparison (Group 1) on the commands time stack.

GPU100 and CPU100 mean EPS 2 executions targeting 100 tweets for GPU and CPU,

respectively. We can see the LOAD command has the same size in CPU and GPU for the

same number of tweets. This happens because the LOAD command is always performed in

CPU due to its dependence on I/O (file reading). The remaining commands are performed

according to the processing mode. We can see that the multiply (top black bar) command

takes more time as the number of tweets increases for CPU, up to the point of taking

more than two times than the LOAD command for 500 tweets. Conversely, the multiply

command remains more or less stable in GPU. Thus, for this order of magnitude (Group

1), we can observe that, in only one situation, a command surpasses the LOAD command

in time: the multiply command running on CPU for 500 tweets.

Considering Group 2, depicted in Figure 5.10, we can see that, altogether, the GPU

execution time remained more or less the same. Conversely, the multiply command in

CPU escalated overwhelmingly over the other commands.

RQ2. How efficient is Prov-Dominoes when running in GPU in comparison to CPU?

In our evaluation, from 300 tweets on, GPU was faster. Even for less than 300 tweets,

the difference in favor of CPU was only marginal (less than 100 milliseconds), suggest-

ing that the GPU processing mode fits any data volume. For larger data volumes, the

speedups increased considerably, up to the point of approximately 127 times faster for

the largest data volume (4,176 tweets) in relation to the CPU.

5.3 Threats to Validity 58

Figure 5.10: CPU-GPU Comparison (Group 2) on the commands time stack.

5.3 Threats to Validity

Besides our efforts to avoid limitations to our study, our approach and results are subject

to some threats to validity, as discussed in the following.

Internal. Two internal threats stand out: (1) during the efficiency evaluation, we

could have made the CPU implementations faster by implementing them in C or assembly.

However, the results in favor of GPU were so compelling that we refrained from duplicate

the Java implementations on faster languages; and (2) we only considered one opinion

on the second case study (Workflow). Although this opinion may be biased, we tried to

mitigate it by seeking for the opinion of the workflow’s author. Finally, the results from

the Animals and Smart Home case studies were not validated by specialists. However,

they were selected due to their familiar nature, enabling readers to interpret the results

themselves.

Construct. During the effectiveness evaluation, we did not always stick to concrete

measures. While addressing the research questionRQ1.2 (How Prov-Dominoes provides a

holistic perspective?), we did it in an interpretive way, relying on an abstract notion of the

meaning of holistic. However, we tried to mitigate such a threat to RQ1 by considering

concrete measures for the remaining two sub-questions by identifying explicit data for

RQ1.1 and patterns and graph comparisons in RQ1.3.

External. We did not account for how the tool would be operated by other users,

5.3 Threats to Validity 59

rather than the authors. New users may experience steep learning curves while exploring

with the tool. The exploratory practices identified after our explorations on the effective-

ness evaluation attempt to mitigate such learning curves by suggesting practices that may

guide their explorations. Conversely, the exploratory practices may not be as assistful as

they were due to the reduced number of considered case studies. Although we used only

three case studies for the effectiveness assessment, we tried to mitigate such a threat by

considering distinct domains.

Conclusion. The memory transfer bottleneck discussed in Section 5.2.2 is a sensi-

tive matter while measuring the timing of the executions. Such sensitiveness happens

because memory management has different architectural organizations between CPU and

GPU, leading to different management strategies. When performing the same operation

repeatedly and taking the average time, the results may vary significantly. The memory

management impact can contribute to either decrease or increase the execution time.

Chapter 6

Related Work

Over the years, provenance’s research and the number of available tools has grown, the

community’s knowledge of the many factors and goals relevant for effective provenance

support has also broadened. However, the variety of perspectives can make it challeng-

ing to assess the specific aspects and purposes of provenance that are targeted by any

particular project [50].

Depending on the research area, provenance interpretation can vary. For example, the

design of computational tasks for scientific experiments often regard provenance as the

history of computational workflow [30], while other interpretations focus on the history

of gameplay states [36]. According to Ragan et al. [50], different perspectives and appli-

cations of concepts become problematic for interpreting and coordinating outcomes from

different provenance projects, for communicating ideas within the visualization commu-

nity, and for allowing new-comers to clearly understand the research space.

In order to clear the research space and contextualize our related work, we consid-

ered the following three topics as scope: Provenance Visualization Analysis (Section 6.1),

Provenance Data Analysis (Section 6.2), and Provenance and GPU (Section 6.3).

The topics were organized in this manner, as they share issues that contributed di-

rectly or indirectly to the research that culminated in Prov-Dominoes, the tool designed

as result of this dissertation.

6.1 Provenance Visualization Analysis

Iliinsky and Steele [34] identify two categories of data visualization: exploration and

explanation. Exploratory visualization is designed for a researcher who is not certain what

6.1 Provenance Visualization Analysis 61

is in the data or what they are looking for, typically when dealing with large volumes of

data. Explanatory visualization, on the other hand, is a visualization that takes place

when a researcher knows what the data has to say, and is trying to tell that story to

someone else. The two serve different purposes, and there are tools and approaches that

may be appropriate for one and not the other [10].

Among the exploratory visualization tools, we list two domain-specific tools: GENI [10]

(Visualization of network data provenance) and InProv [7] (visualizations of file system

provenance data). As domain-specific tools, they are prepared to deal with large volumes

of data and, individually, provide some interesting features, such as interactive radial-

based tree layout, abstract views, breadth-first searches, and graph comparison. However,

as visualization centered tools, they do not provide data combination. Moreover, these

features are not available in an integrated way, hindering the analysis due to visualization

and manipulation restrictions.

In comparison, Prov-Dominoes is able to represent and provide visualization analy-

ses for provenances from different domains, as long as they are defined or exported to

PROV-N or PROV-XML formats. Moreover, Prov-Dominoes support interactively com-

bination of data, abstracted as domino tiles, which open avenue for further analyses and

visualizations. Finally, by enabling to import and export the explorations performed in

the tool, it reduces the complexity to integrate and collaborate with different analyses

while exploring provenances.

As explanatory visualization tools, we can cite some general-purpose visualization

tools, compatible with W3C PROV, such as ProvToolbox [41], Provenance Explorer [18],

and Prov Viewer [37]. ProvToolbox was one of the first W3C PROV compatible tools, con-

verting the PROV-DM representations into various formats. However, it lacks a built-in

visualization and requires a generic graph tool to visualize the provenance data. Prove-

nance Explorer takes RDF-based provenance outputs from capture systems and dynam-

ically generates customized views of provenance trail. Prov Viewer enables users to ex-

plore provenance data over graphs interactively. Different from Provenance Explorer,

Prov Viewer provides data combinations through graph merges. Despite being graph-

based, neither tools provide score-based centrality analysis as Prov-Dominoes’ eigenvec-

tor centrality. Despite their visualization features, such tools are sensitive to large data,

overwhelming the user’s ability to extract knowledge in a visual way. On the other hand,

Prov-Dominoes’ matrix visualization can represent hundreds or thousands of graph nodes

coupled with guiding features, such as row/column patterns unveiled by matrix sorting

6.2 Provenance Data Analysis 62

and data dispersion through Z-Score operation.

Two Workflow Management Systems (WfMSs) are widely known for supporting sci-

entific experiments: Taverna [33] and VisTrails [9]. Taverna is an application that eases

the use and integration of the growing number of molecular biology tools and databases

available on the web. It allows bioinformaticians to construct workflows or pipelines of

services to perform various analyses, such as sequence analysis and genome annotation.

VisTrails allows users to navigate through workflow versions intuitively, visually compar-

ing different workflows and their results while examining the actions that led to a result.

Different from Taverna, VisTrails provides provenance of workflow evolution, and has

built-in provenance capture of workflow executions. Although Taverna needs plugins for

provenance capture of workflow executions, such as Taverna-PROV1, the WfMS is con-

tinually evolving and improving workflow analysis features after transitioning to Apache

Incubator2. Despite their concise visualization through workflows, they hide parameters

used by modules in the workflow view and lack features to analyze module parameters’

influences, needing to delegate such analysis to other provenance tools.

6.2 Provenance Data Analysis

In this section, we discuss three exploratory data analysis tools related to provenance

and how such tools compare to or influenced our work. The first is a software package

within the statistical programming environment R to assist exploratory analysis on prove-

nance data related to geological sediments. The second is an approach that integrates

provenance from Python scripts with IPhyton notebooks to support interactive and ex-

ploratory analyzes. The third is Dominoes [23], a tool that organizes provenance data

from Git repositories into multiple matrices that can be treated as domino tiles for further

data combinations and analysis. In all cases, we consider provenance as data about the

history of objects (e.g., data about the history of geological sediments) or digital objects

(e.g., data about the evolution or history of a git repository).

When analyzing datasets on geological sediments, the analyst needs to apply, combine

and interpret different statistical resources. Different levels of statistical complexity arise

when multiple samples are compared to each other, or when multiple provenance proxies

are applied to multiple samples [54]. Pieter Vermeesch developed a provenance package3

1https://github.com/taverna/taverna-prov
2Apache Incubator provides services to projects which want to enter the Apache Software Foundation.
3https://cran.r-project.org/web/packages/provenance/index.html

https://github.com/taverna/taverna-prov
https://cran.r-project.org/web/packages/provenance/index.html

6.2 Provenance Data Analysis 63

within the statistical programming environment R to enable geologists to interactively ex-

plore the provenance data of geological sediments. The package provides means to subside

Multidimentional Scaling (MDS) and Principal Component Analysis (PCA). Moreover,

provenance data can be augmented with compositional information as biplots easing com-

parison among multiple datasets. The idea of separating data for further compositions

and analysis is also a key feature in Prov-Dominoes. For instance, combinations between

domino tiles and per-type analysis as in the eigenvector centrality of agents, activities or

entities.

Among scientific experiments, noWorkflow [45] emerged is an open-source tool that

systematically and transparently collects provenance from Python scripts, including data

about the script execution and how the script evolves over time. When used on a script of

scientific experiments, the tool enables scientists to analyze multiple trials, compare them,

and understand their history. In order to enable scientists to explore on the provenance

collected by noWorkflow, a command line option on noWorkflow allows the generation of

a notebook file with the code used for loading the trial. Then, a scientist can perform

analysis on any data collected by noWorkflow through SQL queries, Prolog queries, object

properties, and graph visualization [48]. Additionally, it is possible to get provenance data

from different queries, and combine them with custom Python code.

Another example of data analysis tool is Dominoes. The tool organizes data extracted

from Git repositories into multiple matrices that can be treated as domino tiles (e.g., [com-

mit|method]). It allows connecting such domino tiles based on a set of matrix operations

to derive additional ones. Although Dominoes is a tool aimed at Git repositories, these

repositories can be exposed as provenance, in the way demonstrated by Git2PROV [25].

The characterization of Git repositories as provenance gave birth to the idea of a tool

similar to Dominoes, now focusing on an agnostic provenance exploratory tool. For its

influence to Prov-Dominoes as a provenance data analysis tool, we mention Dominoes in

this section.

Both Dominoes and noWorkflow provide data combination over the captured prove-

nance. The former provides various connecting possibilities among the extracted data,

and the latter provides combination in the form of merged graphs for diff-based analysis of

trials. However, noWorkflow’s diff-based analysis is restricted to two trials. If their trials

were exported to PROV-N, it would be possible to aggregate or combine multiple trials

in Prov-Dominoes. As a fork of Dominoes, Prov-Dominoes adds features such as: transi-

tive closure, eigenvector centrality, filters and sorting transformations. Coupled together,

6.3 Provenance and GPU 64

these features unveil further analysis possibilities.

Although useful, Vermeesch’s Provenance R Package, noWorkflow and Dominoes are

tied to the specifics of the objects or environments they target, respectively: R statistical

programming environment, Python scripts and Git repositories. Prov-Dominoes support

to a general provenance representation format like PROV-N makes it capable to represent

distinct provenance domains.

6.3 Provenance and GPU

GPUs are getting popularly utilized for multi-purpose applications in order to enhance

highly performed parallelism of computation [35]. In this section, we present some prove-

nance related works taking benefits of GPUs.

Purawat et al [49] propose an automated workflow tool to perform molecular dy-

namics simulations that capitalizes on the capabilities of the Kepler platform to deliver

a flexible, intuitive, and user-friendly environment. They use AMBER GPU code for a

robust and high-performance simulation engine. Additionally, the workflow tool reduces

user input time by automating repetitive processes and facilitates access to GPU clusters,

whose high-performance processing power makes simulations of large numerical scale pos-

sible. The workflow tool also performs systematic analysis on the simulation outputs and

enhances simulation reproducibility.

Bruder et al. [8] present an approach for the visualization and interactive analysis of

dynamic graphs that contain a large number of time steps. Focus is put on the support of

analyzing temporal aspects in the data and dynamic graphs based on the concept of space-

time cubes. The implementation is GPU-accelerated, enabling interactive exploration on

large data sets. According to their work, four classes of approach are key to the analysis

of large and complex graph data: data views, aggregation and filtering, comparison, and

evolution provenance. Implementations of the respective methods are presented in an

integrated application, enabling interactive exploration and analysis of large graphs.

In the previous section, we presented Dominoes as a tool supporting exploratory data

analysis. Yet, Dominoes also has GPU processing capabilities [24]. The domino-matrix

representation introduced by Dominoes allows for fast and efficient processing of a large

volume of data by using a highly parallel architecture, such as GPUs. Inspired by Domi-

noes, Prov-Dominoes extended the set of GPU implementations existent in Dominoes by

adding new operations, such as: addition, subtraction, transitive closure and binarization.

Chapter 7

Conclusion

Although provenance graph visualization is common, such support is limited when it is

necessary to combine data to uncover implicit information. Moreover, in complex domains,

the provenance graphs can be composed of thousands of vertices and edges, becoming

visually cluttered and limiting the user’s ability to visually and interactively analyze

the data. Prov-Dominoes addresses such challenges by providing concise visualizations

through matrices and reduced centrality graphs, besides offering features and practices to

combine, transform, and reduce data. Such features allow unveiling implicit information

and contributing to a more comprehensive perspective of the data domain. In Section 7.1

we summarize the contributions and in Sections 7.2 and 7.3 we present the limitations

and future work, respectively.

7.1 Contributions

This work introduced an approach for exploratory analysis of provenance data. By inter-

actively combining provenance data in the form of domino tiles, the analyst can explore

provenance on different perspectives (e.g., matrix visualization and eigenvector centrality

graph) and PROV-DM Concepts (types and relations). The provenance data represen-

tation as matrices is also a contribution, acting as a link between data analysis and

visualization analysis of provenance data. Moreover, a Java tool was developed to make

the proposed approach viable: Prov-Dominoes. Our tool is compatible with PROV-N

notation, allowing its adoption in different domains and applications. Furthermore, it can

enrich provenance data with few explicit expressions, applying provenance inferences to

uncover new analysis usually neglected due to rich information buried in the data.

We presented three case studies from different domains, illustrating the agnostic po-

7.2 Limitations 66

tential of the analyses performed in Prov-Dominoes. We uncovered implicit information

such as influencing parameters in a workflow execution and central activities in a smart

home service. Moreover, our analyses provided wholesome perspectives of the case studies,

such as animals’ ruling activities, and the main components of a workflow.

As a guideline for provenance exploratory analysis, this work proposed a set of prac-

tices to assist users while performing provenance explorations with Prov-Dominoes. The

practices indicate how to articulate together transformations and visualizations available

in the tool to extract information from the provenance and unveil more analysis possi-

bilities. As the practices showed themselves effective over explorations on three distinct

domains, we consider them agnostic and potentially useful for other domains.

Finally, we employ the use of High-Performance Computing (HPC) by taking ad-

vantage of GPU during provenance explorations. As the underlying abstraction of the

domino tiles were matrices, it made possible the use and implementation of matrix trans-

formations in GPU to empower processing. The efficiency evaluation in the context of

Twitter sentiment analysis revealed that GPU was up to 127 times faster for combining

thousands of relations when compared to CPU.

7.2 Limitations

When used in CPU mode only, the tool does not accommodate large provenance data, as

the matrix processing time can be extremely long. In such situations, we strongly recom-

mend to use the tool in a computer with GPU. As showed during efficiency evaluation,

low cost GPUs such as the NVIDIA GeForce GT 1030 already can produce significant

performance results on explorations over large provenance data.

We did not perform usability assessment of Prov-Dominoes, being unknown the tool

learning curve when used by different users. Although similar to Dominoes, which provides

satisfactory user studies [23], such studies are restricted to one domain (git repositories)

and its associated stakeholders. As Prov-Dominoes is fit for other domain uses, it may be

associated with steep learning curves, depending on the user scenario.

Due to the limited number of case studies considered, the proposed exploratory prac-

tices, although agnostic, may not reveal themselves as useful as expected. Moreover,

there may be other practices not yet identified and that may prove useful according to

the domain.

7.3 Future Work 67

7.3 Future Work

Further studies could be made aiming at incorporate other matrix operations that sup-

port exploratory analysis in the context of provenance. For example, investigate the use

of inverse matrix in the context of provenance matrices. Additionally, implementing more

algorithms for clustering and sorting, and extending to GPU current matrix transforma-

tions only available in CPU, such as Trim and Word on Row/Column.

Detailed comparison studies could be made between the provenance matrix represen-

tation introduced by this work and provenance graphs. Focusing on establishing diverse

exploratory tasks, domains, and users to better understand each approach’s pros and

cons.

Investigating the tool usage in other domains and focusing on how users explore with

the tool may enrich the current exploratory practices and give insights on how improve

Prov-Dominoes features to better assist provenance exploration. For instance, collecting

various EPS from different users/domains and study what they have in common. These

results could indicate additional practices or suggest new features.

Another possibility would be to study whether the identified exploratory practices

could be considered a canonical exploratory resource. For instance, regardless of the

approach to provenance analysis, is it possible to answer the effectiveness evaluation’s

research questions without employing the exploratory practices?

Inspired by the findings resulting from the explorations in the Animals case study,

it would be possible to further examine the adoption of such explorations in education

domains. This would promote interactive analysis and information discovery, particularly

in contexts with different knowledge levels, such as school grades.

In order to make the tool accessible to more domains, we developed, as mentioned

in Section 4.1, an API to convert application logs into PROV-N files. However, we did

not further investigate which insights the provenance of such logs could provide. We

suspect converting logs into provenance and analyzing them in the tool may reveal relevant

information and assisting activities such as log auditing and change decisions in the tasks

that generated the logs.

Working on integrating Prov-Dominoes to existing provenance tools can prove to be a

worthwhile effort: providing enrichment of analysis and interoperation capabilities among

different provenance ecosystems. For instance, Prov Viewer and Prov-Dominoes could be

7.3 Future Work 68

merged into a provenance suite for provenance visualization and analysis.

Finally, as the tool provides means to provenance inferences, it could be adapted to

work as an environment for producing normal forms of PROV instances, and assist in

checking PROV validity and equivalence properties [16]. For instance, we can cite the

provenance generated in the context of independent scientific experiments. Two similar

experiments from independent projects may have similar provenances. In order to better

collaborate, it is important to confirm if such provenances are formally equivalent.

References

[1] Ackerman, M. J. The visible human project. Proceedings of the IEEE 86, 3 (1998).

[2] Amalarethinam, G.; Maitheen, P.; Hameed, S. Dependency analysis for
component based systems using graphs. International Journal of Applied Engineering
Research 10 (12 2015).

[3] Bastian, M.; Heymann, S.; Jacomy, M., et al. Gephi: an open source software
for exploring and manipulating networks. Icwsm 8, 2009 (2009), 361–362.

[4] Belhajjame, K.; B’Far, R., et al. Prov-DM: The PROV Data Model. Tech.
rep., W3C, 2013.

[5] Berners-Lee, T.; Jaffe, J., et al. World Wide Web Consortium (W3C), 1994.

[6] Bonacich, P. Power and centrality: A family of measures. American journal of
sociology 92, 5 (1987), 1170–1182.

[7] Borkin, M. A.; Yeh, C. S.; Boyd, M.; Macko, P.; Gajos, K. Z.; Seltzer,
M.; Pfister, H. Evaluation of filesystem provenance visualization tools. IEEE
Transactions on Visualization and Computer Graphics 19, 12 (2013), 2476–2485.

[8] Bruder, V.; Lahmar, H. B.; Hlawatsch, M.; Frey, S.; Burch, M.;
Weiskopf, D.; Herschel, M.; Ertl, T. Volume-based large dynamic graph
analysis supported by evolution provenance. Multimedia Tools and Applications 78,
23 (2019), 32939–32965.

[9] Callahan, S. P.; Freire, J.; Santos, E.; Scheidegger, C. E.; Silva, C. T.;
Vo, H. T. Vistrails: visualization meets data management. In Proceedings of
the 2006 ACM SIGMOD international conference on Management of data (2006),
pp. 745–747.

[10] Chen, P.; Plale, B.; Cheah, Y.-W.; Ghoshal, D.; Jensen, S.; Luo, Y.
Visualization of network data provenance. In 2012 19th International Conference on
High Performance Computing (2012), IEEE, pp. 1–9.

[11] Cheney, J.; Missier, P.; Moreau, L. Attribution Inference. Tech. rep., W3C,
2013.

[12] Cheney, J.; Missier, P.; Moreau, L. Communication Inference. Tech. rep.,
W3C, 2013.

[13] Cheney, J.; Missier, P.; Moreau, L. Constraints of the PROV Data Model.
Tech. rep., W3C, 2013.

References 70

[14] Cheney, J.; Missier, P.; Moreau, L. Delegation Inference. Tech. rep., W3C,
2013.

[15] Cheney, J.; Missier, P.; Moreau, L. Derivation Inference. Tech. rep., W3C,
2013.

[16] Cheney, J.; Missier, P.; Moreau, L. Normalization, validity, and equivalence.
Tech. rep., W3C, 2013.

[17] Cheney, J.; Missier, P.; Moreau, L.; Soiland-Reyes, S. PROV-N: The
provenance notation. Tech. rep., W3C, 2013.

[18] Cheung, K.; Hunter, J. Provenance explorer–customized provenance views using
semantic inferencing. In International Semantic Web Conference (2006), Springer,
pp. 215–227.

[19] Chidamber, S. R.; Kemerer, C. F. A metrics suite for object oriented design.
IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[20] Closa, G.; Masó, J.; Proß, B.; Pons, X. W3c prov to describe provenance at
the dataset, feature and attribute levels in a distributed environment. Computers,
Environment and Urban Systems 64 (2017), 103–117.

[21] Committee, P. E., et al. Premis data dictionary for preservation metadata.
Preservation (2008).

[22] Crucitti, P.; Latora, V.; Porta, S. Centrality in networks of urban streets,
chaos. Quarterly of the American Institute of Physics 16, 1 (2006).

[23] da Silva Junior, J. R.; Campagna, D. P.; Clua, E.; Sarma, A.; Murta,
L. G. P. Dominoes: An interactive exploratory data analysis tool for software
relationships. IEEE Transactions on Software Engineering (2020).

[24] da Silva Junior, J. R.; Clua, E.; Murta, L.; Sarma, A. Exploratory data
analysis of software repositories via gpu processing. In The International Conference
on Software Engineering and Knowledge Engineering (SEKE)(Vancouver, Canada,
2014) (2014), pp. 495–500.

[25] De Nies, T.; Magliacane, S.; Verborgh, R.; Coppens, S.; Groth, P. T.;
Mannens, E.; Van De Walle, R. Git2prov: Exposing version control system
content as w3c prov. In International Semantic Web Conference (Posters & Demos)
(2013), pp. 125–128.

[26] Del Rio, N.; Da Silva, P. P. Probe-it! visualization support for provenance. In
International Symposium on Visual Computing (2007), Springer, pp. 732–741.

[27] Dua, D.; Graff, C. UCI machine learning repository, 2017.

[28] Fatahalian, K.; Sugerman, J.; Hanrahan, P. Understanding the efficiency
of gpu algorithms for matrix-matrix multiplication. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (2004), ACM,
pp. 133–137.

References 71

[29] Forsyth, R. Zoo dataset, uci machine learning repository, 2016.

[30] Freire, J.; Koop, D.; Santos, E.; Silva, C. T. Provenance for computational
tasks: A survey. Computing in Science & Engineering 10, 3 (2008), 11–21.

[31] Godsil, C.; Royle, G. F. Algebraic graph theory, vol. 207. Springer Science &
Business Media, 2013.

[32] Groth, P.; Moreau, L.; Missier, P.; Freire, J., et al. Ipaw, 2006.

[33] Hull, D.; Wolstencroft, K.; Stevens, R.; Goble, C.; Pocock, M. R.; Li,
P.; Oinn, T. Taverna: a tool for building and running workflows of services. Nucleic
acids research 34, suppl_2 (2006), W729–W732.

[34] Iliinsky, N.; Steele, J. Classifications of visualizations. In Designing Data Vi-
sualizations, Intentional Communication from Data to Display. O’Reilly Media Se-
bastopol, CA, 2011.

[35] Kim, S.; Oh, J.; Kim, Y. Data provenance for experiment management of scientific
applications on gpu. In 2019 20th Asia-Pacific Network Operations and Management
Symposium (APNOMS) (2019), IEEE, pp. 1–4.

[36] Kohwalter, T.; Clua, E.; Murta, L. Provenance in games. XI SBGames (2012),
162–171.

[37] Kohwalter, T.; Oliveira, T.; Freire, J.; Clua, E.; Murta, L. Prov viewer:
A graph-based visualization tool for interactive exploration of provenance data. In
International Provenance and Annotation Workshop (2016), Springer, pp. 71–82.

[38] Macko, P.; Seltzer, M. Provenance map orbiter: Interactive exploration of large
provenance graphs. In TaPP (2011), pp. 1–6.

[39] Missier, P.; Moreau, L. PROV-Overview. An overview of the PROV family of
documents. Tech. rep., W3C, 2013.

[40] Missier, P.; Moreau, L., et al. Prov-dm relations at a glance, 2013.

[41] Moreau, L. Provtoolbox - java library to create and convert w3c prov data model
representations. [Online]. Available: http://lucmoreau.github.io/ProvToolbox/,
April 2016.

[42] Moreau, L.; Clifford, B.; Freire, J.; Futrelle, J.; Gil, Y.; Groth, P.;
Kwasnikowska, N.; Miles, S.; Missier, P.; Myers, J., et al. The open
provenance model core specification (v1. 1). Future generation computer systems 27,
6 (2011), 743–756.

[43] Moreau, L.; Freire, J.; Futrelle, J.; Mcgrath, R. E.; Myers, J.; Paulson,
P. The open provenance model: An overview. In International Provenance and
Annotation Workshop (2008), Springer, pp. 323–326.

[44] Moreau, L.; Ludäscher, B.; Altintas, I.; Barga, R. S.; Bowers, S.; Calla-
han, S.; Chin Jr, G.; Clifford, B.; Cohen, S.; Cohen-Boulakia, S., et al.
The first provenance challenge. Concurrency and computation: practice and experi-
ence 20, 5 (2008), 409–418.

References 72

[45] Murta, L.; Braganholo, V.; Chirigati, F.; Koop, D.; Freire, J. noworkflow:
capturing and analyzing provenance of scripts. In International Provenance and
Annotation Workshop (2014), Springer, pp. 71–83.

[46] Newbury, D.; Lippincott, L. Provenance in 2050. In Collecting and Provenance:
A Multidisciplinary Approach, J. Milosch and N. Pearce, Eds., 1 ed. Rowman &
Littlefield Publishersr, 2019, ch. 7, p. 104.

[47] Newman, M. E. The mathematics of networks. The new palgrave encyclopedia of
economics 2, 2008 (2008), 1–12.

[48] Pimentel, J. F. N.; Braganholo, V.; Murta, L.; Freire, J. Collecting and
analyzing provenance on interactive notebooks: when ipython meets noworkflow.
In 7th {USENIX} Workshop on the Theory and Practice of Provenance (TaPP 15)
(2015).

[49] Purawat, S.; Ieong, P. U.; Malmstrom, R. D.; Chan, G. J.; Yeung, A. K.;
Walker, R. C.; Altintas, I.; Amaro, R. E. A kepler workflow tool for repro-
ducible amber gpu molecular dynamics. Biophysical journal 112, 12 (2017), 2469–
2474.

[50] Ragan, E. D.; Endert, A.; Sanyal, J.; Chen, J. Characterizing provenance in
visualization and data analysis: an organizational framework of provenance types and
purposes. IEEE transactions on visualization and computer graphics 22, 1 (2015),
31–40.

[51] Schroeder, W.; Martin, K.; Lorensen, B. Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics. Kitware, 2006.

[52] Silva, C. T.; Freire, J.; Callahan, S. P. Provenance for visualizations: Repro-
ducibility and beyond. Computing in Science & Engineering 9, 5 (2007), 82–89.

[53] Skiena, S. S. Transitive closure and reduction. In The Algorithm Design Manual,
2 ed. Springer, 2011, pp. 495––497.

[54] Vermeesch, P. Exploratory analysis of provenance data using r and the provenance
package. Minerals 9, 3 (2019), 193.

[55] Wu, H.-M.; Tzeng, S.; Chen, C.-h. Matrix visualization. In Handbook of data
visualization. Springer, 2008, pp. 681–708.

[56] Yadav, A.; Khan, R. Does coupling really affect complexity? In 2010 International
Conference on Computer and Communication Technology (ICCCT) (2010), IEEE,
pp. 583–588.

[57] Zaki, M. J.; Meira Jr, W.; Meira, W. Data mining and analysis: fundamental
concepts and algorithms. Cambridge University Press, 2014.

73

APPENDIX A -- PROV-N from the guiding example

In the listing below, we show the complete PROV-N from our guiding example:

document

agent(John)

agent(Bill)

entity(Water , [prov:type=" Liquid "])

entity(Barley , [prov:type="Grain "])

entity(Wort , [prov:type=" Liquid "])

entity(Hopped_Wort , [prov:type=" Liquid "])

entity(Hops)

entity(Yeast)

entity(Priming_Sugars)

entity(Beer)

activity(Mashing)

activity(Boiling)

activity(Fermentation)

used(Mashing , Water , -)

used(Mashing , Barley , -)

used(Boiling , Wort , -)

used(Boiling , Hops , -)

used(Fermentation , Yeast , -)

used(Fermentation , Hopped_Wort , -)

used(Fermentation , Priming_Sugars , -)

wasGeneratedBy(Wort , Mashing , -)

wasGeneratedBy(Hopped_Wort , Boiling , -)

wasGeneratedBy(Beer , Fermentation , -)

wasAssociatedWith(Mashing , John , -)

wasAssociatedWith(Boiling , Bill , -)

wasAssociatedWith(Fermentation , Bill , -)

actedOnBehalfOf(John , Bill)

endDocument

74

APPENDIX B -- List of all EPS commands

In the table below, we show all available EPS commands:

Command Description
UNDO Undo a command.
REDO Redo a command.
MOVE Move a tile on the Canvas to a (x,y) position.
SAVE Save a tile on the Domino Tiles List.

LOAD_MATRIX Load a .matrix file.
LOAD Load a PROV-N or EPS file.

TRANSPOSE Transpose a domino tile.
MULTIPLY Combine tiles into one by multiplying the underlying matrices.

SUM Combine tiles into one by summing the underlying matrices.
SUBTRACT Combine tiles into one by subtracting the underlying matrices.

ADD Add a tile from Domino Tiles List to Canvas.
REMOVE Remove a tile from Canvas.

AGG_ROWS Aggregate the rows into one row (sum of all rows).
AGG_COLUMNS Aggregate the columns into one column (sum of all columns).
CONFIDENCE Generate confidence numbers related to the diagonals.

ZSCORE Generate standard deviations from column average.
TRANSITIVE_CLOSURE Set 1/n values on the cells, where n is row-column distances.

BINARIZE Set 1 if cell is greater or equal to 1 and set 0 otherwise.
INVERT Binarize cells and then zeros and ones are reversed.

SORT_ROW Sort rows in ascending order.
SORT_COLUMN Sort cells in ascending order.

SORT_ROW_GROUP Sort rows by grouping rows.
SORT_COLUMN_GROUP Sort cells by grouping columns.

DIAGONALIZE Filter diagonal cells.
UPPER_TRIANGULAR Filter diagonal and upper diagonal cells.
LOWER_TRIANGULAR Filter diagonal and lower diagonal cells.

HPF Filter cells equal or higher than a cutoff value.
LPF Filter cells equal or lower than a cutoff value.

ROW_TEXT Filter row cells matching to some word or regular expression.
COLUMN_TEXT Filter column cells matching some word or regular expression.

TRIM Eliminate empty rows and columns.

75

APPENDIX C -- Efficiency Evaluation EPS

In the listing below, we show the EPS used for the efficiency evaluation. The EPS refers

to the file “twitter-governadores_en.provn”, available at: https://bit.ly/3ffn1ve.

LOAD("twitter -governadores_en.provn")

p1 = ADD(WGB)

p2 = ADD(WAW)

p3 = MULTIPLY(p1 , p2)

p4 = ADD(WAT)

TRANSPOSE(p4)

p5 = MULTIPLY(p4 , p3)

p6 = ADD(AgT)

p7 = MULTIPLY(p5 , p6)

TRANSPOSE(p7)

COLUMN_TEXT(p7 , true , true , "jairbolsonaro|wilsonwitzel|jdoriajr|

flaviodino|camilosantanace|romeuzema ")

TRIM(p7)

SORT_COLUMN_GROUP(p7)

https://bit.ly/3ffn1ve

	Introduction
	Motivation
	Goals
	Research Methodology
	Contributions
	Organization

	Background
	Provenance and PROV
	Guiding Example
	PROV-DM Types
	PROV-DM Relations

	Dominoes, Matrices and GPU

	Prov-Dominoes
	Dominoes Game Metaphor
	Matrix Representation
	Domino Tile Visualizations
	Domino Tiles Combinations
	Domino Tile Transformations

	Implementation
	Prov-Dominoes Architecture
	Prov-Dominoes GUI

	Evaluation
	Effectiveness
	Materials and Methods
	Results and Discussion
	Exploratory Practices

	Efficiency
	Materials and Methods
	Results and Discussion

	Threats to Validity

	Related Work
	Provenance Visualization Analysis
	Provenance Data Analysis
	Provenance and GPU

	Conclusion
	Contributions
	Limitations
	Future Work

	References
	Appendix A – PROV-N from the guiding example
	Appendix B – List of all EPS commands
	Appendix C – Efficiency Evaluation EPS

