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Abstract 

In this work, a Fuzzy Logic Adaptive Control (FLAC) is used to correct an Error-State 

Kalman Filter (ESKF) and an Unscented Kalman Filter (UKF) in a loosely coupled 

INS/GNSS system. The FLAC is used to prevent the Kalman Filter (KF) to diverge or to 

reach to a high bound solution when the Inertial Measurement Unit (IMU) presents a 

dominant 1/f flicker noise. First, the ESKF and UKF implementation were tuned to achieve 

the optimal solution when the IMU has only white noise. Secondly, a 1/f flicker noise was 

applied to the IMU, making both Kalman Filters implementation achieve a suboptimal 

solution. And thirdly, a FLAC was used to correct both ESKF and UKF when coloured 

noise is present. The results evidence the influence of coloured noise in the system, which 

makes both Kalman Filter implementations reach to a large error bound solution. After 

analyzing the Kalman Filter behaviour with coloured noise, a novel FLAC methodology 

was defined. The FLAC combines the observation of both the residuals and the states error 

covariance and apply the correction using the exponential weighted parameter when the 

error covariance presents a higher than expected value, and a process noise injection when 

the residuals are broader than expected. The application of the proposed FLAC 

methodology figures out as the best solution to deal with the coloured noise, leading to a 

final solution that improves the navigation accuracy for all the states, preserving the 

stability of the error covariance matrix. Finally, the results for ESKF are compared against 

the results for the UKF. It was showed that, although both Kalman filter implementations 

bring equivalent outcomes, the UKF is slightly less sensitive to disturbances. 
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1.  Introduction 

1.1. Motivation 

Inertial navigation systems (INS) are used to indicate the real position, velocity, and attitude 

of a body performing three-dimensional navigation. The INS operates continuously, 

showing low short-term noise, being invulnerable to jamming and interference [1]. 

However, INS will suffer degradation in long-term navigation as the errors presented in the 

sensor are integrated through the navigation equations. 

On the other hand, the Global Navigation Satellite System (GNSS) provides reasonable 

accuracy for long-term navigation. However, the short-term errors are high, the signals are 

subject to obstruction and interference, and the standard GNSS does not provide attitude.  

The advantages and disadvantages of INS and GNSS are complementary. Therefore, the 

fusion of these technologies can benefit both, providing a navigation solution with high 

accuracy in long- and short-term [1]. Usually, this fusion is done by applying one of the 

many different types of Kalman Filter (KF) methods. The KF uses the stochastic model to 

estimate, correct, and compensate for errors in the INS model, using the navigation solution 

and the errors from the INS and GNSS sensors.  

Two main assumptions for Kalman filter implementation are that: i) the system is a linear 

dynamic system and ii) that all noise sources are white. However, in practice, this rarely 

occurs [2]. 

For the first assumption, Extended Kalman Filter (EKF), Error-State Kalman Filter (ESKF), 

and later Unscented Kalman Filter (UKF), have been extensively and successfully used for 

addressing non-linear systems.  
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For the second assumption, in some Inertial Measurement Units (IMUs) the noise may 

change during the time, showing a coloured characteristic, which leads the KF to diverge or 

to converge to a high bound [3]. This process is usually characterized by a 1/f power spectral 

density - PSD that can be called 1/f flicker noise [4]–[6].  To overcome this situation, 

widened noise or additional states must be considered to overbound the real noise system. 

However, this can result in accuracy loss and in need of modelling additional states in the 

KF, which can be a demanding task [1].  

An alternative is the use of Adaptive KF approaches in which the assumed process and 

measurement noise covariance may vary according to the measurement innovations.  

J. Z. Sasiadek et al.[3], [7] propose a Fuzzy Adaptive Extended Kalman Filter (FAEKF) 

for adapting the process and measurement noise covariance matrices, using an exponential 

data weighting controlled by the FL to adjust the EKF.  

Other FL implementation approaches were used by [8], [9], [10], [11] and [12], where a 

correction factor is added or multiplied to the process noise covariance and/or measurement 

noise covariance, in which the FL defines the factor value.  

Therefore, it is pertinent to study the application of a Fuzzy Logic adaptive Kalman Filter 

to deal with a situation where a 1/f flicker noise is dominant in the IMU.  

1.2. Problem Statement 

In some IMUs the noise may change during the time, showing a coloured characteristic. 

This situation leads the KF to reach a sub-optimal solution [3].  To overcome this situation, 

a Fuzzy Logic Adaptive Kalman Filter is used in an Error Feedback ESKF and UKF 

systems, applied in a loosely coupled INS/GNSS navigation solution. The objective is to 
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deal with the KF sub-optimal solution in a situation where a 1/f flicker noise is dominant 

in the IMU.  

1.3. Previous Work 

Different types of adaptive KF have been developed and used since the advent of the 

Kalman Filter in 1960. Usually, they intend to facing the problem where the system noise 

covariance matrix, Q, and measurement noise covariance matrix, R, can not be determined 

during the development phase, or to compensate situations where these covariance matrices 

vary over the time. 

Two main adaptive KF approaches have been successfully used for navigation propose [1], 

the multiple model adaptive estimation (MMAE)[13] and the innovation adaptive 

estimation (IAE) [14]. Both share the same concept of utilising new statistical information 

obtained from the innovation to update the system and measurement noise covariance 

matrix in a systematic approach. 

Further classics adaptive approaches comprise Maximum Likelihood Estimation (MLE), 

Bayesian Estimation, Correlation Method, and Covariance-Matching [14]. The MLE is a 

technique that defines a set of parameters that influence a likelihood function based on the 

KF measurements and estimates states; the goal is to maximize the observed likelihood 

function, making adaptations in these parameters. The Bayesian Estimation is based on 

obtaining recursive equations for the a posteriori probability density of the state and 

covariance matrices, using conditional probabilities and integration. The Correlation 

Method estimates the covariance matrices, based on the autocorrelation function of the 

output or the innovation sequence. Finally, the Covariance-Matching approach aimed to 
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update the KF in a way that the theorical covariance match the observed innovations 

covariance, achieving the optimal KF performance. 

Other adaptive approaches include Sage–Husa Adaptive filtering [15], [16], Adaptive 

Complementary Fusion Filter [17], and approaches based on the Interacting Multiple 

Model (IMM) [18]. 

Based on the adaptive techniques described, a countless number of different adaptive 

Kalman filter have been developed. Some of them are the Robust Adaptive Kalman Filter 

[19] and the Adaptive Sparse Interpolation Lossless Complementary Filter [20] both based 

on the adaptive complementary approach; the Centralized Fusion Based on IMM and 

Adaptive KF [21] and the IMM strong tracking square room cubature KF [22], based on 

the IMM; the Variational Bayesian adaptive Kalman filter [23],[24]; the maximum 

likelihood estimation adaptive extended Kalman filter (MLE-AEKF) [25]; and the 

Weighted Robust Sage-Husa Adaptive Kalman Filter [26].  

With the advent of artificial intelligence (AI), Neural Networks (NN) [27]–[29], Fuzzy 

Logic (FL) [3], [30], and Genetic Algorithms (GA)[31][32] techniques have been used to 

adapt the covariance matrices to the real noise situation in a more precise and efficient way. 

The Fuzzy Logic highlight as a widely used technique applied in adaptive controls to deal 

with nonlinear systems with uncertainties, where the errors can be compensated using a 

heuristic knowledge of the system. Therefore, no mathematical model of the noise is 

needed.  

Fraser [33] showed that the MLE and FL adaptive KF approaches achieved comparable 

performance, with the FL presenting half of processing time needed by the MLE and also 

been a more flexible implementation technique. 
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The use of a Fuzzy Adaptive Extended Kalman Filter (FAEKF), was initially proposed by 

J. Z. Sasiadek et al.[3], [7] in 2000, where an exponential data weight controlled by the FL 

is used to adapt the EKF. The exponential data weighting is a method that prevents the 

Kalman gain to goes to zero with time. If the Kalman gain reaches values near zero, the 

KF ignores new measurements. Therefore, if the process noise change during time, the 

filter will not be able to compensate for it. 

In 2003, J. Z. Sasiadek and Q. Wang [34], tested the FAEKF in a system where non-white 

noise was added to the GPS measurements, showing the possibility to use the FAEKF to 

deal with coloured noise.  

Using the same weighting technique, S. Yazdkhasti, J. Z. Sasiadek and S. Ulrich [30] 

applied the Fuzzy logic in a UKF and compared it against the FAEKF, founding better 

results when UKF was used.  

Different methodologies to correct and improve the Kalman filter using Fuzzy logic has 

been proposed by [8], [9], [10], [11] and [12]. All these works use the fuzzy logic to correct 

the system noise covariance matrix Q, and/or the measurement noise covariance matrix R, 

by applying a multiplication or addition factor to the Q and/or R matrix. The fuzzy logic 

determines the value of this factor. The main difference between them lies in the choice of 

Fuzzy logic inputs - how the fuzzy logic observes the system.  

Table 1 shows a comparison between different studies using Fuzzy Logic to adapt the 

Kalman Filter used in navigation systems. In this table, the parameter α is the FL output. 
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Table 1 – List of Fuzzy Logic Adaptive KF approach 

Publication Year KF type 

used 

FL input How the FL output is 

applied 

[3] 2000 EKF Error covariance 

matrix and residuals 
𝑃𝑘
𝛼− = 𝑃𝑘

− 𝛼2𝑘 

𝑅𝑘 = 𝑅 𝛼
−2(𝑘+1) 

𝑄𝑘 = 𝑄 𝛼−2(𝑘+1) 

[8] 2001 KF Difference between 

the theoretical and 

actual covariance of 

the residuals 

𝑅𝑘 = 𝑅 + 𝛼, 

and/or 

𝑄𝑘 = 𝑄 + 𝛼 

[34] 2003 EKF Error covariance 

matrix and residuals 
𝑃𝑘
𝛼− = 𝑃𝑘

− 𝛼2𝑘 

𝑅𝑘 = 𝑅 𝛼
−2(𝑘+1) 

𝑄𝑘 = 𝑄 𝛼−2(𝑘+1) 

[9] 2004 KF and 

EKF 

Difference between 

the theoretical and 

actual covariance of 

the residuals 

𝑅𝑘 = 𝑅 + 𝛼, 

and/or 

𝑄𝑘 = 𝑄 + 𝛼 

[10] 2006 KF covariance and the 

mean value of the 

residual 

𝑅𝑘 = 𝛼𝑅, 

𝑄𝑘 = 𝛼𝑄 

[35] 2013 UKF Degree of 

divergence of the 

residual 

�̂�𝑘
− = 𝛼�̂�𝑘

− 

𝑃𝑧𝑧 = 𝛼𝑃𝑧𝑧 

𝑃𝑥𝑧 = 𝛼𝑃𝑥𝑧 

[12] 2016 EKF Bias and oscillation 

metrics 
𝑅𝑘 = 𝑅 + 𝛼, 

and/or 

𝑄𝑘 = 𝑄 + 𝛼 

[11] 2016 cubature 

KF 

Degree of 

divergence of the 

residual 

𝑄𝑘 = 𝛼𝑄 

[30] 2016 UKF Error covariance 

matrix and residuals 
𝑃𝑘
𝛼− = 𝑃𝑘

− 𝛼2𝑘 

𝑅𝑘 = 𝑅 𝛼
−2(𝑘+1) 

𝑄𝑘 = 𝑄 𝛼−2(𝑘+1) 

From Table 1, it is possible to observe that all approaches, except the referenced by [12], 

use the error covariance and/or the residuals obtained in the KF, as FL inputs. For the 

methodology used to apply the FL in the KF, it is possible to see that three different 

methods are used.  
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The first one is to apply an exponential weighting parameter, as described by [36], where 

the FL will define the parameter. The second one is to add a correction factor to the Q 

and/or R, in which the FL defines the factor. And the thirty-one is to multiply a corrector 

factor to the Q and/or R. The only exception is the methodology used by [35], in which the 

corrector factor is applied directly to the error covariance matrix. 

Although the different approaches, all publications presented in Table 1 reported that the 

use of Fuzzy logic enhanced the final solution of the KF. Therefore, it can be seen that 

FAKF methods are indeed capable of improving the navigation accuracy over the 

traditional KF. 

1.4. Thesis Objectives  

This work seeks to develop a methodology to deal with a situation where a coupled 

INS/GNSS navigation solution is presenting sub-optimal behaviour due to the presence of 

coloured noise in the IMU. The proposal is to use a Fuzzy Logic adaptive Kalman Filter to 

achieve a better final solution. The implementation is tested in an Error Feedback ESKF 

and UKF systems, applied in a loosely coupled INS/GNSS navigation solution. The 

following sub-objectives are foreseen: 

a) Compare the INS/GNSS integration solution with the INS-alone and GNSS-alone 

solution. Show the better accuracy in the final navigation solution when KF is used. 

b) Tune the KF to achieve the optimal solution when only white noise is present in the 

system. Reach the best solution possible for the KF implementation. 

c) Make the KF system became suboptimal by applying a coloured noise in the IMU. 

Show the influence of the non-white noise in an optimal KF. 



 

24 

 

d) Analyze the Kalman Filter behaviour with coloured noise and the influence of 

different correction approach. Define a FLAC application methodology to achieve 

the best solution for the sub-optimal KF. 

e) Implement the FLAC in the KF system. Correct the KF solution by the use of 

FLAC. 

f) Analyze the ESKF and UKF behaviour under optimal solution, sub-optimal 

solution, and FLAC correction. Show the benefits of the FLAC application and the 

difference between ESKF and UKF. 

1.5. Contributions  

The contributions of this work to the field of positioning and navigation are as follows: 

• Contribute to understanding the effect of non-white noises in a KF system used for 

navigation solution. 

• Introduction to a novel FLAC application methodology for an adaptive KF. 

• Contribute to understanding the difference between ESKF and UKF. 

1.6. Organization 

The remainder of this work is organized into the following parts: 

• Part 2: Background on coordinate systems, INS, GNSS positioning, INS/GNSS 

integration, Kalman Filter, exponential data weighting, fuzzy logic and adaptive KF. 

• Part 3: Methodology used for the INS dynamic model, INS/GNSS integration, error and 

noise model, system initialization, system and measurement covariance matrices, and 

fuzzy logic for the weighted KF. 
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• Part 4: Simulation results for the INS model, noisy IMU and GNSS measurements, ESKF 

solution, UKF solution, Fuzzy logic weighted ESKF, Fuzzy logic weighted UKF, and 

thesis limitations. 

• Part 5: Concludes the research, discusses the results and recommends future work for the 

expansion of the concept. 
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2.  Background Information 

This chapter provides the foundations of navigation and sensor fusion used in this thesis. 

Section 2.1 describes the coordinate frames used, show the applied model for the Earth’s: 

surface, rotation, and gravity, and presents the equations to perform transformations 

between different coordinate frames. Section 2.2 focuses on the Inertial Navigation, 

introduces the main concepts of inertial navigation, shows the dynamic navigation model, 

the inverse kinematics to obtain the sensor data, the error sources, and the IMU noise 

model. Section 2.3 describes the GNSS principles, the system architecture, the positioning 

method, the error sources, and the GNSS noise model. Section 2.4 provides information 

about the Error-State Kalman Filter and the Unscented Kalman Filter. Section 2.5 

introduces the INS/GNSS integration, describes the loosely coupled INS/GNSS system, 

the integration model, and the system initialization problem. Section 2.6 describes the KF 

divergence problem, the exponential data weighted and the fictitious process noise 

injection, showing the equations for the ESKF and UKF. Finally, Section 2.7 introduces 

the Fuzzy logic and shows an overview of the architecture and fuzzification-defuzzification 

concepts.  

2.1. Coordinate frame and Earth Model 

The navigation of an object is described by the determination of its position, orientation, 

and motion. The navigation must be defined in relation to some reference, which is 

characterised by an origin and a set of axes. The origin is chosen based on the application, 

and the sets of axes are chosen to be an orthogonal right-handed basis. Therefore, the 

navigation determination involves at least two coordinate frames - the object frame and a 

reference frame.  
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When inertial sensors are determining the navigation of an object, three frames are usually 

used: the body frame which is attached to the sensors and moves with the object, the local 

frame that have the same origin of the body frame but their axes are aligned with the 

topographic directions and the  Earth-Centered Earth-Fixed frame that have their origin in 

the centre of the Earth, their z-axis aligned with the north pole, and their y-axis with the 

Greenwich meridian.  

Therefore, a set of equations are needed to represent the position, orientation, and motion 

of an object in a frame. And another set is required to transform the navigation from one 

frame to another frame.  

2.1.1. Body Frame 

The body frame is usually attached to the origin and orientated in the same way to the 

object. The axes for this frame remain fixed with respect to the body of the object. The 

most common is to adopt the x-axis pointing in the direction of travel (forward direction); 

z-axis pointing to the down (gravity direction in the initial condition), and y is the right 

axis, completing the orthogonal set. Usually, the initial position is defined as (0, 0, 0) in 

the instant before the motion starts. 

Considering that the IMU is attached to the body of the object, it is possible to recognise 

that the sensor of the IMU will sense any linear acceleration or angular velocity in the body 

coordinate frame. 

2.1.2. Local Navigation Frame 

The Local Navigation Frame has its origin coincident with the corresponding body frame 

origin. However, the axes are aligned considering the topographic directions, not the 
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object. The convention used in this thesis is the North-East-Down (NED) with the x-axis 

point the north (N), the z-axis points Down (D) in the gravity direction, and the y-axis 

completes the orthogonal set by pointing east (E). Usually, the initial position is defined as 

(0, 0, z) in an instant before the motion starts, where z is the height of the object related to 

the Earth surface at mean sea level. 

Figure 2-1 shows the difference between the Local Frame and the Body Frame for an 

aeroplane doing a manoeuvre. 

 
Figure 2-1 - Comparison between body (red) and local (blue) frames 

 

2.1.3. Earth-Centered Earth-Fixed (ECEF) Frame 

In the ECEF frame, the origin is the centre of the Earth, which is at the centre of mass. The 

z-axis points from the centre of the Earth to the north pole, along the Earth’s axis of 

rotation. The x-axis points from the centre of the Earth to the intersection between the 
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equator and the Greenwich Meridian – zero latitude and zero longitude. And the y-axis 

points from the centre of the Earth to the intersection of the equator with the 90° longitude, 

according to the right-handed orthogonal set. 

Figure 2-2 shows the difference between the Local Frame and the ECEF frame. 

 
Figure 2-2 - Comparison between local (yellow) and ECEF (blue) frames 

 

2.1.4. Earth and Gravity Models 

2.1.4.1. Earth Ellipsoid Model 

To use the Local Frame with respect to the ECEF frame, the distance between the centre 

of the Earth, used by the ECEF frame, and the Earth’s surface, used by the Local Frame, 

must be known. Therefore, the first step is to describe the Earth surface in the ECEF frame. 

However, the Earth is not a perfect sphere, and modelling the real surface is not practical 

[1]. Therefore, the Earth is approximated as an ellipse at the mean sea level. One of the 

most common models used is the WGS84 system [37], which are also used in this work.  
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In Local Frame, the height is usually defined by the distance between the object and the 

Earth surface, using a normal direction related to the Earth surface in the ellipsoid model. 

However, the normal to an ellipsoid rarely intersect the ellipsoid centre, which is the origin 

for the ECEF frame. Therefore, the transformation between the Local and ECEF frames 

must take into account the eccentricity and the meridian radius of curvature that varies with 

the latitude position of the object. More details will be presented in section 2.1.5.2. 

2.1.4.2. Earth Rotation 

In ECEF coordinate systems the Earth rotation movement is described as a clockwise 

rotation about their z-axis. Therefore, the Earth-rotation vector in the ECEF frame is given 

by: 

 
𝜔𝑒𝑟
𝑒 = (

0
0
𝜔𝑖𝑒

) (2.1) 

Where 𝜔𝑖𝑒 is the Earth rotation rate, with the WGS 84 value of 7.292115x10-5 rad s-1 [37]. 

2.1.4.3. Centrifugal and Coriolis forces 

When the ECEF is used to describe the position of an object, even if the object is stationary 

with respect to this frame, it will be seen rotating at the Earth rotation rate with respect to 

an Earth Inertial frame (a frame that doesn’t rotate together with the Earth). Therefore, 

looking by the Earth Inertial frame perspective, a centripetal force must be present to 

describe the object movement. 

However, from the ECEF perspective, the same object is stationary, so the object has no 

acceleration even though the centripetal force is still present. Therefore, from the ECEF 
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perspective, a force that cancels the centripetal force must be present. This is the centrifugal 

force and is a pseudo-acceleration that arises from the use of a rotating reference frame. 

Another situation that must be considered is when the object is moving north at a constant 

velocity. Again, with respect to the ECEF, the object has zero acceleration. However, with 

respect to an Earth Inertial frame, the object movement is curved. Therefore, a retarding 

acceleration force in a direction perpendicular to the velocity direction must be present. 

From the ECEF perspective, a second pseudo-force that opposes this retarding force must 

be present. This is the Coriolis force. 

Therefore, these two pseudo-forces can be considered as an acceleration in ECEF, given 

by [1]: 

 𝑎𝑒 = −Ω𝑒Ω𝑒𝑟𝑒 − 2Ω𝑒�̇�𝑒 (2.2) 

Where Ω𝑒 is the skew-symmetric matrix of the Earth rotation rate, and 𝑟𝑒 is the position of 

an object in the ECEF. The first term of the presented equation is the centrifugal force, and 

the second term is the Coriolis force. 

2.1.4.4. Gravitation and Gravity 

Before presenting the model for the gravity used in this work, it is essential to define the 

difference between gravitation and gravity. Gravitation is the fundamental mass attractive 

force, discover by Sir Isaac Newton. Gravity is what people and instruments sense when 

they are not moving in relation to the Earth, and its value will vary according to the 

reference frame chosen. Therefore, we are interested in know the gravity force, which will 

be given by the following relation considering ECEF: 
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 𝑔𝑒 = 𝛾𝑒 − Ω𝑒Ω𝑒𝑟𝑒 (2.3) 

The first term of the equation is the gravitation acceleration, and the second term is the 

centrifugal force, already discussed in the previous section. The gravitation varies along 

the Earth’s surface, and a simple model in ECEF is given by [1]: 

𝛾𝑒 = −
𝜇

|𝑟𝑒|3

{
 
 
 

 
 
 

𝑟𝑒 +
3

2
𝐽2

𝑅0
2

|𝑟𝑒|2

{
 
 
 

 
 
 [1 − 5 (

𝑟𝑒

|𝑟𝑒|2
)
2

] 𝑟𝑥
𝑒

[1 − 5 (
𝑟𝑒

|𝑟𝑒|2
)
2

] 𝑟𝑦
𝑒

[3 − 5 (
𝑟𝑒

|𝑟𝑒|2
)
2

] 𝑟𝑧
𝑒

}
 
 
 

 
 
 

 (2.4) 

Considering the WGS 84 values [37], 𝜇 is the Earth gravitational constant of 

3.986004418x1014 m3 s-2), 𝑟𝑚
𝑒  is the distance of the object from the center of the Earth, 𝑅0 is 

the Equatorial radius of 6378137 m, 𝐽2 is the Earth's second gravitational constant which 

value is 1.082627x10-3, and 𝑟𝑥
𝑒 , 𝑟𝑦

𝑒 , 𝑟𝑧
𝑒 are the position in ECEF coordinate system. 

2.1.5. Frame Transformations 

2.1.5.1. Transformation from Body to Local NED coordinate frame 

Looking at Figure 2-1, the transformation from Body to Local NED coordinate frames is 

done by three consecutive rotations, as following: around z-axis by an angle 𝛾, around y-

axis by an angle 𝛽, and around x-axis by an angle 𝛼. The angles 𝛾, 𝛽, and 𝛼 are respectively 

the Yaw, Pitch and Roll of the motion profile. This transformation can be represented by 

the following Direct Cosine Matrix (DCM): 
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𝐶𝑏
𝐿 = [

𝑐𝛽𝑐𝛾 −𝑐𝛼𝑠𝛾 + 𝑠𝛼𝑠𝛽𝑐𝛾 𝑠𝛼𝑠𝛾 + 𝑐𝛼𝑠𝛽𝑐𝛾
𝑐𝛽𝑠𝛾 𝑐𝛼𝑐𝛾 + 𝑠𝛼𝑠𝛽𝑠𝛾 −𝑠𝛼𝑐𝛾 + 𝑐𝛼𝑠𝛽𝑠𝛾
−𝑠𝛽 𝑠𝛼𝑐𝛽 𝑐𝛼𝑐𝛽

]    (2.5) 

Where c and s are cosine and sine, respectively. 

2.1.5.2. Transformation from Local NED to ECEF coordinate frame 

To transform the motion from the NED to ECEF coordinate frame, the WGS84 system is 

used, where the earth shape is approximated as an ellipse [37]. It is convenient to utilize 

the ECEF position in the dynamic’s equations, once the geodetic may cause some 

numerical problem during the calculations due to the differences between the Latitude and 

Longitude, presented in radians, and the height, presented in meters [1].  

a) Position conversion 

First, it is convenient to define the origin in geodetic Latitude (φ), Longitude (λ) and Height 

(h) position. Therefore, the initial states in ECEF can be obtained by: 

𝑟𝑋0
𝑒  =  (𝑅𝑁  +  ℎ0) 𝑐𝑜𝑠(𝜑0)𝑐𝑜𝑠(𝜆0) 

𝑟𝑌0
𝑒  =  ((𝑅𝑁  +  ℎ0) cos(𝜑0) sin(𝜆0)) 

𝑟𝑍0
𝑒  =  [(𝑅𝑁(1 − 𝑒

2)  +  ℎ0] 𝑠𝑖𝑛(𝜑0) 

(2.6) 

Where RN is the radii of curvature of the Earth and e is the Earth ellipsoid parameter. 

Second, an offset vector from the local system origin, rotated from NED to ECEF can be 

obtained by: 
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 𝑟𝑑𝑋
𝑒 =  𝑐𝑜𝑠(𝜆0)(𝑐𝑜𝑠(𝜑0)𝐷(𝑡) − 𝑠𝑖𝑛(𝜑0)𝑁(𝑡)) −  sin (𝜆0)𝐸(𝑡) 

  𝑟𝑑𝑌
𝑒 =  𝑠𝑖𝑛(𝜆0)(𝑐𝑜𝑠(𝜑0)𝐷(𝑡) − 𝑠𝑖𝑛(𝜑0)𝑁(𝑡)) +  𝑐𝑜𝑠(𝜆0)𝐸(𝑡) 

 𝑟𝑑𝑍
𝑒 =  𝑠𝑖𝑛(𝜑0)𝐷(𝑡) +  𝑐𝑜𝑠(𝜑0)𝑁(𝑡) 

(2.7) 

Where N, E, and D are the position in the NED frame. 

Finally, the position in ECEF frame in time (t) can be obtained by: 

𝑟𝑋
𝑒(𝑡) = 𝑟𝑋0

𝑒 + 𝑟𝑑𝑋
𝑒  

𝑟𝑌
𝑒(𝑡) = 𝑟𝑌0

𝑒 + 𝑟𝑑𝑌
𝑒  

𝑟𝑍
𝑒(𝑡) = 𝑟𝑍0

𝑒 + 𝑟𝑑𝑍
𝑒  

(2.8) 

b) Velocity conversion 

Velocity may be transformed from the NED frame to ECEF using the appropriate coordinate 

transformation matrix, as follows: 

𝑣𝑏
𝑒 = 𝐶𝐿

𝑒𝑣𝑏
𝐿  (2.9) 

Where the 𝐶𝐿
𝑒 is a sequence of rotation between NED and ECEF frame give by: 

𝐶𝐿
𝑒 = [

−𝑠𝑖𝑛(𝜑)𝑐𝑜𝑠(𝜆) −𝑠𝑖𝑛(𝜆) −𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜆)
−𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜆) 𝑐𝑜𝑠(𝜆) −𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜆)

𝑐𝑜𝑠(𝜑) 0 −𝑠𝑖𝑛(𝜑)
] (2.10) 

c) Attitude conversion 

Similar to the velocity conversion, the transformation between NED to ECEF attitude may 

be done using: 

𝑎𝑏
𝑒 = 𝐶𝐿

𝑒𝑎𝑏
𝐿  (2.11) 
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2.1.6. Quaternion 

Using Euler angles to describe the orientation can bring a problem called the singularity, 

that occurs when the second angle in the sequence of rotations describe by equation 2.5 is 

around 90 or 270 degrees. In this situation, the other two angles will be aligned, making it 

not possible to differentiate between both. As an example, if the pitch angle became 90 

degrees, the roll and yaw direction will be aligned, and any movement can be both yaw 

and roll.  

Therefore, a mathematical tool called quaternion can be used to represent rotations to avoid 

Euler angles singularity. A quaternion is a hyper-complex number with four components 

[38]: 

𝑞 =  [𝑞0 𝑞1 𝑞2 𝑞3]𝑇  (2.12) 

The attitude in DCM can be converted to and from quaternion using the following relation: 

𝐶 = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞3𝑞0) 2(𝑞1𝑞3 − 𝑞2𝑞0))

2(𝑞1𝑞2 − 𝑞3𝑞0) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 + 𝑞1𝑞0)

2(𝑞1𝑞3 + 𝑞2𝑞0) 2(𝑞2𝑞3 − 𝑞1𝑞0) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

  

(2.13) 

𝑞0 = 
1

2
√1 + 𝐶1.1 + 𝐶2.2+𝐶3.3 

𝑞1 = 
𝐶3.2 − 𝐶2.3
4 𝑞0

 

𝑞2 = 
𝐶3.1 − 𝐶1.3
4 𝑞0

 

𝑞3 = 
𝐶1.2 − 𝐶2.1
4 𝑞0

 

(2.14) 
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2.2. Inertial Navigation  

As Figure 2-3 shows, an Inertial navigation system (INS) is manly consisted of an Inertial 

Measurement Unit (IMU) and a Processing Unit. The IMU aims to measure specific forces 

acting on an axis using accelerometers, and angular rates through gyroscopes, of a moving 

body. Processing Unit will receive the sensor measurements from the IMU and apply a 

dynamic model to determine the change in the previous position, velocity, and attitude. 

Through the combination of multiple accelerometers with multiple gyroscopes, usually 

three of each - one for each frame axis, connected to a processing unit, it is possible to 

determine the position, velocity, and attitude of a body performing three-dimensional 

navigation, without any external reference.  

There are several types of accelerometers and gyroscopes, which are used in different kinds 

of applications. Their size, mass, performance, and cost may vary by several orders of 

magnitude depending on the technological solution needed. 

In general, sensors that require greater precision are used in missiles, rockets, ships, and 

submarines, as they perform long-time navigation, where a small measurement error in the 

IMU will cause significant deviations in the navigation solution. According to Grove [1], 

a marine navigation system can cost more than a million dollars and offer a navigation 

solution that provides a deviation of less than 1.8 km per day of navigation. 

The INS suffer degradation in long-term navigation as the errors presented in the sensors 

are integrated through the navigation equations. Therefore, one solution for this problem is 

to fuse the INS with another type of sensor, where the disadvantages of the INS can be 

compensated, bring a better overall navigation solution. 
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2.2.1. The INS dynamic model 

The INS dynamic model considers that the initial position, velocity, and orientation of the 

motion are known. Still, after the navigation started, the only input in the system will be 

the gyroscope and accelerometer sensor data. This way, a new position, velocity, and 

orientation will be calculated based on the previous position, velocity, and orientation and 

the actual sensor measurement. Figure 2-4 shows the steps considered for the INS dynamic 

model. 

By doing that, any noise and bias in the gyroscope and accelerometer will be accumulated 

over time, drifting the calculated position, velocity, and attitude in relation to the true ones. 

The INS dynamic model is used to convert the Euler angles roll, pitch and yaw into 

quaternion vector, avoiding the singularities that may occur when using the Euler angles 

for navigation. 

It was considered that the Coriolis force is much smaller than gravity. Therefore, the 

variation of the Coriolis force over the time interval will be neglect. 
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Attitude 

Figure 2-3 - Basic diagram of an INS 
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Define the initial Position, Velocity and Orientation states 

Convert the orientation roll, pitch, and yaw into a DCM using equation 2.5 

Obtain the quaternion vector 𝑞𝑏
𝑒 from the DCM using equation 2.14 

Calculate the rate of change of the quaternion due to the attitude: 

 �̇�𝑏
𝑒  =

1

2
𝜔ഥ𝑔𝑦𝑟𝑜
𝑏 ∧ 𝑞𝑏

𝑒  (2.15) 

where 𝜔ഥ𝑔𝑦𝑟𝑜
𝑏 𝑥 is the skew matrix of the gyroscope measurements (𝜔ഥ𝑔𝑦𝑟𝑜

𝑏 ) 

Obtain the new quaternion by numerical integration, as following: 

 𝑞𝑏
𝑒
(𝑘+1)

= 𝑞𝑏
𝑒
(𝑘)
+ 𝑑𝑡 �̇�𝑏

𝑒  (2.16) 

where 𝑑𝑡 is the sampling time. 

Convert the new quaternion to a new DCM using equation 2.13  

Derive the velocity using 

 �̇�𝑒 = 𝐶𝑏
𝑒𝑎ത𝑏 − 𝑔𝑒 + (2𝜔𝑒𝑟

𝑒 ) ∧ 𝑣𝑒  (2.17) 

where 𝑎ത𝑏 is the accelerometer measurements. 

 

Get the new velocity by numerical integration 

 𝑣𝑒(𝑘+1) = 𝑣
𝑒
(𝑘) + �̇�

𝑒𝑑𝑡 

 

(2.18) 

The derivative of the geodetic position can be simply found by: 

 �̇�𝑒 = (𝑣𝑒(𝑘+1) + 𝑣
𝑒
(𝑘))0.5 (2.19) 

Get the new position by numerical integration: 

 𝑟𝑒(𝑘+1) = 𝑟𝑒(𝑘) +  �̇�
𝑒𝑑𝑡 (2.20) 

Apply the new position 𝑟𝑒(𝑘+1), velocity 𝑣𝑒(𝑘+1), and attitude 𝐶𝑏
𝑒
(𝑘+1)

 in a 

new update cycle. 

Figure 2-4 - INS dynamic model 
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2.2.2. Gyroscope and accelerometer raw data obtained by inverse kinematics 

The inverse kinematics is a model whose purpose is to generate raw IMU data that can be 

used to test the INS dynamic model.  

Once the velocity profile is known, it is possible to calculate the acceleration in the ECEF 

frame by simply derivate the velocity by the time, as follows.  

 
𝑎𝑒 = 

𝑑𝑣𝑒

𝑑𝑡
 

(2.21) 

 

The raw accelerometer data is the acceleration 𝑎𝑏  represented in the body frame. However, 

the gravity and the Coriolis force must be compensated. Therefore, the raw accelerometer 

can be obtained by [1]: 

 𝑎𝑏 = 𝐶𝑒
𝑏(𝑎𝑒 − 𝑔𝑒 + (2𝜔𝑒𝑟

𝑒 ) ∧ 𝑣𝑒) (2.22) 

Where ∧ 𝑣𝑒 is the cross product between the velocity vector and the Coriolis force (2𝜔𝑒𝑟
𝑒 ). 

The gravity in the ECEF coordinate system can be obtained by equation 2.3, as following 

[1]: 

 
𝑔𝑒 = 𝛾𝑒 + 𝜔𝑡𝑟

𝑒 2 (
1 0 0
0 1 0
0 0 0

) 𝑟𝑒  
(2.23) 

Gravity is a composition of two terms. The first is the gravitational acceleration, gives by 

𝛾𝑒, and the second is the centrifugal acceleration due to the Earth’s rotation, which is applied 

to maintain an object stationary with respect to the rotating Earth, as discussed in section 

2.1.4.4.  
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The raw gyroscope data (𝜔𝑔𝑦𝑟𝑜
𝑏 ) can be obtained by calculating the derivate of the DCMs. 

This is done by calculating the difference between two consecutive DCMs, divided by the 

time period.  

 𝐶𝑏
�̇� = 

𝐶𝑏
𝑒(𝑘)−𝐶𝑏

𝑒(𝑘−1)

𝑑𝑡
   (2.24) 

In this case, the result will be a skew matrix (𝑆𝑔
𝐵𝑥), as following [1]: 

 𝑆𝑔
𝐵𝑥 = 

𝐶𝑒
𝑏(𝑘−1)𝐶𝑏

𝑒(𝑘)−𝐼

𝑑𝑡
  

(2.25) 

Where I is the identity matrix. 

The raw gyroscope data in the body frame will be taken from specifics positions in the  𝑆𝑔
𝐵𝑥 

matrix, where the data in x, y and z-axis are acquired from the positions 

𝑆𝑔
𝐵(3,2), 𝑆𝑔

𝐵(1,3), 𝑎𝑛𝑑 𝑆𝑔
𝐵(2,1), respectively. 

The obtained gyroscope value must be compensated by the earth rotate rate and transport 

rate. Therefore, the final raw gyroscope data will be found by: 

 𝜔𝑔𝑦𝑟𝑜
𝑏 = 𝜔𝑔𝑦𝑟𝑜

𝑏 + 𝐶𝑒
𝑏 (𝜔𝑡𝑟

𝑒 + 𝜔𝑒𝑟
𝑒 )  (2.26) 

2.2.3. Error sources 

The deviation between the INS indicated, and the true navigation position, velocity, and 

attitude occur mainly due to intrinsic errors in the accelerometers and gyroscopes sensor, 

and due to their final assembly. Such errors are characterized as bias, scale factor, cross-

coupling, and random noise, which can be divided into deterministic or random deviations. 

Deterministic deviations have a predictable characteristic and, therefore, can be 

compensated by the INS processing unit. To do so, the sensors and the IMU must be 

characterized to know the existing deviations. Random deviations, on the other hand, have 



 

41 

 

unpredictable characteristic and are usually caused by the physical limit of sensitivity of 

the sensors. This deviation is not normally compensable, but their characterization is 

essential to define whether a sensor is suitable or not for a specific application. 

The two mains deterministic errors are the bias and the scale factor. The bias is a drift error 

presenting by the sensor that is independent of the forces, and angular velocities applied, 

being present in all accelerometers and gyroscopes. The scale factor is the error showing 

when the sensor output is not proportional to its input, being a reason for the variation in 

the output with a variation in the input. If these errors are accurately characterized, they 

can be compensated by the INS. 

Usually, to define the suitability of a sensor for an application, the unpredictable errors are 

considered. It is possible to identify three primary sources for this error type: the noise, the 

bias instability, and the scale factor instability.  

Figure 2-5 and Figure 2-6, taken from [39], show the biases and scale factors instability for 

accelerometers and gyroscopes, respectively, considering certain applications and 

technologies used in the manufacture of sensors. Looking at these figures, it is possible to 

see that, for example, for applications in submarines, biases instability smaller than 50 µg 

for the accelerometer and lower than 0.01 ° hr-1 for gyroscope are indicated. To achieve 

this accuracy, it is necessary to use specific sensors that are often not available for purchase 

due to their strategic importance. 

Therefore, to improve the usability of standard IMU, one of the leading solutions is to fuse 

the INS with another type of sensor, where the disadvantages of the INS can be 

compensated, bring a better overall navigation solution. 
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Figure 2-5 - Biases and scale factors instability for accelerometers considering certain 

applications and technologies used in the manufacture of sensors [39].  

 

Figure 2-6 - Biases and scale factors instability for gyroscopes considering certain 

applications and technologies used in the manufacture of sensors [39]. 
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2.2.3.1. IMU Noise Model 

A typical IMU sensor measurement can be modelled as follow, to consider noisy in the 

analyses [1]: 

 𝜔ഥ𝑔𝑦𝑟𝑜
𝑏 = (1 +𝑀𝑔)𝜔𝑔𝑦𝑟𝑜

𝑏 + 𝑏𝑔 + 𝐺𝑎
𝑏 + 𝑤𝑔  

𝑎ത𝑏 = (1 +𝑀𝑎)𝑎
𝑏 + 𝑏𝑎 + 𝑤𝑎 

(2.27) 

Where 𝜔ഥ𝑔𝑦𝑟𝑜
𝑏  and 𝑎ത𝑏 are respectively the noisy gyro and noisy accelerometer measurements, 

𝜔𝑔𝑦𝑟𝑜
𝑏  and 𝑎𝑏  are the true measurement, 𝑀𝑔 and 𝑀𝑎 are the scale factor and cross-coupling 

error, 𝑏𝑔 and 𝑏𝑎 are the bias, 𝑤𝑔 and 𝑤𝑎 are a Gaussian white random noise, and 𝐺 is the 

gyro g-dependent biases. 

The sensor scale factor and cross-coupling error can be expressed by the following: 

 

𝑀𝑆𝑒𝑛𝑠𝑜𝑟 = (

𝑆𝑆𝑒𝑛𝑠𝑜𝑟,𝑥 𝑚𝑆𝑒𝑛𝑠𝑜𝑟,𝑥𝑦 𝑚𝑆𝑒𝑛𝑠𝑜𝑟,𝑥𝑧

𝑚𝑆𝑒𝑛𝑠𝑜𝑟,𝑦𝑥 𝑆𝑆𝑒𝑛𝑠𝑜𝑟,𝑦 𝑚𝑆𝑒𝑛𝑠𝑜𝑟,𝑦𝑧

𝑚𝑆𝑒𝑛𝑠𝑜𝑟,𝑧𝑥 𝑚𝑆𝑒𝑛𝑠𝑜𝑟,𝑧𝑦 𝑆𝑆𝑒𝑛𝑠𝑜𝑟,𝑧

) 
(2.28) 

Where 𝑆𝑆𝑒𝑛𝑠𝑜𝑟 and 𝑚𝑆𝑒𝑛𝑠𝑜𝑟 are the scale factor and cross-coupling, respectively. 

The presented model considers that the unpredictable errors are Gaussian white random 

noises. This means that the noise will show a probability distribution function (PDF) that 

can be described by a Gaussian distribution with zero mean. However, the biases and scale 

factors instability can change the noise characteristic over time. Therefore, the noise will no 

longer be white, changing its mean value over time. 
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2.2.3.2. IMU with Coloured noise 

A typical IMU sensor model considering noisy in the measurements was presented in 

equation 2.27 where 𝑤𝑔 and 𝑤𝑎  are Gaussian white random noise for the gyroscope and 

accelerometer, respectively. This means that the noise is a time series with power spectral 

density (PSD) that follow a power law with the form of: 

 𝑆(𝑓) = 𝐿(𝑓) (2.29) 

To simulate a coloured noise, a 1/𝑓 filter can be applied to the white noise 𝑤𝑔 and 𝑤𝑎, 

providing a power spectral density (PSD) of [40]: 

 
𝑆(𝑓) =

𝐿(𝑓)

|𝑓|
 (2.30) 

This is equivalent to consider that the Raw IMU data have a 1/𝑓 flicker noise in its 

measurements.  

Figure 2-7 presents a probability density function (PDF) for a gyroscope with white noise 

and with coloured noise. The coloured noise was created by applying a 1/𝑓 filter in the 

data with white noise. When the IMU noise is white, the PDF that describes the signal 

becomes constant after a short period of time. When the IMU noise is coloured, the PDF 

that describes the signal will vary over time, presenting a different value for each time 

instant, becoming broader as time goes by.  
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Figure 2-7 – Gyroscope simulated with white noise (left) and with coloured noise (right) 

 

2.3. GNSS 

GNSS is a global navigation system based on satellite technology. It provides to the user a 

3-D position (and velocity) solution by measure the ranges between a receiver and a few 

observed satellites. The most used GNSS is the GPS - Global Positioning System was 

created and is maintained by the U.S. Department of Defence. Another GNSS is the Galileo, 

developed by the European Union, and the GLONASS, managed by the Russian Space 

Forces. 

The GNSS provides reasonable accuracy for long-term navigation, as the position and 

velocity are updated continuously by the satellites. However, the short-term errors are high, 

the signals are subject to obstruction and interference, and the standard GNSS does not 

provide attitude. 

2.3.1. GNSS principles 

A GNSS solution is determined using a passive pseudorange in a 3-dimensional space. 

Determine the positioning by ranging means that the position of an object is determined by 

measuring the range to other objects with a known position. Pseudorange is a measure of 
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the distance through measuring the time that the satellite signal spends to reach the 

receiver’s antenna. Passive means that the receiver will just receive and process the 

information transmitted by the satellite, without sending any data. Therefore, the essential 

GNSS measurement is the time that takes for the signal to travel from the satellite to the 

receiver antenna. 

The message in the satellite signal contains a time of emission, determined by a precise 

atomic clock. The receiver records the time of arrival of the signal and identifies how long 

time it took for the signal travel from the satellite to the receiver. As all electromagnetic 

radiation travels at the constant speed of light, the receiver can determine the range to the 

satellite. 

Usually, to determine the position in a 3-Dimensional space using the range, the receiver 

must observe at least three satellites. However, as the range is measured using time, a fourth 

satellite must be used to correct the time in the receiver.  

The pseudorange for the satellite corrected for the receiver clock bias (𝛿𝑡), and the 

atmosphere errors (𝜀𝑚), is given by [41]: 

 𝜌𝐶
𝑚 = 𝑟𝑚 + 𝑐𝛿𝑡 + 𝜀𝑚 (2.31) 

Where 𝑐 is the speed of light and 𝑟𝑚 is true range from the satellite to receiver, that can be 

obtained in the ECEF system, as follows: 

 𝑟𝑚 = √(𝑥 − 𝑥𝑚)2 + (𝑦 − 𝑦𝑚)2 + (𝑧 − 𝑧𝑚)2 (2.32) 

The Doppler Effect is a phenomenon where the electromagnetic signal presents a frequency 

shift caused by the relative motion of the emitter and receiver. Based on this, some GPS 
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receivers also measure the Doppler frequency of the received GPS signal to determine the 

velocity state. Therefore, in this situation, the GNSS will provide the position and the 

velocity as a navigation solution. 

2.3.2. Error sources 

The error sources in the GNSS solution arises from many factors such as the receiver 

measurement, the atmosphere condition, the elevation of the satellite, the environmental 

near the receptor, and intentional interference - called Jamming [41]. 

The receiver measurement errors usually occur by loose of the carrier tracking, which can 

happen due to receiver noise, High Dynamics, radio frequency interference or multipath 

interference. Therefore, even in good reception condition, the GNSS navigation solution 

will have a variance of a few meters. 

The atmosphere condition may cause a signal propagation delay due to refraction of the 

signal, which may occur in the ionosphere and troposphere. These can be partially 

corrected by using atmosphere models. 

The satellite elevation is the angle between the horizon line and the satellite, as observed 

by the receptor. Low angles will cause large ionosphere and troposphere delays and 

multipath interference. In this situation, if other satellites are available, most receivers will 

just ignore satellites that are in low angle elevations. 

The environmental near the receptor can be the biggest challenge for the GNSS navigation 

solution. The signal can be blocked, attenuated, or reflected by tunnels, buildings, 

mountains, etc. In this case, the GNSS solution will present significant errors, or even it 

will be not possible to determine the navigation solution.  
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The GNSS jamming occurs because the GNSS signal is weak compared to other radio 

signals. Therefore, if a stronger signal that exactly matches the GPS signal structure is 

generated, the GPS receiver may think that this is a real GPS satellite signal and then will 

use it for the navigation determination. 

There are several methods to avoid or reduce all these problems. Among them is the 

integration with INS. 

2.4. INS/GNSS Integration model 

The architecture of an INS/GNSS integrated system can be defined by the way that the 

corrections are used, the type of the GNSS measurements considered, and the integration 

algorithm applied. Therefore, many different types of integration can be used and 

combined. However, three architectures are usually found in the literature: loosely coupled, 

tightly coupled, and deeply coupled.  

The loosely coupled architecture, presented by Figure 2-8 use as measurement inputs the: 

INS - position, velocity and attitude, and the GNSS - position and velocity. In this 

architecture, the corrections are done in the position and velocity solution. 

The tightly coupled INS/GNSS architecture differs from the loosely coupled as it uses the 

GNSS pseudo-range and pseudorange-rate as measurements inputs. This is called range-

domain integration. 

The deeply coupled INS/GNSS architecture combines INS/GNSS integration and GNSS 

signal tracking into a single estimation algorithm. This is called tracking-domain 

integration. 
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There are two advantages in using the loosely coupled architecture: simplicity and 

redundancy [1].  Both advantages come from the fact that the measurements of the GNSS 

are navigation states. Therefore, any INS and any GNSS equipment can be used, and an 

integrated navigation solution is available together with both stand-alone GNSS and stand-

alone INS navigation solutions, allowing reach to a navigation solution even when one of 

the sensors are not available. 

 

Figure 2-8 - Loosely coupled INS/GNSS system using KF 

2.5. Kalman Filter 

The Kalman filter is the only practical finite-dimensional solution to the real-time optimal 

estimation problem for stochastic systems [2]. It was invented by R. E. Kalman in 1960 

[42] and has been studied and improved by numerous authors since then. Its mathematical 

model has been used in a wide range of essential applications for estimating the current 

conditions of dynamic systems when unpredictable disturbances are present. The Kalman 
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filter uses deterministic and statistical properties of the system parameters and new 

measurements to obtain the optimal estimates for the system. 

Just after R. E. Kalman published his work in 1960, one of the persons in charge of the 

Apollo project, Stanley F. Schmidt, recognized its potential applicability in the estimation 

and control of the trajectory of the Apollo spacecraft. The use in the Apollo project is 

known as the first full implementation of the Kalman filter [2]. Schmidt, using the work 

from Kalman, develop a nonlinear solution for the KF, called Extended Kalman Filtering 

(EKF), which has been used ever since for many real-time nonlinear applications. 

Later, in 1995, Jeffrey Uhlmann et all. [43], [44] developed a nonlinear adaptation of the 

Kalman filter called Unscented Kalman Filter (UKF). The UKF has about the same 

complexity and stability as the EKF but with potentially greater robustness against 

nonlinear effects. 

2.5.1. The Error-State model 

In the error-state model, the Kalman Filter is used to indicate the error between the 

predicted and the measurement values. The advantage is that when the error-state are 

considered, the dynamic will be represented by small, linear, and suitable for linear-

Gaussian filtering signals. On the other side, when true states are considered, significant 

non-linear signals will represent the dynamic of the system.  

Furthermore, the equations for a Total State EKF are the same as for a closed-loop ESKF 

model [1]. Therefore, the same behaviour is expected for both approaches. The difference 

between the two models remains on the implementation.   
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In the Error-State Kalman Filter used in an INS/GNSS integration, a high-frequency IMU 

provides the measurement data that are processed in order to describe the true navigation-

states. This step does not consider the errors, noise, and other model imperfections occurred 

in the system. Consequently, the errors will be accumulated, and the navigation solution 

will drift over time. Therefore, these errors must be estimated and corrected to provide an 

accurate solution. The KF does this. Using measurements from GNSS, the system can 

predict and correct the errors in the IMU. After estimated, the predicted errors are feedback 

to the INS solution aim to correct all states. This correction provides a posterior Gaussian 

estimate of the error-state, which can also be used to adjust the system. Using this solution, 

high-frequency sensors, like gyroscopes and accelerometers, can be fused with low-

frequency sensors, as GNSS and Vision.  

Furthermore, according to Madyastha et al. [45], the advantages of using ESKF over the 

Total State EKF are:  

a) The ESKF is always operating close to the origin, far from possible parameter 

singularities, like gimbal locks, providing a guarantee that the linearization is 

always valid. 

b) The error-state always has small values, meaning that all second-order products are 

negligible. This makes the computation of partial derivates easier and faster. Some 

terms may even be considered as constant or equal to a state magnitude. 

c) It is possible to apply the KF corrections (which are the only means to observe the 

errors states) at a lower rate. 
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The Error-State Kalman Filter can be used to estimating the error in the attitude, velocity, 

and position, and also the bias for the accelerometer and gyroscope. In this case, the state 

vector can be described as following, in an ECEF frame [46]: 

 

𝑥𝑒 =

[
 
 
 
 
𝛿�̂�𝑒

𝛿�̂�𝑒

𝛿𝑣𝑒

𝑏�̂�𝑒

𝑏�̂�𝑒]
 
 
 
 

 (2.33) 

Where, 𝛿�̂�𝑒 , 𝛿�̂�𝑒 , 𝑎𝑛𝑑 𝛿𝑣𝑒 are the attitude, position and velocity errors, respectively. And 

𝑏�̂�𝑒 and 𝑏�̂�𝑒 are the accelerometer and gyroscope biases, respectively. 

Therefore, the following relations provides the system dynamics: 

The attitude error derivative can be given by: 

 𝛿�̇�𝑒 = 𝐶𝑏
𝑒 𝛿𝜔𝑔𝑦𝑟𝑜

𝑏 − Ω𝑒 𝛿𝐴𝑒 (2.34) 

Where  𝛿𝜔𝑔𝑦𝑟𝑜
𝑏  is the error in the gyroscope.  

If it is considered that the gyroscope bias can represent this error, equation 2.34 becomes: 

 𝛿�̇�𝑒 = 𝐶𝑏
𝑒𝑏𝑔𝑒 − Ω𝑒𝛿𝐴𝑒 (2.35) 

The rate of change of the velocity error in ECEF can be given by: 

 �̇�𝑒 = 𝐶𝑏
𝑒𝑎ത𝑏 − 𝑔𝑒 + (2𝜔𝑒𝑟

𝑒 ) ∧ 𝑣𝑒 

𝛿�̇�𝑒 = −𝐶𝑏
𝑒𝑎ത𝑏 ∧ 𝛿𝐴𝑒 − 2 Ω𝑒𝛿𝑣𝑒 − 𝐹23

𝑒 + 𝐶𝑏
𝑒𝑏𝑔𝑒 

(Repeat. Eq. 2.17) 

(2.36) 

Where  

 
𝐹23
𝑒 = −

2𝛾𝑒 𝑟𝑚
𝑒 𝑇

𝑟𝑒𝑆
𝑒 (𝐿) 𝑟𝑚

𝑒 ,   
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𝑟𝑒𝑆
𝑒 (𝐿) is the geocentric radius at the surface of the Earth. Equation 2.36 considers that the 

centrifugal term is small and can be neglected. More information can be found on the 

reference [1]. 

Finally, the time derivative of the position error is given by: 

𝛿�̇�𝑒 = 𝛿𝑣𝑒 (2.37) 

Therefore, the matrix that represents the dynamic of the system for the states given by 

equation 2.33, will be given considering equations 2.35, 2.36 and 2.37, as following: 

F𝑒 =

[
 
 
 
 

−Ω𝑖𝑒
𝑒 03𝑥3 03𝑥3 03𝑥3 𝐶𝑏

𝑒

03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3 03𝑥3
−(𝐶𝑏

𝑒𝑎𝑏)Λ 𝐹23
𝑒 2Ω𝑖𝑒

𝑒 𝐶𝑏
𝑒 03𝑥3

03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3]

 
 
 
 

 (2.38) 

This relation is the transition matrix used in the KF for continuous-time. 

2.5.2. Error-State Kalman Filter model 

The full ESKF solution in the ECEF frame, considering the discrete-time algorithm, for an 

error-states implementation, can be described in three phases with a total of eleven steps, 

as following [1]: 

The first phase - System Propagation: 

1) Determine the first-order transition matrix considering discrete-time (from equation 

2.38): 
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Φ =

[
 
 
 
 
𝐼3𝑥3 −Ω𝑖𝑒

𝑒 𝑑𝑡 03𝑥3 03𝑥3 03𝑥3 𝐶𝑏
𝑒𝑑𝑡

03𝑥3 𝐼3𝑥3 𝐼3𝑥3𝑑𝑡 03𝑥3 03𝑥3
−(𝐶𝑏

𝑒𝑎𝑏)Λ𝑑𝑡 𝐹23
𝑒 𝑑𝑡 𝐼3𝑥3 − 2Ω𝑖𝑒

𝑒 𝑑𝑡 𝐶𝑏
𝑒𝑑𝑡 03𝑥3

03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3 ]

 
 
 
 

 (2.39) 

Where 𝑑𝑡 is the sampling time. 

2) Determine an approximate system noise covariance matrix using: 

Q𝐼𝑁𝑆 =

[
 
 
 
 
𝑆𝑔𝑟𝐼3𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆𝑎𝑟𝐼3𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆𝑔𝑏𝑑𝐼3𝑥3 03𝑥3
03𝑥3 03𝑥3 03𝑥3 03𝑥3 𝑆𝑔𝑏𝑑𝐼3𝑥3]

 
 
 
 

𝑑𝑡 (2.40) 

Where 𝑆𝑔𝑟 and 𝑆𝑎𝑟 are the gyro and accelerometer random noise PSD respectively; 

and the 𝑆𝑔𝑏𝑑 and 𝑆𝑎𝑏𝑑 are the gyro and accelerometer bias variation PSD 

respectively. 

3) Propagate the estimated states, by: 

�̂�𝑘
− =

[
 
 
 
 
𝛿�̂�𝑒

𝛿�̂�𝑒

𝛿𝑣𝑒

𝑏�̂�𝑒

𝑏�̂�𝑒]
 
 
 
 

𝑘

−

= Φ𝑘−1

[
 
 
 
 
𝛿�̂�𝑒

𝛿�̂�𝑒

𝛿𝑣𝑒

𝑏�̂�𝑒

𝑏�̂�𝑒]
 
 
 
 

𝑘−1

+

 (2.41) 

It can be considered that all previous states are zero due to closed-loop correction. 

Therefore, this step can be omitted. 

4) Propagate the state estimation error covariance matrix, using: 

𝑃𝑘
− ≈ Φ𝑘−1𝑃𝑘−1

+ Φ𝑘−1
𝑇 + Q𝐼𝑁𝑆𝑘−1 (2.42) 

The second phase – Measurements Update: 
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5) Set-up the measurement matrix, considering that the distance between the IMU and 

the GNSS antenna is minimal and can be neglected: 

H𝑘 = [
03𝑥3 𝐼3𝑥3 03𝑥3 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝐼3𝑥3 03𝑥3 03𝑥3

] (2.43) 

6) Determine the measurement noise covariance matrix using: 

𝑅𝑘 = 𝐸(𝑤𝑚𝑤𝑚
𝑇 ) (2.44) 

Where 𝑤𝑚 is the GNSS measurement variance of the position and velocity. If it is 

assumed that all components of GNSS position and velocity are independent and 

have equal variance, the 𝑅𝑘 can be estimated by: 

𝑅𝑘 = [
𝑤𝑝3𝑥3 03𝑥3

03𝑥3 𝑤𝑣3𝑥3
] (2.45) 

Where 𝑤𝑝 and 𝑤𝑣 are, respectively, the position and velocity GNSS variance. 

7) Calculate the Kalman gain matrix by: 

K𝑘 = 𝑃𝑘
− 𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
− 𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (2.46) 

8) The measurement state can be given by the error between the GNSS and INS states, 

as follow: 

𝛿𝑧𝑘
𝑒− = [

𝑟𝐼𝑁𝑆
𝑒  − 𝑟𝐺𝑁𝑆𝑆

𝑒

𝑣𝐼𝑁𝑆
𝑒 − 𝑣𝐺𝑁𝑆𝑆

𝑒 ] (2.47) 

9) Update the state estimates using: 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘𝛿𝑧𝑘
𝑒− (2.48) 

10) Update the state estimation error covariance matrix using: 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (2.49) 

Third phase – Closed-loop correction: 
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11) Correct the attitude, velocity, and position of the INS solution using: 

�̂�𝑏
𝑒+ = 𝛿�̂�𝑏

𝑒 𝑇�̂�𝑏
𝑒− 

𝑣𝑒+ = 𝑣𝑒− − 𝛿𝑣𝑒 

�̂�𝑒+ = �̂�𝑒− − 𝛿�̂�𝑒 

(2.50) 

Where 𝛿�̂�𝑏
𝑒 𝑇 can be approximated by 

𝛿�̂�𝑏
𝑒 𝑇 = (𝐼3𝑥3 − [𝛿�̂�

𝑒 Λ]) 

 

2.5.3. Unscented Kalman Filter model 

There are several sampling strategies for computing the weighted averages of propagated 

statistics when applying UKF. Therefore, before defining the procedure used in this work, 

three different approaches, presented in Table 2, were simulated to determine the best one.  

Table 2 - Unscented Transformation Sample Weights 

Approach Sampling 

Strategy 

Sample 

size 

Sample values Sample Weights 

1 Symmetric 2n �̂�𝑘−1
+ + √𝑛𝑆𝑘−1

+  

�̂�𝑘−1
+ − √𝑛𝑆𝑘−1

+  

𝑊 = 1/(2𝑛) 

2 Symmetric 2n+1 �̂�𝑘−1
+  

�̂�𝑘−1
+ + √𝑛 + 𝑘𝑆𝑘−1

+  

�̂�𝑘−1
+ − √𝑛 + 𝑘𝑆𝑘−1

+  

𝑊 = 1/(2𝑛 + 𝑘) 

3 Scaled 2n+1 �̂�𝑘−1
+  

�̂�𝑘−1
+ + √𝑛 + 𝜆𝑆𝑘−1

+  

�̂�𝑘−1
+ − √𝑛 + 𝜆𝑆𝑘−1

+  

𝜆 = 𝛼2(𝑛 + 𝑘) − 𝑛 

𝑊 = 𝜆/(2𝑛 + 𝜆) 

• 𝛼, 𝜆, 𝑎𝑛𝑑 𝑘 are tuning parameters. 
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After tuning all parameter, all the three approaches showed similar results, and the only 

difference was that the approach 2 and 3 showed a light better outcome for the measured 

states but a slight worst result for the other states (unmeasured) when compared with the 

approach one. This means that in the considered system, where the UKF has 15 states, 

when approaches 2 and 3 were used, six states (the position and velocity measured by the 

GNSS) showed slightly better results than the approach 1. However, the other nine states 

– 3-dimensional attitude, gyroscope bias, and accelerometer bias – showed marginally 

worse results. 

Therefore, the approach number 1 was chosen to be used in the project due to the simplicity 

of the system, once no tuning parameter is used, and the better results for the attitude 

determination. This approach will be described in detail. 

The full UKF solution in ECEF frame, considering discrete-time algorithm, for an error-

states implementation, using the symmetric sampling strategy with 2n of sample size, can 

be described in three phases with a total of eleven steps as follow [47]:  

The first phase - System Propagation: 

1) Obtain the square root of the error covariance matrix by using Cholesky 

factorization.  

𝑃𝑘−1
+ = 𝑆𝑘−1

+ 𝑆𝑘−1
+ 𝑇

 (2.51) 

The eigenvalue–eigenvector Cholesky factor was used. 

2) Calculate the sigma points. 

𝑥𝑘−1
+(𝑖) = {

�̂�𝑘−1
+ + √𝑛𝑆𝑘−1

+                                𝑖 ≤ 𝑛,

�̂�𝑘−1
+ − √𝑛𝑆𝑘−1

+                                𝑛 + 1 ≤ 𝑖 ≤ 2𝑛.
 (2.52) 

 With 𝑛 is the number of states. 

3) The calculated sigma points are propagated using: 

𝑥𝑘
−(𝑖)

= �̂�𝑘−1
+ + 𝑓(𝑥𝑘−1

+(𝑖), 𝑡𝑘)𝑑𝑡 (2.53) 
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Where 𝑓(𝑥𝑘−1
+(𝑖)

, 𝑡𝑘)𝑑𝑡 is the transition matrix in discrete-time given by equation 

2.39. 

4) The state estimate and its error covariance are propagated using: 

�̂�𝑘
− =

1

2𝑛
∑ 𝑥𝑘

−(𝑖)

2𝑛+1

𝑖

 

�̂�𝑘
− =

1

2𝑛
∑ (𝑥𝑘

−(𝑖)

2𝑛+1

𝑖

− �̂�𝑘
−)(𝑥𝑘

−(𝑖) − �̂�𝑘
−)

𝑇

+ Q𝐼𝑁𝑆 

(2.54) 

 

(2.55) 

Where Q𝐼𝑁𝑆 is the same as defined equation 2.40. 

The second phase – Measurements Update: 

5) Generate new sigma points by: 

𝑥𝑘
−(𝑖) = {

�̂�𝑘
− + √𝑛𝑆𝑘

−                                𝑖 ≤ 𝑛,

�̂�𝑘
− − √𝑛𝑆𝑘

−                               𝑛 + 1 ≤ 𝑖 ≤ 2𝑛.
 (2.56) 

6) Obtained both the sigma points and the mean measurement innovation by: 

𝛿𝑧𝑘
−(𝑖)

= 𝑧𝑘 − ℎ(�̂�𝑘
−(𝑖), 𝑡𝑘) 

𝛿�̂�𝑘
− =

1

2𝑛
∑ 𝛿𝑧𝑘

−(𝑖)

2𝑛+1

𝑖

 

(2.57) 

Where ℎ(�̂�𝑘
−(𝑖), 𝑡𝑘) can be defined as H𝑘�̂�𝑘

−(𝑖)
. The H𝑘 is the same as defined in 

equation 2.40. 

7) Calculate the measurement innovations covariance, by: 

𝐶𝑘
− =

1

2𝑛
∑ (𝛿𝑧𝑘

−(𝑖)

2𝑛+1

𝑖

− 𝛿�̂�𝑘
−)(𝛿𝑧𝑘

−(𝑖)
− 𝛿�̂�𝑘

−)
𝑇

+ 𝑅𝑘 (2.58) 

Where 𝑅𝑘 is the same as defined in equation 2.44. 
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8) Calculate the Kalman Gain: 

𝐾𝑘 = [
1

2𝑛
∑ (𝑥𝑘

−(𝑖) − �̂�𝑘
−)(𝛿𝑧𝑘

−(𝑖) − 𝛿�̂�𝑘
−)

𝑇
2𝑛+1

𝑖

] (𝐶𝑘
−)−1 (2.59) 

9) Update the state estimates using: 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘𝛿𝑧𝑘
− (2.60) 

10) Update the state estimation error covariance matrix using: 

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝐶𝑘
−𝐾𝑘

𝑇 (2.61) 

Third phase – Closed-loop correction: 

11) Correct attitude, velocity, and position of the INS solution using equations 2.50. 

2.6. Kalman Filter Divergence 

Filter divergence occurs when the actual error of the system is not bounded in the predicted 

covariance P [48]. In this situation, two types of divergence can be considered: the apparent 

and the true. In apparent divergence, the actual error of the system remains bounded but in 

a larger bound than the predicted error covariance. In this situation, the filter will be 

suboptimal, leading to a solution that converges to a higher bound.  

In the true divergence, the actual error of the system tends to infinity. This occurs when the 

system is unstable or when unstable states are present and are not modelled. Figure 2-9 

presents the difference between an Optimal, Apparent divergence, and True divergence 

error covariance. 
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Figure 2-9 - Optimal, Apparent divergence, and True divergence for error covariance 

 

In Kalman Filter, the predicted error covariance matrix and the Kalman Gain goes to values 

near zero as more measurements are made (large k). This means that the KF estimates 

become more reliable by the time. Therefore, new measurements will be less and less 

effective in the system.  

However, if the actual error of the system changes over the time or if some unmodeled 

state is present, the KF will not be able to correct the system for large k, and the solution 

of the filter will diverge from the true values. 

The KF assume that the system noise covariance matrix Q𝐼𝑁𝑆 are represented by a known 

Gaussian white noise 𝑤𝑔 and 𝑤𝑎. If the process has only white noise, the measurement 

innovations 𝛿𝑧𝑘
𝑒− should also be a Gaussian zero-mean white noise. However, in reals 
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IMUs, the noise may present some coloured characteristic, which can cause the filter to 

have an apparent divergence or to achieve a suboptimal solution. 

Acc. to [48], two methods for preventing divergence are available: the exponential data 

weighting and the fictitious process noise injection.  

2.6.1. Exponential Weighted Kalman Filter 

To prevent divergence of the KF for large k, the exponential data weighting can be used 

[36]. This method avoids the Kalman Gain to go to zero by applying an exponential 

weighting in the Kalman gain and the covariance matrix. Therefore, the filter will always 

consider new measurements. 

2.6.1.1. Exponential Weighted KF 

In the weighted KF, the error covariance matrix and the system noise covariance matrix 

 can be written as weighted covariance, as follow: 

𝑅𝑘 = 𝑅 𝛼−2(𝑘+1) 

𝑄𝑘 = 𝑄 𝛼−2(𝑘+1) 
(2.62) 

Where 𝛼 is the weighted parameter. Considering 𝑃𝑘
𝛼 = 𝑃𝑘

− 𝛼2𝑘 and applying equation 2.62 

to the ESKF model presented in section 2.5.2, the weighted ESKF may be given as follows 

(the complete derivation can be found in [49]): 

𝑃𝑘
𝛼 = (𝛼)2Φ𝑘−1𝑃𝑘−1

𝛼 Φ𝑘−1
𝑇 + Q𝐼𝑁𝑆𝑘−1 

K𝑘 = 𝑃𝑘
𝛼  𝐻𝑘

𝑇 (𝐻𝑘𝑃𝑘
𝛼  𝐻𝑘

𝑇 +
𝑅𝑘
(𝛼)2

)
−1

 

(2.63) 

In these equations, the parameter 𝛼 is a constant value always ≥ 1. It is easy to see that 

when 𝛼 = 1 the KF will work as a normal KF. When 𝛼 > 1, the Kalman Gain and the error 
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covariance matrix will be kept away from zero by the alpha parameter. The higher the alpha 

parameter, the greater the new measurements are considered by the filter.  

Because the considered system is Loosely coupled INS/GNSS system, which takes 

advances on 3-dimensional position and velocity, it is proposed an original representation 

of the weighted parameter 𝛼 as a matrix to allow weighting the position (𝛼𝑝) and velocity 

(𝛼𝑣) individually as followed: 

𝛼𝑘 = [
𝛼𝑝3𝑥3 03𝑥3

03𝑥3 𝛼𝑣3𝑥3
] (2.64) 

Therefore, the weighted Kalman gain and the weighted error covariance matrix can be 

written as follows: 

𝑃𝑘
𝛼 ≈ (𝐼 + 𝐻𝑘

𝑇𝛼𝐻𝑘)
2Φ

𝑘−1
𝑃𝑘−1
𝛼 Φ𝑘−1

𝑇 + Q𝐼𝑁𝑆𝑘−1
 

K𝑘 = 𝑃𝑘
𝛼 𝐻𝑘

𝑇 (𝐻𝑘𝑃𝑘
𝛼  𝐻𝑘

𝑇 +
𝑅𝑘

(𝐼 + 𝛼)2
)
−1

 

(2.65) 

Where I is the identity matrix, in this case, 𝛼 ≥ 0. Consequently, when 𝛼=0, no weighing 

is applied in the system. For 𝛼 > 0, the system will give higher weighting for the recent 

measurement. 

Appendix B provides a study on the use of a constant alpha and matrix alpha weighted 

parameter. 

2.6.1.2. Exponential Weighted UKF 

Similar to the weighted ESKF presented in section 2.6.1.1, the Weighted UKF can be 

obtained by applying the equations 2.62 to the UKF model shown in section 2.5.3.  

However, in the case of the UKF, the state estimation error covariance matrix, the 

measurement innovations covariance, and the covariance between the state estimation and 

the measurement innovations, they all must be considered as weighted covariances.  
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Therefore, the weighted UKF, for the time-invariant model, can be given by: 

𝑃𝑘
𝛼 = 𝛼2

1

2𝑛
∑(𝑥𝑘

−(𝑖)

2𝑛

𝑖

− �̂�𝑘
−)(𝑥𝑘

−(𝑖) − �̂�𝑘
−)

𝑇

+ Q𝐼𝑁𝑆 

𝐾𝑘 =
[
1
2𝑛
∑ (𝑥𝑘

−(𝑖) − �̂�𝑘
−)(𝛿𝑧𝑘

−(𝑖) − 𝛿�̂�𝑘
−)

𝑇
2𝑛
𝑖 ]

1
2𝑛
∑ (𝛿𝑧𝑘

−(𝑖)2𝑛
𝑖 − 𝛿�̂�𝑘

−)(𝛿𝑧𝑘
−(𝑖)

− 𝛿�̂�𝑘
−)

𝑇

+ α−2𝑅𝑘

 

(2.66) 

Appendix A provides the full derivation for equations 2.66. 

If the parameter 𝛼 is a matrix, given by equation 2.64, the weighted UKF can be written as 

follows: 

𝑃𝑘
𝛼 = (𝐼 + 𝐻𝑘

𝑇𝛼𝐻𝑘)
2
1

2𝑛
∑(𝑥𝑘

−(𝑖)

2𝑛

𝑖

− �̂�𝑘
−)(𝑥𝑘

−(𝑖) − �̂�𝑘
−)

𝑇

+ Q𝐼𝑁𝑆 

𝐾𝑘 =
[
1
2𝑛
∑ (𝑥𝑘

−(𝑖) − �̂�𝑘
−)(𝛿𝑧𝑘

−(𝑖) − 𝛿�̂�𝑘
−)

𝑇
2𝑛
𝑖 ]

1
2𝑛
∑ (𝛿𝑧𝑘

−(𝑖)2𝑛
𝑖 − 𝛿�̂�𝑘

−)(𝛿𝑧𝑘
−(𝑖)

− 𝛿�̂�𝑘
−)

𝑇

+ (𝐼 + 𝛼)2𝑅𝑘

 

(2.67) 

Where I is the identity matrix and 𝛼 ≥ 0. 

2.6.2. Fictitious Process Noise Injection 

Fictitious process noise injection is a methodology that prevents the KF divergence by 

ensuring that in the model, all states are sufficiently excited by noise. By equations 2.42. 

2.46 and 2.49, it is possible to get an approximation of the Kalman gain, when the predicted 

error covariance goes to zero: 

K𝑘 ≈
 𝑄𝑘

 𝑄𝑘 + 𝑅𝑘
  (2.68) 

This equation shows that to excite the system to KF consider new measurements, the 𝑄𝑘 

must be increased to a large value by injection of fictitious process noise. Therefore, 
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another option for applying a correction parameter is in a way that will enlarge 𝑄𝑘. 

However, if the value of 𝑄𝑘 is too large, it will result in a suboptimal behaviour of the filter. 

Therefore, the injection must be correctly chosen in a way that the error remains bounded. 

The noise injection can be done by adding a correction value to the process covariance 

matrix as following: 

𝑄𝑘 = 𝑄𝑘 + 𝛽𝑄𝑘 (2.69) 

Where β is tuned to ensure that the process noise covariance matrix bounds the actual 

process noise.  

2.7. Fuzzy Adaptive Kalman Filter 

As stated before, the KF solution considers that the system noise is white noise, meaning 

that the noise is a Gaussian zero-mean random noise. However, in a real system, this 

assumption is not always true. The presence of coloured noise will make the system diverge 

from the optimal solution. Therefore, adaptive KF can be used to face this problem. 

However, before presenting the Fuzzy Adaptive KF used in this project, a brief review of 

fuzzy logic and adaptive Kalman Filter theory is given in the following sections. 

2.7.1. Fuzzy Logic 

The fuzzy logic is used to making decisions with estimated values when the system is 

incomplete or with uncertainties. In contrast to the classical logic theory, where the states 

are defined as 0 or 1, the fuzzy logic theory uses degrees of membership that varies from 

0 to 1. Also, frequently non-numeric values are used to facilitate the expression of rules 

and states. 
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The process for use Fuzzy logic can be described in three steps: a) fuzzification - fuzzify 

all input values into fuzzy membership functions, b) Fuzzy logic rule base - execute rules 

to compute the fuzzy output functions, and c) defuzzification - de-fuzzify the fuzzy output 

functions to get numerical values as output [50]. 

Fuzzification is the process where the inputs, numerical or crisp, are converted to fuzzy. 

By identify specific characteristics in the input values, it is possible to convert it to fuzzy 

values using membership functions. Therefore, this process may involve designate 

membership values for possible inputs. 

The Fuzzy logic rule base interpreted the fuzzy inputs thought a set of rules. This process 

aimed to understand the behaviour of the state of the system to provide the best solution. 

Finally, the defuzzification transforms the fuzzy value in crisp outputs values, that can be 

read and used by the system. 

2.7.2. Adaptive Kalman Filter 

The measurement noise covariance matrix R and system noise covariance matrix Q is 

usually determined by the specifications of the sensor and the characteristics of the system. 

Also, it can be more accurately defined during the development phase of the system.  

However, the R and Q may not be fully known in advance, or the optimum Kalman Filter 

tuning may vary over time due to some sensor characteristic or due to the changes in the 

expected trajectory geometry or dynamics profile. For both cases, an adaptive Kalman 

Filter may be used to correct the measurement and system noise covariances during the 

system operation. 
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Two main adaptive approaches, developed in the 70s, have been successfully used: the 

multiple model adaptive estimation (MMAE)[13] and the innovation adaptive estimation 

(IAE) [14]. They both share the same concept of using new statistical information obtained 

from the innovation to update the system and measurement noise covariance matrix in a 

systematic approach [25]. 

With the advent of artificial intelligence (AI), Neural Networks (NN) [27], [28], Fuzzy 

Logic (FL) [3], [30], and Genetic Algorithms (GA)[31][32] techniques have been used to 

adapt the covariances matrices to the real situation in a more precisely and efficiently way. 

The Fuzzy Logic highlights as a common technique used in adaptive controls to deal with 

nonlinear systems with uncertainties, which the errors can be modelled using a heuristic 

knowledge of the system, therefore, no mathematical model of the noise is needed.  

2.7.3. Fuzzy Adaptive Kalman Filter Architecture 

Usually, the Fuzzy Adaptive Kalman Filter (FAKF) consists in a standard KF with a 

feedback adaptation control, that adjust the covariances matrix Q, R, and/or the Kalman 

gain through the use of Fuzzy logic. Therefore, the differences between the 

implementations remain in three aspects: a) the chosen of the state and the definition of its 

membership functions that will be used by the FL, b) the definition of the base rules used 

by the FL, and c) how the output of the FL is applied to correct the Kalman filter.  

2.7.3.1. Criteria for choosing the FL input  

The states that will be observed by the FL must be chosen in a way that identifies when the 

KF is not optimal and/or when the system is diverging.  Looking through the equations for 

the ESKF and UFK, it is possible to see that both KF approach will give the estimated 

states (�̂�𝑘
+) and the error covariance matrix (𝑃𝑘

+).  
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The estimated states vector is given by the equation 2.41, and provide the error estimates 

for attitude, velocity, position, accelerometer bias and gyroscope bias. It gives the error of 

the INS system, that will be corrected as a feedback signal. In this case, it can be considered 

that if the predicted state presents a value bigger than the initial uncertain, given by the 

characteristics of the sensor, the system is sub-optimal. 

Therefore, it can be considered that the system is not optimal or diverging when: 

�̂�𝑘
+  ≥  𝜎𝑠𝑒𝑛𝑠𝑜𝑟 (2.70) 

where 𝜎𝑠𝑒𝑛𝑠𝑜𝑟 is the standard deviation of the sensor converted to the state of �̂�𝑘
+.  

However, this value can be too broad, once the KF can be not optimal with values much 

smaller than the expected by equation 2.70. Therefore, a study of the system performance 

is needed to determine the values that can identify sub-optimal behaviour. 

To define if the system is not optimal or diverging by observing the error covariance matrix 

(𝑃𝑘
+), two situations must be considered: the apparent divergence and the true divergence, 

as discussed in section 2.6. Figure 2-9 showed the difference in the error covariance values 

between an optimal, a true divergence and an apparent divergence KF.  

When the system is truly diverging, it is easy to identify it by analyzing the rate of change 

of the error covariance matrix. However, it is not trivial to determine when the system is 

facing an apparent diverging. To do so, the expected behaviour of the system must be 

known. This can be done by fully characterizing the system during optimal operation, or 

by creating a parallel KF that has in the input the expected noise signal artificially created.  
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2.7.3.2. Membership Functions 

After defined the inputs to be observed, they must be mapped into their respective fuzzy 

sets. The fuzzy sets describe how much an input value meets the criteria specified for the 

Fuzzy logic. This is done in terms of membership functions, which will map the input in a 

universe from zero to one, considering different shapes, chosen in a way that best describes 

the distribution of the data. Although there are some techniques to assign membership 

function to fuzzy sets, the intuition is usually used. 

Figure 2-10 shows different shapes of membership functions that are usually chosen. 

However, the shape is not so important as it is the placement of the curves on the universe, 

the number of curves, and the curves overlapping [51]. 

 

 

Figure 2-10 - Different shapes of Membership Function: Gaussian (left), Triangular 

(right), and Trapezoidal (down) 
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2.7.3.3. Criteria for base rules definition  

The Fuzzy based rule uses a deductive form described as the IF-THEN rule base. It 

expresses an inference such that if one fact is known, it is possible to infer a conclusion. 

Therefore, the generical base rule for a Fuzzy Logic system can be expressed as: 

𝐼𝐹 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 (𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡), 𝑇𝐻𝐸𝑁 𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 (𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) (2.71) 

Usually, it is necessary to obtain an overall conclusion from more than one premises. This 

process is known as aggregation, which can be done by a conjunctive or disjunctive system 

of rules. In conjunctive systems, the rules are connected by “AND” logical conjunction; in 

this case, the system must be jointly satisfied. In disjunctive systems, the rules are 

connected by “OR” logical conjunction; in this case, the system must be individually 

satisfied. 

If the KF output �̂�𝑘
+ and 𝑃𝑘

+ are used as premises, the base rule will involve aggregation. 

The type of aggregation used will be defined by analyzing the system and determine if the 

KF is not optimal when both premises are satisfied or when any of the two premises are 

satisfied. 

2.7.3.4. Criteria for apply the FL output  

If we consider that the divergences in the KF come from unmodeled noise or changes in 

the measurement (R) and system (Q) covariance noises, the use of FL output to correct 

these noise models is the straightforward solution. However, if the predicted error 

covariance, and hence the Kalman gain, are near zero, changes in the R and Q that does 

not bring the Kalman gain to a higher value, will cause a small effect in the system. 
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Acc. to Lewis et. all [48], there are two methodologies to prevent KF divergence: Fictitious 

process noise injection and exponential data weighting. The two methodologies were 

discussed in section 2.6.  

For the exponential data weighting, the FL output can be used to regulate the weighting 

parameter - alpha. And, for the process noise injection, the FL output can be used to enlarge 

the system noise covariance matrix.  

The approach used to correct the KF will be defined by analyzing the behaviour of the 

system when each of the two methodologies is used.   
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3.  Methodology  

This chapter provides the methodology used in this project and will be separated as follow:  

Section 3.1 describes the INS model, and it is divided into three topics, as following: a) 

generation of the navigation profile with attitude, position, and velocity; b) raw gyroscope 

and accelerometer data creation, by the use of inverse kinematics; and c) determination of 

the navigation profile by using an INS dynamic model, having as input the raw gyroscope, 

the raw accelerometer, and a defined initial position, velocity, and attitude. 

Section 3.2 shows the INS/GNSS integration using ESKF and UKF, and is divided in a) 

generation of the raw GNSS data; b) white noise and coloured noise addition to the raw 

IMU and GNSS; c) INS/GNSS integration using ESKF and UKF, including the system 

initialization and the definition of the system and measurement covariance matrix. 

Finally, section 3.3 describes the development of the Fuzzy logic adaptive KF. 

A general view of the proposed system is presented in Figure 3-1. 
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Figure 3-1 - General view of the proposed methodology 

 

3.1. INS Model 

Using MATLAB software with the aerospace toolbox, a motion profile of an object 

performing 3D navigation can be created. This motion profile may provide the Attitude, 

Position, and Velocity states, making the generation of the raw IMU data possible. With the 

raw IMU data, which is the 3-dimensional accelerometer and gyroscope sensor data, it is 
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possible to apply an INS dynamic model to compare the ground-true motion and the 

obtained motion aimed to validate de model INS. Figure 3-2 presents the general diagram 

for these steps.  

 

3.1.1. Navigation profile generation 

Two navigation profiles of an object performing 3D navigation were created. The first one 

considered that no force is applied in the object for a navigation of 1000 seconds, so the 

accelerometer and gyroscope measurements should be equal to zero, maintain the initial 

attitude and velocity throw all time. This navigation profile was simulated aimed to check 

Define an initial Position, Velocity, and 

Orientation states and generate a 

navigation profile  

Obtain the Attitude, Position and 

Velocity of the navigation generated 

Obtain the raw gyroscope and 

accelerometer data by inverse 
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input the initial condition and the raw 

gyroscope and accelerometer data 

Obtain a new position, velocity and 

attitude obtained by INS dynamic model   

Comparation between the true motion 

and the obtained motion aimed to 
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Figure 3-2 - General diagram for the INS 

Model 
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the error between the true navigation and the calculated when no dynamic movement is 

present. 

The initial attitude was defined as 5° in roll, -5° in pitch, and 0° in yaw. The initial velocity 

was defined as 1m/s in north, -1m/s the east and 0 m/s in down. The position, velocity and 

attitude profiles in the NED frame are presented in Figure 3-3. 

 

Figure 3-3 - Position, velocity and attitude profiles in NED frame for the first navigation 

profile. 
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For the second navigation profile, the movement was generated by the Matlab’s function 

“kinematicTrajectory”, considering a navigation of 3600 seconds with a radio of 15,000 

m, a climb rate of 0.5 m/s, and an initial yaw and pitch of 90 and 10 degrees respectively 

[52]. The navigation was done by defining a constant angular velocity and a constant 

acceleration so that the movement describes a spiralling circular trajectory. The gravity, 

Earth rotation rate and transport rate were considered. The position, velocity and attitude 

profiles in the NED frame are presented in Figure 3-4.  

 

 

Figure 3-4 - Position, velocity, and attitude profiles in NED frame for the second 

navigation profile. 
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After obtained the navigation profile in the NED coordinate frame, an initial state in the 

ECEF frame was chosen, and the profile was transformed from NED to ECEF coordinate 

system following the methodology described in section 2.1.5.2. The initial position was 

defined as: 

a) Initial Latitude: 45.38°; 

b) Initial Longitude: -75.70°; and 

c) Initial altitude: 66 m (in relation to the ocean level); 

The code used to generate the navigation profile and to perform the NED to ECEF 

transformation are available in Appendix E.2. 

3.1.2. Gyroscope and accelerometer raw data generation 

Acc. to Grove [1], the typical IMU sampling time is 100 Hz, so this value was considered 

in the model. 

The raw gyroscope and accelerometer data were generated by applying the equations 

presented in section 2.2.2 in the generated data described previously. The raw gyroscope 

data was determined by calculating the rotation difference between two consecutive DCMs 

and then divide by sampling period. The raw accelerometer data was obtained by 

performing the derivative of the velocity in the local frame. Both the gyroscope and 

accelerometer data were compensated by the gravity, Coriolis effect, Earth rotation rate, 

and transport rate. 

The code used to generate the raw gyroscope and accelerometer data is available in 

Appendix E.3. 
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3.1.3. INS dynamic model 

The INS dynamic model uses the raw IMU data and an initial position, velocity, and 

attitude, to generate a 3D navigation profile with the position, velocity, and attitude. This 

process will be done using the approach and equations presented in section 2.2 and 

considering the same implementation rate as the IMU, which is 100Hz. 

The code used to generate the navigation profile, using the raw gyroscope and 

accelerometer data, is available in Appendix F.1. 

3.2. INS/GNSS integration  

The INS/GNSS integration was done by the use of the software MATLAB and 

SIMULINK. The MATLAB was used to create the functions that describe the INS and the 

KF models. The SIMULINK was used to link the models, to define the inputs, and to show 

the outputs.  

3.2.1. GNSS raw data generation 

In this project, the raw GNSS data will be considered as the position and velocity generated 

in the ECEF coordinate frame, as described in section 3.1.1., with a Gaussian white noise 

added to simulate the GNSS uncertainties. Acc. to Grove [1], the typical GNSS sampling 

time is 1 Hz, value considered in the model. 

For the GNSS noise model, it was considered that the estimated pseudo-range and pseudo-

range rate errors will cause a standard deviation of 𝜎𝑝 = 5𝑚 in the position and of 𝜎𝑣 =

0.1𝑚/𝑠 in the velocity. Therefore, a Gaussian white noise signal, considering these 
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variances, were added in the ground true position and velocity generated, to simulate the 

noisy GNSS raw data. 

3.2.2. IMU Noise Model 

In the present work, it will be considered a tactical-grade IMU, which the error 

characteristics presented in Table 3 for the gyroscope and in Table 4 for the accelerometer. 

The errors values were defined based on the commercial IMU Honeywell HG1700 [53]–

[55].  

Table 3 – Tactical-grade gyroscope error 

Gyroscope error Factory unit Used value unit 

Bias  10 °/ℎ𝑟 5𝑥10−5 𝑟𝑎𝑑/𝑠 

Random-noise SD 0.01 °/√ℎ𝑟 5𝑥10−6 𝑟𝑎𝑑/√𝑠 

Scale Factor 400 ppm 4𝑥10−4 

Cross-Coupling 300 ppm 3𝑥10−4 

G-dependent biases 1 °/ℎ𝑟/𝑔 0.5𝑥10−6 𝑟𝑎𝑑 − 𝑠𝑒𝑐/𝑚 

Table 4 - Tactical-grade accelerometer error 

Accelerometer error Factory unit Used value unit 

Bias  1 𝑚𝑔 1𝑥10−2 𝑚/𝑠2 

Random-noise SD 100 𝜇𝑔/√𝐻𝑧 1𝑥10−3 𝑚/𝑠1.5 

Scale Factor 500 ppm 5𝑥10−4 

Cross-Coupling 300 ppm 3𝑥10−4 
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The errors and noises were applied in the simulated IMU, following the model described 

in section 2.2.3.1 to create a new noisy sensor signal, which will be used in the INS 

solution.  

Firstly, using equation 2.27, a system where 𝑤𝑔 and 𝑤𝑎 are Gaussian white random noise 

was created and tuned to provide an optimal KF estimation.  

Secondly, a coloured noise was applied to the white noise 𝑤𝑔 and 𝑤𝑎 using a 1/𝑓 filter. 

This provided a 1/𝑓 flicker noise in the IMU sensors measurements. In this case, no other 

parameters were changed in the KF, which was tuned considering Gaussian white noise. 

The SIMULINK model used to generate the noisy IMU raw data is available in Appendix 

G.1. 

3.2.3. Loosely Coupled INS/GNSS system 

To integrate the GNSS with the INS system, an Error Feedback KF was applied, considering 

a loosely coupled INS/GNSS system. The Error Feedback means that the estimated position 

errors, velocity errors, attitude errors, and any estimation error in the IMU sensor, such as 

biases, are feedback from the KF solution to the INS, aimed to correct the INS states.  
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The feedback correction occurs on each Kalman Filter iteration. The loosely coupled 

designation means that the KF will use both the GNSS position and velocity solution as the 

measurement inputs to perform the integration. Figure 3-5 shows the architecture 

considered. 

For perform the GNSS/INS integration, two types of KF was considered, the ESKF as 

described in section 2.5.2, and the UKF as described in section 2.5.3. The MATLAB 

functions for both KF types are given in Appendix F.2 for the ESKF model and in Appendix 

F.3 for the UKF model. 

The SIMULINK model for the INS/GNSS integrated system is given in Appendix G.2. 

3.2.3.1. System initialization 

In the initial attitude, position, and velocity, uncertainty must be considered to simulate the 

system properly. For the position and velocity, the initial uncertainty values can be given 

Figure 3-5 - Loosely coupled INS/GNSS system with the 

use of Error Feedback Extended Kalman Filter 
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by the GNSS measurements. Therefore, its uncertainties are proportional to the GNSS 

position and velocity standard deviation, as presented in section 3.2.1.  

For defining the initial attitude, two processes are usually applied: a levelling process and 

a gyrocompass process. The levelling process initializes the roll and pitch attitudes by 

considering that during the initialization, the INS is stationary, so the accelerometers will 

measure only the gravity force, which can be considered in the down direction of the 

Earth’s surface. The gyrocompass process initializes the yaw by considering that the only 

rotational movement that the gyroscope senses are the Earth rotation, which is in the z-

direction of an ECEF frame. By measuring this rotation, the yaw can be determined. 

Therefore, considering a tactical-grade IMU, it was considered a 1 mrad initial attitude 

error standard deviation. 

The initial error covariance matrix P represents the uncertainties of the initial state for the 

attitude, position, and velocity, as described above, and the accelerometer and gyroscope 

biases described in section 3.2.2. 

Therefore, the initial P is defined as follows: 

𝑃0 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1𝑥10−3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1𝑥10−3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1𝑥10−3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5𝑥10−5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 5𝑥10−5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5𝑥10−5 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
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The SIMULINK model for the INS/GNSS system initialization is given in Appendix G.3. 

3.2.3.2. System and Measurement Covariance Matrices 

The ESKF and UKF were tuned to provide an optimal solution when 𝑤𝑔 and 𝑤𝑎 are 

Gaussian white random noise. This means that the system and the measurement covariance 

matrices were tuned to give the smaller navigation error. 

The measurement covariance matrix was defined according to equation 2.45, where 𝑤𝑝 

and 𝑤𝑣 are, respectively, the position and velocity GNSS variance. Considering that the 

noises are independent of each other and that the standard deviation of GNSS position was 

defined as 𝜎𝑝 = 5𝑚 and of GNSS velocity as 𝜎𝑣 = 0.1𝑚/𝑠, the variance is just the square 

of the standard deviation. Therefore, the measurement covariance matrix for both ESKF and 

UKF was defined as: 

𝑅𝑘 =

[
 
 
 
 
 
5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1]

 
 
 
 
 
2

 

The system covariance matrix was defined according to equation 2.40, Where 𝑆𝑔𝑟 and 𝑆𝑎𝑟 

are the gyro and accelerometer random noise PSD respectively; and the 𝑆𝑔𝑏𝑑 and 𝑆𝑎𝑏𝑑 are 

the gyro and accelerometer bias variation PSD respectively. 

The gyro and accelerometer random noise PSD are the square of the random noise SD,  

obtained by Table 3 and Table 4, multiply by 𝑑𝑡. The gyro and accelerometer bias variation 

PSD were tuned to be the lower value possible to the KF presents the minimum error in 

the navigation solution. Therefore, the system covariance matrix values were defined as: 
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a) 𝑆𝑔𝑟 = (5𝑥10
−6)2 𝑟𝑎𝑑2𝑠−1  

b) 𝑆𝑎𝑟 = (1𝑥10−3)2 𝑚2𝑠−3  

c) 𝑆𝑔𝑏𝑑 = (1𝑥10
−8)2 𝑟𝑎𝑑2𝑠−3   

d) 𝑆𝑎𝑏𝑑 = (1𝑥10
−5)2 𝑚2𝑠−5  

Once errors such as the cross-coupling, scale factor, and g-dependent were introduced in 

the system, but not modelled as states in the KF, their effects may be compensated by 

increasing the gyro and accelerometer bias variation PSD. Therefore, to maintain KF 

stability, these errors approximations must over bound their impact on the KF states. 

3.3. Fuzzy Logic 

Before defining the Fuzzy Logic implantation approach, some analyses were done in the 

system with coloured noise aimed to determine the KF states that will be observed by the 

FL and the methodology to correct the KF. These analyses are presented in Appendix B 

and Appendix C. 

In Appendix B it is demonstrated that the application of an exponential weighted parameter 

in a matrix form, which allows weighting the position (𝛼𝑝) and velocity (𝛼𝑣) individually 

while not affecting the other states, brings the best solution for the FL weighted KF 

implementation. 

In Appendix C, it is demonstrated that for the fuzzification, the best KF states do be 

observed are the error covariance and the residuals. The error covariance observation will 

indicate if the KF is in steady-state or not, and the residuals will show the error peaks in 

the determination of the position and velocity states. 
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The study for choosing the methodology used by the FL to correct the KF are presented in 

Appendix C.2. It is showed that the exponentially weighted approach achieves better 

results before the system reaches the steady-state - when the error covariance is high, and 

the fictitious noise injection approach showed better results when the system is in steady-

state.  

Based on these analyses, a novel FLAC implementation methodology was defined as a 

hybrid solution where the Fuzzy Logic observes the error covariance and the residuals from 

the KF solution, applying an exponentially weighted correction when the error covariance 

matrix is high, and a process noise injection when the system is in steady-state, arise as the 

best approach. 

3.3.1. Fuzzy Logic Implementation 

The fuzzy logic is used to adjust an exponential weighted value 𝛼, and a process noise 

injection β in the KF, as discussed in section 2.6. This means that a Fuzzy logic adaptive 

system (FLAS) is used to adjust the noise strengths in the KF model. Figure 3-6 shows the 

architecture considered. 

The exponential weighted value 𝛼 is applied in the KF solution as described in section 

2.6.1, and the process noise injection β is used in the KF solution as described in section 

2.6.2. 



 

85 

 

 
Figure 3-6 - FLAS applied in the Loosely Coupled GNSS/INS System 

 

For the Fuzzy logic, it was considered two inputs, the residuals (𝛿𝑧) and the covariance of 

residuals matrix (𝑃) using the conjunction rule “AND”, two outputs (α and β), and nine 

rules as below: 

1) If 𝑃 is small and 𝛿𝑧 is small, then α is zero and β is small; 

2) If 𝑃 is small and 𝛿𝑧 is medium, then α is zero and β is large; 

3) If 𝑃 is small and 𝛿𝑧 is large, then α is zero and β is large; 

4) If 𝑃 is medium and 𝛿𝑧 is small, then α is small and β is small; 

5) If 𝑃 is medium and 𝛿𝑧 is medium, then α is small and β is medium; 

6) If 𝑃 is medium and 𝛿𝑧 is large, then α is medium and β is large;  

7) If 𝑃 is large and 𝛿𝑧 is small, then α is large and β is zero; 

8) If 𝑃 is large and 𝛿𝑧 is medium, then α is medium and β is zero; and 

9) If 𝑃 is large and 𝛿𝑧 is large, then α is small and β is small. 
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The Fuzzy Logic will be applied individually for each measurement state available, which 

is 6 in the considered system – 3 for position and 3 for velocity. The membership functions 

for the input and output variable are present in Table 5 and Table 6, respectively. 

For Table 6, the values are the same for the correction in the position and the velocity. 

The SIMULINK model for the FL implementation is given in Appendix G.4. 

Table 5 – Membership functions for input variables 

 Position Velocity 

P 

  

𝛿𝑧 

  

 

  



 

87 

 

Table 6 – Membership functions for output variables 

α β 
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4.  Simulation Results and Discussions  

This chapter provides the simulation results and is divided as follows:  

Section 4.1 describes the INS stand-alone results for the noise-free IMU, showing the 

results for two situations. The first one considered that no force is applied in the object for 

navigation of 1000 seconds. And the second, considering a realistic case of o object 

performing a navigation over 3600 seconds. 

Section 4.2 shows the noise IMU and GNSS, and its effect in the error between the true 

ground navigation and the INS and GNSS alone solution. 

Section 4.3 shows the results for the INS/GNSS integration using ESKF for two situations: 

system with white noise and system with coloured noise.  

Section 4.4 shows the results for the INS/GNSS integration using UKF for two situations: 

system with white noise and system with coloured noise.  

Section 4.5 describes the results for the Fuzzy logic adaptive KF. 

And section 4.6 makes a comparison between the ESKF and UKF. 

4.1. INS Simulation 

To check the INS dynamic model, the navigation profile was first simulated, considering a 

noise-free IMU. The error measurements between the true navigation and the INS 

navigation solution are presented in Figure 4-1 for the first navigation generated -  

considered that no force is applied in the object, and in Figure 4-2 for the second navigation 

– the navigation profile used for the KF implementation. 
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Figure 4-1 - Error between the ground-true and the INS solution for the navigation with 

no force applied 
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Figure 4-2 - Error between the ground-true navigation and the INS navigation solution 

for the realistic navigation generated 

 

The results show a good coupling between the ground-true and INS solution for the 

attitude, velocity, and position with a small drifty between the true and the calculated 

navigation. 

The errors between the ground-true and the INS solution are related to the motion profile 

and errors that are introduced and propagated by the numerical derivations and integrations 

applied in the INS dynamic model, once discrete-time is considered. Therefore, it is 

expected that the errors become more significant in a navigation showing a high dynamic 

profile. This can be verified by comparing the Figure 4-1 and Figure 4-2, in which the 

navigation profile with no acceleration and angular velocity - first navigation, shows a 
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smaller error in the attitude, velocity, and position when compared with the second 

navigation profile, where acceleration and angular velocity are present. 

4.2. Noisy IMU and GNSS Data 

Following the methodology described in section 3.2.2, noises and bias were added in the 

IMU. Figure 4-3 presents the noisy and the noise-free y-axis accelerometer, and Figure 4-4 

presents the noisy and the noise-free y-axis gyroscope. By these figures, it is possible to 

see the effect into the sensors signals by the introduction of noises. 

 
Figure 4-3 - Noise-free (left) and noise (right) y-axis accelerometer data 

 

 
Figure 4-4 - Noise-free (left) and noisy (right) y-axis gyroscope data 
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Two identical systems were created, in which the only difference between them is that in 

the first one only Gaussian white noise was added, and, in the second system, coloured 

noise was considered in the place of the white noise. Figure 4-5 shows the white and 

coloured noise variance over the time for the y-axis gyroscope considering two situations: 

the firsts 20s and the full motion of 3600s. By this figure, it is possible to observe that the 

coloured noise will present a higher variance, which is expected considering the change in 

the mean from the zero value – white noise, to other values – coloured noise.  

It is also possible to see that the variance for the coloured noise will rapidly go to an 

elevated level. Considering that the IMU is providing measurements at a frequency of 

100Hz, it will take around 50 measures (0.5 seconds) for the variance of the coloured noise 

be higher than for the white noise. Furthermore, it is also noteworthy that the variance of 

the coloured noise will be changing over the time, and the white noise, on the other hand, 

will become constant after a brief period of time. 

 
Figure 4-5 - White and coloured noise variance over the time for the gyroscope 

considering the firsts 20s (left) and the full motion of 3600s (right) 
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After applying the noise and bias into the IMU, following the methodology described in 

section 3.2.2, a new INS was simulated aimed to verify the influence of these small errors 

in the final attitude, position and velocity determination. 

Figure 4-6 shows the error between the true-ground navigation and the INS navigation 

solution obtained by the noisy sensors considering the presence of gaussian white noise.  

 
Figure 4-6 – Attitude, Position, and Velocity errors for the INS-alone solution for a noisy 

IMU 

 

When Figure 4-6 is compared against Figure 4-2, it is possible to see the substantial effect 

caused in the INS-alone navigation solution by the small errors introduced in the IMU. 

This occurs because the INS suffer degradation in long-term navigation as the errors 
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presented in the sensor are accumulated over time and integrated through the navigation 

equations. 

To add noise to the GNSS solution, the methodology described in section 3.2.1 was 

considered. This led to a final solution where the GNSS position and velocity are always 

following the ground-true position and velocity with a standard deviation. Figure 4-7 shows 

the error between the true-ground navigation and the GNSS-alone navigation solution 

obtained by the noisy sensors. 

  
Figure 4-7 - Position and Velocity errors for the GNSS-alone solution for a noise GNSS 

 

The INS show a low short-term noise, however, suffer degradation in long-term navigation. 

On the other hand, the GNSS provides good accuracy for long-term navigation. However, 

its short-term errors are high, and the standard GNSS does not provide attitude.  

Therefore, the fusion of these technologies can benefit both, providing a navigation 

solution with high accuracy in long- and short-term.  
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4.3. ESKF based method  

This section is intended to show the ESKF based method. First, the results for the GNSS/ 

INS integration considering both the IMU with white and coloured noise are presented. 

And secondly, the ESKF states outputs are compared aimed to identify the states that best 

reflect the divergences caused by the coloured noise introduction.  

The ESKF was modelled considering the methodology described in sections 2.5.2 and 

3.2.3, using the navigation profile shown in Figure 3-4. 

4.3.1. White and Coloured Noise ESKF Solution  

Figure 4-8 present the attitude error between the true-ground and the INS/GNSS integration 

using ESKF with white and coloured noise. 

Figure 4-9 present the position error between the true-ground and the INS/GNSS 

integration using ESKF with white and coloured noise. 

Figure 4-10 present the velocity error between the true-ground and the INS/GNSS 

integration using ESKF with white and coloured noise. 
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ESKF with white noise ESKF with coloured noise 

  
Figure 4-8 - Attitude error between the true-ground and the INS/GNSS integration using 

ESKF with white (left) and coloured (right) noise 

ESKF with white noise ESKF with coloured noise 

  
Figure 4-9 - Position error between the true-ground and the INS/GNSS integration using 

ESKF with white (left) and coloured (right) noise 

ESKF with white noise ESKF with coloured noise 

  
Figure 4-10 - Velocity error between the true-ground and the INS/GNSS integration 

using ESKF with white (left) and coloured (right) noise  



 

97 

 

 

By the results present in Figure 4-8 through Figure 4-10, it is possible to confirm the 

improvement in the attitude, position, and velocity determination using ESKF rather than 

the INS or GNSS alone solution, which the results were presented in section 4.2.  

For the attitude, although the ESKF solution shows a high error in the beginner, the 

tendency is that in long navigations, the errors are maintained at a low level. The INS-alone 

shows a smaller attitude error in the beginner of the navigation. However, the error value 

demonstrates a tendency to grow. Therefore, the accumulated error in the INS-alone 

attitude is in the range of 17° after 3600 seconds of navigation. In the ESKF solution, the 

final attitude error remains between +/- 0.2° for the system with white noise and between 

+/- 3° for the system with coloured noise after the system achieves the stability.  

For the position, the accumulated error in the INS-alone position is in the range of 5x105 

m after 3600 seconds of navigation; the GNSS-alone solution shows a deviation between 

+/- 15 m; and in the ESKF solution, the final position error remains between +/- 3 m for 

the system with white noise and between +/-8 m for the system with coloured noise.  

For the velocity, the accumulated error in the INS-alone are in the range of 1500 m/s after 

3600 seconds of navigation; the GNSS-alone solution shows a deviation between +/- 0.4 

m/s; and in the ESKF solution, the final velocity error is between +/- 0.06 m/s for the 

system with white noise and between +/-0.8 m/s for the system with coloured noise. 

The results also show the effect in the ESKF solution when coloured noise is present in the 

IMU. Although the introduction of this noise brings small changes in the INS-alone 

solution, the coloured noise makes the ESKF system achieve a solution that converges to 
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a large bound then the solution reached when only Gaussian white noise is present. In this 

case, the states that benefited from the ESKF solution are the attitude and the position, once 

the ESKF solution for the velocity is worst then the GNSS-alone solution. 

The bias correction for the gyroscope and accelerometer are presented in Figure 4-11 and 

Figure 4-12, respectively, using ESKF with white and coloured noise. 

ESKF with white noise ESKF with coloured noise 

  
Figure 4-11 – Gyroscope bias correction given by the ESKF with white (left) and 

coloured (right) noise 

ESKF with white noise ESKF with coloured noise 

  
Figure 4-12 - Accelerometer bias correction given by the ESKF with white (left) and 

coloured (right) noise 

Figure 4-11 shows that both ESKF with white and coloured noise could predict correctly 

the bias of 5𝑥10−5 𝑟𝑎𝑑/𝑠 introduced in the gyroscope. However, when coloured noise is 
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present, the system faces a higher instability at the initialization and needs more time to 

achieve the correct bias value. 

For the accelerometer bias correction, it is possible to see that for the ESKF with white 

noise the system can get close to the correct bias of 1𝑥10−2 𝑚/𝑠2. However, when 

coloured noise is present, the system faces a higher instability and achieve a wrong bias 

prediction for the z-axis. According to Grove [1], because of the high effect of the gravity 

in the accelerometer measurements, its effects can be absorbed by the z-axis accelerometer 

bias states leading the KF to determine a wrong bias value. 

4.3.2. White and Coloured Noise ESKF states  

The variances of the state estimates are given by the diagonal elements of the error 

covariance matrix. 

Figure 4-13 presents the a posteriori variance for Attitude, Position, and Velocity states, 

using ESKF with white and coloured noise.  

Figure 4-14 presents the a posteriori variance for the gyroscope and accelerometer bias 

states, using ESKF with white and coloured noise.  

The results show that the variance converges for all states. This indicates that the noises 

are corrected modelled. Comparing the system with white noise against the system with 

coloured noise, no apparent divergence is found when the coloured noise is introduced. 

The only effect observed is a small instability in the firsts 1000 seconds for the velocity 

and accelerometer bias error covariance, in the system with coloured noise. 
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ESKF with white noise ESKF with coloured noise 

  
Figure 4-13 – Variance for Attitude, Position, and Velocity states considering the ESKF 

with white (left) and coloured (right) noise 
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ESKF with white noise ESKF with coloured noise 

  
Figure 4-14 - Variance for the gyroscope and accelerometer bias states considering the 

ESKF with white (left) and coloured (right) noise 

Comparing the variances of the states estimates to the true-ground error, presented in 

section 4.3.1, it is possible to infer that the noise introduced in the system, by the 

unmodeled coloured noise, is enough to lead the system to navigation solution with a higher 

error bound. However, it is not enough to cause any kind of KF divergence in the error 

covariance. 

As a coloured noise is a change of the noise PSD over time, probably the system was able 

to achieve stability before the noise deviates from the zero mean enough to make the system 

diverge.  
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Figure 4-15 present the residuals for Attitude, Position, and Velocity, using ESKF with 

white and coloured noise. Figure 4-16 presents the residuals for the gyroscope and 

accelerometer bias, using ESKF with white and coloured noise. 

ESKF with white noise ESKF with coloured noise 

  
Figure 4-15 – KF residuals for Attitude, Position, and Velocity considering the ESKF 

with white (left) and coloured (right) noise 
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ESKF with white noise ESKF with coloured noise 

  
Figure 4-16 - KF residuals for gyroscope and accelerometer bias considering the ESKF 

with white (left) and coloured (right) noise 

The residual represents the errors remaining in the system after the corrections done by the 

Kalman filter. The state vector residual is given by the difference between the true state 

vector and the Kalman filter state estimates. In an error-state implementation, the true state 

vector is always zero due to the feedback corrections. Therefore, the residuals are obtained 

simply by reversing the sign of the KF state estimates. 

The residuals show a significant difference between the system with white and with 

coloured noises. The residuals values for the system with the coloured noise is in the order 

of twice bigger than the values obtained for the system with white noise. These results 



 

104 

 

show that the KF is mistaken by the coloured noise, making the KF correct the INS 

excessively. 

When the Kalman filter is designed to the optimal operation with white noise, a decrease 

in the error covariance will be accompanied by a reduction in the corresponding state 

residual. However, when coloured noise is introduced, it can result in an error covariance 

smaller than the corresponding state residuals or even in a growing residual, causing the 

KF divergence. 

Figure 4-17 presents the Kalman gain for the position and velocity states, considering the 

ESKF with white and coloured noise. 

ESKF with white noise ESKF with coloured noise 

  
Figure 4-17 – Kalman Gain for Position and Velocity considering the ESKF with white 

(left) and coloured (right) noise 
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The Kalman gain results show similar behaviour as the state estimates variance, where the 

minimum gain, reached when the system achieves the steady-state, are visually the same 

for the system with white and coloured noise. The only effect observed is a small instability 

in the firsts 1000 seconds for the Kalman Gain in the velocity state for the system with 

coloured noise. 

Therefore, the residuals were identified as the state that best represents the high error bound 

showed for the ESKF navigation solution when coloured noise is introduced in the system.  

One advantage in using the Error-State Kalman Filter is that there is no need to calculate 

the covariance of the state estimates to identify when the KF is presenting some instability. 

The residuals are already providing the error of the system. 

4.4. UKF Solution  

Using the same inputs, parameters, and configuration of the ESKF system, a UKF system 

in place of the ESKF system was simulated. This section is intended to show the UKF 

solution, and is divided as follows: first, the results for the GNSS/INS integration 

considering both IMUs with white and coloured noise. And secondly, the UKF states 

outputs are compared aimed to identify the states that best reflect the effect caused by the 

coloured noise introduction.  

The UKF was modelled considering the methodology described in sections 2.5.3 and 3.2.3, 

using the navigation profile shown in section 3.1.1. 
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4.4.1. White and Coloured Noise UKF Solution  

Figure 4-18 present the attitude error between the true-ground and the INS/GNSS 

integration solution using UKF with white and coloured noise. Figure 4-19 present the 

position error between the true-ground and the INS/GNSS integration solution using UKF 

with white and coloured noise. Figure 4-20 present the velocity error between the true-

ground and the INS/GNSS integration solution using UKF with white and coloured noise.  

UKF with white noise UKF with coloured noise 

  
Figure 4-18 - Attitude error between the true-ground and the INS/GNSS integration using 

UKF with white (left) and coloured (right) noise 

UKF with white noise UKF with coloured noise 

  
Figure 4-19 - Position error between the true-ground and the INS/GNSS integration using 

UKF with white (left) and coloured (right) noise 

  



 

107 

 

UKF with white noise UKF with coloured noise 

  
Figure 4-20 - Velocity error between the true-ground and the INS/GNSS integration 

using UKF with white (left) and coloured (right) noise  

 

The results present in Figure 4-18 through Figure 4-20 shows that the UKF presents similar 

results to those found using ESKF for the system with white noise, and slightly better 

outcomes for the system with coloured noise. The attitude error after the system achieve 

the stability for the UKF solution remains between +/- 0.2° for the white noise, the same 

value found for the ESKF, and between +/- 2° for the coloured noise (the value found for 

ESKF was +/- 3°).  

For the position, the UKF solution shows a final position error that remains between +/- 3 

m for the white noise and between +/-8 m for the coloured noise.  

For the velocity, the ESKF solution shows a final velocity error between +/- 0.06 m/s for 

the white noise and between +/- 0.8 m/s for the coloured noise. 

As observed in the attitude state, the position and velocity states showed a small 

improvement when UKF is used over ESKF for a system with coloured noise. Further 

discussion will be given in section 0. 
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The bias correction for the gyroscope and accelerometer are presented in Figure 4-21 and 

Figure 4-22, respectively, using UKF with white and coloured noise. 

UKF with white noise UKF with coloured noise 

  
Figure 4-21 – Gyroscope bias correction given by the UKF with white (left) and coloured 

(right) noise 

UKF with white noise UKF with coloured noise 

  
Figure 4-22 - Accelerometer bias correction given by the UKF with white (left) and 

coloured (right) noise 

Similar to the results shown for the ESKF, Figure 4-21 shows that both systems with white 

and coloured noise could correctly predict the bias of 5𝑥10−5 𝑟𝑎𝑑/𝑠 using UKF. However, 

when coloured noise is present, the system faces a higher instability at the beginning and 

needs more time to achieve the correct bias value. 
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For the accelerometer bias correction, it is possible to see that the system closely estimates 

the correct bias of 1𝑥10−2 𝑚/𝑠2. However, for the system with coloured noise, the 

predicted accelerometer bias achieves a wrong prediction for the z-axis. This effect can be 

caused by the high impact of gravity in the accelerometer measurements. 

4.4.2. White and Coloured Noise UKF states  

Figure 4-23 presents the variance for Attitude, Position, and Velocity states, using UKF 

with white and coloured noise.  

Figure 4-24 presents the variance for the gyroscope and accelerometer bias states, using 

UKF with white and coloured noise. 
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UKF with white noise UKF with coloured noise 

  
Figure 4-23 – Variance for Attitude, Position, and Velocity states considering the UKF 

with white (left) and coloured (right) noise 
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UKF with white noise UKF with coloured noise 

  
Figure 4-24 - Variance for the gyroscope and accelerometer bias state considering the 

UKF with white (left) and coloured (right) noise 

 

Figure 4-25 presents the KF residuals for Attitude, Position, and Velocity, using UKF with 

white and coloured noise.  
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UKF with white noise UKF with coloured noise 

  
Figure 4-25 – KF residuals for Attitude, Position, and Velocity considering the UKF with 

white (left) and coloured (right) noise 

Figure 4-26 presents the KF residuals for the gyroscope and accelerometer bias, using UKF 

with white and coloured noise.  
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UKF with white noise UKF with coloured noise 

  
Figure 4-26 - KF residuals for gyroscope and accelerometer bias considering the UKF 

with white (left) and coloured (right) noise 

Figure 4-27 presents the Kalman gain for the position and velocity, considering the UKF 

with white and coloured noise. 

  



 

114 

 

UKF with white noise UKF with coloured noise 

  
Figure 4-27 - Kalman Gain for Position and Velocity considering the UKF with white 

(left) and coloured (right) noise 

The results for the error covariance of the state estimates, residuals and Kalman gain 

obtained by the use of UKF are visually identical to the results for the ESKF. Therefore, 

the same analyses made in section 4.3.2 are valid for the UKF. 

A further discussion about the differences between the ESKF and UKF will be provided in 

section 4.6. 

4.5. Fuzzy Logic  

This section is intended to show the results when the Fuzzy Logic is implemented in both 

ESKF and UKF solutions and is divided as follows: first, the fuzzy logic behavior is shown. 

Secondly, the Fuzzy Logic adaptive ESKF simulation results are presented and compared 
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against the standard ESKF. And, Thirdly, the Fuzzy Logic adaptive UKF simulation results 

are presented and compared against the standard UKF.  

4.5.1. Fuzzy Logic behavior 

Figure 4-28 shows the behaviour of the Fuzzy Logic output α and β when it is applied to 

the ESKF solution with coloured noise, as discussed in section 4.3.1, following the 

methodology described in section 3.3 

Fuzzy Logic output α Fuzzy Logic output β 

  
Figure 4-28 - Fuzzy Logic output α and β for position and velocity states 

 

These results show that the Fuzzy Logic is adjusting the KF as expected, as apply an 

exponential weighted correction α when the error covariance value is high, manly during 
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the system initialization, and a fictitious process noise injection β when the system is in 

steady-state. 

4.5.2. Fuzzy Logic Adaptive ESKF 

Fuzzy Logic Adaptive ESKF applied to a system with white noise 

To check if the application of the fuzzy logic will bring any damage to an optimal system, 

the fuzzy logic adaptive ESKF was applied to the system with white noise. The results are 

presented for the INS/GNSS integration using ESKF with and without the FL correction. 

Figure 4-29 shows the error in the position, Figure 4-30 present the velocity error, and 

Figure 4-31 present the attitude error. 

Without FL correction With FL correction 

  
 

Figure 4-29 – Position error using ESKF without FL correction (left) and with FL 

correction (right)  
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Without FL correction With FL correction 

  
Figure 4-30 – Velocity error using ESKF without FL correction (left) and with FL 

correction (right) 

 

Without FL correction With FL correction 

  
Figure 4-31 – Attitude error using ESKF without FL correction (left) and with FL 

correction (right) 

 

These results show the effect of applying a Fuzzy logic adaptive ESKF solution in an 

optimal KF, where only white noise is present. It is possible to observe that, when the FL 

is used, all states are slightly damaged. For the position and velocity, the application of the 

FL enlarged the error by around 10%. For the attitude, after the system achieves the 

stability, the error without the FL was between +/- 0.2° and, with the introduction of FL 

correction, the error was elevated to +/- 0.6°. 
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Once the ESKF was tuned to present the optimal solution when only white noise is present, 

it is expected that by the use of FL, which mainly enlarge the process noise covariance 

value, the final solution would not be optimal.  

However, the degradation in the attitude, position, and velocity states caused by the use of 

FL is relatively small. Therefore, the advantages and harms caused using an FL adaptive 

approach needs to be considered to define the benefits of its application. 

Fuzzy Logic Adaptive ESKF applied to a system with coloured noise 

Considering the methodology presented in section 3.3.1, a FL adaptive ESKF was 

simulated aimed to correct the sub-optimal ESKF solution occurred when coloured noise 

is present in the IMU. The results are presented for the INS/GNSS integration using ESKF 

with and without the FL correction. Figure 4-32 shows the error in the position, Figure 

4-33 present the velocity error, and Figure 4-34 present the attitude error. 

Without FL correction With FL correction 

  
 

Figure 4-32 – Position error using ESKF without FL correction (left) and with FL 

correction (right)  
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Without FL correction With FL correction 

  
Figure 4-33 – Velocity error using ESKF without FL correction (left) and with FL 

correction (right) 

 

Without FL correction With FL correction 

  
Figure 4-34 – Attitude error using ESKF without FL correction (left) and with FL 

correction (right) 

 

These results show the effect of applying a Fuzzy logic adaptive ESKF solution in a system 

with coloured noise in the IMU. It is possible to observe a substantial improvement when 

the FL is used. In steady-state, the maximum error for the position was decreased from  +/- 

8 m to  +/- 4 m, in the velocity from +/-0.8 m/s to +/- 0.3 m/s, and in the attitude from +/- 

2.8° to +/- 2°. The overall results show that it was possible to reduce the error caused by 

the coloured noise by approximately half of the value.  
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To verify the effect of the FL application in the stability of the system, the ESKF states 

will be presented. Figure 4-35 presents the a posteriori variance for the Attitude, Position, 

and Velocity states, using ESKF with coloured noise, for the system with and without FL.  

Without FL correction With FL correction 

  
Figure 4-35 – Variance for the attitude, position, and velocity states considering the 

system without FL (left) and with FL (right) correction 
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The variance for the attitude, position, and velocity states shows that the application of the 

FL elevates the error variance value and add some instability when the system achieves the 

steady-state. This is expected, as the implementation of the FL enlarges mainly the process 

noise covariance matrix, which causes a growth in the error covariance values. The results 

also show that no true divergence is observed. Therefore, although the FL application 

enlarges the error covariance of the system, the stability of the system was maintained.  

Figure 4-36 present the residuals for Attitude, Position, and Velocity states, using ESKF 

with coloured noise for the system without and with FL correction.  

Figure 4-37 presents the residuals for the gyroscope and accelerometer bias states, using 

ESKF with coloured noise for the system without and with FL correction. 
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Without FL correction With FL correction 

   
Figure 4-36 – ESKF residuals for Attitude, Position, and Velocity considering the ESKF 

without FL correction (left) and with FL correction (right) 
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Without FL correction With FL correction 

  
Figure 4-37 - ESKF residuals for gyroscope and accelerometer bias considering the 

ESKF without FL correction (left) and with FL correction (right) 

The residuals show a significant difference between the system with and without FL 

correction. For the states that are measured by the GNSS - position and velocity, the 

residuals are slightly increased, showing that the KF is correcting the INS in a more 

weighted way. This is expected, as the application of the FL enhanced the Kalman gain for 

these states. However, for the other states – attitude, gyroscope bias, and accelerometer 

bias -, the residuals show a behaviour that is close to the optimal system. This indicates 

that the FL application brought the INS correction, for these non-measured states, close to 

the optimal values. 
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Figure 4-38 presents the Kalman gain for the position and velocity using ESKF with 

coloured noise for the system without and with FL correction. 

Without FL correction With FL correction 

  
Figure 4-38 – Kalman Gain for Position and Velocity considering the ESKF without FL 

correction (left) and with FL correction (right) 

The Kalman gain results show similar behaviour as the variance for the state estimates, as 

the FL elevates the Kalman gain value and also add some instability when the system 

achieves the steady-state. This is expected, as the application of the FL enlarged the error 

covariance value, which causes an increase in the Kalman gain. This prevents the KF to 

discounting new measurements for large k, which is precisely the main objective of the FL 

application. 
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4.5.3. Fuzzy Logic Adaptive UKF 

In the same way, as done for ESKF, as presented in the last section, a Fuzzy Logic Adaptive 

UKF was simulated to correct the sub-optimal UKF solution achieved when coloured noise 

is present. The system and the FL application parameters are the same for the ESKF and 

UFK. 

Because the results for the FL application in a system with white noise are visually the 

same for the ESKF and UKF, the results for the simulation of the FL adaptive UKF in a 

system with white noise will not be discussed. The reader can refer to the last section and 

take the ESKF results as the UKF results. 

For the system with coloured noise, the overall results are very similar to the results found 

for the ESKF and will be briefly presented.  

The results are presented for the INS/GNSS integration using UKF with and without the 

FL correction. Figure 4-39 present the position error, Figure 4-40 present the velocity error, 

and Figure 4-41 present the attitude error. 

Without FL correction With FL correction 

  
Figure 4-39 –Position error using UKF without FL correction (left) and with FL 

correction (right) 
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Without FL correction With FL correction 

  
Figure 4-40 – Velocity error using UKF without FL correction (left) and with FL 

correction (right) 

 

Without FL correction With FL correction 

  
Figure 4-41 – Attitude error using UKF without FL correction (left) and with FL 

correction (right) 

 

The results show in Figure 4-39 through Figure 4-41 indicates that the UKF present similar 

results to those found using ESKF. In steady-state, the maximum error for the position was 

decreased from  +/- 8 m to  +/- 4 m, the velocity from +/-0.8m/s to +/- 0.3 m/s, and the 

attitude from +/- 2.8° to +/- 2°. The overall results show that it was possible to reduce the 

error caused by the coloured noise by approximately half of the value. 
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Figure 4-42 presents the a posteriori variance for the Attitude, Position, and Velocity 

states, using UKF with coloured noise, for the system with and without the FL application.  

Without FL correction With FL correction 

 

 

 
Figure 4-42 – Variance for the attitude, position, and velocity states considering the 

system without FL (left) and with FL (right) correction 

Figure 4-43 present the residuals for Attitude, Position, and Velocity, using UKF with 

coloured noise for the system without and with FL correction.  
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Without FL correction With FL correction 

   

  

Figure 4-43 – UKF residuals for Attitude, Position, and Velocity considering the UKF 

without FL correction (left) and with FL correction (right) 

Figure 4-44 presents the Kalman gain for the position and velocity using UKF with 

coloured noise for the system without and with FL correction. 
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Without FL correction With FL correction 

  
Figure 4-44 – Kalman Gain for Position and Velocity considering the UKF without FL 

correction (left) and with FL correction (right) 

The results for the variance of the state estimates, residuals, and Kalman gain, obtained 

when UKF is used, are similar to the results obtained for the ESKF. Therefore, the same 

analyses made in section 4.5.2 are valid for the UKF. 

A further discussion about the differences between the ESKF and UKF will be provided in 

the next section. 
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4.6. ESKF and UKF comparison 

This section is intended to compare the results obtained by the ESKF and UKF. The results 

are discussed for the system with white noise, with coloured noise, and with the Fuzzy 

Logic correction for the coloured noise system, considering the true-ground attitude, 

position, and velocity error, the error covariance values, and the residuals. 

This section will show only the main outcomes from the ESKF and UKF simulated results. 

The results will be presented solely for the dimension that produces the highest deviation. 

The full results are available in Appendix D. The reader can refer to this Appendix to have 

an overview of the difference between ESKF and UKF simulations results. 

It is essential to highlight that all the inputs, process covariance matrix, measurement 

covariance matrix, transition matrix, and Fuzzy logic application are the same for both 

systems. Therefore, the differences observed in the outputs between the ESKF and UKF 

are solely due to its different methodology. 

4.6.1. System with white noise 

Considering the system with white noise in the IMU, the results are presented only for the 

dimension that shows the highest deviation for each state. Figure 4-45 presents the ESKF 

and UKF comparison for the attitude error. Figure 4-46 presents the comparison for the 

position and velocity error, and Figure 4-47 present the comparison for the gyroscope bias 

and accelerometer bias determination. 
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Figure 4-45 - Error between the true-ground and the INS/GNSS integration for the pitch 

Attitude  

 

 
Figure 4-46 - Error between the true-ground and the INS/GNSS integration for the Z 

position (left) and U velocity (right) 

 

 
Figure 4-47 - Accelerometer bias (left) and Gyroscope bias (right) determination 
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It is possible to observe that the states that are measured by the GNSS (position and 

velocity) present the same results for ESKF and UKF. The other states, given by the KF 

transition matrix propagation, shows a small difference between the ESKF and UKF.  

The results show that the attitude error, also shown in Figure D 1, presents the same overall 

behaviour for both KF approaches. However, the error is a little broader for the UKF. This 

same behaviour is also observed for the accelerometer bias determination.  

For the variance of the state estimation and the residuals, the only state that shows a slight 

difference between ESKF and UKF is the attitude. Figure 4-48 shows the error covariance 

and the residuals for the pitch, where it is possible to observe that the error covariance for 

the UKF reaches a small value when compared to the ESKF. A small error covariance 

means that the Kalman gain will also be lower for the UKF. Therefore, as expected, the 

residuals for the ESKF are slightly bigger. 

 
Figure 4-48 – ESKF and UKF variance (left) and the residuals (right) for the pitch error 

state 

 

The overall behaviour shows that the ESKF is a little better to determine the states that are 

not measured and show the same performance for the states that are measured.  
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However, an important note must be considered. The system was tuned to present an 

optimal behaviour using the ESKF system, and the parameters used for the process and 

measurement noise covariance matrix were passed on to the UKF. By doing slight changes 

in the process noise covariance matrix, it was possible to find slightly better results for the 

UKF than for the ESKF. 

4.6.2. System with coloured noise 

Considering the system with coloured noise in the IMU, the results are presented only for 

the dimension that gives the highest deviation for each state. Figure 4-49 shows the ESKF 

and UKF comparison for the attitude error. Figure 4-50 presents the comparison for the 

position error. Figure 4-51 presents the comparison for the velocity error. And Figure 4-52 

shows the comparison for the gyroscope bias and accelerometer bias determination. 

 
Figure 4-49 - Error between the true-ground and the INS/GNSS integration for the pitch 

Attitude  
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Figure 4-50 - Error between the true-ground and the INS/GNSS integration for the Z 

position (left) and zoom in the peak occurred around 2300 seconds (right) 

 

 
Figure 4-51 - Error between the true-ground and the INS/GNSS integration for the U 

velocity (left) and zoom in the peak occurred around 2300 seconds (right) 

 

 
Figure 4-52 - Accelerometer bias (left) and Gyroscope bias (right) determination 
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It is possible to observe that for all states, the UKF present slightly better results than the 

results for the ESKF. For the attitude, after the system achieved the steady-state, the UKF 

shows a smooth behaviour, with small peaks and with the error always remained closer to 

zero. 

For the position and velocity errors, it is also possible to observe that the values of the error 

peaks were smaller for the UKF, as it is emphasized in the zoom of Figure 4-50 and Figure 

4-51.  

For the error covariance matrix and the residuals, the states that show a slight difference 

between ESKF and UKF are the attitude and the accelerometer bias correction. Figure 4-53 

shows the error covariance and the residuals for the pitch attitude, where it is possible to 

observe the same behaviour showed for the white noise system, in which the pitch error 

variance for the UKF reach a small value when compared to the ESKF. On the other side, 

the residual for both UKF and ESKF are visually identical. 

 
Figure 4-53 – ESKF and UKF variance (left) and the residuals (right) for the pitch error 

state 
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The overall behaviour shows that the UKF present slightly better performance than the 

ESKF for all states when coloured noise is introduced. This indicates that the UKF is less 

sensitive to the disturbances caused by the coloured noise. 

4.6.3. System with coloured noise and FL correction 

Considering the system with coloured noise in the IMU and the Fuzzy Logic corrections, 

as described in section 3.3, the results are presented only for the dimension that gives the 

highest deviation for each state. Figure 4-54 shows the ESKF and UKF comparison for the 

attitude error, Figure 4-55 presents the comparison for the position error, Figure 4-56 

presents the comparison for the velocity error, and Figure 4-57 present the comparison for 

the gyroscope bias and accelerometer bias determination. 

 
Figure 4-54 - Error between the true-ground and the INS/GNSS integration for the pitch 

Attitude  
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Figure 4-55 - Error between the true-ground and the INS/GNSS integration for the Z 

position (left) and zoom in the peaks occurred around 2300 seconds (right) 

 

 
Figure 4-56 - Error between the true-ground and the INS/GNSS integration for the U 

velocity (left) and zoom in the peaks occurred around 2700 seconds (right) 

 

 
Figure 4-57 - Accelerometer bias (left) and Gyroscope bias (right) determination 
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The fuzzy logic is applied using the same membership functions, and the same values in 

both UKF and ESKF systems aimed to correct the large error bound caused by the 

introduction of the coloured noise. The comparison between these two KF implementations 

shows that the FL plays almost the same effect in both systems, bringing the true-ground 

error to a lower bound. By Figure 4-54 through Figure 4-57, it is possible to see that both 

systems present similar behaviour with just some small differences. 

For the attitude, after the system achieved the steady-state, the ESKF shows a smooth 

behaviour, with small peaks and with the error always remained closer to zero compared 

to the UKF implementation. 

For the position and velocity errors, both UKF and ESKF shows a similar behaviour, in 

which the error peaks achieved smaller values sometimes for ESKF and other times for the 

UKF implementation. Therefore, it is not possible to determine which one brings the best 

solution for the position and velocity states. 

The gyroscope and accelerometer bias determination shows that the UKF faces a higher 

instability in the starting. However, achieve the same final solution for the gyroscope bias 

determination and a slightly better solution for the accelerometer bias determination. As it 

is possible to see by Figure D 16, the UKF error covariance for these states takes longer to 

achieve the steady-state and also reach to a higher value when compared to the ESKF.  

Figure 4-58 shows the variance and the residuals for the pitch error state, where it is 

possible to observe that the error covariance for the UKF present a higher instability at the 

beginner but reach the same final value when compared to the ESKF. A higher error 

covariance means that the Kalman gain will also be higher for the UKF. Therefore, as 
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expected, the residuals for the UKF are slightly more prominent in the beginner of the 

navigation and virtually the same after the system achieve the steady-state. 

 
Figure 4-58 – ESKF and UKF error variance (left) and the residuals (right) for the pitch 

error state 

 

The overall behaviour shows that the ESKF is a little better for correcting the states that 

are not measured and show the same behaviour for the states that are measured. 

These results corroborate to show how the UKF is less sensitive to disturbances when 

compared to the ESKF. If on the one hand, this characteristic makes the UKF have a better 

result when coloured noise is present, on the other hand, its stability makes that the Fuzzy 

Logic correction plays less effect on the UKF solution, considering that the same 

methodology is used for both ESKF and UKF solutions.  

Therefore, for the UKF achieves a better solution, a Fuzzy Logic that corrects the system 

in a slight weighty way shall be considered. 
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4.7. Thesis Limitations 

The presented thesis addressed the navigation degradation caused by the introduction of 

coloured noise in a navigation system that uses KF for sensor fusion. Although different 

scenarios were considered, it is essential to determine the limitations that the proposed 

methodology has for real applications. 

• Dynamics of the system: In the present work, it was considered a navigation profile 

that is changing slowly during the time, showing a low dynamic characteristic. 

This was done in order to emphasize the effect of the coloured noise in the system. 

For a high dynamic system, the Kalman Filter would need to be retuned, and the 

values for the membership function used in the Fuzzy Logic would also need to be 

chosen accordingly. However, it is expected that the proposed methodology will 

still be valid for a highly dynamic system. 

• Real-time application: The proposed FLAC methodology uses one Fuzzy Logic 

implementation for each measurement state in the KF. Although both the Fuzzy 

Logic and the KF has been extensively used in a real-time application, the Fuzzy 

Logic application in parallel together with a KF implementation can make the 

system highly computational demanding, making it difficult for real-time 

implementation. One alternative is to use the FLAC to characterize the system and 

to define the best Kalman Gain value for the system. 

• Noise characteristics: The real noise in the IMU is challenging to be simulated and 

will be different for different sensors and different frequencies. Bias instability in 

sensors like gyroscope can be represented by a power spectrum given by 1/𝑓𝛼 

where 𝛼 ∈ (0,2), thought the 𝛼 values are usually close to 1 [56]. In the case of 
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accelerometers sensor, the coloured noise can present a power spectrum of 1/𝑓𝛼 

where 𝛼 ∈ (0,3). However, in this work, it was assumed that the 
1

𝑓
 flicker noise is 

dominant for all sensors over the full frequency range in the IMU. If the real noise 

characteristic differs largely from this assumption, both the KF and the Fuzzy 

Logic must be retuned to represent the real noise situation.  

• Sensor accuracy: In the present work it was considered a costumer grade GNSS 

and a tactical grade IMU. Especially for the GNSS it was considered a standard 

deviation of 𝜎𝑝 = 5𝑚 in the position and of 𝜎𝑣 = 0.1𝑚/𝑠 in the velocity. The 

accuracy of the final navigation solution may be enhanced by using high precision 

GNSS system which utilizes Carrier Phase measurements or by utilizing two or 

more GNSS antennas in the same platform to obtain a partial attitude solution [57]. 

• System stability: Usually, the stability of adaptive control systems should be 

analytically proved to allow its implementation. Although different methodologies 

such as Lyapunov’s direct and indirect method, describing function, and Popov’s 

method have been used to prove the stability of FLC [58], the use of Fuzzy Logic 

Adaptive Control has been avoided for applications where no risk should be run. 

The stability problem was not addressed in the present work.   
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5.  Conclusions 

This work developed a methodology to deal with a situation where the navigation solution 

determined by an Inertial Navigation System (INS) coupled with a Global Navigation 

Satellite System (GNSS) is presenting sub-optimal behaviour due to the presence of 

coloured noise in the Inertial Measurement Unit (IMU).  

First, it was shown the substantial effect caused in the INS-alone navigation solution by 

introducing small errors in the IMU. This occurs once the INS suffer degradation in long-

term navigation as the errors presented in the sensor are accumulated over time and 

integrated through the navigation equations. 

Secondly, an optimal INS/GNSS integration was developed using Error-States Kalman 

Filter (ESKF) and Unscented Kalman Filter (UKF), where white noises were the only type 

of noise presented in the system. It was confirmed the improvement in the attitude, position, 

and velocity determination using the Kalman Filter (KF) solution rather than the INS or 

GNSS alone solutions. 

Thirdly, it was shown the effect in the KF optimum solution caused by the introduction of 

coloured noise in the IMU. Although this introduction brings slight changes in the INS-

alone solution, the coloured noise makes the KF system achieve a solution that converges 

to a larger bound, showing a sub-optimal behaviour. 

The analysis done with the ESKF system and with coloured noise showed the best approach 

for the Fuzzy Logic (FL) implementation for the adaptive KF. A novel solution where the 

FL observes the error covariance and the residuals from the KF states, and apply an 

exponential weighted correction when the error covariance matrix is higher than expected, 



 

143 

 

and a process noise injection when the system is in steady-state, and the residuals are higher 

than expected, showed to be the best approach. 

Applying the Fuzzy Logic adaptive ESKF solution in the optimal KF solution with only 

white noise, it was possible to observe that, when the FL is used, all states are slightly 

damaged. Once the ESKF was tuned to present an optimal solution when only white noise 

is present, it is expected that by the use of FL, which mainly enlarge the process noise 

covariance matrix, the final solution would be degraded.  

Further, the Fuzzy logic adaptive ESKF and UKF solution was applied to the system with 

coloured noise in the IMU. It was possible to observe a substantial improvement when the 

FL is used. In steady-state, the maximum error for the position was decreased from  +/- 8 

m to  +/- 4 m, the velocity from +/-0.8m/s to +/- 0.3 m/s, and the attitude from +/- 2.8° to 

+/- 2°. The overall results show that it was possible to reduce the error caused by the 

coloured noise by approximately half of the value. 

The slight degradation in the attitude, position, and velocity states caused by the use of FL 

in an optimal KF may be accepted when considering the substantial improvement caused 

by the FL in a sub-optimal KF solution. This is important when considering practical 

application where the optimum tuning is unknown and/or where it varies over time. 

Therefore, the novel proposed FLAC implementation shows a potential to be used in 

systems were the IMU shows coloured noise, mainly for the IMUs fabricated using MEM 

technology. 
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Finally, a comparison between the results obtained by the ESKF and UKF was made for 

the system with white noise, with coloured noise, and with the Fuzzy Logic correction 

applied to the coloured noise system. 

The comparison showed that both implementation approaches have similar behaviour, with 

the UKF been slightly less sensitive to disturbances when compared to the ESKF. If on the 

one hand, this characteristic makes the UKF have a better result when coloured noise is 

present, on the other hand, its stability makes that the Fuzzy Logic correction plays less 

effect on the UKF solution, considering that the same methodology is used for both ESKF 

and UKF solutions. 

Therefore, for the UKF achieves a better solution, a Fuzzy Logic that corrects the system 

in a slight weighted way shall be considered. 
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Appendix A - Exponential Weighted UKF derivation 

Let set the model covariance matrix as weighted covariance, as follow: 

𝑅𝑘 = 𝑅 𝛼−2(𝑘+1) 

𝑄𝑘 = 𝑄 𝛼−2(𝑘+1) 
(A1) 

Where 𝛼 is the weighted parameter. Following the UKF methodology described in section 

2.5.3, the error covariance develops by: 
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Considering 𝑃𝑘
𝛼 = 𝑃𝑘

− 𝛼2𝑘 the weighted covariance matrix is now given as follows: 
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With the initial condition 𝑃0
𝛼 = 𝑃0. 

The measurement innovations covariance is given by: 
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And the cross-covariance, by: 
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Now, considering 𝑃𝑧𝑧
𝛼 = 𝑃𝑧𝑧

−
𝑘
 𝛼2𝑘 and 𝑃𝑥𝑧

𝛼 = 𝑃𝑥𝑧
−
𝑘
 𝛼2𝑘, the Kalman Gain is now given as 

follows: 
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The Kalman Gain if finally given by: 
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Appendix B -  Study on the exponential weighted parameter 

As discussed in section 2.6.1, Lewis [48] proposes the equations for an exponential 

weighted Kalman Filter. 

The proposal of this Appendix is to very the advantages to consider the weighted parameter 

𝛼 as a matrix rather than a single number, to allow weighting the position (𝛼𝑝) and velocity 

(𝛼𝑣) individually while not affecting the other states (attitude and feedback-errors). The 

reader can refer to section 2.6.1.1 for more details. 

To do so, an ESKF implementation where the IMU presents a 1/f flicker noise was 

simulated considering three different situations. First, an ESKF system with no correction. 

Secondly, an ESKF system with a FLAC correction where a single number alpha is used. 

And finally, an ESKF system with a FLAC correction where a matrix alpha is used. 

Figure B 1 presents the obtained results. The first column of Figure B 1 shows the system 

behaviour when 1/f flicker noise is dominant in the IMU, making the ESKF system reach 

a solution that converges to a large bound. In this case, the position presents a maximum 

error of +/- 5 m, the velocity a maximum error of +/- 0.7 m/s, and the attitude a maximum 

error of +/- 4°. 

The second and third columns of Figure B 1 show the effect of applying FLAC correction 

using a constant alpha and a matrix alpha, respectively. For both cases, it is possible to 

observe an improvement when compared to the non-weighted solution previously 

described. The position presents a maximum error of +/- 4 m for both alphas and the 

velocity a maximum error of +/- 0.2 m/s for the matrix alpha and +/- 0.45 m/s for the 
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constant alpha. However, it is possible to observe a considerable difference in the attitude 

determination between both methods. For the constant alpha, a high disturbance in the 

predicted altitude and gyro bias correction is observed. This is caused once the alpha is 

determined by the residual and the variance for the position state. Therefore, using this 

weighting factor to adjust other states can lead to a wrong correction. Furthermore, the use 

of a constant alpha generated a high instability in the error covariance matrix, which is not 

desirable. 

The proposed alpha in matrix form was confirmed as the best solution to deal with the 

coloured noise using FLAC weighted ESKF. This methodology leads to a final solution 

that was able to improve the navigation accuracy for all the states, preserving the stability 

of the error covariance matrix and, consequentially, the stability of the system. 
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Figure B 1- KF without correction, with FL weighted single alpha correction, and with 

FL weighted matrix alpha correction 
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Appendix C - Study on the Fuzzy Logic approach  

Appendix C.1 Identifing the Fuzzi Logic Inputs 

In section 4.3, the residuals were identified as the Kalman filter states that best represent 

the high error bound achieve for the ESKF and UKF solutions when coloured noise is 

introduced in the system. 

This appendix aims to identify how the FL should correct the KF solution. To do so, the 

residuals are compared against the error in the navigation states. The analyses are made for 

the dimension that presents the highest deviation for the attitude, showed in Figure C 1, for 

the position, showed in Figure C 2, and for the velocity, showed in Figure C 3. In these 

figures, the red line represents approximately the moment when the system achieved the 

steady-state and the red circles the points where the system achieves the higher error bound. 

Error between the true-ground and the 

INS/GNSS integration 

Residual 

  
Figure C 1 - Error between the true-ground and the INS/GNSS integration (left) and 

residuals (right) for the Attitude pitch 
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Error between the true-ground and the 

INS/GNSS integration 

Residual 

  
Figure C 2 - - Error between the true-ground and the INS/GNSS integration (left) and 

residuals (right) for the position Z 

 

Error between the true-ground and the 

INS/GNSS integration 

Residual 

  
Figure C 3- Error between the true-ground and the INS/GNSS integration (left) and 

residuals (right) for the Velocity U 

 

Figure C 1 to Figure C 3 shows that before the Kalman Filter achieves the steady-state, the 

residuals show high values. This is expected, once in the starting the variances of the state 

estimates have elevated values, allowing the Kalman Filter to make high corrections. This 

effect is also enhanced because the system is predicting the gyroscope and accelerometer 

bias at the beginning. 
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Therefore, the application of the FL must consider two stages, one in the system starts, 

where the residuals and the variances of the state estimates are elevated, and another one 

when the filter achieves the steady-state, where the residuals are high. Still, the variances 

of the state estimates are small. The identification of these two stages can be made by 

observing the error covariance matrix. 

After the system achieves the steady-state, the analyses of the points where the system 

shows the high error bound indicates that for the attitude, the high errors not necessarily 

occur when the KF outputts a high residual. Therefore, the attitude was disregarded as an 

option to be observed by the FL. 

About the position and velocity states, it is possible to observe in Figure C 2 and Figure C 

3 a coupling between the navigation errors peaks and the residuals peaks. Thus, these two 

states were chosen to be observed by the FL.  

It is worth noting that the states that will be observed by the FL are the measurement state, 

given by the error between the GNSS and INS. 

Therefore, it was defined that the FL will observe the error covariance matrix to verify if 

the KF is in steady-state or not, and the residuals to identify the error peaks, for the position 

and velocity states. 

Comparing the system with the white noise against the system with coloured noise, the 

values for the error covariance matrix and residuals for the fuzzification logic were 

identified as follows: 

Error covariance matrix: 
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• Position: steady state when P < 0.5; 

• Velocity: steady state when P < 3x10-4; 

Residuals: 

• Position: White noise system: z < 0.5. Coloured noise system: z < 1; 

• Velocity: White noise system: z < 0.01. Coloured noise system: z<0.03; 

Appendix C.2 Appling the Corrector Factor 

This section aims to identify the effect of applying a constant factor intended to correct the 

KF solution with coloured noise. To do so, two approaches were used, the exponential data 

weighting, as described in section 2.6.1, and the fictitious process noise injection, as 

described in section 2.6.2. The analyses were made for the ESKF with coloured noise in 

the IMU.  

For the exponential data weighting, three values for the weighting parameter alpha were 

chosen based on [7], as 1.02, 1.1 and 1.2. The results are shown in Table C 1 for the 

velocity U and position Z, considering the true-ground error, residual and variances of the 

state estimates. 
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Table C 1 - Results for applying a constant exponential weighted parameter Alpha 

α True-Ground Error Residuals Variance 

0 

  
 

1.02 
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1.1 

 
  

1.2 

  
 

 

Repeating section 2.6.2, for the fictitious process noise injection, the following relation 

was used to apply the FL in the KF: 

𝑄𝑘 = 𝑄𝑘 + 𝛽𝑄𝑘 (2.69) 

Where 𝛽 is the FL output from the KF. 
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Three values for the noise injection parameter beta were chosen based on [11], as 5, 10 and 

20. The results are shown in Table C 2 for the velocity U and position Z, considering the 

true-ground error, residual and variances of the state estimates. 

Table C 2 - Results for applying a constant Beta value 

β True-Ground Error Residuals Variance 

0 

   
5 
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10 

   
20 

   

 

The outcomes from Table C 1 and Table C 2 are listed bellow: 

• Both methodologies improved the KF solution, reducing the true-ground error for all 

states when applied. 

• The exponential weighted approach achieves the best solution for the position state, 

showing the smaller true-ground error and error covariance value for the 1.02 alpha. 

• The exponential weighted approach showed a small improvement for the velocity for 

the 1.02 and 1.1 alpha, and a degraded result for 1.2 alpha. 
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• The exponential weighted approach decreased the time for the system achieves the 

steady-state and decreased the initial instability for the velocity error variance. 

However, the error variance was stabilized in a higher value. 

• The injection noise approach improved the position and velocity true-ground error, 

showing significant improvement for the velocity.  

• The injection noise approach achieved a smaller error covariance value when the 

system was in steady-state. 

The overall conclusion is that the exponential weighted approach shows better results 

before the system achieve the steady-state when the error covariance is high. And the 

fictitious noise injection approach shows better results when the system is in steady-state. 

Therefore, a hybrid solution where the Fuzzy Logic apply an exponential weighted 

correction when the error covariance matrix is high, and a fictitious noise injection when 

the system is in steady-state, shows to be the best approach.  
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Appendix D - ESKF and UKF comparison 

This appendix shows the full results for the ESKF and UKF comparison. Discussion about 

these results can be found in section 0. The results are presented for the system with white 

noise, with coloured noise and with the Fuzzy Logic correction for the coloured noise 

system, considering the true-ground error, the variances of the state estimates, and the 

residuals. 

Red lines were added to the maximum and minimum value registered in some of the results 

to facilitate the visualization of the differences between the ESKF and UKF. 
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Appendix D.1 White Noise 

Appendix D.1.1 True-ground error 

ESKF UKF 

 

  
Figure D 1 – Attitude, position, and velocity error between the true-ground and the 

INS/GNSS integration using ESKF (left) and UKF (right) 
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ESKF UKF 

  

Figure D 2 - Gyroscope and accelerometer bias correction using ESKF (left) and UKF 

(right) 
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Appendix D.1.2 Error Covariance 

ESKF UKF 

  
Figure D 3 - Attitude, position, and velocity states variance using ESKF (left) and UKF 

(right) 
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ESKF UKF 

  
Figure D 4 – Gyroscope and accelerometer bias states variance using ESKF (left) and 

UKF (right) 
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Appendix D.1.3 Residuals 

ESKF UKF 

  
Figure D 5 - KF residuals for Attitude, Position, and Velocity considering the ESKF (left) 

and UKF (right) 
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ESKF UKF 

  
Figure D 6 - KF residuals for gyroscope and accelerometer bias considering the the ESKF 

(left) and UKF (right) 
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Appendix D.2 Coloured Noise 

Appendix D.2.1 True ground error 

ESKF UKF 

  
Figure D 7 – Attitude, position, and velocity error between the true-ground and the 

INS/GNSS integration using ESKF (left) and UKF (right) 
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ESKF UKF 

  

Figure D 8 - Gyroscope and accelerometer bias correction using ESKF (left) and UKF 

(right) 
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Appendix D.2.2 Error Covariance 

ESKF UKF 

 
 

 

Figure D 9 - Attitude, position, and velocity states variance using ESKF (left) and UKF 

(right) 
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ESKF UKF 

  
Figure D 10 – Gyroscope and accelerometer bias states variance using ESKF (left) and 

UKF (right) 
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Appendix D.2.3 Residuals 

ESKF UKF 

  
Figure D 11 - KF residuals for Attitude, Position, and Velocity considering the ESKF 

(left) and UKF (right) 

 

  



 

175 

 

ESKF UKF 

  
Figure D 12 - KF residuals for gyroscope and accelerometer bias considering the the 

ESKF (left) and UKF (right) 

 

  



 

176 

 

Appendix D.3 Fuzzy Logic 

Appendix D.3.1 True grund error: 

ESKF UKF 

  
Figure D 13 – Attitude, position, and velocity error between the true-ground and the 

INS/GNSS integration using ESKF (left) and UKF (right) 
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ESKF UKF 

  
Figure D 14 - Gyroscope and accelerometer bias correction using ESKF (left) and UKF 

(right) 
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Appendix D.3.2 Error Covariance 

ESKF UKF 

  
Figure D 15 - Attitude, position, and velocity states variance using ESKF (left) and UKF 

(right) 
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ESKF UKF 

  
Figure D 16 – Gyroscope and accelerometer bias states variance using ESKF (left) and 

UKF (right) 
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Appendix D.3.3 Residuals 

ESKF UKF 

  
Figure D 17 - KF residuals for Attitude, Position, and Velocity considering the ESKF 

(left) and UKF (right) 
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ESKF UKF 

  
Figure D 18 - KF residuals for gyroscope and accelerometer bias considering the the 

ESKF (left) and UKF (right) 
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Appendix E  - Motion and IMU raw data generation MATLAB Code 

This appendix contains samples of the MATLAB code used to create the motion profile 

and the raw gyroscope and accelerometer data.  

Appendix E.1 Navigation profile generation 

%%The purpose of this code is to generate a navigation profile 
%Gabriel Giannini de Cunto - Rev 04 - 11/02/2020 

   

clear all 
%____________________________________________________ 
%1 Part - Creat Navigation data in NED Frame  

%Based on the Matlab documentation available in: 

%_https://www.mathworks.com/help/nav/ref/kinematictrajectory-system-

object.html 

%___________________________ 

  
duration = 3600; % seconds 
fs = 100;         % Hz 
N = duration*fs; % number of samples 
t = ((0:(N-1))/fs)'; %sampling time 

  
radius = 15000;   % meters 
speed = 20;      % meters per second 
climbRate = 0.5;  % meters per second 
initialYaw = 90; % degrees 
Pitch = 10;      % degrees 

  
initPos = [0, 0, -66];%Initial Position 
initVel = [0, speed, climbRate];%Initial Velocity 
initOrientation = 

quaternion([initialYaw,Pitch,0],'eulerd','zyx','frame');%Initial 

Orientation 

  
%Generate the trajectory data 
trajectory = kinematicTrajectory('SampleRate',fs, ... 
    'Velocity',initVel, ... 
    'Position',initPos, ... 
    'Orientation',initOrientation); 

  
%Specify a constant acceleration and angular velocity in the body 

coordinate system. Rotate the body frame to account for the pitch. 
accBody = zeros(N,3); 
accBody(:,2) = speed^2/radius; 
accBody(:,3) = -0.06; 

  
angVelBody = zeros(N,3); 
angVelBody(:,1) = (speed/radius)/2; 
angVelBody(:,3) = speed/radius; 
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pitchRotation = quaternion([0,Pitch,0],'eulerd','zyx','frame'); 
angVelBody = rotateframe(pitchRotation,angVelBody); 
accBody = rotateframe(pitchRotation,accBody); 

  
%Call trajectory with the specified acceleration and angular velocity 

in the body coordinate system. Plot the position, orientation, and 

speed over time. 
[position, orientation, velocity] = trajectory(accBody,angVelBody); 

  
%Generate the DCM orientation 
eulerAnglesRandians = euler(orientation,'zyx','frame'); 
dcm = angle2dcm(eulerAnglesRandians(:,1), eulerAnglesRandians(:,2), 

eulerAnglesRandians(:,3),'zyx'); 

  

figure; 
plot(t,velocity(:,1),'-','LineWidth',1,'Color',[0 0 0]) 
hold on 
plot(t,velocity(:,2),'--','LineWidth',1,'Color',[0 0 0]) 
hold on 
plot(t,velocity(:,3),':','LineWidth',1.5,'Color',[0 0 0]) 
hold off 
grid on;title('Velocity','Color',[0 0 0]);xlabel('time (s)','Color',[0 

0 0]);ylabel('Velocity (m/s)','Color',[0 0 0]); 
legend('Vel North','Vel East','Vel Down'); 

  
figure; 
plot(t,position(:,1),'-','LineWidth',1,'Color',[0 0 0]) 
hold on 
plot(t,position(:,2),'--','LineWidth',1,'Color',[0 0 0]) 
hold on 
plot(t,position(:,3),':','LineWidth',1.5,'Color',[0 0 0]) 
hold off 
grid on;title('Position','Color',[0 0 0]);xlabel('time (s)','Color',[0 

0 0]);ylabel('Position (m)','Color',[0 0 0]); 
legend('Pos North','Pos East','Pos Down'); 

  
figure; 
plot(t,rad2deg(eulerAnglesRandians(:,1)),'-','LineWidth',1,'Color',[0 0 

0]) 
hold on 
plot(t,rad2deg(eulerAnglesRandians(:,2)),'--','LineWidth',1,'Color',[0 

0 0]) 
hold on 
plot(t,rad2deg(eulerAnglesRandians(:,3)),':','LineWidth',1.5,'Color',[0 

0 0]) 
hold off 
grid on;title('Attitude','Color',[0 0 0]);xlabel('time (s)','Color',[0 

0 0]);ylabel('Orientation (Deg)','Color',[0 0 0]); 
legend('Yaw','Pitch','Roll'); 
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Appendix E.2 NED to ECEF transformation 

%___________________________________________________________________ 
% Second Part- Add Earth gravity and rotation rate and perform the  

% NED to ECEF Transformation 
% Gabriel Giannini de Cunto - Rev 04 - 11/02/2020 
%_______________________________________________________________ 

  
%defining the variables 
dt = mean(diff(t)); %time interval 
Ts=dt;%To be used by Simulink 

  

  
%Initialize vectors 
lat=zeros(length(t),1);%latitude in rads 
lon=zeros(length(t),1);%longitude in rads 
h=zeros(length(t),1);%height in meters 
Roll=zeros(length(t),1); %Roll in rads 
Pitch=zeros(length(t),1); %Pitch in rads 
Yaw=zeros(length(t),1); %Yaw in rads 
ECEF_Vel=zeros(length(t),3); %Velocity in ECEF (U V W) 
ECEF_Pos=zeros(length(t),3); %Position in ECEF (X Y Z) 
Calc_gyro=zeros(length(t),3); %gyroscope mesurament in rad/s 
Calc_accel=zeros(length(t),3); %accel mesurement in m/s2 
g=zeros(length(t),3);%Gravity vector 
ECEF_DCM=zeros(3,3,length(t));%DCM in ECEF 

  
%Initial Position 
Initial_lat=deg2rad(45.38536279); 
Initial_lon=deg2rad(-75.69672883); 
Initial_h=66; 

  
%Earth Parameters 
Earth_rot = 7.292115E-5;  % Earth rotation rate (rad/s) 
Earth_rot_ECEF = [0 0 Earth_rot]; % Earth rotation in ECEF Frame 
Total_comp_l_g= 2*Earth_rot_ECEF; 
wgs84 = wgs84Ellipsoid('meters');%Define the earth model 
a = 6378137;                % WGS84 Equatorial radius in meters. 
f = 1 / 298.257223563; %WGS84 flattening 
J_2 = 1.082627E-3; %WGS84 Earth's second gravitational constant 
mu = 3.986004418E14; %WGS84 Earth gravitational constant (m^3 s^-2) 

  
% Transformation from NED to ECEF 

for i=1:length(t) 
%Calculate the Roll, Pitch and Yaw, and the latitude, longitude and 

height from NED frame 
    [lat(i,1),lon(i,1),h(i,1)] = 

ned2geodetic(position(i,1),position(i,2),position(i,3),Initial_lat,Init

ial_lon,Initial_h,wgs84,'radians'); 
% Calculate ECEF to NED coordinate transformation matrix 
    C_e_n = [-sin(lat(i,1)) * cos(lon(i,1)), -sin(lat(i,1)) * 

sin(lon(i,1)),  cos(lat(i,1));... 
                   -sin(lon(i,1)),            cos(lon(i,1)),        

0;... 
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            -cos(lat(i,1)) * cos(lon(i,1)), -cos(lat(i,1)) * 

sin(lon(i,1)), -sin(lat(i,1))]; 
    ECEF_DCM(:,:,i)= C_e_n' * dcm(:,:,i); 
     

%Calculate Pos and Vel in ECEF frame. 
    [ECEF_Vel(i,1),ECEF_Vel(i,2),ECEF_Vel(i,3)] = 

ned2ecefv(velocity(i,1),velocity(i,2),velocity(i,3),Initial_lat,Initial

_lon,'radians'); %Velocity in ECEF 
    [ECEF_Pos(i,1),ECEF_Pos(i,2),ECEF_Pos(i,3)] = 

ned2ecef(position(i,1),position(i,2),position(i,3),Initial_lat,Initial_

lon,Initial_h,wgs84,'radians'); %Position in ECEF 

  
 end 

  
%Calculate Gravity in ECEF for the navigation profile 
for i=1:length(t) 
    % Calculate distance from center of the Earth 
    mag_r = sqrt(ECEF_Pos(i,:)'' * ECEF_Pos(i,:)'); 

  
    % Calculate gravitational acceleration 
    z_scale = 5 * (ECEF_Pos(i,3) / mag_r)^2; 
    gamma = -mu / mag_r^3 *(ECEF_Pos(i,:)' + 1.5 * J_2 * (a / mag_r)^2 

*... 
        [(1 - z_scale) * ECEF_Pos(i,1)'; (1 - z_scale) * 

ECEF_Pos(i,2)';... 
        (3 - z_scale) * ECEF_Pos(i,3)']); 

  
    % Add centripetal acceleration 
    g(i,1:2) = (gamma(1:2) + Earth_rot^2 * ECEF_Pos(i,1:2)')'; 
    g(i,3) = gamma(3); 

   
end 

 

Appendix E.3 Accelerometer and Gyroscope Raw data generation 

%______________________________________________________________________ 
%Inverse kinematic model for calculate the raw gyroscope and 

accelerometer 

% Gabriel Giannini de Cunto - Rev 04 - 09/02/2020 

  
% Inputs: 
%   dt         time interval between epochs (s) 
%   ECEF_DCM     body-to-ECEF-frame coordinate transformation matrix 
%   =[X, Y, Z]; 
%   ECEF_Vel=     velocity of body frame w.r.t. ECEF frame, resolved 

along 
%                 ECEF-frame axes (m/s) 
%   ECEF_Pos      Cartesian position of body frame w.r.t. ECEF frame, 

resolved 
%                 along ECEF-frame axes (m) 
% Outputs: 
%   Calc_acc      specific force of body frame w.r.t. ECEF frame, 

resolved 
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%                 along body-frame axes, averaged over time interval 

(m/s^2) 
%   Calc_Gyro    angular rate of body frame w.r.t. ECEF frame, resolved 
%                 about body-frame axes, averaged over time interval 

(rad/s) 

  
for i=2:length(t) 

     
    %Calculate the acceleration al 
    al(1,1) = (ECEF_Vel(i,1)-ECEF_Vel(i-1,1))/dt; 
    al(1,2) = (ECEF_Vel(i,2)-ECEF_Vel(i-1,2))/dt; 
    al(1,3)= (ECEF_Vel(i,3)-ECEF_Vel(i-1,3))/dt;  

     
    %calculate the accelerometer 
    Calc_accel(i-1,:)=ECEF_DCM(:,:,i-1)'*(al(1,:)-g(i-

1,:)+cross(Total_comp_l_g,ECEF_Vel(i-1,:)))'; 

  
    %Calculate the angular velocity 
    Sg=((ECEF_DCM(:,:,i-1)'*ECEF_DCM(:,:,i))-eye(3))/dt; 
    wlb= [Sg(3,2) Sg(1,3) Sg(2,1)]; 

     
    %Determine the Gyroscope vector compensated by Earth rotation rate 
    Calc_gyro(i,:)=wlb+(ECEF_DCM(:,:,i)'*Earth_rot_ECEF')';        
end   

  
%Smoothing function 
Calc_gyro(1,:) = Calc_gyro(2,:); 
Calc_accel(length(t),:) = Calc_accel(length(t)-1,:); 
Calc_accel=sgolayfilt(Calc_accel,10,45); 
Calc_gyro=sgolayfilt(Calc_gyro,10,45); 

  
%Create the vector for the SIMULINK 
[ECEF_Yaw, ECEF_Pitch, ECEF_Roll] = dcm2angle(ECEF_DCM,'zyx'); 
ECEF_Yaw=rad2deg(ECEF_Yaw); 
ECEF_Pitch=rad2deg(ECEF_Pitch); 
ECEF_Roll=rad2deg(ECEF_Roll); 
ECEF_Att=[ECEF_Roll ECEF_Pitch ECEF_Yaw]; 
 

% __________________________________________________________________ 
% Save the data 
% __________________________________________________________________ 
SaveData=[t Calc_gyro Calc_accel ECEF_Pos ECEF_Vel ECEF_Att]'; 
 

save('Raw_IMU_GNSS.mat','SaveData','-v7.3'); 
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Appendix F  - INS, ESKF, and UKF MATLAB Code 

This appendix contains the MATLAB functions used for the INS model, ESKF model and 

UKF model. 

Appendix F.1 INS model 

%INS model 

%Gabriel Giannini de Cunto – Rev. 11 – 22/12/2019  
 

function [INS_Px_out, INS_Py_out, INS_Pz_out,INS_Vu_out, INS_Vv_out, 

INS_Vw_out, INS_DCM_out] = INS_ECEF(INS_Px_in,INS_Py_in,INS_Pz_in,... 
        INS_Vu_in, INS_Vv_in, INS_Vw_in,INS_DCM_in,Accel_x, 

Accel_y,Accel_z,Gyro_x,Gyro_y,Gyro_z) 

     
% Inputs: 
%   INS_P_in    previous position in ECEF (m) 
%   INS_V_in    previous velocity in ECEF (m/2) 
%   INS_DCM_in     previous body-to-ECEF DCM 
%   Gyro          angular rate of body frame w.r.t. ECEF (rad/s) 
%   Accel     specific force of body frame w.r.t. ECEF (m/s^2) 

  
% Outputs: 
%   INS_P_out        New position of body in ECEF (m) 
%   INS_V_out        New velocity of body in ECEF (m/s) 
%   INS_DCM_out      New body-to-ECEF-frame DCM 

  
% parameters 
dt=0.0100; %Sampling time - must be the same of Ts 
Earth_rot = 7.292115E-5;  % Earth rotation rate (rad/s) 

  
% Earth rotation and Coriolis in ECEF. 
Earth_rot_ECEF = [0 0 Earth_rot]; 
Total_comp_l_g= 2*Earth_rot_ECEF; 
  

% Initialize the scalar 
INS_Px_out=0; 
INS_Py_out=0; 
INS_Pz_out=0; 
INS_Vu_out=0; 
INS_Vv_out=0; 
INS_Vw_out=0; 
INS_DCM_out=zeros(3,3); 
g=zeros(1,3);  

  
%Create the vectors 
INS_P_in=[INS_Px_in, INS_Py_in, INS_Pz_in]; 
INS_V_in=[INS_Vu_in, INS_Vv_in, INS_Vw_in]; 
Accel=[Accel_x, Accel_y, Accel_z]; 
Gyro=[Gyro_x, Gyro_y, Gyro_z]; 
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% Calculate distance from center of the Earth 
 mag_r = sqrt(INS_P_in'' * INS_P_in'); 

  
% Calculate gravitational acceleration 
a = 6378137;                % WGS84 Equatorial radius in meters. 
mu = 3.986004418E14; %WGS84 Earth gravitational constant (m^3 s^-2) 
J_2 = 1.082627E-3; %WGS84 Earth's second gravitational constant 
z_scale = 5 * (INS_P_in(1,3) / mag_r)^2; 
gamma = -mu / mag_r^3 *(INS_P_in(1,:)' + 1.5 * J_2 * (a / mag_r)^2 *... 
    [(1 - z_scale) * INS_P_in(1,1)'; (1 - z_scale) * INS_P_in(1,2)';... 
    (3 - z_scale) * INS_P_in(1,3)']); 
% Add centripetal acceleration 
g(1,1:2) = (gamma(1:2) + Earth_rot^2 * INS_P_in(1,1:2)')'; 
g(1,3) = gamma(3); 

  

  
% Begin the INS Dynamics 
% Get quaternion vector from DCM 
% [q] = convert_dcm_to_quat(INS_DCM_in); 
    a = 0; 
    b = 0; 
    c = 0; 
    d = 0; 
    Tr = trace(INS_DCM_in); 
    Pa = 1 + Tr; 
    Pb = 1 + 2*INS_DCM_in(1,1)-Tr; 
    Pc = 1 + 2*INS_DCM_in(2,2)-Tr; 
    Pd = 1 + 2*INS_DCM_in(3,3)-Tr; 
    [m,i] = max([Pa Pb Pc Pd]); 
    switch(i) 
        case 1  
        a = 0.5*sqrt(Pa); 
        b = ( INS_DCM_in(3,2)-INS_DCM_in(2,3) )/(4*a); 
        c = (INS_DCM_in(1,3) - INS_DCM_in(3,1))/(4*a);  
        d = (INS_DCM_in(2,1) - INS_DCM_in(1,2))/(4*a); 
        case 2  
        b = 0.5*sqrt(Pb); 
        c = ( INS_DCM_in(2,1)+INS_DCM_in(1,2) )/(4*b);  
        d = (INS_DCM_in(1,3) + INS_DCM_in(3,1))/(4*b);  
        a = (INS_DCM_in(3,2) - INS_DCM_in(2,3))/(4*b); 
        case 3  
        c = 0.5*sqrt(Pc); 
        d = ( INS_DCM_in(3,2)+INS_DCM_in(2,3) )/(4*c); 
        a = (INS_DCM_in(1,3) - INS_DCM_in(3,1))/(4*c);  
        b = (INS_DCM_in(2,1) + INS_DCM_in(1,2))/(4*c); 
        case 4  
        d = 0.5*sqrt(Pd); 
        a = ( INS_DCM_in(2,1)-INS_DCM_in(1,2) )/(4*d);  
        b = (INS_DCM_in(1,3) + INS_DCM_in(3,1))/(4*d);  
        c = (INS_DCM_in(3,2) + INS_DCM_in(2,3))/(4*d); 
    end 

     
    if a <= 0 
        a = -a; 
        b = -b; 
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        c = -c; 
        d = -d; 
    end 
    q = [a;b;c;d]; 

  
%Get the earth rotation rate in L frame 
Total_comp_b=INS_DCM_in'*Earth_rot_ECEF'; 
 

%Correcting gyro 
Corr_gyro= Gyro- Total_comp_b'; 

  
%Calculates the gyro skew-symmetric matrix 
w = [  0, -Corr_gyro(1,1), -Corr_gyro(1,2), -Corr_gyro(1,3);... 
    Corr_gyro(1,1),     0, Corr_gyro(1,3), -Corr_gyro(1,2);... 
    Corr_gyro(1,2), -Corr_gyro(1,3),     0, Corr_gyro(1,1);... 
    Corr_gyro(1,3), Corr_gyro(1,2), -Corr_gyro(1,1), 0]; 
 

%Calculate the qdot 
qdot=(1/2)*(w*q); 

  
%Calculate the new q 
New_q = q + (dt)*qdot; 
qa=New_q(1,1); 
qb=New_q(2,1); 
qc=New_q(3,1); 
qd=New_q(4,1); 
%--> Normalize the quaternion 
normalization_factor = sqrt(qa^2 + qb^2 + qc^2 + qd^2); 
qa = qa/normalization_factor; 
qb = qb/normalization_factor; 
qc = qc/normalization_factor; 
qd = qd/normalization_factor; 

  
%Convert the new q into the new DCM 
INS_DCM_out = [qa^2+qb^2-qc^2-qd^2, 2*(qb*qc-qa*qd), 

2*(qb*qd+qa*qc);... 
    2*(qb*qc+qa*qd), qa^2-qb^2+qc^2-qd^2, 2*(qc*qd-qa*qb);... 
    2*(qb*qd-qa*qc), 2*(qc*qd+qa*qb), qa^2-qb^2-qc^2+qd^2]; 

  
%calculate the velocity dot 
vldot= (INS_DCM_in*Accel')'+ g -cross(Total_comp_l_g,INS_V_in); 

  
%Calculate the new velocity 
INS_V = INS_V_in + (dt)*vldot; 

  
INS_Vu_out=INS_V(1); 
INS_Vv_out=INS_V(2); 
INS_Vw_out=INS_V(3); 
 

% UPDATE CARTESIAN POSITION 
INS_P = (INS_P_in  + INS_V_in* dt); 
INS_Px_out=INS_P(1); 
INS_Py_out=INS_P(2); 
INS_Pz_out=INS_P(3); 

 



 

190 

 

Appendix F.2 ESKF model 

%Perform the ESKF and update the states  
% Gabriel Giannini de Cunto – Rev 11 – 13/12/2019 

 

function [DCM_ECEF_new, KF_x, KF_y, KF_z, KF_Vu, KF_Vv, KF_Vw,... 
    KF_bg_x,KF_bg_y,KF_bg_z,KF_ba_x,KF_ba_y,KF_ba_z,P_matrix_new, 

delta_z_new, K_matrix]  = INS_GNSS_KF(Clock, GNSS_X, GNSS_Y, 

GNSS_Z,GNSS_Vu, GNSS_Vv, GNSS_Vw,... 
    DCM_ECEF, INS_X, INS_Y, INS_Z, INS_Vu, INS_Vv, INS_Vw, bg_x, bg_y, 

bg_z, ba_x, ba_y, ba_z, P_matrix, delta_z, IMU_Lat, Acc_x, Acc_y, 

Acc_z, Alpha, KF_K_matrix) 

  

 

% Inputs: 

%   Clock           System clock 
%   GNSS_X,Y,Z           GNSS ECEF position (m) 
%   GNSS_u,v,w           GNSS ECEF velocity (m/s) 
%   DCM_ECEF         prior body to ECEF DCM 
%   INS_Vu,Vv,Vw        prior INS velocity (m/s) 
%   INS_X,Y,X        prior INS position (m) 
%   bg_x,y,z       prior estimated gyroscope biases 

%   ba_x,y,z       prior estimated accelerometer biases 
%   P_matrix          Prior KF error covariance matrix 
%   IMU_Lat           previous latitude 

%   Acc_x,y,z Accelerometer measurements 
%   Alpha             Weight factor when Fuzzy is applied 
% 
% Outputs: 
%   DCM_ECEF_new     New body to ECEF DCM 
%   KF_Vu,Vv,Vw        New velocity (m/s) 
%   KF_X,Y,Z        New position (m) 
%   KF_bg_x,y,z       prior estimated gyroscope biases 

%   KF_ba_x,y,z       prior estimated accelerometer biases 
%   P_matrix_new      updated Kalman filter error covariance matrix 

  
%Create the vectors/scalars 
P_matrix_new=zeros(15); 
delta_z_new=zeros(6,1); 
DCM_ECEF_new=zeros(3); 
KF_x=0; 
KF_y=0; 
KF_z=0; 
K_matrix=zeros(15,6); 
KF_Vu=0; 
KF_Vv=0; 
KF_Vw=0; 
KF_bg_x=0; 
KF_bg_y=0; 
KF_bg_z=0; 
KF_ba_x=0; 
KF_ba_y=0; 
KF_ba_z=0; 
GNSS_P= [GNSS_X GNSS_Y GNSS_Z]'; 
GNSS_V= [GNSS_Vu GNSS_Vv GNSS_Vw]'; 
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INS_P=[INS_X INS_Y INS_Z]'; 
INS_P_in=[INS_X INS_Y INS_Z]; 
INS_V = [INS_Vu INS_Vv INS_Vw]'; 
IMU_bias=[ba_x ba_y ba_z bg_x bg_y bg_z]'; 

  
%Implement the EKF each second. 
     if ((floor(Clock)-Clock) == 0)        

  
        k=floor(Clock); 

         
        % Earth Constants 
        Earth_Rot_Rate = 7.292115E-5;  % Earth rotation rate in rad/s 
        R_0 = 6378137; %WGS84 Equatorial radius in meters 
        e = 0.0818191908425; %WGS84 eccentricity 
        dt=1;%Update frequency 
        mu = 3.986004418E14; %WGS84 Earth gravitational constant (m^3 

s^-2) 
        J_2 = 1.082627E-3; %WGS84 Earth's second gravitational constant 
        g=zeros(3,1);  

         
        % Skew symmetric matrix of Earth rate 
        Skew_Rot_Rat = [    0, -Earth_Rot_Rate,  0;... 
            Earth_Rot_Rate,     0, -0;... 
            -0,  0,     0]; 

         
        %Skew symmetric matrix of DCM_ECEF * Earth_Forces 
        s=DCM_ECEF * Acc_Forces; 
        F_e_21=-[    0, -s(3),  s(2);... 
            s(3),     0, -s(1);... 
            -s(2),  s(1),     0]; 

         
        %Geocentric radius 
        geocentric_radius = R_0 / sqrt(1 - (e * sin(IMU_Lat))^2) *... 
            sqrt(cos(IMU_Lat)^2 + (1 - e^2)^2 * sin(IMU_Lat)^2); 

 

         
        %Gravity in the ECEF frame 

         
        % Calculate distance from center of the Earth 
        mag_r = sqrt(INS_P_in'' * INS_P_in'); 

  
        % Calculate gravity acceleration in ECEF 
        a = 6378137;                % WGS84 Equatorial radius in 

meters. 
        mu = 3.986004418E14; %WGS84 Earth gravitational constant (m^3 

s^-2) 
        J_2 = 1.082627E-3; %WGS84 Earth's second gravitational constant 
        z_scale = 5 * (INS_P_in(1,3) / mag_r)^2; 
        gamma = -mu / mag_r^3 *(INS_P_in(1,:)' + 1.5 * J_2 * (a / 

mag_r)^2 *... 
            [(1 - z_scale) * INS_P_in(1,1)'; (1 - z_scale) * 

INS_P_in(1,2)';... 
            (3 - z_scale) * INS_P_in(1,3)']); 
        g(1:2,1) = (gamma(1:2) + Earth_Rot_Rate^2 * INS_P_in(1,1:2)')'; 
        g(3,1) = gamma(3); 
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        %Create the acc vector 
        Acc_Forces = [Acc_x, Acc_y, Acc_z]'; 

 
        % Gyro noise PSD (rad^2/s) 
        gyro_noise_PSD = (5e-6)^2; 
        % Accelerometer noise PSD (m^2 s^-3) 
        accel_noise_PSD = (1e-3)^2;     
        % Accelerometer bias variation  PSD (m^2 s^-5) 
        accel_bias_PSD_x = (1e-5)^2; 
        accel_bias_PSD_y = (1e-5)^2; 
        accel_bias_PSD_z = (1e-5)^2; 
        % Gyro bias variation PSD (rad^2 s^-3) 
        gyro_bias_PSD_x = (1e-8)^2; 
        gyro_bias_PSD_y = (1e-8)^2; 
        gyro_bias_PSD_z = (1e-8)^2; 

  
        % Position measurement noise SD per axis (m) 
        pos_meas_SD = 5; 
        % Velocity measurement noise SD per axis (m/s) 
        vel_meas_SD = 0.1; 
 

         

         
        % 1st phase - system initialization and propagation 
        % Determine transition matrix  
        Phi = eye(15); 
        Phi(1:3,1:3) = eye(3) - Skew_Rot_Rat * dt; 
        Phi(1:3,13:15) = DCM_ECEF * dt; 
        Phi(4:6,7:9) = eye(3) * dt; 
        Phi(7:9,1:3) = -F_e_21*dt; 
        Phi(7:9,7:9) = eye(3) - 2 * Skew_Rot_Rat * dt; 
        Phi(7:9,4:6) = -dt * 2 * g / geocentric_radius * INS_P' / sqrt 

(INS_P' *INS_P); 
        Phi(7:9,10:12) = DCM_ECEF * dt; 

         
        % Determine approximate system noise covariance matrix 
        Q_INS = zeros(15); 
        Q_INS(1:3,1:3) = eye(3) * gyro_noise_PSD * dt; 
        Q_INS(7:9,7:9) = eye(3) * accel_noise_PSD * dt; 
        Q_INS(10:12,10:12) = [accel_bias_PSD_x, 0, 0; 0, 

accel_bias_PSD_y, 0; 0, 0, accel_bias_PSD_z]* dt; 
        Q_INS(13:15,13:15) = [gyro_bias_PSD_x, 0, 0; 0, 

gyro_bias_PSD_y, 0; 0, 0, gyro_bias_PSD_z]* dt; 

         

         
  % Propagate state estimates considering that all states   % are 

zero due to closed-loop correction. 
        x_est_propagated = zeros(15,1); 

         
        % Set-up measurement matrix using 
        H_mat = zeros(6,15); 
        H_mat(1:3,4:6) = eye(3); 
        H_mat(4:6,7:9) = eye(3); 
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        % Propagate state estimation error covariance matrix 
        P_matrix_propagated = ((eye(15)+H_mat'*Alpha*H_mat)^2)*Phi 

*(P_matrix + 0.5 * Q_INS) *Phi' + 0.5 * Q_INS; 

         
        % 2nd Phase - measurement update 

             
        % Measurement noise covariance matrix (R) assuming that  
        % GNSS noise are not dependent  
        R_GNSS = zeros(6,6); 
        R_GNSS(1:3,1:3) = eye(3) * pos_meas_SD^2; 
        R_GNSS(4:6,4:6) = eye(3) * vel_meas_SD^2; 

         

       
        % Calculate Kalman gain 
        K_matrix = P_matrix_propagated * H_mat' /(H_mat *... 
           P_matrix_propagated * H_mat' + (R_GNSS/((eye(6)+Alpha)^2))); 

  
        % Formulate measurement innovations 
        delta_z = zeros(6,1); 
        delta_z(1:3,1) = INS_P-GNSS_P; 
        delta_z(4:6,1) = INS_V-GNSS_V; 
        delta_z_new=delta_z; 

         
        % Update state estimates using 
        x_est_new = x_est_propagated + K_matrix * delta_z; 

         
        % Update state estimation error covariance matrix using 
        P_matrix_new = (eye(15) - K_matrix * H_mat) * 

P_matrix_propagated; 

         
        %3rd phase - closed-loop correction 

 
        %Calcule the skew of x_est_new 
        s1=x_est_new(1:3,1); 
        Sk_x_est=[    0, -s1(3,1),  s1(2,1);... 
            s1(3,1),     0, -s1(1,1);... 
            -s1(2,1),  s1(1,1),     0]; 

  
       % Correct attitude, velocity, and position using 
        DCM_ECEF_new = (eye(3) - Sk_x_est) * DCM_ECEF;       
        KF_V_new = INS_V - x_est_new(7:9); 
        KF_P_new = INS_P - x_est_new(4:6); 

         
        % Update IMU bias estimates 
        IMU_bias_new = IMU_bias + x_est_new(10:15); 
        % Update the INS states; 
        KF_x=KF_P_new(1); 
        KF_y=KF_P_new(2); 
        KF_z=KF_P_new(3); 
        KF_Vu=KF_V_new(1); 
        KF_Vv=KF_V_new(2); 
        KF_Vw=KF_V_new(3); 
        KF_bg_x=IMU_bias_new(4); 
        KF_bg_y=IMU_bias_new(5); 
        KF_bg_z=IMU_bias_new(6); 
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        KF_ba_x=IMU_bias_new(1); 
        KF_ba_y=IMU_bias_new(2); 
        KF_ba_z=IMU_bias_new(3); 
    else 
    % Update the INS states when KF is not used; 
      P_matrix_new= P_matrix; 
      delta_z_new=delta_z; 
      DCM_ECEF_new=DCM_ECEF; 
      KF_x=INS_X; 
      KF_y=INS_Y; 
      KF_z=INS_Z; 
      KF_Vu=INS_Vu; 
      KF_Vv=INS_Vv; 
      KF_Vw=INS_Vw; 
      KF_bg_x=bg_x; 
      KF_bg_y=bg_y; 
      KF_bg_z=bg_z; 
      KF_ba_x=ba_x; 
      KF_ba_y=ba_y; 
      KF_ba_z=ba_z; 
      K_matrix=KF_K_matrix; 
    end 

 

Appendix F.3 UKF model 

%Perform the UKF and update the states  
% Gabriel Giannini de Cunto – Rev 12 – 15/03/2020 

 

function [DCM_ECEF_new, KF_x, KF_y, KF_z, KF_Vu, KF_Vv, KF_Vw,... 
    KF_bg_x,KF_bg_y,KF_bg_z,KF_ba_x,KF_ba_y,KF_ba_z,P_matrix_new, 

x_est_new, K_matrix_new] = INS_GNSS_UKF(Clock, GNSS_X, GNSS_Y, 

GNSS_Z,GNSS_Vu, GNSS_Vv, GNSS_Vw,... 
    DCM_ECEF, INS_X, INS_Y, INS_Z, INS_Vu, INS_Vv, INS_Vw, bg_x, bg_y, 

bg_z, ba_x, ba_y, ba_z, P_matrix,IMU_Lat, Acc_x, Acc_y, Acc_z, x_est, 

K_matrix, Alpha) 

  
%Implements one cycle of the loosely coupled INS/GNSS 
% Kalman filter plus correction of all INS states 

  
% Inputs: 
%   GNSS_P           GNSS estimated ECEF user position (m) 
%   GNSS_V           GNSS estimated ECEF user velocity (m/s) 
%   DCM_ECEF         prior estimated body to ECEF coordinate 
%                         transformation matrix 
%   INS_V        prior estimated ECEF user velocity (m/s) 
%   INS_P        prior estimated ECEF user position (m) 
%   IMU_bias      prior estimated IMU biases (body axes) 
%   P_matrix          previous Kalman filter error covariance matrix 
%   Earth_Forces           measured specific force 
%   IMU_Lat           previous latitude solution 
%   Alpha             Weight factor 
% 
% Outputs: 
%   DCM_ECEF_new     updated estimated body to ECEF coordinate  
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%                      transformation matrix 
%   INS_V_new    updated estimated ECEF user velocity (m/s) 
%   INS_P_new    updated estimated ECEF user position (m) 
%   IMU_bias_new  updated estimated IMU biases 
%     Rows 1-3          estimated accelerometer biases (m/s^2)  
%     Rows 4-6          estimated gyro biases (rad/s) 
%   P_matrix_new      updated Kalman filter error covariance matrix 

  
%Create the vectors 
P_matrix_new=zeros(15); 
DCM_ECEF_new=zeros(3); 
K_matrix_new=zeros(15,6); 
x_est_new = zeros(15,1); 
KF_x=0; 
KF_y=0; 
KF_z=0; 
KF_Vu=0; 
KF_Vv=0; 
KF_Vw=0; 
KF_bg_x=0; 
KF_bg_y=0; 
KF_bg_z=0; 
KF_ba_x=0; 
KF_ba_y=0; 
KF_ba_z=0; 
Ts=0.01; 
GNSS_P= [GNSS_X GNSS_Y GNSS_Z]'; 
GNSS_V= [GNSS_Vu GNSS_Vv GNSS_Vw]'; 
INS_P=[INS_X INS_Y INS_Z]'; 
INS_P_in=[INS_X INS_Y INS_Z]; 
INS_V = [INS_Vu INS_Vv INS_Vw]'; 
IMU_bias=[ba_x ba_y ba_z bg_x bg_y bg_z]'; 

  
%Implement the UKF each second. 

  
    if ((floor(Clock)-Clock) == 0)        
        k=floor(Clock); 

         
        % Constants  
        Earth_Rot_Rate = 7.292115E-5;  % Earth rotation rate in rad/s 
        R_0 = 6378137; %WGS84 Equatorial radius in meters 
        e = 0.0818191908425; %WGS84 eccentricity 
        dt=1;%Update frequency 
        mu = 3.986004418E14; %WGS84 Earth gravitational constant (m^3 

s^-2) 
        J_2 = 1.082627E-3; %WGS84 Earth's second gravitational constant 
        g=zeros(3,1);  

         
        %Gravity in the ECEF frame 

         
        % Calculate distance from center of the Earth 
        mag_r = sqrt(INS_P_in'' * INS_P_in'); 

  
        % Calculate gravity acceleration in ECEF 
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        a = 6378137;                % WGS84 Equatorial radius in 

meters. 
        mu = 3.986004418E14; %WGS84 Earth gravitational constant (m^3 

s^-2) 
        J_2 = 1.082627E-3; %WGS84 Earth's second gravitational constant 
        z_scale = 5 * (INS_P_in(1,3) / mag_r)^2; 
        gamma = -mu / mag_r^3 *(INS_P_in(1,:)' + 1.5 * J_2 * (a / 

mag_r)^2 *... 
            [(1 - z_scale) * INS_P_in(1,1)'; (1 - z_scale) * 

INS_P_in(1,2)';... 
            (3 - z_scale) * INS_P_in(1,3)']); 
        g(1:2,1) = (gamma(1:2) + Earth_Rot_Rate^2 * INS_P_in(1,1:2)')'; 
        g(3,1) = gamma(3); 

   
        % Gyro noise PSD (rad^2/s) 
        gyro_noise_PSD_x = (5e-6)^2; 
        gyro_noise_PSD_y = (5e-6)^2; 
        gyro_noise_PSD_z = (5e-6)^2; 
        % Accelerometer noise PSD (m^2 s^-3) 
        accel_noise_PSD = (1e-3)^2;  

  
        % Accelerometer bias random walk PSD (m^2 s^-5) 
        accel_bias_PSD = (1e-5)^2; 
        % Gyro bias random walk PSD (rad^2 s^-3) 
        gyro_bias_PSD = (1e-8)^2; 

   
        % Position measurement noise SD per axis (m) 
        pos_meas_SD = 5; 
        % Velocity measurement noise SD per axis (m/s) 
        vel_meas_SD = 0.1; 

         
        %Create the acc vector 
        Acc_Forces = [Acc_x, Acc_y, Acc_z]'; 

         
        % Skew symmetric matrix of Earth rate 
        Skew_Rot_Rat = [    0, -Earth_Rot_Rate,  0;... 
            Earth_Rot_Rate,     0, -0;... 
            -0,  0,     0]; 

         
        %Skew symmetric matrix of DCM_ECEF * Earth_Forces 
        s=DCM_ECEF * Acc_Forces; 
        F_e_21=[    0, -s(3),  s(2);... 
            s(3),     0, -s(1);... 
            -s(2),  s(1),     0]; 

         
        %Geocentric radius 
        geocentric_radius = R_0 / sqrt(1 - (e * sin(IMU_Lat))^2) *... 
            sqrt(cos(IMU_Lat)^2 + (1 - e^2)^2 * sin(IMU_Lat)^2); 

         
          % Determine transition matrix  
        Phi = eye(15); 
        Phi(1:3,1:3) = eye(3) - Skew_Rot_Rat * dt; 
        Phi(1:3,13:15) = DCM_ECEF * dt; 
        Phi(4:6,7:9) = eye(3) * dt; 
        Phi(7:9,1:3) = -F_e_21*dt; 
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        Phi(7:9,7:9) = eye(3) - 2 * Skew_Rot_Rat * dt; 
        Phi(7:9,4:6) = -dt * 2 * g / geocentric_radius * INS_P' / sqrt 

(INS_P' *INS_P); 
        Phi(7:9,10:12) = DCM_ECEF * dt; 

         
        %Determine approximate system noise covariance matrix 
        Q_INS = zeros(15); 
        Q_INS(1:3,1:3) = [gyro_noise_PSD_x, 0, 0; 0, gyro_noise_PSD_y, 

0; 0, 0, gyro_noise_PSD_z]* dt; 
        Q_INS(7:9,7:9) = eye(3) * accel_noise_PSD * dt; 
        Q_INS(10:12,10:12) = eye(3) * accel_bias_PSD * dt; 
        Q_INS(13:15,13:15) = eye(3) * gyro_bias_PSD * dt;     

      
        %Set-up measurement matrix using 
        H_mat = zeros(6,15); 
        H_mat(1:3,4:6) = -eye(3); 
        H_mat(4:6,7:9) = -eye(3); 

  
        %Set-up measurement noise covariance matrix (R) assuming that  
        % GNSS position and velocity are independent and have equal 

variance. 
        R_GNSS = zeros(6,6); 
        R_GNSS(1:3,1:3) = eye(3) * pos_meas_SD^2; 
        R_GNSS(4:6,4:6) = eye(3) * vel_meas_SD^2; 
 %__________________________________________________________________ 
        % UKF Main 
%__________________________________________________________________ 
        % The x_est_propagated propagate state estimates considering 

that all states are zero 
        % due to closed-loop correction. 
        x_est_propagated = zeros(15,1); %Previus state 
        n = length(x_est_propagated); % Number of states 

         
%        1 - Calculate thelower-triangular Cholesky factor of P. 
        S0=chol(P_matrix,'lower'); 

         
% %         Eigenvector Choleksy factor 
%         [U,Lambda,V]    = svd(P_matrix); 
%         S0             = U*sqrt(Lambda); 

         
        % 2 - Sigma points selection 
        c                   = sqrt(n); 
        Sigma_Selec=zeros(n,2*n); 
        Sigma_Selec(:,1:n)       = x_est_propagated*ones(1,n)+c*S0;  
        Sigma_Selec(:,n+1:2*n)   = x_est_propagated*ones(1,n)-c*S0;  

         
        % 3 Propagate each sigma point in to the model 
        Sigma_Propag=zeros(n,2*n); 
        for i=1:2*n 
        Sigma_Propag(:,i)= Phi*Sigma_Selec(:,i); 
        end 

         
        % 4 Propagate the states calculation 
        x_est= mean(Sigma_Propag,2); 
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        Var_Sig=zeros(15,15,2*n); 
        for i=1:2*n 
        Var_Sig(:,:,i)=(Sigma_Propag(:,i)-x_est)*(Sigma_Propag(:,i)-

x_est)'; 
        end 
        P_est=(mean(Var_Sig,3)+((eye(15)+H_mat'*Alpha*H_mat)^2)*Q_INS); 

                
        % 5 Generate new sigma poins considering the P_est 
        %Calculate the lower-triangular Cholesky factor of P. 
        S1=chol(P_est,'lower'); 

         
%         %Eigenvector Choleksy factor 
%         [U,Lambda,V]    = svd(P_est); 
%         S1             = U*sqrt(Lambda); 

         

        % Sigma points selection 
        Sigma_New=zeros(n,2*n); 
        Sigma_New(:,1:n)       = x_est*ones(1,n)+c*S1;  
        Sigma_New(:,n+1:2*n)   = x_est*ones(1,n)-c*S1;  

         
        x_est_new0=mean(Sigma_New,2); 

         
        % 6 sigma point and mean measurement innovations are calculated 
        z = zeros(6,1); 
        z(1:3,1) = INS_P-GNSS_P; 
        z(4:6,1) = INS_V-GNSS_V; 

             
        delta_z_Sigma=zeros(length(z),2*n); 
        for i=1:2*n 
        delta_z_Sigma(:,i)= z-H_mat*Sigma_New(:,i); 
        end 

         
        x_est=mean(delta_z_Sigma,2); 

         
        %7 Calculate the Covariance of the measurement 
        Var_delta_z=zeros(6,6,2*n); 
        for i=1:2*n 
        Var_delta_z(:,:,i)=(delta_z_Sigma(:,i)-

x_est)*(delta_z_Sigma(:,i)-x_est)'; 
        end 
        Cov_Measurement=mean(Var_delta_z,3)+(R_GNSS); 

         
%         %8 - Calcule the Kalman Gain 
        Var_gain=zeros(15,6,2*n); 
        for i=1:2*n 
        Var_gain(:,:,i)=(Sigma_New(:,i)-

x_est_new0)*(delta_z_Sigma(:,i)-x_est)'; 
        end 
        %Kalman_Gain=mean(Var_gain,3)/(Cov_Measurement); 
        K_matrix=mean(Var_gain,3)/(Cov_Measurement); 

         

  
%       %9 Update state estimates using 
        x_est_new = x_est_new0 + K_matrix * x_est; 
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        %10 Update the state estimation error covariance matrix using 
        P_matrix_new=P_est-K_matrix*Cov_Measurement*K_matrix'; 

  
        %CLOSED-LOOP CORRECTION 
        %Calcule the skew of x_est_new 
        s1=x_est_new(1:3,1); 
        Sk_x_est=[    0, -s1(3,1),  s1(2,1);... 
            s1(3,1),     0, -s1(1,1);... 
            -s1(2,1),  s1(1,1),     0]; 

  
       % Correct attitude, velocity, and position using 
        DCM_ECEF_new = (eye(3) - Sk_x_est) * DCM_ECEF; 

         
        KF_V_new = INS_V - x_est_new(7:9); 

  
        KF_P_new = INS_P - x_est_new(4:6); 

         
        % Update IMU bias estimates 
        IMU_bias_new = IMU_bias + x_est_new(10:15); 

         
        % Update the INS states; 
        KF_x=KF_P_new(1); 
        KF_y=KF_P_new(2); 
        KF_z=KF_P_new(3); 
        KF_Vu=KF_V_new(1); 
        KF_Vv=KF_V_new(2); 
        KF_Vw=KF_V_new(3); 
        KF_bg_x=IMU_bias_new(4); 
        KF_bg_y=IMU_bias_new(5); 
        KF_bg_z=IMU_bias_new(6); 
        KF_ba_x=IMU_bias_new(1); 
        KF_ba_y=IMU_bias_new(2); 
        KF_ba_z=IMU_bias_new(3); 
        K_matrix_new=K_matrix; 
    else 
    % Update the INS states when KF is not used; 
      P_matrix_new= P_matrix; 
      x_est_new=x_est; 
      K_matrix_new=K_matrix; 
      DCM_ECEF_new=DCM_ECEF; 
      KF_x=INS_X; 
      KF_y=INS_Y; 
      KF_z=INS_Z; 
      KF_Vu=INS_Vu; 
      KF_Vv=INS_Vv; 
      KF_Vw=INS_Vw; 
      KF_bg_x=bg_x; 
      KF_bg_y=bg_y; 
      KF_bg_z=bg_z; 
      KF_ba_x=ba_x; 
      KF_ba_y=ba_y; 
      KF_ba_z=ba_z; 
    end 
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Appendix G  - GNSS/INS integration Simulink model 

This appendix contains samples of the SIMULINK model used to perform the GNSS/INS 

integration.  

Appendix G.1 IMU noise model 
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Appendix G.2 INS/GNSS integration model 
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Appendix G.3 System Initialization 
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Appendix G.4 Fuzzy Logic Implementation 

 


