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Com base nas necessidades de um hospital militar, este trabalho apresenta

um problema integrado de programação de cirurgias e planejamento de leitos pós-

cirúrgicos para um ambiente hospitalar. O cenário dá origem a um problema geral de

modelagem em cuidados de saúde com uma série de inovações literárias. O modelo

utilizado inclui múltiplas rotas de recuperação pós-cirúrgica, considerando possíveis

estadias na Unidade de Terapia Intensiva (UTI) ou Semi-Intensiva (UTSI), e permite

ao decisor atribuir um plano de alocação de leitos que considera o tempo máximo

de permanência nestas unidades pós-operatórias. A abordagem foi concebida para

garantir um fluxo contínuo de pacientes, evitando o cancelamento de cirurgias por

restrições insuficientes a jusante, e permite um planejamento tático que considera o

equilíbrio a longo prazo entre demanda e oferta de cirurgias em todas as especiali-

dades.

Para validar o modelo e investigar a sensibilidade em relação aos parâmetros e

à disponibilidade de recursos, utilizamos uma série de experimentos com base no

funcionamento real do hospital em questão. Os resultados mostram que a mode-

lagem pode também ser utilizada em outros hospitais, e fornece apoio à decisão na

prestação de serviços cirúrgicos, tendo em conta toda a trajetória do paciente, bem

como os recursos a montante e a jusante.
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Based on the needs of a military hospital, this work presents an integrated surgery

scheduling and post-surgical bed planning problem for a standard hospital setting.

The setting gives rise to a general healthcare modelling problem with a number

of innovations with respect to the literature. The model includes multiple post-

surgical recovery trajectories involving possible stays at the Intensive Care Unit

(ICU) or Semi-Intensive (SICU) and allows the decision maker to assign a bed

allocation plan that considers the maximum length of stays in these postoperative

units. The approach is designed to ensure a seamless patient flow, avoiding surgery

cancellations due to insufficient downstream resources, and enables tactical planning

that considers the long-term balance between demand and surgery provision across

all specialties.

To validate the model and investigate the sensitivity with respect to model pa-

rameters and the availability of resources, we use a series of experiments that were

based on the actual operation of the hospital partner. The results shows the per-

formance that the model can tackle a general hospital setting and provide decision

support for surgical provision while taking into account the whole patient trajectory,

as well as both upstream and downstream resources.
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Chapter 1

Introduction

The need to properly plan and manage resource intensive hospital services such

as surgery provision has been accentuated by the combination of ageing populations

and limited budgets across the globe (e.g., CYLUS et al., 2022). Indeed, the litera-

ture on surgery scheduling has steadily increased over the last decade and it includes

a number of important literature reviews on the topic (DEMEULEMEESTER et al.,

2013; SAMUDRA et al., 2016; WANG et al., 2021). However, since this is a complex

problem, some specific issues still remain under-explored or unaddressed. Integrated

tactical planning covering both upstream (e.g., operating theatres) and downstream

resources (e.g., post-surgical beds at different recovery units) is an example of the

former (WANG et al., 2021; HARRIS and CLAUDIO, 2022); as well as the gap be-

tween theory and practice mentioned by WANG et al. (2021). In contrast, tactical

planning considering the integration of multiple post surgical units across distinct

hospital recovery pathways is an example of the latter.

Bridging theory and practice, the present study is motivated by a partnership

with a military hospital in Rio de Janeiro, Brazil. The hospital partner required

decision support with their tactical elective surgery scheduling planning for the or-

thopaedic centre. However, albeit their surgical pathways follow a standard setting,

there was no approach in the literature to tackle the associated surgery scheduling

and bed assignment planning in its entirety; hence a new modelling approach was

required. It is this new modelling approach that we introduce in this study. The

next section briefly discusses the hospital setting and the modelling challenges.
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1.1 The studied setting

The centre for orthopaedic surgery at the hospital partner is a leading regional

centre of its kind, with a large demand for elective surgeries and a waiting queue

which currently holds about 750 surgical patients. Due to the size of the waiting

queue, one of the concerns of the tactical planning to be proposed is that it gen-

erates a schedule with some excess capacity relatively balanced across the medical

specialities, to make sure that the waiting queue for each speciality will decrease in

the long-term.

The operating theatres are open from Monday to Friday, and are compatible

with each of the seven orthopaedic specialities served at the hospital’s orthopaedic

centre, namely: foot, hand, shoulder, knee, spine, hip, and paediatric. Figure 1.1

illustrates the entire flow from hospital referral to discharge, with the bottom part

representing the flow at the surgical centre that is modelled in this study. Observe

that, after surgery, the patient is transferred to the postoperative recovery centre,

where they stay until they are ready for hospital discharge. The last two blocks in

Figure 1.1 are detailed in Figure 1.2.

Figure 1.1: Patient flow from hospital arrival to hospital discharge.

Notice that Figure 1.2 details the downstream processes, i.e., the post-surgical

care provided by the orthopaedic centre. It is a general, albeit fairly standard

setting that includes three different recovery units: the Intensive Care Unit (ICU),

the Semi-Intensive Care Unit (SICU) and the Ward. To the best of our knowledge,

this setting remains unaddressed in its entirety in the literature concerning tactical

surgery scheduling. It generates a set of patient pathways that can include visits to

2



Figure 1.2: Flow between operating theatre and recovery units.

either ICU or SICU prior to the final recovery at the Ward and subsequent discharge

from hospital. While patients that do not require special care are immediately

referred to the Ward, those that do will visit either the ICU or the SICU depending

on their individual requirements. SICU receives patients that require special care

but no permanent monitoring, whilst patients that require both will be referred to

the ICU.

To address the problem introduced above, we propose a general model with

a number distinguishing characteristics and novel contributions to the literature.

Firstly, it tackles an integrated surgery scheduling and bed planning problem that

covers the whole patient trajectory, from surgery to discharge, whilst covering mul-

tiple recovery pathways that may include intensive or semi-intensive care prior to

the final recovery in the Ward and posterior hospital discharge. Secondly, the model

combines open block surgery scheduling that allows different specialities to share op-

erating theatres, with bed capacity allocation at all three recovery units (ICU, SICU

and Ward) to balance input and output patient flows; and it does so by considering

the worst-case-scenario for the lengths of stay at ICU and SICU, thus introducing

some robustness to the downstream planning. Thirdly, the weekly schedule is in-

tegrated with the downstream capacity planning to ensure that the surgery plans

remain viable whilst demand and capacity constraints make sure that the capacity

exceeds the demand for all surgical specialties, thereby integrating tactical planning

with the hospital’s long-term objective of decreasing the waiting queues.

The rest of the work is structured as follows. The next chapter features a brief

literature review that contrasts our approach to the related literature. Chapter

3 introduces the proposed mathematical model and explains its connection to the
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studied problem. To validate the proposed approach and to discuss its implications,

Chapter 4 introduces a set of experiments based on the operation of the hospital

partner. The experiments also analyse the variation of the resulting weekly surgery

schedules and bed assignment plans with changes in the operating theatre capacity

and in the model parameters. Finally, Chapter 5 concludes the work.
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Chapter 2

Literature Review

The management of surgeries at the hospital level comprises two different classes

of interrelated problems: surgery planning and surgery scheduling (ZHU et al., 2019;

AKBARZADEH et al., 2019). Whilst planning typically involves determining a set

of surgeries to be performed within a time horizon, surgery scheduling can be seen as

determining the exact schedule of patients that will have surgery at an specified date

(AKBARZADEH et al., 2019). These are widely studied problems that have been

reviewed by several authors in recent years (e.g., SAMUDRA et al., 2016; WANG

et al., 2021; HARRIS and CLAUDIO, 2022; ZHU et al., 2019; GÜR and EREN,

2018). Like the majority of works in the area, this work focuses on the planning of

elective surgeries.

Surgery planning problems can be divided into three different decision levels:

strategic, tactical and operational (e.g., SAMUDRA et al., 2016; WANG et al.,

2021; HARRIS and CLAUDIO, 2022; ZHU et al., 2019). Issues at the strategic

level have a long-term time horizon and aim to improve the use of available hospital

resources and their distribution across medical teams (e.g., CHOI and WILHELM,

2014; RIISE et al., 2016; FÜGENER et al., 2017). The tactical level looks at a

medium-term horizon (e.g., ABEDINI et al., 2016; PENN et al., 2017; BRITT et al.,

2021) and aims to bridge the gap between the strategic and the operational level.

The latter, in turn, has a short-term time horizon such as the scheduling of surgeries

for a single day (e.g., ZHANG et al., 2021; YOUNESPOUR et al., 2019; BAM et al.,

2017). This study addresses a tactical-level surgery planning problem.

At the tactical level, a surgery planning problem is often referred to as a Master
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Surgery Scheduling Problem (MSSP) and produces a cyclical schedule for assigning

surgeries to different medical teams or specialities over a given period, which often

amounts to one week (HARRIS and CLAUDIO, 2022; ZHU et al., 2019). Many

studies, however, consider only short-term performance measures aimed at reducing

financial costs, such as those related to the use of resources or professional labour

(e.g., ABEDINI et al., 2016; DELLAERT and JEUNET, 2017; ROSHANAEI et al.,

2017; TAYYAB et al., 2023), ignoring long-term issues such as reducing waiting

queues across surgical specialities. These issues, nonetheless, are vital to linking

the daily operation with the hospital’s long-term goals (RACHUBA et al., 2022;

SIQUEIRA et al., 2018). Therefore, our approach will link tactical planning with

long-term goals by ensuring that the prescribed capacity for surgeries exceeds the

demand across each individual speciality - a sufficient condition for the long-term

stability of the waiting queues.

Another important concept relates to the hospital’s strategic policy for assigning

medical teams to operating theatres. There are two main classes of policies for shar-

ing operating theatres, namely open block and closed block (e.g., WANG et al., 2021;

HARRIS and CLAUDIO, 2022; ZHU et al., 2019). Closed block policies assign each

operating theatre (OT) for exclusive use by a single medical team for a prescribed

length of time - often a day (e.g., KOPPKA et al., 2018; GUIDO and CONFORTI,

2017; ROSHANAEI et al., 2020; ZHU et al., 2020). In contrast, open block policies

allow OTs to be shared between different medical teams or surgical specialities (e.g.,

ROSHANAEI et al., 2017; HASHEMI DOULABI et al., 2016; TAYYAB and SAIF,

2022). Whilst open block policies involve additional management issues such as co-

ordinating different medical teams or surgical specialities, they expand the number

of possible configurations of surgery sessions and can therefore promote a better

usage of the OT capacity (e.g., BRITT et al., 2021; SIQUEIRA et al., 2018). In our

study, we considered a single medical team available for each speciality and chose

the open block approach to allow greater flexibility in the assignment of surgeries

and promote a better usage of the OTs, as open block policies are welcome by our

hospital partner.

In terms of the types of models used in the problems, the majority of the lit-

erature use deterministic models (e.g., DELLAERT and JEUNET, 2017; TAYYAB

et al., 2023; ZHU et al., 2020). Some researchers use stochastic modelling to account

6



for uncertainties in the time required to perform each surgery (e.g., DELLAERT

and JEUNET, 2017; MAKBOUL et al., 2022) or in the patient’s recovery time after

surgery (e.g., DELLAERT and JEUNET, 2017; CAPPANERA et al., 2014). Math-

ematical programming is the most used solution method for tactical-level problems

(WANG et al., 2021), but some authors also use simulation (KOPPKA et al., 2018;

CAPPANERA et al., 2014). To reduce the computational time for finding satis-

factory solutions, some authors use heuristics (DELLAERT and JEUNET, 2017;

GUIDO and CONFORTI, 2017; ZHU et al., 2020; TAYYAB and SAIF, 2022).

This work introduces a tactical-level integrated surgery planning and bed man-

agement problem with a number of important characteristics that differentiate it

from the previous literature. Similarly to SIQUEIRA et al. (2018), we consider

an integrated open block surgery planning problem which also assigns post-surgical

beds to surgical specialities, with a view to improving the patient flow by optimising

the use of upstream and downstream resources. To promote long-term equilibrium,

the approach makes sure that the assigned number of weekly surgeries exceeds the

demand over the same period for each surgical speciality. Our study innovates,

however, by considering different routes of post-surgical recovery (see Figure 1.2)

that include stays at either the Intensive Care Unit (ICU) or the Semi-Intensive

Care Unit (SICU). To the best of our knowledge, this is the first surgery planning

approach that considers the flow of patients through a SICU - a link between the

operating theatre and the ward that provides postoperative care for patients who

do not require permanent monitoring, but still require intensive care (EKELOEF

et al., 2019).

Considering SICU and ICU into the patient flow model is important not only

because it renders the model more realistic, but also due to the high financial cost

of these units, whose demand comes mainly from the operating theatres (HEIDER

et al., 2020). Furthermore, the lack of postoperative ICU and SICU beds propagates

in the system, causing surgery cancellations and potential delays in subsequent surg-

eries. Whilst some previous studies also considered the ICU in their model (e.g.,

DELLAERT and JEUNET, 2017; TAYYAB et al., 2023; MAKBOUL et al., 2022;

ANJOMSHOA et al., 2018), to the best of our knowledge the proposed model is the

first to consider recovery routes that can include either an ICU or a SICU stay, each

with a given probability that depends on the surgical speciality. Furthermore, while
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previous works considered fixed ICU capacities for each speciality, our model also

prescribes the allocation of the available beds at each post-operative unit (SICU,

ICU and Ward) to surgical specialities, to promote an optimised flow of patients.

Finally, another important contribution of the approach is that it ensures a

balance between input and output at both the ICU and the SICU for each day

of the planning horizon, by considering the worst case scenario in terms of length

of stay at these units. This confers some robustness to the resulting surgery and

bed allocation plans, with a view to improving patient flow and preventing surgery

cancellations due to do the absence of downstream resources.

Table 2.1: References - Surgery planning.
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Planning X X X X X X X X X X X X X X X X X X X X XType of
problem Scheduling X - X X - - X - - - - - X - X X - X X X -

Tactical X X X X X X X X X X X X X X X X X X X X XDecision
level Operational X - X X - - X - - - - - X - X X - X X X -

Closed block X - - - - - - X X X X X X X X X - - X X -
Strategy

Open block - X X X X - X - - - - X - - - - X X - - X

Deterministic X X X X X X X X X X X X X X X X X X X X XMathematical
model Sthochastic - X - - - X - - - - X X X X - X X - X - -

Simulation - X - - - - - - - - X - - - - - - - - - -
Mathematical
programming

X X X X X X X X X X X X X X X X X X X X XSolution
method

Heuristic X - X X X X X - X - - - X - X X X X - - -
OT X X X X X X X X X X X X X X X X X X X X X

Ward - X - - - X - X - X - X - X - - X X X X X

ICU - - - - - X - - - X - - - - - - - X X X X

Considered
resources

SICU - - - - - - - - - - - - - - - - - - X

OT X X X X X X X X X X X X X X X X X X X X X

Ward - - - - - - - - - - - X - - - - - - - - X

ICU - - - - - - - - - - - - - - - - - - - - X

Shared
resources

SICU - - - - - - - - - - - - - - - - - - - - X

Financial
costs

X X X X X X X X X X X - X X X - X - X X -
Objective
(reduce)

Wating
time

X X - - - - - - X X X X X - X X X X - - X

Table 2.1 summarises the proposed approach according to the main classifications

discussed above and compares it to the related literature. Note that some works

address planning and scheduling (e.g., TAYYAB et al., 2023; ZHU et al., 2020;

AGNETIS et al., 2014; VANCROONENBURG et al., 2015). First, at the tactical

level, they create schedules that assign surgeries to operating theatres; then, at

the operational level, they assign individual patients to scheduled slots. The next
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chapter introduces and discusses the proposed mathematical model in detail.
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Chapter 3

Mathematical model

The proposed mathematical model covers the process from entry into the oper-

ating theatre to discharge from the hospital. The parameters of the problem are

described in Table 3.1, the modelling parameters are in Table 3.2, and the decision

variables are in Table 3.3.

Table 3.1: Parameters of the problem.
Parameter Description

S = {1,...,Ns} Set of specialities
T = {1,...,Nr} Set of operating theatres available for surgeries
D = {1,...,Nd} Set of days available for performing surgeries
Opes Time, in hours, to perform surgery of speciality s ∈ S.
CT Time, in hours, for preparing and cleaning of operating theatres

Recwards Maximum time, in days, that the patient of speciality s ∈ S stays in the ward after surgery

Nicue
Time, in days, that the patient of speciality s ∈ S stays in the ICU after surgery

Nsicus
Time, in days, that the patient of speciality s ∈ S stays in the SICU after surgery

H Total hours available for performing surgeries in each operating theatre

Ints,d Time, in days, since the last probable surgery of the speciality s ∈ S, measured on the day d ∈ D

Dems Weekly demand for surgeries of speciality s ∈ S

Picus

Minimum percentage of surgeries of the speciality s ∈ S requiring patient recovery in the
ICU

Psicus

Minimum percentage of surgeries of the speciality s ∈ S requiring patient recovery in the
SICU

Bedsward Number of beds available in the ward
Bedsicu Number of beds available in the ICU
Bedssicu Number of beds available in the SICU
Ut,d 1, if the operating theatre t ∈ T can be used on the day d ∈ D, 0, otherwise

Bs,d 1, if surgeries of speciality s ∈ S can be performed on the day d ∈ D, 0, otherwise

Table 3.2: Modeling parameters.
Parameters Definiton
W Parameter limiting the number of beds allocated in the recovery units

M1

Arbitrarily large parameter that limits the number of daily surgeries of each speciality
at any operating theatre

M2 Arbitrarily large parameter that limits the number of daily surgeries of each speciality
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Table 3.3: Decision variables.
Variables Definition
xtotals,t,d Total number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D

xicus,t,d

Number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D, which
require patient recovery in the ICU

xsicus,t,d

Number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D, which
require patient recovery in the SICU

xwards,t,d

Number of surgeries of speciality s ∈ S assigned to operating theatre t ∈ T , on day d ∈ D, whose
patient recovery occurs directly in the ward

yicue
Number of ICU beds allocated to speciality s ∈ S

ysicus
Number of SICU beds allocated to speciality s ∈ S

ywards Number of ward beds allocated to speciality s ∈ S

zs,t,d 1, if operating theatre t ∈ T is allocated to speciality s ∈ S on day d ∈ D, 0, otherwise

Figure 3.1 details the flow of patients from operating theatre to hospital dis-

charge, considering their multiple recovery pathways. Observe that patients of any

given speciality can be referred to the ICU or SICU after surgery in case they need

SICU or ICU care. Otherwise, they will be directly referred to the Ward. Finally,

patients will be discharged from hospital after their recovery at the Ward.

Figure 3.1: Quantities of patients in the flow between the operating theatre and
hospital discharge.

Equation (3.1) below introduces the optimisation problem to be solved:

Maximise
∑

s∈S

∑

t∈T

∑

d∈D

(Opes ∗ xtotals,t,d)−W ∗
∑

s∈S

(yicus
+ ysicus

+ ywards),

subject to (3.2) − (3.18).

(3.1)

Observe that the left-hand side of Eq. (3.1) represents the total time effectively

assigned to surgeries during the planning horizon, whereas the right hand side is a

weighted sum of the number of beds allocated. Therefore, the aim is to maximise

the utilisation of the surgical centre, whilst limiting the number of post-surgical

beds allocated across the different units. This is intended to help the decision-

maker manage possible fluctuations in the availability of downstream resources by
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maintaining a reserve of bed capacity to use when needed.

Constraint (3.2) ensures that the number of hours required to perform all surg-

eries assigned to an operating theatre (OT) on a given day, including cleaning and

preparation, never exceeds the hospital limit of H hours (Table 3.1) on days in which

the OT is available

∑

s∈S

(Opes + CT ) ∗ xtotals,t,d ≤ (Ut,d ∗H) + CT , ∀t ∈ T, ∀d ∈ D. (3.2)

The parameter Ut,d (Table 3.2) on the right hand side of expression (3.2) ensures

that no surgery will be assigned on days when the OT is not available. The last

term in the right-hand side of (3.2) represents an extra cleaning and preparation

interval, as both the preparation for the first surgery and the cleaning of the last

one can be done outside of the working hours.

Constraints (3.3) and (3.4) below concern the allocation of operating theatres to

surgical specialities and their corresponding medical teams

M1 ∗ zs,t,d − xtotals,t,d ≥ 0, ∀s ∈ s, ∀t ∈ T, ∀d ∈ D; (3.3)
∑

t∈T

zs,t,d ≤ 1, ∀s ∈ S, ∀d ∈ D. (3.4)

Whilst (3.3) ensures that surgeries of speciality s can only be assigned to OT t

on day d if theatre t is assigned to speciality s on day D (zs,t,d = 1, see Table

3.3), constraint (3.4) guarantees that, if active on day d ∈ D, the medical team

responsible for surgeries of speciality s ∈ S will perform all their surgeries in a

single OT. Note that this constraint does not prevent different specialities sharing

the same OT. Instead, it is a sufficient condition to prevent any surgical speciality

s ∈ S from being assigned two concomitant surgeries in different OTs (inconsistent

assignment). The parameter M1 (Table 3.2) is an arbitrarily large positive integer

(“big M").

Elective surgical procedures follow a weekly schedule so that surgeries can only

be assigned to the speciality s on day d if a medical team of that speciality is

available. Thus, constraint (3.5) states that surgeries of speciality s ∈ S can only

be performed on day d ∈ D if the correspondent medical team is present
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∑

t∈T

xtotals,t,d ≤ Bs,d ∗M2, ∀s ∈ S, ∀d ∈ D. (3.5)

Note that the parameter Bs,d, (Table 3.1), on the right hand side of the inequality

(3.5), prevents surgeries of speciality s from being scheduled on days when the

corresponding medical team is absent. The parameter M2 (Table 3.2) on the right

hand side of the inequality is also an arbitrarily large positive integer (“big M"),

and in this case, it acts as a bound on the total number of surgeries of speciality

s ∈ S assigned on day d ∈ D.

For long-term management of the queues across all specialities, to prevent them

from growing uncontrollably, constraint (3.6) establishes that the minimum number

of surgeries of the speciality s ∈ S assigned throughout the week must exceed,

in at least one unit, the weekly demand for surgeries of the respective speciality,

represented in Table 3.1 by parameter Dems:

∑

t∈T

∑

d∈D

xtotals,t,d ≥ Dems + 1, ∀s ∈ S. (3.6)

As a complement to constraint (3.6), and to avoid an excessive number of surg-

eries, constraint (3.7) states that, for each speciality, the total number of surgeries

over the planning horizon cannot exceed a prescribed upper bound, namely the

rounded up value equivalent to one and a half times the demand over the same

period.

∑

t∈T

∑

d∈D

xtotals,t,d ≤ 1.5 ∗Dems + 1, ∀s ∈ S. (3.7)

This is intended to result on a relatively balanced schedule across all specialties,

to ensure that an eventual spare capacity in the OTs is not fully assigned to a small

subset of specialities.

The remaining constraints model the post-surgical patient flow depicted in Figure

3.1, starting with equation (3.8) below:

xtotals,t,d = xicus,t,d
+ xsicus,t,d

+ xwards,t,d , (3.8)

∀s ∈ S, t ∈ T, d ∈ D.
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Eq. (3.8) establishes that the total number of surgeries of speciality s ∈ S assigned

to operating theatre t ∈ T on day d ∈ D, represented by the variable xtotals,t,d (Table

3.3), will be split between surgeries requiring patient recovery in the ICU (xicus,t,d
),

surgeries requiring recovery in the SICU (xsicus,t,d
) and surgeries whose patients can

be directly sent to the Ward (xwards,t,d).

It is noteworthy that xicus,t,d
and xsicus,t,d

are auxiliary variables to help us plan

the required ICU and SICU bed capacity according to the expected number of

surgeries requiring a stay at each of these units. Constraints (3.9)-(3.10) ensure

that we plan ICU (SICU) bed capacity for a minimum of Picus
(Psicus

) percent of

the total number of surgeries of each speciality s ∈ S on each day d ∈ D (see Table

3.1):

∑

t∈T

(

xicus,t,d
− xtotals,t,d ∗

Picus

100

)

≥ 0, ∀s ∈ S, ∀d ∈ D; (3.9)

∑

t∈T

(

xsicus,t,d
− xtotals,t,d ∗

Psicus

100

)

≥ 0, ∀s ∈ S, ∀d ∈ D. (3.10)

To balance entries and exits in the special care units for each speciality, con-

straints (3.11) and (3.12) specify that the number of patients of speciality s ∈ S

who are in the ICU and the SICU, respectively, on day d ∈ D is limited to the

total number of beds allocated to that speciality. The left side of each constraint

represents the sum of the quantities of patients of speciality s ∈ S sent to ICU and

SICU beds in the last Nicus
and Nsicus

days (Table 3.1), respectively:

∑

t∈T

Nicus−1
∑

k=0

xicus,t,d−k
≤ yicus

, ∀s ∈ S, ∀d ∈ D. (3.11)

∑

t∈T

Nsicus−1
∑

k=0

xsicus,t,d−k
≤ ysicus

, ∀s ∈ S, ∀d ∈ D. (3.12)

Notice that, by establishing Nicus
(Nsicus

) as the maximum length of stay at the

ICU (SICU) for a patient of speciality s ∈ S, we attain some robustness for the bed

planning at these units, which will help us guarantee that the weekly plan will not

be hindered by the lack of downstream resources.

Constraint (3.13) states that if surgeries of speciality s ∈ S can be scheduled on
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day d ∈ D, then the total number of new patients arriving at the Ward is limited

to the number of free beds for that speciality on that day

∑

t∈T

xwards,t,d +
∑

t∈T

Ints,d−1
∑

k=0

xicus,t,d−k−Nicus
+
∑

t∈T

Ints,d−1
∑

k=0

xsicus,t,d−k−Nsicus
≤ (3.13)

≤
ywards

Recwards

∗ Ints,d, ∀e ∈ E, ∀d ∈ D, Ints,d > 0.

Note that the right hand side of the constraint represents the number of patients

of speciality s leaving the ward beds in the interval of Ints,d days (i.e., since the

last day when surgeries of speciality s where undertaken - see Table 3.1 ), where

1/Recwards is the average number of patients of this speciality discharged daily per

recovery bed. This average value is considered in the ward to represent the high

outflow of patients in this recovery unit.

The left hand side of (3.13) respectively aggregates the patients who underwent

surgery on day d and were transferred directly to the ward, plus those who came

from the special care units: those who have recovered in the ICU and SICU for Nicus

and Nsicus
days, respectively, and who arrived at the ward in the last Ints,d days.

In complement, constraint (3.14) guarantees that in case new surgeries of spe-

ciality s ∈ S cannot be performed on day d ∈ D (Bs,d = 0 and Ints,d = 0), the

total number of patients of said speciality arriving at the ward on this day does not

exceed the average number of released beds:

∑

t∈T

xicus,t,d−Nicus
+
∑

t∈T

xsicus,t,d−Nsicus
≤

ywards

Recwards

, ∀s ∈ S, ∀d ∈ D. (3.14)

Constraint (3.15) states that the number of patients of speciality s ∈ S arriving

at the ward on day d ∈ D is limited to the number of beds allocated to the speciality

in question. Note that this figure is composed of patients who came directly from

the operating theatre, added to those from the special care units, who had their

recovery period in the Nicus
and Nsicus

days before:
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∑

t∈T

xwards,t,d +
∑

t∈T

xicus,t,d−Nicus
+
∑

t∈T

xsicus,t,d−Nsicus
≤ ywards , (3.15)

∀s ∈ S, ∀d ∈ D.

Constraints (3.16), (3.17) and (3.18) establish that the totals of beds allocated

across all specialities s ∈ S are restricted to the quantities available in the hospital

in each postoperative unit, represented by the parameters Bedsicu, Bedssicu and

Bedsward (Table 3.1):

∑

s∈S

yicus
≤ Bedsicu. (3.16)

∑

s∈S

ysicus
≤ Bedssicu. (3.17)

∑

s∈S

ywards ≤ Bedsward. (3.18)

Constraints (3.19) and (3.20) assume that the decision variables that assign surg-

eries and allocate beds (Table 3.3) belong to the set of non-negative integers:

xtotals,t,d , xicus,t,d
, xsicus,t,d

, xwards,t,d ∈ Z+, ∀s ∈ S, ∀t ∈ T, ∀d ∈ D; (3.19)

yicus
, ysicus

, ywards ∈ Z+, ∀s ∈ S. (3.20)

Finally, constraint (3.21) states that the decision variable that allocates operating

theatres (Table 3.3) is binary, being equal to 1 if OT t ∈ T is allocated to speciality

s ∈ S on day d ∈ D, or equal to 0 otherwise:

zs,t,d ∈ (0, 1), ∀s ∈ S, ∀t ∈ T, ∀d ∈ D. (3.21)

Next, in Chapter 4, we present some numerical experiments that validate our ap-

proach and provide some insights into the effects of varying parameters such as the
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weekly demand for surgeries, the number of available operating theatres across the

week and the penalty for allocating extra beds in the post-surgery units - SICU,

ICU and Ward.
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Chapter 4

Numerical experiments

We start this chapter by introducing the baseline parameters for our experiments.

These were obtained from our military hospital partner and cover their operation

from January to December, 2022. These are the model parameters listed in Table

3.1, which will be detailed in the next section.

4.1 General parameters for the experiments

The number of daily working hours H at each OT is equal to 12 hours, whereas

the surgery preparation and cleaning time CT is set to 30 minutes; we should bear in

mind that the cleaning up of the last surgery and the preparation of the first one can

be performed outside the OT working hours. As previously mentioned, the hospital

covers a set S comprised of 7 orthopaedic specialities. As for the operating theatre

availability, it varies across the week and the precise number of OTs available at each

day will be individually introduced for each of the experiments. Hence the set T of

operating theatres will vary across experiments, as well as the weekly availability of

individual theatres. Finally, elective surgeries will only be performed from Monday

to Friday.

Table 4.1 shows the schedule of the medical team of each speciality during the

week, represented in the model by parameter Bs,d. The table conveys the availability

of the medical teams during the week, with Bsd = 1 if the medical team for speciality

s is available on day d and Bsd = 0 otherwise. One can see, for example, that the

paediatric surgery team will perform surgeries only on Mondays and Fridays, whereas
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hip surgeries can take place on any day from Monday to Friday.

Table 4.1: Weekly schedule of surgeries by specialities (parameter Bs,d).
Speciality / day Monday Tuesday Wednesday Thursday Friday

Hip 1 1 1 1 1
Spine 1 1 1 1 1
knee 1 1 1 1 1

Shoulder 1 1 1 1 1
Hand 0 1 0 1 1
Foot 1 0 1 1 0

Pediatric 1 0 0 0 1

Table 4.2 depicts the model parameter Ints,d for all specialities across the week.

Recall that Ints,d measures the interval (in days) since the last day that the medical

team for speciality s was available to perform surgeries. For the example, as the

medical team for the shoulder speciality is available from Monday to Friday - 4.1,

Ints,d = 1 from Tuesday to Friday. On Monday, however, the parameter value is

equal to 3 days, representing the time elapsed between Friday and Monday.

Table 4.2: Time interval between surgeries of the same speciality (parameter Ints,d).
Speciality / day Monday Tuesday Wednesday Thursday Friday

Hip 3 1 1 1 1
Spine 3 1 1 1 1
Knee 3 1 1 1 1

Shoulder 3 1 1 1 1
Hand 0 4 0 2 1
Foot 4 0 2 1 0

Pediatric 3 0 0 0 4

The time required to perform surgery in the speciality s ∈ S, represented by the

parameter Opes, and the postoperative hospitalisation times in the different units,

required for patient recovery in the respective speciality, indicated by Recwards , Nicus

and Nsicus
, are illustrated in Table 4.3.

Table 4.3: Surgery and recovery time (Opes, Recwards , Nicus
and Nsicus

).
Speciality Hip Spine Knee Shoulder Hand Foot Pediatric

Surgery time by
speciality (hours)

2.8 3 2 2 1.3 1.2 1.5

Length of post-surgical
stay in the ward (days)

2.2 2.5 2 2 1 1.1 1

Length of post-surgical
ICU stay (days)

7 7 4 4 1 1 1

Length of post-surgical
SICU stay (days)

1 1 1 1 1 1 1

Table 4.4 comprises a set of parameters that vary only with respect to the sur-

gical speciality, namely: the weekly demand for surgeries (Dems), the minimum
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percentage of surgeries that require recovery in the ICU (Picus
) and the minimum

percentage of surgeries that require recovery in the SICU (Psicus
).

Table 4.4: Demand and percentage in the ICU and SICU (Dems, Picus
and Psicus

).
Speciality Hip Spine Knee Shoulder Hand Foot Pediatric

Weekly demand for surgeries 3.6 3.4 8 7.5 5.5 6 3
Minimum percentage of

surgeries requiring
patient recovery in ICU

50 50 15 15 0 0 0

Minimum percentage of
surgeries requiring

patient recovery in the SICU
50 50 25 25 0 0 0

Finally, Table 4.5 shows the number of beds available in the ICU (Bedsicu), in

the SICU (Bedssicu) and in the Ward (Bedsward).

Table 4.5: Beds in the ICU, SICU and Ward (Bedsicu, Bedssicu and Bedsward).
Post-surgical recovery bed Number of beds available

ICU 16
SICU 8
Ward 100

In the remainder of this section, we will introduce specific sets of experiments

and discuss its results and implications.

4.2 Experimental results

The series of experiments to be presented in the next sections were run using

the Gurobi Optimizer version 9.1.2 (Gurobi Optimization, LLC, 2022) on a laptop

computer with Windows 10 operating system, 2.27 GHz i5 processor and 8 GB RAM.

To limit the execution time, we utilised a maximum gap of 2% when searching for

solutions using the branch and bound algorithm. The referenced value is expressed

by Gap = (UB−LB)
LB

, where UB and LB are equivalent to the values of the upper

(dual) bound and lower (primal) bound, respectively.

4.2.1 Analysis of the effects of increasing operating theatre

capacity

This subsection proposes the first set of experiments, which is comprised of ex-

periments A1-A5. Starting from the baseline instance (experiment A1), we gradually
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increase operating theatre availability and observe the effects of the increase on the

resulting optimal weekly surgery schedule and bed allocation plans across the ICU,

the SICU and the Ward.

Table 4.6 shows the weekly demand for surgeries for all specialities s ∈ S; we

also present the maximum number of weekly surgeries which would be assigned

as per constraint (3.7), which limits the weekly number of surgeries to prevent an

excessive bias in the weekly allocation. These parameters will remain constant over

experiments A1-A5.

Table 4.6: Demand and upper bounds for experiments A1-A5.
Speciality

Demand
(Dems)

Upper Bound
(1.5 * Dems + 1)

Pediatric 3 5.5
Spine 3,4 6.1
Hip 3,6 6.4
Foot 6 10
Hand 5,5 9.25

Shoulder 7,5 12.25
Knee 8 13

Table 4.7 details the OT availability for experiments A1 to A5; notice that

the penalty for each post-surgical bed allocated in the optimal solution is set to

W = 1 in all experiments - see the objective function (eq. (3.1)). Experiment A1

utilises the minimum number of operating theatres to attain feasibility. For the

other experiments, OTs are gradually added along the week; each change of OT

capacity with respect to the previous experiment is illustrated in red in Table 4.7.

Table 4.7: Experiments A1 to A5.
Number of operating theatres available

Experiment
Parameter

W Monday Tuesday Wednesday Thursday Friday
A1 2 2 2 2 2
A2 3 2 2 2 2
A3 3 2 3 2 2
A4 3 2 3 3 2
A5

1

3 2 3 3 3

Let us start by analysing the optimal weekly Master Surgery Schedule (MSS)

for experiment A1, depicted in Figure 4.1. One can see an intense occupation of the

surgical centre across the whole week. One important measure related to the optimal

MSS is the time assigned for surgeries, that corresponds to the first summation in

the objective function - eq. (3.1), and amounts to 96.3 hours distributed across

a total of 49 surgeries. Another measure of interest is the total length of the OT

sessions which adds up the time elapsed from the outset of the first surgery to the
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end of the last surgery across all operating theatres. This amounts to 115.8 hours

in experiment A1, as it includes the preparation and cleaning operations performed

during the working hours. Finally, the overall occupation rate of a MSS represents

the ratio between the total length of the OT sessions and the total time available

for surgeries in the whole surgical centre - measured as a percentage. As we have a

weekly total of 120 hours available for surgeries (2 OTs, each with 12 daily working

hours, open five days a week), the overall occupation rate for experiment A is 96.5%

- as the the total length of the OT sessions (115.8 hours) corresponds to 96.5% of

120 hours.

Figure 4.1: Weekly MSS for experiment A1.

Table 4.8 summarises the performance indicators discussed above for experiments

A1 to A5, along with the value of the objective function, the (optimality) gap and

the time in seconds required to search for solutions.

Table 4.8: Performance indicators for experiments A1 to A5.

Experiment
Time assigned
for surgeries

(h)

Total length
of the OT sessions

(h)

Weekly
surgeries

Objective
Function
(O F)

Overall occupation
rate
(%)

Gap
(%)

Computational
time

in seconds
A1 96.3 115.8 49 56.3 96.5 1.95 505
A2 104.9 126.4 54 63.9 95.8 1.88 1335
A3 113.3 136.8 59 69.3 95 1.88 6826
A4 114.5 138 60 71.5 88.5 0 2679
A5 116 139.5 61 73 83 1.92 1633

The results in Table 4.8 illustrate the effect of increasing the capacity for a fixed

demand. As expected, as we add more OT capacity, the overall occupation rate
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decreases, once the demand is kept constant in experiments A1-A5. To illustrate

the changes, Figures 4.2 and 4.3 show the weekly MSS for experiments A4 and

A5. Indeed, one can see in Figure 4.2 a considerable decrease in occupation on

Wednesday and Thursday with respect to the MSS of experiment A1 (Fig. 4.1),

whereas Figure 4.3 unfolds an additional decrease in OT occupation on Friday.

Figure 4.2: Weekly MSS for experiment A4.

Figure 4.4 shows the total number of surgeries for each speciality for experiments

A1-A5. As expected, one can see a gradual increase in the number of surgeries as

more OT capacity is added, up to the time each speciality reaches the respective

upper bound in the number of surgeries, see Table 4.6. It is worth mentioning that

the number of weekly surgeries for spine and hip already reach the upper bound in

experiment A1 and remain there across all experiments.

To further explore the results, Figure 4.5 the total number of weekly surgeries as

well as the overall time assigned for surgeries for all experiments. As expected, one

can see that both quantities grow together as the OT capacity increases. Figure 4.6

shows the overall occupation rate for experiments A1-A5, depicting the decrease in

the occupation rate as OT capacity is increased.

We will now analyse the effect of the increase in OT capacity in the bed allocation
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Figure 4.3: Weekly MSS for experiment A5.

Figure 4.4: Weekly surgeries for experiments A1-A5.

for ICU, SICU and Ward. Figure 4.7 depicts the bed allocation to surgical specialties

across the three post-surgical units for experiment A1. One can see that the largest

number of ICU beds are allocated to hip and spine; this is expected considering that

these specialties feature the longest length of stay in the ICU (Table 4.4) as well

the largest likelihood of requiring an ICU bed (Table 4.5). Notice that shoulder and
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Figure 4.5: Weekly surgeries for experiments A1-A5.

Figure 4.6: Overall occupation rate (%) for experiments A1-A5.

knee require more Ward and SICU beds due to the large weekly demand, whereas

hip and spine have lower demands but require still require a considerable number of

Ward and SICU beds due to their extended lengths of stay.

Depicted in Figure 4.8, the bed allocation for experiment A5 requires a larger

number of post-surgical beds across all three units. This is expected, as this is the

experiment with the largest operating theatre capacity. Note that, for experiment

A5, we need to allocate a total of 15 beds in the ICU, one unit less than the amount

provided by the hospital, as shown in Table 4.5.

Finally, Figure 4.9 illustrates the change in the overall number of beds allocated
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Figure 4.7: Post surgical bed allocation for experiment A1.

Figure 4.8: Post surgical bed allocation for experiment A5.

across the post-surgical units for experiments A1-A5. One can see a stable behaviour

in the Ward and SICU, with a gradual increase in the required number of ICU beds
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Figure 4.9: Beds allocated by recovery unit for experiments A1-A5.

as the OT capacity increases.

In the next section, we analyse the necessary resource capacity to balance supply

and increased demand.

4.3 The effect of increases in weekly demand for

surgeries

To investigate the sensitivity of the model with respect to demand increase,

we evaluated the effect of demand increases of 20%, 40%, 60% and 100% with

respect to the baseline. For each demand increase, we gradually increase operating

theatre availability and observe the effects of the increase on the resulting optimal

weekly surgery schedule and bed allocation plans across the ICU, the SICU and the

Ward. In each analysis, the first experiment represents the minimum number of

OTs required to attain a feasible solution, and the last experiment represents the

enough OT capacity to approach the upper bound in the number of surgeries for

each speciality.
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The OT capacity and the demand multipliers (with respect to Table 4.4) for the

resulting experiments are depicted in Table 4.9. The bed capacities and remaining

parameters maintained the baseline values from experiments A1-A5, except for the

experiments D7, E10, E11 and E12, where more beds were required in the ICU to

approach the upper bound in the number of surgeries for each speciality. One can

see that we may need to roughly double the capacity of the OT with respect to the

baseline to accommodate an increase of 100% in the surgery demand levels across

all specialties.

Table 4.9: Experiments B1 to E12.
Number of operating theatres required

Experiment
Parameter

W Monday Tuesday Wednesday Thursday Friday
Demand

B1 3 2 2 2 2
B2 3 3 2 2 2
B3 3 3 3 2 2
B4

1

3 3 3 3 2

1.2 * Dems

C1 3 3 3 2 2
C2 3 3 3 3 2
C3 3 3 3 3 3
C4 4 3 3 3 3
C5

1

4 4 3 3 3

1.4 * Dems

D1 3 3 3 3 3
D2 4 3 3 3 3
D3 4 4 3 3 3
D4 4 4 4 3 3
D5 4 4 4 4 3
D6 4 4 4 4 4
D7

1

4 4 4 4 4

1.6 * Dems

E1 4 4 4 4 3
E2 4 4 4 4 4
E3 5 4 4 4 4
E4 5 5 4 4 4
E5 5 5 5 4 4
E6 5 5 5 5 4
E7 5 5 5 5 5
E8 6 5 5 5 5
E9 6 5 5 6 5
E10 6 5 5 6 5
E11 6 5 5 6 6
E12

1

6 5 5 6 6

2 * Dems

Table 4.10 shows the performance indicators for each of the experiment in Table

4.9. As expected, we observe increases in the number of surgeries as OT capacity

increases, with a corresponding decrease in the OT occupation.

Figures 4.10, 4.11, 4.12 and 4.13 show the total number of weekly surgeries

scheduled for each speciality in experiments B1-B4, C1-C5, D1-D7 and E1-E12,

together with the weekly demand and the upper bound in the number of weekly

surgeries.

Figures 4.14, 4.15, 4.16 and 4.17 illustrate the effect of the demand increase on

28



Table 4.10: Performance indicators for experiments B1 to E12.

Experiment
Time assigned
for surgeries

(h)

Total length
of the OT session

(h)

Weekly
surgeries

Objective
Function
(O F)

Overall occupation
rate
(%)

Gap
(%)

Computational
time

in seconds
B1 105.5 127.5 55 60.5 96.6 1.93 5253
B2 114.1 138.1 60 66.1 95.9 1.98 4258
B3 124.3 150.3 65 72.3 95.2 1.96 6890
B4 128 155 68 76 92.3 1.99 5852
C1 125.1 151.1 65 71.1 96.9 1.94 4232
C2 135.1 163.1 70 80.1 96.6 1.95 5023
C3 145.1 174.6 74 88.1 96.4 1.87 6031
C4 150.2 181.2 78 92.2 94.4 1.74 4821
C5 154.1 186.1 81 93.1 91.2 1.98 4069
D1 144.6 174.6 75 85.6 97 1.99 5631
D2 153 185 80 92 96.4 1.91 7036
D3 157.3 189.8 82 95.3 93 1.89 5021
D4 165 199 86 100 92.1 1.94 3042
D5 168 203 89 104 89 1.91 3448
D6 170.6 206.1 91 106.6 85.9 1.95 2746
D7 172.6 208.6 92 107.6 86.9 1.89 4068
E1 169.7 204.2 88 103.7 89.6 1.98 1536
E2 179.2 215.7 93 111.2 89.3 1.88 1428
E3 183.1 220.6 96 116.1 87.5 1.97 1368
E4 190 229 100 120 86.7 1.95 1042
E5 193.9 233.9 103 123.9 84.7 1.97 1011
E6 196.9 237.4 105 126.9 82.4 1.99 702
E7 199.3 240.3 107 130.2 80.1 1.93 90
E8 201.9 243.4 109 132.9 78 1.95 43
E9 201.9 242.9 109 132.9 75 1.97 34
E10 207.9 250.4 112 138.9 77.3 1.94 31
E11 207.9 249.4 111 137.9 74.2 1.95 26
E12 213.9 256.9 114 138.9 76.5 0.8 20

Figure 4.10: Demand, weekly surgeries and upper bounds for experiments B1-B4.
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Figure 4.11: Demand, weekly surgeries and upper bounds for experiments C1-C5.

Figure 4.12: Demand, weekly surgeries and upper bounds for experiments D1-D7.
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Figure 4.13: Demand, weekly surgeries and upper bounds for experiments E1-E12.

the number of beds allocated in ICU, SICU and Ward. One can notice a significant

increase in the number of required ICU and Ward beds as demand increases. The

level of SICU beds, however, is kept stable as the overall probability of using SICU

beds is generally small across most specialties, with short projected lengths of stay.

Overall, while experiment B1 employs 45 post-surgical beds, experiment E12 requires

70 beds; which amounts to an increase of 55%.

In experiments D1-D7 and E1-E12, where we observe, respectively, increases of

60% and 100% concerning the original demand, the current availability of beds in

each recovery unit (Table 4.5) corresponds to the volume of surgeries required to

meet the demand. However, to reach the upper bound in the number of surgeries,

we needed necessary to add one and two units respectively to the current amounts

in the ICU.

Figures 4.18 and 4.19 show the demand, weekly surgeries and upper bounds for

experiments D6 and D7, respectively. The upper bound for knee speciality was only

reached in experiment D7 after the addition of one bed in the ICU, necessary to

assign one remaining surgery. Figures 4.20 and 4.21 show the MSS for the referred

experiments.
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Figure 4.14: Beds allocated for experiments B1-B4.

Figure 4.15: Beds allocated for experiments C1-C5.
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Figure 4.16: Beds allocated for experiments D1-D7.

Figure 4.17: Beds allocated for experiments E1-E12.
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Figure 4.18: Demand, Weekly surgeries and upper bound for experiment D6.

Figure 4.19: Demand, Weekly surgeries and upper bound for experiment D7.
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Figure 4.20: MSS for experiment D6.

Figure 4.21: MSS for experiment D7.
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For experiments E10 and E11, the addition of one bed in the ICU is still not

enough to reach the upper bound for all specialities. Observe in the Figure 4.22 that

the upper bound of the speciality spine is reached only for experiment E11 and for

the speciality shoulder only for experiment E10. For experiment E12 (Figure 4.23),

after the addition of one more bed in the ICU, in a total equal to 18 units, the upper

bounds are reached for all specialities.

Figure 4.22: Weekly surgeries and upper bound for experiments E10-E11.
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Figure 4.23: Demand, weekly surgeries and upper bound for experiment E12.

For the increase of 100% in demand, in the spine and hip specialties, although

the product 1.5 * Dems has integer part equal to 11, the maximum value achieved

is equal to 10, since the number of surgeries is divided equally between procedures

requiring recovery in the ICU and the SICU (Table 4.4).

Finally, Figure 4.24 illustrates the total number of beds allocated in the post-

surgical units for experiment E12 in each speciality. The largest amounts are allo-

cated to hip and spine specialties in the ICU.

37



Figure 4.24: Post surgical bed allocation for experiment E12.

In the next section, we analyse the effect of the penalty in the number of allocated

beds.

4.4 The effect of the penalty in the number of

allocated beds

Recalling that parameter W in the objective function (eq. (3.1)) effectively pe-

nalises the allocation of post-surgical beds in the final solution, this section proposes

a set of experiments to assess the effect of this parameter on the allocation of ICU,

SICU and Ward beds. To do that, we introduce experiments F1-F9, based on the

OT availability of experiment A4 (Table 4.7) of section 4.2.

Table 4.11 conveys the results from experiments F1-F9, which cover different

values of the penalty parameter W . Observe that all available beds across SICU,

ICU and the Ward are allocated when W = 0. This is expected, as no penalty is

considered for allocating beds to specialities, therefore one can expect the spare bed

capacity to be distributed across the medical specialities. The same behaviour is

observed for small values of W , as one can see that the number of assigned surgeries
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and the total time assigned for surgeries remain constant up to W = 0.7. As W

increases, however, one can expect a decrease in the number of allocated beds, which

in turn results in a decrease in the number of performed surgeries and therefore in the

total time assigned for surgeries. This is observed in Table 4.11, as these quantities

display a non-increasing behaviour with respect to parameter W , until they reach

a lower limit. Indeed, one can see that the solutions remain constant for W ≥ 6.1.

This can be expected in general, as for large values of W one can expect the optimal

solution to allocate the minimum number of SICU, ICU and Ward beds that ensure

that the weekly schedule includes the minimum number of surgeries to satisfy and

exceed the weekly demand by one unit - eq. (3.6).

Table 4.11: Experiments F1 to F9 and performance indicators.
Results

Experiment
Parameter

W
Time assigned
for surgeries

(h)

Weekly
surgeries

Beds
allocated

Objective
Function
(O F)

Gap
(%)

Computational
time

in seconds
F1 0 116 61 124 116 0 10
F2 0.5 116 61 45 93.5 0.3 12
F3 0.7 116 61 45 84.5 0.1 16
F4 0.8 114.5 60 43 80.1 0 19
F5 0.9 114.5 60 43 75.8 0 19
F6 5 105.5 54 38 -84.5 0.2 30
F7 6 105.5 54 38 -122.5 0 15
F8 6.1 99.5 51 37 -126.2 0 11
F9 10 99.5 51 37 -270.5 0 14

Figure 4.25 summarises the evolution of the total time assigned for surgeries as

we increase the penalty parameter W . It conveys the non-increasing behaviour of the

total time assigned for surgeries with respect to W . One can see that the maximum

number of surgery hours is observed for small values of W , and that the number

of surgery hours gradually decreases as W increases, until we reach the minimum

total number of SICU, ICU and Ward beds that are required to meet and exceed

the demand, from where the weekly schedule will remain constant.
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Figure 4.25: Evolution of weekly time assigned for surgeries with the penalty pa-
rameter W .
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Chapter 5

Conclusions

This work introduced a general integrated surgery scheduling and post-surgical

bed planning problem for a typical surgical centre configuration, including multiple

surgery recovery units and multiple routes of post-surgical care. The approach allows

the decision maker to not only design an optimised tactical surgery scheduling plan,

but also to plan the post-surgical bed capacity in the intensive and semi-intensive

care units and in the ward, to ensure patient flow and therefore prevent cancellations

due to the unavailability of downstream resources, i.e., post-surgical care capacity.

Starting from the decision support required by the hospital partner, the model

bridges the gap between theory and practice by providing support for tactical plan-

ning in a realistic hospital setting, with a level of generality not previously addressed

in the literature. For each speciality, the model includes the probability that a pa-

tient will need either intensive or semi-intensive care and considers the maximum

stay at these units, thereby providing some level of robustness in the bed planning.

This is essential, as it helps us make sure that the downstream resources suffice to

ensure patient flow and avoid cancellations.

The integrated model will allow decision makers to experiment with the param-

eters and find out the level of upstream and downstream resources need to satisfy

the demand for all specialities, whilst considering the whole patient trajectory up

to hospital discharge. Indeed, the demand and capacity constraints are designed

to ensure service provision for all specialities, thereby linking with long-term goals

such as to reduce waiting queues while ensuring service provision for all patients

who demand it.
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The healthcare modelling approach proposed in this work gives rise to a num-

ber of possible future research avenues. One obvious albeit challenging extension

is to consider the uncertainty in either the surgery times or the lengths of stay in

the ward. That would be a sensible step towards considering both sources of un-

certainty. One can also investigate extensions of the proposed model for surgical

centres subject to urgent or emergency surgeries. This is a challenging task as it

would also involve the modelling of the protocol to be followed in case of an emer-

gency or urgent surgical request, which would determine for example whether and

which elective surgery would be cancelled to accommodate the extra demand, as

well as the capacity sharing between elective and non-elective procedures for both

upstream and downstream resources.
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Appendix A

Weekly MSS for experiments

Figure A.1: Weekly MSS for experiment A1.
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Figure A.2: Weekly MSS for experiment A2.
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Figure A.3: Weekly MSS for experiment A3.
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Figure A.4: Weekly MSS for experiment A4.
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Figure A.5: Weekly MSS for experiment A5.
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Figure A.6: Weekly MSS for experiment B1.
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Figure A.7: Weekly MSS for experiment B2.
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Figure A.8: Weekly MSS for experiment B3.
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Figure A.9: Weekly MSS for experiment B4.
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Figure A.10: Weekly MSS for experiment C1.
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Figure A.11: Weekly MSS for experiment C2.
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Figure A.12: Weekly MSS for experiment C3.
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Figure A.13: Weekly MSS for experiment C4.

60



Figure A.14: Weekly MSS for experiment C5.

61



Figure A.15: Weekly MSS for experiment D1.
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Figure A.16: Weekly MSS for experiment D2.
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Figure A.17: Weekly MSS for experiment D3.
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Figure A.18: Weekly MSS for experiment D4.
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Figure A.19: Weekly MSS for experiment D5.
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Figure A.20: Weekly MSS for experiment D6.
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Figure A.21: Weekly MSS for experiment D7.
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Figure A.22: Weekly MSS for experiment E1.
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Figure A.23: Weekly MSS for experiment E2.
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Figure A.24: Weekly MSS for experiment E3.
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Figure A.25: Weekly MSS for experiment E4.
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Figure A.26: Weekly MSS for experiment E5.
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Figure A.27: Weekly MSS for experiment E6.
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Figure A.28: Weekly MSS for experiment E7.
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Figure A.29: Weekly MSS for experiment E8.
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Figure A.30: Weekly MSS for experiment E9.
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Figure A.31: Weekly MSS for experiment E10.
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Figure A.32: Weekly MSS for experiment E11.
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Figure A.33: Weekly MSS for experiment E12.
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Appendix B

Post surgical bed allocation for

experiments

Table B.1: Post surgical bed allocation for experiments A1-E12.
SICU ICU Ward

Experiment / Beds allocated
Hip Spine Knee Shoulder Hand Foot Pediatric Total Hip Spine Knee Shoulder Hand Foot Pediatric Total Hip Spine Knee Shoulder Hand Foot Pediatric Total

A1 1 1 2 2 0 0 0 6 3 3 2 2 0 0 1 11 3 5 4 4 3 3 1 23

A2 1 1 2 1 0 0 1 6 3 3 3 3 0 0 0 12 3 5 4 4 3 3 1 23

A3 1 1 2 2 0 0 0 6 3 3 4 4 0 0 0 14 3 3 4 4 4 4 2 24

A4 1 1 1 2 0 0 5 3 3 4 4 0 0 0 0 14 3 3 4 4 4 4 2 24

A5 1 1 1 2 0 0 0 5 3 3 3 4 0 2 0 15 3 3 4 4 3 3 3 23

B1 1 1 2 1 1 0 0 6 3 3 3 4 1 0 0 14 5 3 4 4 2 4 3 25

B2 1 1 3 2 0 0 1 8 3 3 4 2 0 0 0 12 5 3 6 4 4 4 2 28

B3 1 1 3 2 0 0 1 8 3 3 4 2 0 0 0 12 5 3 6 4 4 4 2 28

B4 1 1 2 2 0 1 0 7 3 3 4 4 0 0 0 14 5 3 6 6 4 4 3 31

C1 1 1 2 2 0 0 2 8 4 3 3 4 0 0 0 14 5 3 8 4 3 5 4 32

C2 1 1 2 2 0 0 0 6 4 3 3 4 0 0 0 14 5 5 6 6 3 4 6 35

C3 1 1 2 3 0 0 0 7 4 4 3 4 0 0 0 15 5 5 6 6 3 4 6 35

C4 1 1 2 2 0 0 0 6 4 4 5 3 0 0 0 16 5 5 6 6 3 7 5 37

C5 1 1 2 2 0 0 0 6 4 4 3 4 0 0 1 16 5 5 6 6 6 7 4 39

D1 1 1 2 2 0 0 0 6 4 4 4 4 0 0 0 16 5 5 6 6 4 5 6 37

D2 1 1 2 2 0 0 0 6 4 4 3 5 0 0 0 16 5 5 6 6 4 7 6 39

D3 1 1 2 3 0 0 0 7 4 4 3 5 0 0 0 16 5 5 6 6 6 7 4 39

D4 1 1 2 2 0 0 0 6 4 4 4 4 0 0 0 16 5 5 8 8 4 7 6 43

D5 1 1 2 2 0 0 0 6 4 4 4 4 0 0 0 16 5 5 8 6 6 6 6 42

D6 1 1 2 2 0 0 0 6 4 4 4 4 0 0 0 16 5 5 8 8 6 6 4 42

D7 1 1 2 2 0 0 0 6 4 4 4 5 0 0 0 17 5 5 8 6 6 6 6 42

E1 1 1 2 2 0 0 0 6 5 4 3 4 0 0 0 16 5 5 6 8 6 8 6 44

E2 1 1 2 2 0 2 0 8 5 4 4 3 0 0 0 16 5 5 10 6 6 6 6 44

E3 1 1 2 2 0 1 0 7 5 4 4 3 0 0 0 16 5 5 10 6 6 6 6 44

E4 1 1 2 3 0 0 0 7 5 4 4 3 0 0 0 16 5 5 10 8 6 7 6 47

E5 1 1 2 3 0 0 1 8 5 4 4 3 0 0 0 16 5 5 10 8 6 7 5 46

E6 1 1 2 3 0 1 0 8 5 4 4 3 0 0 0 16 5 5 10 8 6 7 5 46

E7 1 1 2 3 0 0 0 7 5 4 4 3 0 0 0 16 5 5 10 8 6 7 5 46

E8 1 1 2 3 0 1 0 8 5 4 4 3 0 0 0 16 5 5 10 8 6 6 5 45

E9 1 1 2 3 0 0 0 7 5 4 4 3 0 0 0 16 5 5 10 8 6 7 5 46

E10 1 1 2 2 0 0 0 6 5 4 4 4 0 0 0 17 5 5 10 8 6 7 5 46

E11 1 1 2 3 0 0 0 7 5 5 4 3 0 0 0 17 5 5 10 8 6 7 5 46

E12 1 1 2 2 0 0 0 6 5 5 4 4 0 0 0 18 5 5 10 8 6 7 5 46
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