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Resumo

Os recentes avangos em poder computacional permitiram ao mundo o uso mais extensivo
de algoritmos de aprendizado profundo. O processamento de imagens em si é uma tarefa
que exige grandes quantidades de dados, mas se demonstrou de extrema importancia em
muitos campos de conhecimento. Neste trabalho, um método de detecgao de pista de
pouso para aeronaves durante a fase de pouso, baseado em redes neurais convolucionais,
¢é proposto com o objetivo de reduzir a carga de trabalho do piloto, aumentar seguranca
de voo durante pouso, e dar novos passos em dire¢ao a voos comerciais de piloto tnico
ou até autonomos. Os resultados mostram que a rede neural pode convergir suas fungoes
de perda nos dados de treino e de validagdo com sucesso, e a inferéncia em imagens
dos dados de teste e imagens reais produziu resultados satisfatérios para keypoints e
bounding box. Os resultados numéricos indicam que imagens virtuais de pistas de pouso
podem ser utilizadas para pré-treinar uma rede a fim de detectar pistas de pouso em
imagens reais, entao o trabalho contribui para uma abordagem mais barato e rapida para
desenvolvimento de tal tecnologia. Analises nas estimativas para pose da camera obtidas
pelos keypoints inferidos indicam que o projeto é promissor sendo que, mesmo sendo um
trabalho inicial, os resultados proveram histogramas de erros que podem facilmente ser
controlados pelo uso de filtros para remover outliers e pela fusao de dados com outros
sensores em aplicagoes reais. Em suma, contribui-se com resultados indicativos de que
o treinamento virtual, com uso de técnicas de aumento de dados para enriquecimento
do banco de imagens, beneficia a deteccao em imagens reais e que os keypoints inferidos

podem ser usados em conjunto a algoritmos para estimar pose a fi



Abstract

The recent advancement in computational power allowed the world to give more use of
deep learning algorithms. The image processing task is on itself data-hungry, but showed
to be of extreme importance in many fields of knowledge. In this work, a runway detection
method, for aircraft during landing phase, based on convolutional neural network is made
with the motivation to reduce pilot workload, increase flight safety during landing and
take new steps towards single-piloted or even unmanned commercial flights. With the
results, the network could successfully converge its loss function on the training dataset
and validation dataset, and inference on several images from test dataset and real runway
images gave good results for keypoint and bounding boxes predictions. Our numerical
results indicate that virtual runway images can be used in order to pretrain a network to
deteCt R s <) poaver } Hol }

an initial work, the results gave a robust error histogram which could be easily controlled
by filtering outliers and by data fusion with other sensors in real application. Overall, we
contribute with results indicating that virtual training, using data augmentation methods
for dataset enrichment, benefits real detection and that the keypoint predictions may be
used together with pose estimation algorithm to give estimates of aircraft pose related to

runway.
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1 Introduction

This chapter will approach the motivation to give a better understanding of its con-

tribution to society, as well as the objectives of this Master thesis’ project in progress.

1.1 Motivation

With the advances in electronics and general computation, many aspects of human life
were altered, made faster, or more efficient. The industry automatization, which is the
face of a vast group of changes made by technology, has taken roots inside the aviation
industry. With such, the embedding of technologies has solidified in the industry, now

being in a steep climb towards the presence in manufactured products (Aerocorner, 2022a).

There are two main scenarios running that support our motivation. The first is a
crescent necessity of a more connected world; This necessity, in terms of transportation,
heavily relies on safe flight routes between countries, provinces and cities, and one of the
means to achieve this goal is the better technology onboard the aircraft. Airline companies
are in a constant need of better, more efficient planes that can reach more places in safety
(Aerocorner, 2022a).

The second scenario analyzed is Brazillian’s National Defense Strategy (Brazil Defense
Ministry, 2022) with its directives to supply the country with modern armed forces, well
equipped, trained and in permanent readiness state, capable of discouraging threats and
agressions (AED-8); And also the Blue Amazon (Amazonia Azul®)), Brazil’s vast terri-
torial sea with over 5.7 million squared kilometers, which must be guarded and defended
in order to maintain sovereignty. The whole defense concept also leads to better, more

efficient air-naval equipment and vehicles in order to be efficiently executed.

A regular airplane — a winged structure, commanded by a human which in the past
solely used its visual sensoric aspects — became a massive platform of systems and au-
tomatic machinery built to relief the workload to the pilots and make the flight more
economically efficient (CROUCH, 2022).

The advances made flight travel safer, cheaper and allowed the flying vessels to become
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carriers of persuasive power or accurate surveillance systems for military purposes. Thus,
the addition of assistance systems is a task that must be continuous to guarantee reliable
products, safer operation, and quality of life. The insertion of more landing assistance
systems would (ROSCOE; GRIEVE, 1986):

e Give pilots less workload and stress, reducing human error probability.
e Get precise navigation information if augmented with data fusion from other sensors.

e Further open the path to single-pilot operations for commercial aviation, or un-

manned operations for other areas.

1.1.1 The landing phase

The landing operations is a flight phase in which the pilot has increased workload
and the attention requirement is higher (KUGLER et al., 2019). This is mainly due to the
phase’s piloting aspects:

1. Controlled air speed loss to achieve touchdown speed.

2. Maintain leveled wings.

3. Adjusting lift according to speed loss, either with angle of attack or flap angle.

4. Controlled and fixed path angle.

As seen in Figure 1.1, information about orientation and position can be naturally

extracted from visual differences in terms of path angle, roll angle or distance to runway.

Proper descent angle

FIGURE 1.1 — Example of visual differences during landing phase. In this case, there
are differences in terms of height and descent path angle between images (Extracted from
Federal Aviation Administration (2016)).

As said before, human errors in this flight phase can lead to catastrophic events.

Statistically, it is known that 45% of the accidents involved in general aviation happened



CHAPTER 1. INTRODUCTION 18

during take-off or landing phases, and more than 90% of them were directly caused by
human error. (Federal Aviation Administration, 2016). Notice that before the widespread use
of Global Navigation Satellite System (GNSS), Instrument Landing System (ILS) and
Inertial Navigation System (INS) modules, visual navigation was used during landing.
The electronics advancements of those modules provided safety to landing procedures as
it made “blind” landing possible (Aircraft Systems Tech, 2022).

The operational performance requirements for precision approach and landing are pro-
vided in Table 1.1. These are based on FAA and International Civil Aviation Organization
(ICAO) requirements for use of a Global Navigation Satellite System (GNSS).

TABLE 1.1 — Landing categories according to accuracy restrictions on systems (Adapted
from Volpe (2001)).

Operation | Accuracy [m]

Cat. I 16 (H) and 4.0 to 6.0 (V)
Cat. II 6.9 (H) and 2 (V)

Cat. III 6.2 (H) and 2 (V)

It means that, as example, to be certified for landing in CAT III (which is the most
strict category for low visibility operation), an aircraft navigation system must have a
positional accuracy of at least 2 meters on the local vertical, and 6.2 meters on horizontal

plane.

1.1.2 Instrument Landing System

The most used system nowadays for pilot guidance during the landing phase is the
Instrument Landing System (ILS). It comprises two land-positioned frequency emitters,
one for vertical guidance, called Glide Slope (GS), and one for horizontal guidance, called
Localizer (LOC). Depending on the received signal, the onboard system detects whether
the path is higher, lower, to the left or the right compared to a central glide path, as seen
in Figure 1.2.
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Runway localizer transmitter
sends out vertical radio beam to
line up plane with center of runway.

Glide slope transmitter
sends out sloping radic
beam to guide plane
down a “radio runway.”

FIGURE 1.2 — Optimal glide path in the landing phase. The GS signal gives the ver-
tical reference (light blue) and LOC signal gives the horizontal reference (Adapted from
StudyFlying (2019)).

The system is simple but efficient, with the analog signaling further contributing for
its robustness. By itself, it is possible to reach the requirements for CAT III landing. Its
only major downside is the need of an external ground structure for signal emitting and

associated maintenance tasks.

1.1.3 Global Navigation Satellite System

GNSS uses orbital satellites to provide positioning to receivers around the globe. It is
necessary at least 4 satellites signaling for the receiver on Earth to sucessfully determine
four unknown variables: three with respect to positioning and one with respect to time
delay (GARMIN, 2022). GNSS has a huge coverage and is currently in major applications
worldwide, but it is susceptible to some effects, such as (VOLPE, 2001):

e Unintentional:

— Ionospheric interference and solar flares.

— Interference from radiofrequency (RF) emitters near or on planet surface.
e Intentional:
— Shutdown due to conflicts.

— Jamming, spoofing, and meaconing.

On top of that, GNSS signal has some accuracy restrictions (European Space Agency,
2011). Figure 1.3 shows satellite-based navigation technologies according to their posi-

tional accuracy versus coverage distance. Note that Ground Based Augmentation Systems
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(GBAS) have a maximum coverage of around 20 kilometers, but that does not mean the
navigation systems can no longer be used farther away; Instead, they lose the augmenta-
tion benefits and fall back into normal GNSS conditions. The same applies to Satellite
Based Augmentation Systems (SBAS), although their accuracy is not enough, by itself,
to fulfill requirements for CAT III landing procedure. Further information can be found

at European Space Agency (2011).
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FIGURE 1.3 — Satellite based systems’ accuracy per coverage (Adapted from European
Space Agency (2011)).

GNSS without augmentation as good as GBAS or better cannot be used in a safe
landing for CAT III, and GBAS falls into the same downside as ILS in terms of necessity
of infrastructure. That reinforces the need of data fusion with other navigation system,

preferably not affected by the vulnerabilities the GNSS has.

1.1.4 Computer Vision System

We define a Computer Vision System (CVS) as future systems using cameras to extract
navigational information, with images as stimuli. Cameras in aircraft can act as the pilot’s
eyes for manned vehicles, or be visual sensors for the Flight Control System (FCS) for
unmanned vehicles (Phase 1 Technology Corporation, 2021). As said before, visual aspects of

the landing phase can provide information in terms of aircraft pose related to runway (see



CHAPTER 1. INTRODUCTION 21

Figure 1.1). As example, the aircraft roll angle has a clean visual effect, given its effect of
rotation in a camera image. With CVS implemented, the flight safety could be higher in
approaches without ILS guidance, providing a broader coverage of airports for commercial
flight while possibly fulfilling safety requirements when used as augmentation for GNSS or
INS. Regarding cost-oriented markets, which are the commercial and executive aviation,
the main benefit of such technology would be the safer single pilot operation, the reduction
in landing risks due to errors or mistakes (Phase 1 Technology Corporation, 2021), and the

ability to land in airports that do not have an installed ILS.

For the military sector, the main outcome of such technology would be:

e Independence from external systems, like satellite positioning systems or land sig-

naling.

e Smarter autonomous aircraft for surveillance or other military missions.

The safety effect of auxiliary systems in this case would be higher, given that most of
military aviation missions are single-piloted or even unmanned. As the system depends
on visual clearance, the following downsides also may apply (HO; CHAKRAVARTY, 2014):

e Low or no efficiency if target occlusion is present due to weather condition, terrain,

and man-made structures.
e Reduced efficiency due to lack of maintenance procedures on camera and lenses.

e Reduced efficiency due to ice formation on lenses and light refraction, ice formation

on nearby aircraft surfaces, light reflection, and lack of illumination.

e Reduced efficiency due to sunlight flare.

Globally, there are organisations taking effort in order to estimate aircraft pose from
runway images during landing phase. Some recent work with similar objectives to a CVS

will be explained in Chapter 3.

1.1.5 Systemic overview

The role of modules such as GPS, ILS, INS, or future CVS is: to provide, to the pilot
or Flight Control System, aircraft position with respect to a desired reference (Aerocorner,
2022b). As an example, Figure 1.4 illustrates the system placement for modules in a
automatic landing flight phase. Positional information is fed to the FCS, which will
correct its course to another referential (generally, the optimal approach path according

to landing category).
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FIGURE 1.4 — The functional placement of positional modules in aircraft navigation
(Adapted from International Virtual Aviation Organisation (2022)).

Notice that each of the mentioned modules provide information with respect to dif-
ferent references: the GPS and INS with respect to Earth geoid; the ILS with respect to
glideslope and localizer planes; and CVS, in landing procedures, with respect to the de-
sired runway. Nonetheless, the addition of a certified CVS to an aircraft would contribute
to existing navigation systems, covering downsides on GNSS and ILS, while providing a
different technology (optical) as backup, further strengthening the aircraft’s navigation

system’s integrity and availability.

1.2 Objective

The main objective of this work is to verify the feasibility of using convolutional
neural networks (CNN) to detect airport runways and their corners as keypoints, in virtual
pictures simulating the point of view of an aircraft during its landing flight phase. We then
evaluate: results of pose estimation algorithm using keypoints; and detection technique
on real runway images. We outline the following specific objectives to reach the main

goal:

1. Generate the virtual image dataset on airports.
2. Build an automatic annotation tool.

3. Train and validate using the generated dataset.
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4. Evaluate the trained network on a test dataset.
5. Evaluate inference on real runway images.

6. Extract pose estimates from data provided by inference.

1.3 Contribution

To the best of our knowledge, this is the first work to use deep learning keypoint
detection method to identify and localize runway features in virtual images simulated as
if the aircraft was in landing phase, use virtual runway images to train and analyze training
effects on real runway images and use the keypoint information in order to estimate aircraft

position.

1.4 Dissertation overview

From here on, the document will detail how we successfully trained a network to detect

runway in pictures by simulating camera angles similar to that of a landing airplane.

e Chapter 2 explains the prior technical background that led to current computer

vision systems.

e Chapter 3 denotes related work according to a timeline of computer vision and vision

landing system evolution.

e Chapter 4 explains how the project was built with its main components and char-

acteristics.

e Chapter 5 will show the obtained results on the airport simulated sceneries, as well
as the usage of data to estimate aircraft position; Additionaly, will show qualitative

analysis regarding runway detection on a real dataset.

e Chapter 6 will conclude our work and explain about future steps.



2 Knowledge Background

The present chapter approaches the knowledge needed for better understand the tech-

nical aspects of the project.

2.1 Machine learning and neural networks

Machine Learning is often defined as the process of making a computer effective at
doing a determined task without explicitly programming it to do so (BURNS, 2022). With
access to a reasonable amount of data, the program can learn by itself by iterating over

learning phases in each data.

A Machine Learning problem can be described according to Tom Mitchell’s formalism
(MITCHELL, 1997): “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in 7', as

measured by P, improves with experience E”.

A learning task can be of two forms (BURNS, 2022):

e Supervised: when the algorithm is fed with information of input data as well as
information of what the output, or the right answer, to that data should be. It is
the most basic type of learning as if you are training the machine by repeating and
strengthening. Example: Feeding an algorithm with a thousand different pictures
of a bonfire, and, for each of them, actually telling (in computational means) that

the picture is a bonfire.

e Unsupervised: when all that is fed into the algorithm is the input data. In this case,
it can learn to detect patterns in the data or segment it into groups by similarity,
although not actually knowing what each of them represents. Example: Feeding
an algorithm with 500 pictures of a bonfire and 500 pictures of an ice cube. As
an ideal outcome, it is expected that the program will divide the thousand pictures
into two groups by similarity, although not knowing what they represent. Group

A might be assigned to 500 pictures of a bonfire, and group B to the ice cubes.
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When presented to a new image of an oven fire, it could assign it to group A due
to similarity or assign it to a newly created group C and accommodate this new
class found (depending on training quality, hyperparameters, and other variables

not discussed).

Supervised learning is the most used and can be very powerful depending on the
training data it relies on. As a very simple example, a computer program can learn to
estimate the price of cars in the market, according to their weight, by making it learn a
pricing formula from data samples (HORNIK et al., 1989). In this case, the data would be
a collection of pairs of information from collected, real values: the weight of a given car

and its price.

The learning algorithm will basically try to learn the right parameters to best fit a

regression for the data given, as seen in Figure 2.1.

y=a*x+b
< Price
(P)

learnable parameters
\ J

Weight
(W)

\, A

FIGURE 2.1 — Example with a linear regression. The learned parameters give an estimate
of the relationship between car pricing and weight.

A linear regression, with two parameters to learn, might be enough in a small number
of applications. Some applications may require a quadratic function, a higher degree
polynomial, or any learnable function (Figure 2.2), and that could make the learning

algorithm more costly in terms of computational power.
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FIGURE 2.2 — A higher degree polynomial function could make the learning algorithm
more costly in computational power.

Assume that the learnable function is called a “neuron” that takes its input and es-
timates the cost. As we advance in complexity, some applications might want to stack,
horizontally or vertically, these neurons for even more complex functions to be learned.
To do that, a non-linear function can be applied at the output of each neuron, called the
activation function. When that is done, the most basic neural network is created (Figure

2.3) and new definitions are made:

Example of basic
Neural Network

Non-linear activation
_ L function

’::E‘: output

Linear, learnable function

FIGURE 2.3 — A basic neural network, or shallow neural network, comprises some neurons
distributed in layers.

e The functions that take the input are the first layer of computation.

e The functions that take as input the outputs of the first layer compose the second

layer.

e Then, the third layer takes the outputs from the second layer, and so on.
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Each function block is defined as a neuron, and the combination modes of different
number of neurons per layer or number of layers in the whole network can achieve a number
of functions to be mapped and learned. An artificial neural network (ANN) can approx-
imate itself to a desired function with some tolerance, provided that it has a minimal
number of neurons. Mathematically, this means that ANN are universal approximators
(HORNIK et al., 1989). This can be achieved by the non-linear activation functions added
to each linear function inside the neurons, as seen in Figure 2.3. without the non-linearity,
the whole network would still be a linear function and would not be able to map a huge
amount of different functions. This property of a neural network is surely why it is so
powerful. In fact, given a complex application and a reasonable amount of data to train
on (KRIZHEVSKY et al., 2012), the network might learn a complex function even when the
person supervising its training does not have any clue of what it looks like, or what it
should be.

Learning process

One of the main mechanics that allows a model to learn is the backpropagation algo-
rithm (GOODFELLOW et al., 2016). Its first step is the reverse calculation of how much the
loss function varies (derivatives) with each of the learnable parameters in a network. The
second is to make each of the parameters converge according to the calculated derivatives.
As example, let us assume a learnable parameter W and a loss function L, which, simply
put, is a function that measures how far from the fitting points the trained model is at

the moment. After dL/dW is calculated, W assumes a new value

where « is called the learning rate. This process is one step of a gradient descent, and
is iterated a number of times for each learnable parameter and each data in the training
set, until the human supervisor decides it has learned enough or an automatic stopping

condition is reached.

A successful learning algorithm presents a loss function decay at mostly all the training
session. The descending function denotes that the network is fitting each time better to

the training set.
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2.2 Convolutional neural networks

A problem emerged once the amount of input data began to rise. In deep neural
networks, the number of parameters to be trained is very depending on the number of
inputs to the network and the number of neurons (GOODFELLOW et al., 2016). With
that, some types of data (images, for example) have a considerable amount of features
compared to other applications. A 640x480 picture in the Red-Green-Blue (RGB) format,
as an example, would have 921,600 input variables, and, in a network with 1000 neurons in
the first layer, the number of learnable parameters will reach about 921 million. And this
refers only to the first layer. In image applications, it is known that the function needed
to get reasonable inference has to be complex, given the virtually infinite combinations of
pixels it can have (LECUN et al., 1998).

So, instead of fully connected layers, as seen in deep neural networks, a new implemen-
tation arises: the convolution layer. Basically, it makes the operation simpler by reducing
the number of learnable parameters per cell, which relates to the number of parameters in
the filter (analogous to neurons). The convolution works in a two-dimensional shape, and
its computational efficiency was proven in images due to its mechanics of only connecting
data from one layer to another if they are in proximity (GOODFELLOW et al., 2016). A
Convolutional Neural Network (CNN) can be trained for different tasks, further explained

later.

2.2.1 Architecture description

As CNNs are mostly used for image applications (GOODFELLOW et al., 2016), the input
layer (and subsequent layers as well) is no longer represented as a column vector of input
features. Instead, due to the mechanics of convolution, the data is represented in two-
dimensional space, representing the pixels in the image for the input layer, or a feature
detection in mid-layers, as seen in Figure 2.4. There is also a third dimension — depth —
which, in the first layer represents the red, green, and blue channels, while for other layers
is the dimension in which the concatenation of convolution results are made for different
filters. Now the three-dimensional data cluster in each layer is comprised of a block with

height, width (forming a surface area - image), and the number of channels (depth).
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Input features (image) with three channels
Input features (image)

Blue

Green
Bx7x1
8x7x3 Red

Each square represents a pixel

FIGURE 2.4 — The representation of input features are in two-dimensional format (pixels).

Filters

The filters are the operational cells in the CNNs and have the trainable variables for
the network. A convolution in a layer is made by sweeping the filters, one by one, through

the input block, and concatenating the results depthwise (see Figure 2.5).

) Convolution output for each filter
Filter layer

Input features f4 ¢
Layer output
3x3 x5x1 \ f p

3x3

6xdx1

6x5xn

8xTx1
h >

3x3

Bx5x1

FIGURE 2.5 — Outputs from different filters are concatenated, forming the third dimension
(depth or channels).
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Padding

When a convolution is done, the image area shrinks according to the filter size. That
is the most common type of convolution — the valid convolution. If one needs to maintain
the block area, padding is needed: basically, an extension in the borders of the input
volume sufficient to make the output and input have the same area size (Figure 2.6). This

type of convolution is called the “same-convolution” (see Section 2.2.2).

Padding added
Input features Filter Output

Padding of one

== > =>

3x3x1 filter

Bx7x1 8x7x1
10x9x1

SAME CONVOLUTION

FIGURE 2.6 — Padding area being added to an input block.

Stride

The main mechanics of a convolution uses a one-element step sweep through the input
block. If needed, the step size can be modified to any positive integer value at the cost of

output block area size (see Figure 2.7)
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Convolution steps
Input features

No stride or
stride of one

|
Q Output
3x3 filter |

Convolution steps

Bx7x1

6x5x1

Input features

Step of 2 pixels Step of 2 pixels
Stride of 2 ———

¢ ¢ Qutput
|

3x3 filter ] T

Bx7x1 ]

3x3x1

FIGURE 2.7 — A stride of two would make the output block shrink by roughly a factor
of two.

2.2.2 Layer types
Convolution layer

The most basic type of layer, comprising a group of filters being convoluted over an
input block. It can be a same-convolution (padding is added in order to equalize the
output features’ size to the input features’ size) or valid-convolution (no padding is added
and the convolution shrinks the input block area). This layer’s purpose is, according
to the combination of filters used, to extract low-level features and transform them into
higher-level features. For example, one layer could take the pixels as input and output
the likelihood of containing corners and edges in each region (ZEILER; FERGUS, 2014).

Pooling layer

The pooling operation uses a filter to shrink the input block according to some logic.
The most used type is the max-pooling layer (GOODFELLOW et al., 2016), in which, for each
convolution step, the result will be the greatest number among the ones being evaluated
by the filter (see Figure 2.8). The average-pooling layer, which outputs the average all

input elements can also be used in the architecture, among other types of pooling layers.
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Input features

Convolution step: 1 Convolution step: 2
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FIGURE 2.8 — Max-pooling layer takes the greatest number among all inside the filter as
output.

Residual layer

Introduced by the ResNet manuscript (HE et al., 2015), the residual layer is a basic
convolution layer with a bypass connection added towards the output of two layers ahead
(see Figure 2.9). This gives the network the ability to achieve the identity function over
the bypassed layers, and mitigates the problem of vanishing and exploding gradients,

allowing implementation of deeper networks.

Layer1 Layer 2 Layer Layer [+2

Y

Layer I+1

Layer L
Input Layer 3 Layer 1+4

Conv. Conv. Paoling
I:> layer I:>|3YET $ layer E> T

Conv.

" Poolin
Conv. Conv. L\ | Pooling I:> [> 9 ¢
layer |:> layer I:> layer E> hayar layer

Layer 1+3

Residual connection

FIGURE 2.9 — Bypass added from layer [ to layer [4+1’s output.

Inception layer

Introduced by the Inception Network manuscript (SZEGEDY et al., 2014), the inception
layer is a convolution layer with mixed-up filter sizes. With it, it is possible, through
same-convolutions, to concatenate the results of 2x2, 3x3, 7x7, or filters with other sizes
(see Figure 2.10).
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Inception layer Convolution output for each filter

No padding

Input features : ki E>
Layer output
3x3 X5x1
Padding: 1
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Padding: 3
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FIGURE 2.10 — Inception layer made by different sized filters.

2.2.3 CNN tasks

The most common uses for CNN are:

Classification

The inference on a given image gives a boolean result for classification purposes, as in
recognizing a cat, a dog, a person, or common objects in a picture. (KRIZHEVSKY et al.,
2012).

Object detection

The detection task from inference gives the pixel-wise location of an object’s center if
detected in an image (AKTAS, 2022). Some networks can also infer bounding boxes for
the detected objects (see Figure 2.11).

Landmarking or keypoint detection

In addition to object detection, the inference gives detailed keypoints of a given object.
For example, locating a car and its wheels and windows as keypoints; Or a person and
their limbs and head position (LAVANYA S., 2021), as seen in Figure 2.12.
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FIGURE 2.12 — Example of landmarking in human bodies, with the detection of joints as
keypoints (DETECTRON2, 2021b).
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Segmentation

The segmentation task at first combines Classification and Object Detection to give
multiple detections in the image, as well as the localization information about them (KU-
MAR, 2020). Additional information can come with:

e Instance segmentation: the network detects, classifies, localizes, and estimates pixels

belonging to each detected object.

e Semantic segmentation: the network classifies each pixel in the image as belonging
to a class (e.g. pavement, road, car, sky), so the whole image will be divided into

zones.

e Panoptic segmentation: combines instance and semantic segmentation to detect

multiple objects and divide the image into zones according to each object.

2.2.4 CNN usage

Some CNNs in use today are:

e LeNet: one of the most basics CNNs used to detect and classify handwritten numbers
(LECUN et al., 1998).

e ResNet: as neural networks grew deeper, the problem of overfitting became greater.
ResNet took the approach of adding the possibility of later layers of a network to be
assigned the identity function. As result, a very deep network might use the latest
layers if needed, and, if not, it can virtually reduce its depth by learning the identity
function (HE et al., 2015).

e Inception Network: uses a combination of filters sizes in the same layer, so the
network will have more types of convolutional results to use and train on (SZEGEDY
et al., 2014).

2.3 Region-proposal CNN evolution line

In 2013, a new approach to reduce computational costs of CNNs was made by intro-
ducing the idea of “region of interest (Rol)” CNNs (R-CNNs). With that, the network
makes a prior search for regions (Figure 2.13) where there might be objects in the image,

thus reducing the area being convoluted on the subsequent layers (GIRSHICK et al., 2014).
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R-CNN: Regions with CNN features
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FIGURE 2.13 — Added region of interest feature to CNNs’ architecture (Adapted from
Girshick et al. (2014)).

The Fast R-CNN was created by using RolPool to achieve faster and more accurate
Rol from feature maps. Then, Faster R-CNN granted an extension by adding a region

proposal network (RPN) and learning about regions of interest (HE et al., 2017).

2.3.1 Mask R-CNN

As an evolution to Faster R-CNN, and with a slight increase in computational cost, the
Mask R-CNN adds a parallel branch (see Figure 2.14) to the architecture which predicts
objects instancing masks. Its results were the efficient division of different objects in the

same image, by using the given predicted masks (HE et al., 2017).

FIGURE 2.14 — By the added branch, the network simultaneously works on masking and
bounding box prediction (HE et al., 2017).

Currently, Detectron2’s project in Github (DETECTRON2, 2021b) is based on Mask
R-CNN and has the full capacity of all prior explained tasks: instance, semantic, land-

mark/keypoint, and panoptic segmentation. This makes Detectron2’s framework capable
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of covering the majority of applications for developers and enthusiasts.

2.4 Evaluation metrics

Metrics are calculations used to measure the performance of an object, keypoint or
segmentation detector. In this project, metrics may apply for bounding box prediction and
keypoint prediction. On both cases, the Average Precision (AP) is the primary metric and
can be calculated: for bounding boxes using Intersect-over-union (IoU) concept and for
keypoints using Object Keypoint Similarity (OKS) concept. Further explanation about

the metrics is given by Lin et al. (2014). Some auxiliary metrics are:

e APT75: Average Precision for IoU/OKS greater than 0.75.

e APs, APl, APm: Average Precision calculated taking into account for objects that
are small (area lesser than 32 pixels squared), large (area greater than 96 pixels

squared) or medium (other cases), respectively.

2.4.1 Intersection-over-union

The intersect-over-union is the raw metric used for bounding box evaluation. It consists
of a calculation involving the areas of the predicted bounding box (A4,) and the ground
truth bounding box (Ay). Mathematically, it is defined as

IoU = An 04
Ay UA,

2.4.2 Object Keypoint Similarity

Analogous to IoU, Object Keypoint Similarity is the most commonly used metric for
keypoint evaluation. It is obtained, for each keypoint in each instance detected, by the

following formula on all labeled and visible keypoints:

2
—d?
n 252 kz2

OKs = 2" (2.1)

n
where d; is the Euclidean distance between predicted position and groundtruth position
for the i'" keypoint, s is the object scale related to its area in pixels, k; is the keypoint

weight, and n is the number of keypoints.



3 Literature Review

This chapter’s objective is to give information about related works in computer vi-
sion focused in landing assistance context, as well as the time scaling and evolution of

techniques used for different applications.

3.1 Timeline

To define a time when computer vision was born is a difficult task, but it is known to
be used since the primordial decades of computer science. Given the exponential rise of

computer technology, only the latest technologies in the past decade will be approached.

Table 3.1 shows some related works from 1995 onwards. Around year 2000, literature
research still marks the use of classic computer vision, which was made solely on arithmetic
computation and pattern-seeking programs, with a heavy need for human workload and

preprocessing/feature extraction.
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TABLE 3.1 — Computer vision timeline.

Project Approach | Year
LeNet (CNN) DL/NN 1998
Zongur et al. Classic 2009
Krizhevsky et al. DL/NN 2012
R-CNN DL/NN 2013
Inception DL/NN 2014
ResNet DL/NN 2015
Lee et al. Classic 2016
Mask R-CNN DL/NN 2017
Abu-Jbara et al. DL/NN 2018
Kigler et al. DL/NN 2019
Airbus = 2021
Daedalean DL/NN 2021
Daedalean and EASA DL/NN 2021
Daedalean and FAAet al. | DL/NN 2022

The idea of making the program “learn” by itself was not largely implemented by then.
Near the year of 2000, the publication of one of the first convolutional neural networks, the
LeNet (LECUN et al., 1998), happened and a new stream in computer vision began to rise.
As the computational power grew due to technological advances, practical applications
became viable for learning algorithms, and the human need for preprocessing and feature

extraction came into fall.

Zongur et al. (2009) revealed a work to detect airports in aerial images by pattern
recognition and image processing followed by the Adaboost learning algorithm. By this
approach, a set of possibilities for runway locations in images are obtained, although in
a coarse representation. Still in the classic approach, (LEE et al., 2016) published a work
of a runway detection algorithm for safe landing assist in aircraft. The approach is of
geometrical processing and extracts lines and angles from infrared cameras’ projection to
detect the runway, and further improvements possibly include fusing data with the exact
orientation and velocity of the aircraft. By using a classical computer vision approach,
the project might not be adequade if camera parameters are modified or some parts of the
runway are not visible. And the aerial image dataset explored cannot be used to guide

aircraft during landing.

Kugler et al. (2019) published a work using a system called C2Land integrated with
other aircraft components to better achieve autolanding safety. The vision system demon-

strates an accurate outline around the runway. It is unknown whether C2Land uses



CHAPTER 3. LITERATURE REVIEW 40

classical computer vision or machine learning.

Abu-Jbara et al. (2018) published a work in which they implemented a real-time
program for runway edge detection. Their algorithm seems to solely use semantic seg-
mentation as output. They analyze the positional estimates taken from inference under a
Kalman filter in video streaming from UAV landing. Their conclusion is that the vision
system implemented can be efficient in assisting unmanned aircraft during landing condi-
tions. Being an edge detector, the project might have reduced efficiency if the runway is

partially visible.

The Wayfinder project (AIRBUS, 2021) is in its middle stage, and comprises an artificial
intelligence capable of detecting bounding boxes of runway main features: threshold bars,
aiming markings, and sidebars. Airbus reveals that the project is enforcing the concept of
Autonomous Taxi, Take-Off, and Landing (ATTOL) in their commercial products. The
network implemented has as output the distance from the runway as well as a virtually-
created ILS plane for LOC and GS. The downside of this approach might be that some
runways do not have all markings, so the network efficiency might decrease on these cases

where only sidebars are detected, as example.

A company named Daedalean also works on a CVS for landing assistance (DAEDALEAN,
2021a). In the promotion video, we can see the system beginning as object detector as
the bounding box is drawn. When the plane gets closer, the system begins to estimate

the three parallel lines comprising the runway: sidebars and centerline.

EASA recently published a document, a joint work with Daedalean, entitled Concepts
of Design Assurance for Neural Networks (Daedalean and EASA, 2021), currently on version
2. In the document, some standardization for airborne machine learning/neural network-
based systems, with respect to trustworthiness and performance assurance, is made. The
work made by these agencies approaches the subjects listed above by the W-shaped pro-
cess, which is based on traditional system development and has the steps: Requirements,
Data, Learning process, Model training, Validation, Implementation, Inference verifica-
tion and integration, and Independent data. As a use case, the document analyzes a

visual air traffic control that uses object detection.

Daedalean and FAA, following Daedalean and EASA’s work, published a report of
analysis on Daedalean’s visual land assistance (DAEDALEAN, 2021b), with the objectives
to evaluate the use case, verify certification assurance, generate and inform policies for
regulatory framework compatibility, validate visual-based landing assistance as a backup
role for aircraft guidance, among other minor objectives. These government entities’
directives are to be used as guidance for future work, as they will be provide certification
requirements for such application. Note that due to many of the related projects being

industrial applications, more technical information could not be obtained.



4 Methodology

For a successful deep learning project, one of the most crucial aspects tends to be the

dataset. The dataset generation for runway images has practical restrictions, such as:

e Costly flight hours, as we would need a set of runway pictures at the landing phase
of flight.

e Dataset generation process would take a long period for a solid amount of pictures.

e Annotation process would also take a long period of work.

We decided to take the project on simulated images for training and evaluation. Con-
sidering our problem, the most usual approach would be to use software capable of ren-

dering runways in simulated scenery, such as:

X-Plane (X-PLANE, 2021).

Unity (UNITY, 2021).

Unreal Engine (UNREAL, 2021).

Flight Gear (FLIGHTGEAR, 2021).

Microsoft Flight Simulator (MICROSOFT, 2021).
Some aspects were taken into consideration when deciding the simulator:
e Readiness: whether the simulator already has the objects and functions needed to

generate the dataset.

e Modding: capability of modifying aspects of the program to better suit the dataset

needs.

e Render quality: will affect screenshot quality, and has great importance to computer

vision applications.
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e Price.

With those aspects in mind, the Flight Gear (FG) software became a priority due to
the ease of execution, vast support community, being open-source, being free to use, and

having the capability of interfacing with Python for data collection.

4.1 Project workflow
The steps taken in order to obtain the results are:

1. Decide aircraft positioning and orientation with respect to runway.
2. Clean screenshot generation: un-annotated, raw images of runways.
3. Annotated screenshot generation: annotated, marked images of runways.

4. Dictionary building: combination of both images types to generate the bounding

box and keypoint data in Detectron2’s format.

5. Training session: obtain total and keypoint loss curves for training, validation and

real datasets.

6. Evaluation (virtual): obtain metrics (AP) on test set to avail the prediction confi-

dence of the trained model.

7. Evaluation (real): qualitative evaluation of trained model’s prediction on some real

runway images.

8. Pose estimation evaluation: obtain metrics on the position and orientation estima-

tion algorithm.

4.2 Aircraft positioning

Flight Gear is an open-source flight simulation program with an active community
and forums which updates and adds new features. With it, you can fly any created
airplane model through any available world scenario, given they are correctly configured
for the program to read and execute. Nine airports, presented in Tables 4.1 and 4.2, were
chosen to cover multiple characteristics in terms of number of runways and neighborhood,
and provide a more robust training set. In Table 4.1, “Runways” column denotes how
many runways are in the airport and their positional characteristic related to each other.

“Nearby” indicates characteristics of the landscape around the scenery, and “Dataset”
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indicates to which dataset a given airport’s pictures goes to. In Table 4.2, for a correct
generation of random positions related to each runway (to be explained in Section 4.4),
we provide information on runways being annotated, their designated runway number,

true heading in degrees, the magnetic-to-true heading conversion constant in its position,

and the number of screenshots to be generated.

TABLE 4.1 — Dataset Flight Gear airports’ conditions used to generate the dataset with

FG.

ICAO | Location Runways | Nearby Dataset

BIKF | Keflavik, Iceland 2, cross city, water Training, validation
SDRJ | Rio de Janeiro, Brazil | 2, parallel | city, water, mountain | Training, validation
SBEG | Manaus, Brazil 1 forest Training, validation
LFPG | Paris, France 2, parallel | city Training, validation
HECA | Cairo, Egypt 1 isolated Training, validation
SBGL | Rio de Janeiro, Brazil | 2, afar city, water Training, validation
VVTS | Ho Chi Minh, Vietnam | 2, parallel | city Training, validation
SBGP | Gaviao Peixoto, Brazil | 1 farmland Training, validation
SBLO | Londrina, Brazil 1 city, forest Test

TABLE 4.2 — Dataset Flight Gear airports’ orientation data used to generate the dataset

with FG.

4.3 Python interface

First of all, we needed a way to easily control the position and orientation of the
camera inside the simulation. We used the FlightGear.py repository, which can establish

a TELNET stream to the simulator and alter, in runtime, any listed “internal properties”

ICAO | Runway | True heading | Magnetic to true | Screenshots
BIKF 28 270 -10 1000
SDRJ | 02R/L 0 -22 1000
SBEG 28 270 -10 1000
LFPG | 26R/L 265 +5 1000
HECA 23L 229 -1 1000
SBGL 28 260 -22 1000
VVTS | 25R/L 250 0 1000
SBGP 20 180 -22 1000
SBLO 31 290 -20 2000

listed. For our goal, the relevant internal properties are:
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e /position/longitude-deg: variable for longitude positioning in degrees.

/position/latitude-deg: variable for latitude positioning in degrees.

/position/altitude-ft: variable for altitude (MSL) positioning in feet.

/orientation/heading-deg: variable for heading orientation in degrees.

/orientation/pitch-deg: variable for pitch orientation in degrees.

/orientation/roll-deg: variable for roll orientation in degrees.

With those, we can control the camera successfully to take pictures of the runway in

any possible pose.

4.4 Simulation control and modding

Some angles and distances would have no value for training, as the picture would not
cover all runway corners depending on them, so we limited the camera position to be
inside a closed conic region with its vertex in the middle of the threshold bars (runway
head). The cone has an elliptical base due to the vertical angle being different from the
horizontal angle. We created a Python module to generate a uniform random distribution
in spherical coordinates (r = distance to the runway head, ¢ — horizontal angle, and 6
— vertical angle) inside the limiting cone (see Figure 4.1). With the distribution vector,
another module transforms from spherical to latitude, longitude, and altitude vectors,

using the airport’s runway head’s coordinates as input.
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—

FIGURE 4.1 — Illustration of the generated vector cone with respect to the runway.

Heading and pitch angles were calculated from each given latitude, longitude and
altitude, in order to point at the runway and reduce the number of screenshots containing

it partially. Roll angles were generated randomly from —20 to 20 degrees.

4.5 Screenshot generation

We created a screenshot module, which will go through all indexes of the previously
explained coordinates vector, and, for each position, will take a screenshot (see Figure
4.2) and save it to a reserved folder in the system. Given that each screenshot takes
approximately a second to be taken, at this point, we can have a theoretically unlimited
number of different un-annotated pictures in the database if enough time can be expended

on the screenshot sequences.
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FIGURE 4.2 — Example screenshot taken from the Flight Gear simulator.

4.6 Annotation

The manual annotation for keypoint detection in a huge number of images would
greatly limit the work’s efficiency due to the time and effort needed to manually annotate

an image. As such, one of the goals of this work is to make an automatic annotator.

4.6.1 Detectron2 dataset format

As seen on Detectron2 Documentation (DETECTRON2, 2021a), the annotation for key-

points consists on a list of floats with the following data for each picture:

[xl Y1 U1 T2 Y2 V2 ... Tj Y; Ui]u

where z;, y; and v; are the width coordinate, height coordinate and the visibility of the
i" keypoint on the image (visibility 0 equals to not visible on the image). Each runway

in an image has its own keypoints list.

The main purpose of the annotator is to extract the keypoints data: in our case,
the keypoints will be the four corners of a runway. Then, the annotation code needs to
somehow extract the (z,y) coordinates of each corner of the runway, for each image, to
label the dataset.

4.6.2 Differential annotator

First, in the FG environment, we take all screenshots from the given airport as de-

scribed in the screenshot generation section. Now, given that the random camera position
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vector used to generate those screenshots is saved, a new screenshot sequence will be taken.
This time, using the FG Nasal console, we put a green sphere in each of the four corners
of the runway (see Figure 4.3) as an artificial object in the FG simulated environment,

and take screenshots once again.

FIGURE 4.3 — Annotated image pair for the example in Figure 4.2.

To correctly extract the corners, we used the process indicated in Figure 4.4. The
differential annotator is a function based on a work posted by Rosebrock (2017) that
takes the differences between each pair of clean and annotated screenshots and returns
the center of each of the differences (which will be the center of the objects put in the

corners), thus constructing the keypoint dictionary needed for Detectron2.

FIGURE 4.4 — The two steps performed by the annotator: differentiation between clean
and annotated image, followed by the extraction of the center point of the four difference
zones.

After the extraction, a keypoint sorter is used to efficiently put the keypoint data in
the right order: bottom-left, bottom-right, top-left, top-right corners.
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Without the construction of this automatic annotation code, the feasibility of the
project would be severely affected, as the manual annotation for a decent amount of

images, to train effectively, could take a high amount of effort and time.

4.7 Dataset registering

With the annotator, it is possible to register the training, validation, test and real
datasets. In Detectron2’s default configuration, it is divided into Dataset and Metadata

Catalogs.

e Dataset Catalog: contains the images’ location, their size in pixels and their bound-

ing box, keypoints or segmentation annotation data.

e Metadata Catalog: contains common information and parameters about the dataset.
In this case, the number and names of classes, the number, and names of keypoints,
flip map (which keypoints are swapped in case of an image flip for data augmenta-

tion), and connection rules (which keypoints must be connected by lines).

For ease of training, we decided to only use images with runways having all four corners
visible. For that, a dataset filter was implemented, in order to only register images with

a number of keypoints multiple of 4. The process is illustrated in Figure 4.5.

Exclusion from

dictionary
No
Annotation 4’5' 12’.lt6 e Filtered
data EYROIES dictionary
annotated?

FIGURE 4.5 — Block diagram of image exclusion from the dataset due to the keypoints’
visibility.

This process, using the airport images, generates the training, validation and test
datasets. Lastly, there is the real dataset with 27 images taken from the internet and
manually annotated. Its size is not enough for a trustable statistical outcome, but it
may be used to check the existence of benefits from virtual training, as well as virtual

overfitting.
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4.8 Training and evaluation

With the dataset and annotation information, the training may proceed, using, at
first, the default parameters from Detectron2 trainer engine tutorial, with some changes

shown in Table 4.3 and data augmentation in Table 4.4

TABLE 4.3 — Detectron2 configuration.

Attribute Value
MODEL . MASK_ON False
MODEL.KEYPOINT_ON True
SOLVER_IMS_PER_BATCH 1
TEST .DETECTION_PER_IMAGE 2
MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS 4
SOLVER.BASE_LR 0.00025
SOLVER.MAX_ITER 100,000
MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 64
MODEL.ROI_HEADS.NUM_CLASSES 1
Architecture and starting weights COCO R-CNN 50 layers

TABLE 4.4 — Data augmentation used in training.

Augmentation Properties
Random Brightness 0.6 to 1.4
Random Flip 40% probability, horizontal only
Random Contrast 0.7 to 1.3

Other augmentations, like Random Cropping, were excluded due to the chance of re-
moving keypoints from the image in the process. No learning rate decay was applied. The
total loss and keypoint loss function curves will be evaluated on training and validation
sets on every 20 epochs. Next, a second training session will be made with the losses

being evaluated on the real dataset.

The next step is to load the trained model obtained on early-stopping and to use
the COCO Evaluator, obtaining AP metrics for bounding boxes and keypoint predic-
tion on the Test dataset. In order to correctly calculate OKS, the keypoint weights are
TEST.KEYPOINT_OKS_SIGMAS = [1 1 1 1], which means all four keypoints have full weight

on metrics.
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4.9 Pose estimator

On the test dataset, we are going to use a Perspective N-point (PNP) algorithm to
estimate aircraft camera coordinates and orientation related to the world coordinates. For
a correct analysis, the cone coordinates in Section 4.4 were stored and to be compared
against the estimate of the algorithm. The world coordinates used will have its origin
at the bottom-right corner of the runway; The axes x, y and z are aligned to the Earth

longitude, Earth latitude and the local vertical, respectively, as seen in Figure 4.6.

FIGURE 4.6 — The world coordinate axes placement on SBLO runway.

The algorithm uses the prediction of keypoints in the test images, indirectly contribut-
ing with other particular metrics for keypoints other an APpks. As example, positional
errors, obtained by substracting the ground truth of z,y, z from the estimative provided
by the algorithm; and orientation, analogous to positional error, using heading, pitch and

yaw angles, predicted and ground truth.

The framework used for PNP was OpenCV, specifically solvePnP and Rodrigues

functions. Table 4.5 shows used data for algorithm.

TABLE 4.5 — Arguments passed to PNP algorithm.

Argument Value Obs.
Camera Field of View | 55 [deg] | Diagonal
Image size 1900 x 892 | Wx H
Distortion coefficients [0000] -




5 Results

The results to be presented were obtained using the fully annotated datasets (exactly
4 or 8 visible keypoints) taken around the airports’ scenery. Table 5.2 presents how the
data was split between the datasets. Before filtering out images (explained in Section
4.7), we had 8000 images (excluding SBLO airport). 7330 of those compose the training
set, while the remaining 670 became the validation set by random selection. The two
thousand SBLO pictures compose the test dataset, and 27 real runway images make the

real dataset.

TABLE 5.1 — Datasets’ composition

Dataset Before | Excluded | After
Training 7330 920 6410
Validation | 670 84 586
Test 2000 14 1986
Real 27 1 26

After filtering to keep images with exactly 4 or 8 visible keypoints, as explained in
Section 4.7, the training, validation, test and real sets lost 920, 84, 14 and 1 image(s),
respectively. The total training time until 71,000 epochs, which was the early-stopping
trigger, was approximately 1 day 17 hours and 38 minutes using a Tesla P100 GPU on
Google Colab.

5.1 Loss functions

5.1.1 Virtual-virtual analysis

During training and for every 20 epochs, total and keypoint losses were calculated,
and results are shown in Figures 5.1 and 5.2, respectively. We can see that their behavior
is very similar, and, at the point around 70,000 epochs, further iterations would not

give considerable benefits towards validation dataset losses, indicating proximity of the



CHAPTER 5. RESULTS 52

overfitting point.

Total loss curves Keypoint loss curves
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FIGURE 5.1 — Total loss evolution for FIGURE 5.2 — Keypoint loss evolution for
training and validation datasets. training and validation datasets.

5.1.2 Virtual-real analysis

Following the same methodology, total and keypoint losses on the real dataset were also
calculated every 20 epochs, and its results are shown on Figures 5.3 and 5.4, respectively,
comparing to the training dataset losses. As expected, the training had a very clear
overfitting point which happens around 2,000 epochs. Prior to that, there is a decrease in
both keypoint and total losses for the real dataset, indicating that a virtual dataset may be
used in a pretraining process in order to reduce costs and increase agility in development;
After virtual overfitting, the loss functions for the real dataset increase slowly. That
behavior remains during the 71,000 epochs. Qualitative differences between 2000 and

71000 epochs trained models on real runways will be shown later.
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Total loss curves (Virtual-real) Keypoint loss curves (Virtual-real)
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FIGURE 5.3 — Total loss evolution for FIGURE 5.4 — Keypoint loss evolution for
training and real datasets. training and real datasets.

5.2 Evaluation

5.2.1 Test dataset

Using the final model weights, the COCO Evaluator provided AP metrics for bounding
boxes and keypoints shown in Table 5.2. These metrics are considered standard metrics

for evaluating object detection and keypoint detection models in the academy.

TABLE 5.2 — Evaluation metrics from prediction on the test dataset.

Bounding boxes -
- Keypoints
Metric | Value -
Metric | Value
AP 81.5
AP 94.1
AP50 93.6
AP50 96
APT5 89.6
APT5 | 94.7
APs 37.8
APm | 89.3
APm 71.1
APl 96.6
APl 86.5

The results indicate that the network has successfully trained over virtual runway
detection, with an average precision of 81 % for bounding box and 94 % for keypoints.
The high AP metrics when compared to current benchmarks can be explained by the fact
that our network is trained for only one class (airport runway). Nonetheless, as examples
seen in Figure 5.5, inference provided solid results for near and far images. The keypoints’

placement was assertive and bounding box correctly contained the runway in the image.
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Some images came out with peculiar detection results, as seen in Figure 5.6. The
example (c) can be explained by erroneus annotation on training set, which trained the
network to detect a close shot of threshold bars as runways. Figure 5.7 shows an example
of a bad annotation which could have led to these individual cases. All four runway

corners were annotated around runway threshold bars.

(a) Valid result by inference on the test dataset runway image from dis-

tance.

(b) Valid result by inference on the test dataset runway image closely.

FIGURE 5.5 — Good detection results on the test dataset.
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(a) Invalid result on the test dataset showing wrong detection.

(b) Invalid result on the test dataset showing wrong detection.

(c) Invalid result on the test dataset showing wrong keypoint placement.

FIGURE 5.6 — Wrong results on the test dataset.
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FIGURE 5.7 — Image with bad unfiltered annotation on the training dataset.

Aside the wrong detections, a visual analysis on many images, reinforced by the AP
metrics, show that even when keypoints are misplaced or undetected, bounding box pre-
dictions are valid and well placed. If this characteristic maintains itself in more advanced
works involving real images, it could help aircraft guidance when approaching runway and
until it can have a clear enough view of the runway to begin valid keypoint inference. This
hypothesis also reinforces the explained idea of data fusion with other guidance systems,
as they can be used to properly guide the aircraft towards the runway until the CVS is

close enough to output quality results.

5.2.2 Real dataset

Inference on the real dataset was made with the 2000 and 71000 epochs models. As
seen in Figures 5.8 to 5.17.

FIGURE 5.8 — Detection with different FIGURE 5.9 — Detection with different
epochs models (2000). epochs models (71000).
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FIGURE 5.10 — Detection with different FIGURE 5.11 — Detection with different
epochs models (2000). epochs models (71000).
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FIGURE 5.12 — Detection with different FIGURE 5.13 — Detection with different
epochs models (2000). epochs models (71000).
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FIGURE 5.14 — Detection with different FIGURE 5.15 — Detection with different
epochs models (2000). epochs models (71000).
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FIGURE 5.16 — Detection with different FIGURE 5.17 — Detection with different
epochs models (2000). epochs models (71000).

For both models in a detection threshold of 0.2, runways were detected in 14 of 26
dataset images. As we can see, the accuracy of keypoints’ placement for the most trained
model is better on those images. But, among those images with detections, some wrong
detections cases occurred in both bounding box and keypoints, as seen in Figures 5.12
and 5.13. Especially in Figures 5.16 and 5.17, the lack of keypoints’ placement is probably
explained by the absence of runway markings. The network could have trained itself to

predict keypoint placement from threshold bars and/or aiming markings.

5.3 Pose estimation

The PNP algorithm used the keypoints’ inference results for the whole test dataset.

The metrics for positional and orientation predictions are shown on Table 5.3

TABLE 5.3 — Error metrics for pose estimation.

Metric X [m] y [m] z [m] | Hdg [deg] | Pitch [deg] | Roll [deg]
Mean abs. error | 2.91-10¢ | 3.13-10° | 6.56 - 10° 11.58 2.10 12.35
Std. deviation | 73.6-10° | 94.6-10° | 222106 40.03 4.93 35.50

These values were not expected, as they are far superior to the generated cone max-

imum distance (6000 meters). A histogram of Euclidean distance error was plotted (see
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Figure 5.18), as many outliers could contribute to those unreliable metrics.
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FIGURE 5.18 — Histogram of Euclidean distance absolute errors.

Dealing with the outliers was a must to proceed with analysis. We then removed errors
above one tenth of the generated cone maximum distance (600 m) from the population,
as these errors could be automatically filtered out by data fusion with other sensors in
real application. The filtering process changed the metrics and the histogram, as shown

in Table 5.4 and Figure 5.19.

TABLE 5.4 — Error metrics for pose estimation (filtered)

Metric x [m] |y [m] | z [m] | Hdg [deg] | Pitch [deg] | Roll [deg]
Mean absolute error | 173.50 | 54.75 | 37.55 1.68 1.09 2.80
Standard deviation | 121.44 | 42.20 | 31.94 1.08 0.56 1.91
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FIGURE 5.19 — Histogram of Euclidean distance absolute errors (filtered).

A mean error on axis of around 200 meters can be acceptable for a proof of concept
work, meaning that further development could push values to a better result. With that in
mind, Figure 5.20 shows the per-axis absolute errors distribution according to the ground
truth Euclidean distance from the runway; And, by combining the positional errors, Figure

5.21 shows the Euclidean distance errors related to ground truth runway distance.
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FIGURE 5.20 — Per-axis errors distribution related to distance from runway (filtered).
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FIGURE 5.21 — Euclidean distance errors distribution related to distance from runway
(filtered).

The data reveals that the network becomes more robust as the aircraft gets closer, as

all three axis’ errors increase with distance to the runway. Also, the prediction for height
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seems more accurate than latitude and longitude predictions. In terms of orientations,
Figure 5.22 shows the histogram for the heading, pitch and roll predictions’ distribution,
respectively. It seems that the orientation inference is more accurate than positioning,
with most of all three distributions concentrating below 5 degrees. We conclude that a
keypoint prediction network may very well supply pose estimation algorithms in practical

applications.
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- RESUMO:

The recent advancement in computational power allowed the world to give more use of deep learning algorithms.
The image processing task is on itself data-hungry, but showed to be of extreme importance in many fields of
knowledge. In this work, a runway detection method, for aircraft during landing phase, based on convolutional
neural network is made with the motivation to reduce pilot workload, increase flight safety during landing and
take new steps towards single-piloted or even unmanned commercial flights. With the results, the network
could successfully converge its loss function on the training dataset and validation dataset, and inference on
several images from test dataset and real runway images gave good results for keypoint and bounding boxes
predictions. Our numerical results indicate that virtual runway images can be used in order to pretrain a
network to detect real runway images, so we contribute to a cheaper and faster approach on the development
of such technology. Further analysis on estimatives for orientation and position of the aircraft camera from
predicted keypoint indicate the work to be promising. Even being an initial work, the results gave a robust
error histogram which could be easily controlled by filtering outliers and by data fusion with other sensors in
real application. Overall, we contribute with results indicating that virtual training, using data augmentation
methods for dataset enrichment, benefits real detection and that the keypoint predictions may be used together
with pose estimation algorithm to give estimates of aircraft pose related to runway.
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