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ABSTRACT 

 This thesis proposes the development of a resilient machine learning algorithm that 

can classify naval images for surveillance, search, and detection operations in vast coastal 

areas. However, real-world datasets may be affected by label noise introduced either 

through random inaccuracies or deliberate adversarial attacks, both of which can negatively 

impact the accuracy of machine learning models. Our innovative approach employs 

Rockafellian Risk Minimization (RRM) to combat label noise contamination. Unlike 

existing methodologies reliant on extensively cleaned datasets, our two-step process 

involves adjusting neural network weights and manipulating data point nominal 

probabilities to isolate potential data corruption effectively. This technique reduces the 

dependency on meticulous data cleaning, thereby promoting more efficient and time-

effective data processing. To validate the efficacy and reliability of the proposed model, 

we apply RRM in several parameter configurations to naval environment datasets and 

assess its classification accuracy against traditional methods. By leveraging the proposed 

model, we aim to bolster the robustness of ship detection models, paving the way for a 

novel, reliable tool that could improve automated maritime surveillance systems. 
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EXECUTIVE SUMMARY 

Machine learning (ML) is rapidly advancing, enabling machines to make 

decisions based on data analysis. A specialized sector of this field, computer vision 

(CV), uses advanced algorithms to interpret visual information, transforming industries 

such as automotive, medical, security, and military by creating innovative opportunities. 

In the military sector, these tools have proven beneficial in improving decision-making, 

situational awareness, surveillance capabilities, supporting operations, and facilitating 

the effective use of autonomous systems in complex environments. 

Our research is primarily focused on applying CV principles to naval 

applications, specifically solving a binary classification problem that indicates the 

presence or absence of ships. This forms a vital part of a broader surveillance tool and 

employs a novel strategy called Rockafellian Risk Minimization (RRM) [1]. The RRM 

method is designed to combat the challenges associated with label corruption in datasets 

inherent to such complex and dynamic environments as maritime surveillance. Central 

to our approach is the Alternating Direction Heuristic (ADH), a two-pronged strategy 

that sequentially optimizes different sets of variables. This iterative two-step process 

adjusts the neural network weights and manipulates the data point probabilities, 

effectively isolating potential data corruption. The result is a more robust and accurate 

maritime surveillance and detection system that enhances decision-making and 

situational awareness in naval operations. 

Our evaluation uses two diverse datasets, the Airbus Ship Detection (AIRBUS) 

[2] and Maritime Satellite Imagery (MASATI) [3]. To test our methodology’s 

robustness, we progressively increased label corruption levels in these datasets and 

observed how this affects model performance. 

Our research utilizes two strategies within the ADH process: w-optimization and 

u-optimization. In the w-optimization phase, we trial two distinct Neural Network (NN) 

optimizers, Adam [4] and Stochastic Gradient Descent (SGD) [5, Section 3G], to adjust 

neural network weights. The u-optimization phase involves implementing either ADH-
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LP (linear programming) or ADH-SUB (subgradient) algorithms to modify the 

probabilities of each data point and effectively isolate potential data corruption. 

ADH-LP leverages linear programming for computational optimization, 

providing globally optimal solutions but requiring more processing time. On the other 

hand, ADH-SUB employs a faster subgradient approach better suited for larger datasets 

or limited computational resources. The primary objective is not to enhance performance 

through architectural adjustments but to demonstrate how the RRM approach can offer 

benefits over the traditional ERM approach, particularly in handling data corruption and 

enhancing model performance. 

Our study’s RRM approach to train NNs consistently outperformed or matched 

the ERM approach, irrespective of the dataset used (MASATI or AIRBUS). The ADH-

LP and ADH-SUB algorithms under RRM demonstrated remarkable resilience to data 

corruption while maintaining high-performance levels, with ADH-LP consistently 

emerging as the superior performer. Overall, our results establish RRM as a robust and 

resilient approach for handling some level of data corruption. 

In conclusion, our innovative approach utilizing RRM offers a promising 

solution for reducing dependency on label-correct data, thereby enabling the 

development of more robust ship detection models. This research takes strides toward 

improving automatic ship detection and overall maritime security. By effectively 

handling data corruption and testing innovative methods, we improve the capabilities of 

maritime surveillance systems to monitor coastal and delimited sea areas efficiently. 
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I. INTRODUCTION 

The field of machine learning (ML) is expanding quickly, allowing machines to 

learn and make data-based decisions. Within this broad field, computer vision (CV) is a 

specialized area that uses advanced algorithms to help machines interpret visual 

information. Using advanced mathematical and computational techniques, CV enables 

machines to “see” and interpret visual information in previously impossible ways. From 

self-driving cars, medical imaging, security, and the military CV is transforming and 

creating new opportunities for innovation and discovery. 

In the military, these tools have shown promise in improving decision-making, 

helping with situational awareness, enhancing surveillance capabilities, supporting military 

operations, and enabling autonomous systems to work effectively in complex and dynamic 

environments. 

Brazil has an extensive coast comprising 3.6 million square kilometers, covering 

200 nautical miles within the Brazilian Exclusive Economic Zone (EEZ) [1]. The Brazilian 

Navy (BN) has been designated to assure Brazilian sovereignty in this area. 

One crucial aspect of maritime surveillance is automatic ship detection. However, 

existing approaches depend on extensive and meticulously cleaned datasets, and collecting 

and processing high-quality data can take much time and effort. 

This study investigates neural network (NN) technologies to efficiently monitor 

coastal and delimited sea areas. We aim to develop an approach that reduces dependency 

on such data and promotes more robust ship detection models.  

A. BACKGROUND 

1. The Blue Amazon 

Given its immense Atlantic coastline that spans almost 7,500 kilometers, Brazil is 

interested in any progress or alterations concerning the Atlantic Ocean. In 2004, paralleling 

the size and biodiversity of the Green Amazon rainforest in the northwest Brazilian region, 

the BN introduced the term “Blue Amazon,” which refers to a vast area of the Atlantic 
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Ocean that belongs to Brazil and can be explored by them. It covers the ocean’s surface,

the waters above the ocean floor, the soil, and the marine subsoil from the coastline to the

edge of Brazil’s Continental Shelf. This significant and extensive region was officially

registered as a trademark in 2010 [1]. Figure 1 shows the dimensions of both Amazons.

The Blue Amazon’s strategic and economic importance is undeniable due to its

abundant resources, including fishing, marine biodiversity, and resources such as minerals,

oil, and natural gas reserves [2].

Figure 1. Amazons’ dimensions. Adapted from [3].

Safeguarding this vast area called Blue Amazon is challenging. If protective

measures are not sufficiently robust, criminal activities such as piracy, smuggling, and

illegal disposal of pollutants will persist. The BN conducts naval patrols in Brazil’s

Jurisdictional Waters to prevent unlawful activities and prosecute offenders [4]. To that

end, the BN has created strategic initiatives to protect this vast region. One such program

is the Blue Amazon Management System (SisGAAz), which aims to provide adequate

measures for its protection [5]. Figure 2 illustrates the SisGAAz system.

SisGAAz is regarded as one of the BN’s boldest endeavors and is a prominent

feature of its strategic programs, known for its heavy reliance on scientific and
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technological advancements. The primary objective of this project is to employ satellite

technology, multi-platform systems, radars, and sensors for continuous monitoring and

management of the Brazilian jurisdictional waters and the Search and Rescue (SaR) region,

thereby integrating data and decision-making networks to oversee the “Blue Amazon” area

[6].

Figure 2. SisGAAz system. Adapted from [2].

The investigation conducted in this thesis is intended to support the surveillance

objectives of SisGAAz.

2. Machine Learning Concepts

In the upcoming subsections, we provide an overview of some concepts at a high

level, aiming to introduce standard notation, and key techniques employed in this study.

ML focuses on developing models by computer algorithms, which are

mathematical representations or rules, that allow computers to learn from data inputs and

make predictions or decisions based on this previous learning.

We can classify the three main types of ML algorithms: unsupervised, supervised,

and reinforcement learning. Unsupervised learning involves the algorithm identifying

patterns or structures in data without labeled information. In contrast, in supervised
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learning, the algorithm learns from labeled data, where input-output pairs are provided,

enabling it to understand the relationship between inputs and outputs. The third type,

reinforcement learning, entails training an algorithm to make decisions in an environment

based on feedback in the form of rewards or penalties [7]. Figure 3 shows a diagram of

three ML main types.

Figure 3. Machine learning types. Source: [8].

a. Regression and Classification

Regarding ML and statistical modeling, there are two essential tasks: Regression

and Classification. Both tasks involve predicting outcomes or labels of data based on

unique features. We can see these two tasks’ differences by looking at the generated output

or response variable type.

Regression is a technique to estimate a continuous target variable based on one or

more input features. Essentially, it tries to find the best-fit line or curve that minimizes the

difference between predicted and actual values of the target variable.

On the other hand, classification produces a categorical or label output. The goal of

classification is to learn a boundary that differentiates classes in the data and separates

them.



5

Understanding the differences between these two tasks is crucial so that the

appropriate method can be chosen for the intended application [9]. The plots shown in

Figure 4 illustrate both tasks.

Figure 4. Regression and classification plots. Adapted from [10].

b. Types of Classification

We can separate classification tasks into two main types, distinguished by the

number of classes or categories in the target variable.

Binary classification is an ML task that aims to classify data points into one of two

possible categories or classes. The two classes are often denoted as class 1 and class 0, or

+1 and 1 [7]. Solving this fundamental problem has practical applications in a wide range

of settings, such as predicting whether a person is likely to purchase more items or not

based on income and credit history, classifying an email as spam or not, or determining the

presence or absence of some object in a digital image.

In binary classification, the input data points represent features or attributes. The

goal is to learn a model to predict the correct class label for new, unseen data points. The

model undergoes training using pre-labeled data, where each data point is assigned a

known class label. It uses this data to learn the patterns or relationships between the input
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features and the class labels and makes predictions on new data points based on these

learned patterns.

In contrast, multiclass classification, also called multinomial or multivariate

classification, entails the classification of data points into more than two categories. The

target variable has more than two categories, and the model assigns data points to one of

these categories [7]. We can observe in Figure 5 two plots of each type of classification

described.

Figure 5. Classification plots. Source: [11].

c. Loss function

This function might go by several names, such as the objective or cost functions.

However, it is commonly called the loss function in ML contexts and discussions around

minimization problems. It measures the discrepancy between the generated output and the

ground truth (or target value) for a particular input example in an ML model. In [12], it is

highlighted that the loss function quantifies the error or loss incurred by the model’s

prediction, and the primary goal in training is to minimize this loss function value.

The loss function used for a given task varies depending on its nature. In the case

of regression tasks, the mean squared error (MSE) loss function is generally used, whereas

the cross-entropy loss function is typically used for classification tasks [13].
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d. Learning and Optimization 

Learning and optimization play crucial roles in the field of ML. Learning can 

improve optimization algorithms by leveraging accumulated knowledge and performance 

through experience. This type of algorithm usually acts indirectly, assuming that the data 

they are working with is a good representation of the real-world problem they are trying to 

solve.  

In contrast, optimization algorithms, which focus on finding the best solution based 

on the mathematical problem formulation, do not usually make assumptions about the data. 

The primary objective of an ML algorithm is to minimize the expected 

generalization error, often referred to as risk. This error quantifies the disparity between a 

model’s performance on the training data and unseen test data, indicating how well the 

model is expected to perform on new, previously unseen data [12]. 

A widely used technique is to minimize the expected loss, which refers to the 

average loss across all possible inputs based on the true data distribution. Nevertheless, 

there are situations where it may be challenging or impractical to directly handle the true 

distribution, especially when working with extensive datasets, due to computational 

constraints or other limitations. In such scenarios, one common approach is to approximate 

the proper distribution using the empirical distribution derived from the training set. The 

empirical distribution is a discrete probability distribution that assigns equal probabilities 

to the observed data points within the training set [7]. The approach of reducing the average 

risk during the training process is referred to as empirical risk minimization (ERM). 

e. Neural Networks  

Neural network (NN) is widely used as a type of ML model and has applications in 

diverse fields, such as image recognition, natural language processing, and pattern 

recognition. This thesis will mainly focus on a specific kind of NN called a convolutional 

neural network (CNN). However, before delving into CNNs, it is essential to understand 

the workings of regular NN. 
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NN, also called Artificial Neural Network (ANN), is an ML model that draws

inspiration from the human brain’s structure. They comprise three elements: the input,

hidden, and output layers. Figure 6 shows the structure of NN with three layers.

Figure 6. Basic ANN and its layers. Source:[14].

The layers, consisting of interconnected nodes or neurons organized in a network,

are designed to process, and learn from data using the backpropagation, which calculates

the error gradient, compares the prediction with the ground truth, and adjusts the network

weights, employing an optimization technique. This process is performed iteratively until

the NN converges to a state where the error is minimized, and the network can make

accurate predictions [12].

A basic illustration of a perceptron neuron structure can be seen in Figure 7. It

involves inputs labeled as “ , , … , ,” which are multiplied by their corresponding

weights “ , , … , ,” summed with a bias ( ), and then passed through an activation

function (f). These operations result in the generation of the final output.
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Figure 7. Perceptron model. Adapted from [15].

During training, activation functions play a crucial role in adjusting gradients.

Using activation functions in NNs introduces nonlinearity into the system as they

determine whether a perceptron should be activated. This nonlinear behavior of activation

functions enables deep NNs to learn complex functions [16]. Two famous activation

functions are the Rectified Linear Units (ReLU) and the Sigmoid.

The ReLU activation function is defined as

( ) = max (0, ). (1.1)

The sigmoid activation function is defined as

( ) =
( ( ))

. (1.2)

In Figure 8 we have the graph representations of those activation functions.
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Figure 8. Activation functions. Adapted from [17].

Typically, in multilabel classification networks, the final layer utilizes another

activation function called softmax. This function converts the real-valued activations into

probabilities for different classes [18]; the softmax function is defined as

( ) =
( )

( )
, (1.3)

where represents the i-th element of the input vector and exp ( ), denotes the sum

of exponential values over all elements in x. Each probability in the result is in the range 0

to 1, and the sum of the probabilities is 1, representing a valid probability distribution over

the K classes.

f. Computer Vision and Convolutional Neural Networks

Computer vision (CV) is a field that uses mathematical techniques to develop

algorithms that can analyze and understand visual information in our environment. CV

aims to create machines that can perceive and comprehend the visual world, like human

perception [18]. Its focus is creating methods for extracting and interpreting information

from images and videos, including identifying and categorizing objects.

In this research, our attention is directed towards images. As defined by Russ in

[10], an image is a visual representation of an object or environment captured through a

camera or digital means. In CV, an image is a collection of pixels arranged in two

dimensions representing specific color or intensity values, typically comprising one or



11

more color channels. Color channels refer to the different color components that make up

an image, such as red, green, and blue (RGB) channels in a color image or grayscale

channels in a grayscale image. Each color channel contains information about the intensity

of its respective color in the image. These values can be manipulated using various

algorithms and methods to obtain insights and make decisions in CV tasks. Figure 9 shows

an example of an image of 4x4 pixel RGB image.

Figure 9. 3D tensor of a RGB image with dimension of 4x4x3. Source: [19].

Choosing the appropriate tool to extract and learn key characteristics from image

data using CV is essential. It has been demonstrated that for this task, CNNs are the most

effective option [20].

CNNs are a particular type of NN that share similarities with traditional NNs. Like

NNs, they use weights, biases, and nonlinear functions to produce outputs. However, they

differ using convolution operation instead of matrix multiplication in at least one layer

[12].

In a convolutional layer of a CNN, a set of filters or convolutional kernels is used

to perform convolution with the input to generate an output feature map. Each filter

operates as a numerical grid, with the weights of the filters being learned during the training
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of the CNN. The convolution operation involves multiplying the kernel with a specific

input section and summing all values to yield a unique result in the output. The kernel

navigates over the width and height of the initial feature map, maintaining this process until

it cannot proceed further [20]. We can see an example of a 2D convolution operation in

Figure 10.

Figure 10. Example of convolutional operation with a 2x2 kernel.
Source: [12].

Kernels have two important parameters: size and stride. The size can be any

rectangle dimension, while the stride determines the step size used to slide the kernel over

the input image during convolution [20]. Essentially, it sets the distance the kernel will

shift through the pixels at each iteration. When a stride of 1 is used, the kernel moves one

pixel per step, while a stride of 2 moves the kernel to two pixels per step, effectively

downsampling the image by a factor of 2. Figure 11 provides another example of the output

generated by the convolutional operation.
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Figure 11. Convolution operation example. Source: [16].

Another essential operation in CNNs is pooling, which is used to downsample the

input feature maps using a sampling technique. It is typically placed between convolution

layers and uses a sampling technique to reduce the input. The process involves selecting

the maximum or average value using a window, depending on the chosen pooling method.

This operation applies to all feature channels, and different strides can be used [16]. Figure

12 provides max and average pooling examples, and Figure 13 the mathematical

calculations behind the convolutional and max pooling operations.

Figure 12. Max Pooling and average pooling. Source: [21].
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Figure 13. CNN with one convolutional layer and one max pooling layer.
Source: [22].

Once the convolutional and pooling operations are done, we arrive at CNN’s

flattened layer, which takes the multi-dimensional output from the last convolutional layer

and flatten it into a one-dimensional array that can be passed to the fully connected layers

or dense layers. These layers are accountable for processing the flattened feature maps

generated by the previous convolutional and pooling layers and making predictions. These

layers function similarly to the hidden layers in a standard NN. Additionally, they are

referred to as fully connected since each neuron in the layer is connected to every neuron

in the preceding layer [23]. Figure 14 illustrates the passage from the flatten to FC layer.

Figure 14. Fully connected layers after the flatten layer. Source: [24].
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After processing the fully connected layer, the output is passed through a softmax 

activation function (1.3). This function converts the output values into probabilities for 

each class. The input is then classified based on the class with the highest probability. 

B. STUDY OBJECTIVE 

This study explores an alternative to traditional ERM for NNs to improve the ship 

detection system, which is utilized to safeguard territorial waters. This ML model will 

equip the authorities with supplementary capabilities to efficiently surveil the maritime 

environment. 

In the absence of an efficient tool to address this issue, we rely on human resources 

to execute the task. This requires additional personnel to manually inspect an extensive 

collection of images in large datasets, resulting in a substantial increase in the time and 

effort spent on this endeavor. 

The central concept of this thesis is to create a resilient ML algorithm using 

maritime CV to assist with surveillance in an area of concern. 

C. MATHEMATICAL MODELING APPROACH 

This thesis presents a new approach to image detection in the Naval environment. 

The goal is to improve the robustness of binary classification algorithms. The primary 

strategy used is an extension of the work done by Royset et al. in [25], which involves 

Rockafellian relaxation. This technique combines classical CNNs and stochastic gradient 

descent (SGD) training to resolve subproblems that fine-tune the nominal probabilities 

assigned to each image. 

The Rockafellian methodology develops robust CNN models, acknowledging the 

inherent challenges of label corruption in ML datasets susceptible to deliberate attacks and 

unpredictable disruptions. Chapter III will further explain those methodologies. 
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D. THESIS ORGANIZATION 

The organization of this thesis consists of five distinct chapters: an introduction, a 

literature review, a math formulations and methodologies section, models results and 

analysis, and a conclusion. 

In Chapter II, a literature review is provided to underpin the efforts of this research, 

offering a comprehensive summary of pertinent ideas, circumstances, and procedures 

interconnected with the research aim. 

Chapter III elaborates on the mathematical formulation and methodology used in 

this study. This section delves into the ML algorithms’ mathematical underpinnings, 

emphasizing the models’ distinctions. 

In Chapter IV, the outcomes of our three unique methodologies are exhibited 

through model results, highlighting the comparison with a focus on model testing precision, 

AUC curve, and computational runtime. The concluding section of the chapter briefly 

analyzes the obtained results. 

In conclusion, Chapter V summarizes the findings and briefly suggests potential 

future research. 
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II. LITERATURE REVIEW 

To determine our objective in this research, we explore past works, the difficulties 

in achieving objectives, and the latest state-of-art techniques. Our discussion centers on 

CV and ML, their potential implications, and future directions. Therefore, we aim to 

contribute to the ongoing conversation about how these technologies can improve human 

capabilities. 

This chapter has a literature review that covers the necessary knowledge to 

understand this study approach. Our overview begins with the ML approaches to tackle the 

classification problem, followed by a discussion on NNs. Finally, we explore the latest CV 

applications in the naval environment. 

A. CLASSIFICATION PROBLEM 

In ML, the task of classification is of paramount importance. This task requires 

predicting the target class for unseen data, an essential supervised learning component. In 

order to accomplish this, models are trained on labeled datasets, with each data point 

carefully sorted and assigned to a specific category.  

The origins of key research in this field trace back to Maron in 1961 [26], who 

introduced the Naïve Bayes classifiers. This model established practical solutions for 

classification problems by implementing Bayes’ theorem with the assumption of solid 

independence between features.  

In 1967, Cover et al. [27] developed the k-nearest neighbors (k-NN) algorithm as a 

result of further research. This algorithm assigns new instances to the most common class 

among its k nearest neighbors through a majority vote. 

As the field matured in 1986, Quinlan [28] introduced the Iterative Dichotomiser 3 

(ID3) algorithm. This transformative algorithm constructs a decision tree from a given 

dataset, employing a recursive mechanism that consistently divides based on the attribute 

offering the maximum information gain. Thus, ID3 introduced decision tree learning to the 
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arsenal of methodologies in machine learning, significantly enriching the complexity and 

diversity of algorithms applicable to classification tasks. 

In continuing to trace the evolution of classification algorithms, the rise of Support 

Vector Machines (SVMs) marked a significant milestone. Introduced by Cortes and 

Vapnik in 1995 [29], SVMs offered a powerful method for binary and multiclass 

classification problems. By constructing hyperplanes in a multidimensional space, SVMs 

efficiently distinguished between different classes while maximizing the margin among 

data points of different categories. Their versatility and robustness under various data 

conditions cemented their position as a popular choice for classification tasks. 

Meanwhile, ensemble methods surfaced, offering improved classification 

performance by harnessing the collective power of multiple base models. These techniques 

aggregate predictions from several models to enhance accuracy and robustness, 

outperforming individual models. 

One example of this strategy is the Boosting algorithm introduced by Freund and 

Schapire in 1997 [30]. Boosting is a strategy that trains a series of weak learners, models 

that perform marginally superior to arbitrary guessing, like small decision trees. This 

training is done on altered versions of the data. The training data is modified during each 

boosting iteration by assigning weights to each sample. These weights are adjusted in each 

step to highlight the instances that the previous model inaccurately classified. The model 

predictions are merged using a weighted sum or majority decision to generate the ultimate 

estimate. 

Later, Breiman, in 2001 [31], developed Random Forests. This effective ensemble 

technique creates multiple decision trees during training, identifying the individual trees’ 

most common class as the output. This method counteracts the overfitting problem of 

decision trees and provides higher accuracy due to the collective power of the ‘forest’ of 

decision trees. 

As ML continued to evolve, the deep learning NN models dramatically transformed 

the field. The foundational work by Hinton et al. in 2006 [32] on deep belief networks 

ignited the revolution of deep learning, which has proven to be highly effective in handling 
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complex, high-dimensional data. These models excel in classification tasks because they 

can learn hierarchical representations, capturing intricate patterns within data that more 

traditional models might miss. 

This progress in NN has significantly enriched the array of advanced algorithms. A 

thorough exploration of these substantial advances will be provided in the following 

section. 

B. NEURAL NETWORK STRUCTURES 

The idea of using a computational version of human neurons was first introduced 

in 1943 by McCulloch et al. [33], who presented a model inspired by the brain’s activity. 

This pioneering model refers to a system with either one or two inputs that are in binary 

form and a Boolean function that is activated only when the appropriate inputs and weights 

are present. Although neural networks draw inspiration from the workings of the human 

brain, they do not possess the capacity to learn in the same manner as humans. 

Later, in 1958, Frank Rosenblatt extending McCulloch’s work, publishing the 

Perceptron Model [34]. Rosenblatt’s model can learn the weights of input values and use 

them to calculate the output. The neuron calculates the weighted sum of values it receives 

and compares it to a predetermined threshold. When the sum of the values exceeds that 

threshold, it will output a 1. Conversely, if the total falls below that threshold, it will output 

a 0. The perceptron is a basic structure, and when several of them are combined, we can 

form an ANN layer and an entire ANN. 

The first ANN utilized to solve a real-world problem came from a model developed 

by Widrow et al. [35], which used an adaptive filter to eradicate reverberations on 

telephone lines.  

NNs experienced a gap between 1960 and 1980 primarily due to limited computing 

power, data availability, and funding for research. However, the work done during this 

period laid the foundation for developing more powerful NN models later. 

In 1989, bolstered by the increasing computational power, the backpropagation 

technique was introduced by Rumelhart et al. [36]. It calculates the loss function gradients 
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with respect to the NN weights. Therefore, it aims to minimize the loss function and

improve the network’s predictions. The backpropagation method has significantly

impacted the popularity of NNs, enabling the efficient calculation of weight gradients and

facilitating the development of advanced models capable of efficiently tackling complex

and challenging tasks.

One complex task researchers tried to solve with the NNs’ performance

improvement is image recognition. This is challenging because it requires the NN to learn

and identify patterns and features from complex, high-dimensional visual input. Traditional

NN architectures were not designed for image recognition and were limited in their

capabilities to learn these patterns from the input effectively; in that scenario, the CNNs

appeared.

CNNs were developed as a solution to this problem by incorporating convolutional

layers, which apply filters to specific areas of the input to extract features, and spatial

pooling layers, which decrease the feature maps dimensions while preserving the vital data.

Typically, after these layers, one or more fully connected layers are added to carry out the

final classification.

One of the earliest CNNs was the LeNet architecture, which was introduced in 1998

by Yann LeCun et al. [37]. LeNet was designed to recognize handwritten digits, and the

U.S. Postal Service utilized it to automate reading zip codes on envelopes. The structure

included several convolutional layers and fully connected layers, achieving top-notch

performance on a famously referenced dataset called Modified National Institute of

Standards and Technology (MNIST) of handwritten digits [37] (Figure 15).

Figure 15. LeNet CNN architecture. Source: [37].
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The development of CNNs has been a collaborative effort by researchers from 

academia and industry. Researchers have experimented with various architectures, 

including deeper and wider models, residual connections, and attention mechanisms, to 

improve the performance of CNNs on a variety of tasks. Furthermore, the progress in 

computing hardware, particularly GPUs, and the availability of massive datasets like 

ImageNet have facilitated the development of CNNs, making it feasible to train sizable 

models within a practical timeframe. 

The introduction of backpropagation and the popularity of deep NNs led to 

advancements but also presented new obstacles. A significant issue that emerged is the 

vanishing gradient problem. In [38], Glorot et al. explain how that problem arises when 

training deep networks. The gradients that update the network weights can become 

exceedingly small, halting the network’s learning ability. This issue becomes more 

pronounced with increasing network depth, making earlier layers difficult to train, thereby 

presenting a considerable challenge for the practical training of deep learning models. 

Researchers have continued to refine and innovate upon CNN architectures, 

incorporating new techniques such as residual connections, attention mechanisms, and 

transfer learning. We can point out good examples of CNN that gain recognition after the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In the 2012 and 2014 

editions, two important CNN architectures were the winners for object classification, 

respectively: AlexNet [39] and GoogLeNet (Inception v1) [40]. 

Krizhevsky et al. made a remarkable discovery during the creation of AlexNet. 

They found that adding more layers to the network can boost performance if overfitting is 

prevented. Similarly, Szegedy et al., in GoogLeNet development, demonstrated that 

increasing the number of channels in each layer can also improve performance, resulting 

in the creation of more advanced architectures. These architectures have significantly 

advanced deep learning, particularly in image recognition. Figure 16 illustrates the AlexNet 

architecture.  
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Figure 16. AlexNet CNN architecture. Adapted from [39].

A notable similarity between the two architectures, AlexNet and GoogLeNet, is

their choice of activation functions – the ReLU (1.1). This function was introduced by

Krizhevsky et al. [31]. and has demonstrated faster training of deep NNs than traditional

sigmoid functions. Using ReLU, the deep learning community has mitigated the vanishing

gradient problem, a critical challenge when working with deep architectures.

Meanwhile, the major innovation differentiating GoogLeNet from AlexNet is the

inception module, a set of convolutional layers capturing features at multiple scales using

different filter sizes. The inception modules also incorporate 1x1 convolutions, reducing

the number of channels and making the network more computationally efficient. Figure 17

shows the structure of the inception module.
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Figure 17. Inception Module with dimension reductions. Source: [40].

Another notable CNN architecture that, while not winning the ILSVRC, gained

significant recognition for its outstanding performance in the 2014 edition is the VGG

(Visual Geometry Group). This deep CNN architecture was designed at the University of

Oxford by Simonyan et al. [41]. Although it took second place in the classification task,

losing to GoogLeNet (Inception v1), the performance of VGG was remarkably impressive.

Its straightforward and efficient architecture has significantly impacted the deep learning

community. VGG comes in two types: VGG-16 and VGG-19, which refer to the number

of layers in the network. Figure 18 and Figure 19 illustrate the structure of VGG-16 and

VGG-19, respectively.

Figure 18. VGG-16 structure. Adapted from [42].



24

Figure 19. VGG-19 structure. Adapted from [42].

In 2015, The Residual Network (ResNet) was created by He et al. [43] using a deep

learning architecture. ResNet’s central innovation is the implementation of residual

learning using shortcut connections, also known as skip connections. By allowing the

gradient to bypass layers during backpropagation, these connections make it possible to

train NNs with a previously infeasible number of layers. This innovative approach quickly

gained traction due to its remarkable capability to construct more complex NNs. With its

ability to learn complex features through its extensive depth and the introduction of residual

blocks, ResNet significantly improved its performance and won first place on the ILSVRC

2015 classification task. Figure 20 shows the ResNet shortcuts.

Figure 20. ResNet skip connections structure. Adapted from [44].

A key similarity between VGG and ResNet lies in their depth. Both architectures

significantly increased the depth of the models compared to their predecessors, with VGG
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going up to 19 layers and ResNet extending this concept even further, with architectures 

having up to 152 layers. 

However, there are several fundamental differences between VGG and ResNet, 

mainly related to their approach to resolving the vanishing gradient problem associated 

with deeper networks [45]. VGG, while deeper than its predecessors, suffers from this issue 

due to its uniform architecture. On the other hand, ResNet introduced the concept of 

residual learning through shortcut connections, or skip connections, that enable the gradient 

to be directly backpropagated to previous layers [46]. 

Another difference is the complexity of the models. VGG, despite its depth, 

maintains a remarkably straightforward and uniform architecture, consisting solely of 3x3 

convolutions and 2x2 pooling throughout the network. In contrast, ResNet’s design is more 

complex due to the incorporation of its residual blocks.  

Overall, researchers have reached different kinds of CNN architecture through a 

combination of theoretical insights, empirical experimentation, and a willingness to try 

new approaches and techniques. 

C. MARITIME COMPUTER VISION 

CV aims to replicate and enhance human abilities in interpreting visual data. After 

reviewing the advancements in NNs to extract meaningful information from visual data in 

the previous section, researchers have made significant contributions to CV. 

Before adding CV in the maritime domain, traditional methodologies served as the 

primary tools for navigating the complexities of this dynamic environment. They were 

indispensable for monitoring maritime activities, averting collisions, and facilitating 

efficient navigation. Born out of necessity and continually refined, these techniques have 

become the cornerstone of maritime navigation and surveillance, employing a 

comprehensive array of sensors and technologies – including Vessel Traffic Services 

(VTS), coastal radar systems, and satellite-based Automatic Identification Systems (AIS) 

[47]. 
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In the research made by Yassir et al. [48], the limitations of traditional 

methodologies, such as AIS and marine radar systems, are underlined. However, the study 

also emphasizes that incorporating camera surveillance systems can effectively bridge 

these gaps. The combination of these surveillance mechanisms enhances threat prediction 

in a limited coverage area but also aids in preventing other illegal activities, such as drug 

trafficking and illegal immigration. 

The integration of CV and maritime operations has led to new possibilities. This 

synthesis creates maritime CV, a rapidly advancing field that leverages these sophisticated 

NN architectures to address unique maritime challenges. Several studies [49], [50], [51], 

[52] show that CNN-based CV techniques have greatly improved imagery interpretation in 

the maritime domain, bringing significant progress. 

The study in [51] generated a dataset encompassing ships, artificial platforms, and 

harbors. This research brought forth a CNN model composed of four convolutional layers, 

four pooling layers, and a fully connected layer. Using data augmentation, which involves 

creating multiple views of images across different channels, this model achieved a 94% 

success rate in classifying five types of marine targets. This achievement significantly 

outperformed other CNN models and conventional ML approaches [51]. 

The work in [52] conducted by Gallego et al. used a dataset called MASATI 

(Maritime Satellite Imagery) to classify ships. They developed a CNN model consisting of 

two convolutional, two pooling, and one fully connected layer as the baseline. 

Additionally, they incorporated transfer learning from well-known architectures such as 

VGG-16/19 and ResNet. The findings showed that pre-trained models containing weights 

learned from larger datasets performed significantly better than the baseline approach, 

achieving a maximum accuracy of 99.76% compared to the 68.31% of baseline [52]. 

Fang et al. [53] presented a method to identify small targets in maritime 

environments using CNNs combined with infrared imaging. The model includes a 

regularization term based on total variation and a reweighted sparse constraint to improve 

accuracy and eliminate non-target points. They improved the robustness and accuracy of 
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detection, demonstrating the potential of these methods in infrared imaging in real-world 

situations, particularly in maritime surveillance [53]. 

Recent technological advancements have significantly enhanced the capabilities of 

image-capture platforms and CV applications. The growing adoption of drones, combined 

with rapid developments in sensor technology, has forged innovative paths for utilizing 

CV. Unmanned Aerial Vehicles (UAVs) have emerged as invaluable tools in maritime 

surveillance, a development made possible partly due to substantial increases in 

computational speed and processing power [54]. Modern processors, often optimized for 

ML tasks, have facilitated the execution of intricate calculations required for advanced 

deep-learning models. This boost in computational power has proven crucial in deploying 

sophisticated real-time object detection systems, enhancing their efficiency and versatility, 

and further propelling the value and effectiveness of UAVs in surveillance applications. 

Many recent research studies, including references [55], [56], [57], have shown evidence 

of these developments. 

Scholars like Lo et al. [56] have explored UAV-based systems for dynamic object 

tracking using a famous architecture inspired by GoogleNet, called YOLO (You Only Look 

Once) [58]. This network uses deep learning technology and is ideal for object detection in 

surveillance systems. Traditional detection methods require the classifier to be applied 

numerous times on various scales and locations within an image. However, YOLO receives 

that name because of its characteristic of performing object detection and classification in 

just one forward propagation pass through the network, making it exceptionally fast and 

efficient for real-time applications. 

Similarly, Lygouras et al. [57] proposed an autonomous human detection system 

using a UAV for SAR operations, notably leveraging the YOLO structure. The use of 

YOLO in their system underscores the vast potential of unmanned aerial systems and the 

effectiveness of the CNN architecture in critical, real-time tasks. 

All those papers show that Maritime operations are witnessing a significant swell 

in adopting CV techniques. Integrating cutting-edge technologies promises to redefine 

Maritime CV techniques, pushing the limits of what is possible and finding new solutions 
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for unique maritime challenges. Emphasizing this growing importance, the first edition of 

the Maritime Computer Vision (MaCVi) workshop took place in 2023 [59]. 

D. LABEL NOISE 

In their efforts to craft high-performance deep learning models, specialists utilize 

numerous techniques discussed in the previous section, such as preprocessing data, 

changing the color spectrum, utilizing data augmentation, and transferring knowledge from 

established network architectures. However, this section shifts its focus towards 

confronting a common issue in real-world data known as label noise. This problem often 

presents obstacles in the learning process and significantly affects the outputs of the 

models. 

Label noise occurs when the labels or outcomes of data points are incorrect because 

they may have been distorted or altered from their original, accurate labels [60]. Notably, 

in real-world datasets, the prevalence of such corrupted labels is reported to vary, with 

estimates ranging between 8.0% and 38.5% [61]. 

Despite the outstanding performance of deep NNs over traditional methods on 

large, accurately labeled datasets, real-world datasets often bear label errors. For instance, 

random noise errors can unintentionally emerge during data collection or labeling from 

human error or limitations in automated labeling systems; in [62], Liu et al. analyze the 

classification problem in a random data corruption environment. In contrast, another 

known threat is the data poisoning attack, as illustrated in [63], also called an adversarial 

attack, characterized by deliberate data alterations by the attacker aiming to weaken the 

model’s performance by misleading and confusing its training. 

Striving for increased robustness and precision in deep learning models, multiple 

researchers have endeavored to lessen the effects of label noise [64], [65], [66], [67], and. 

Their main goal was to augment the innate resilience of these models to withstand label 

noise and to boost their capability to extrapolate insights from training data. They aspired 

to accomplish these objectives without substantially modifying the current network 

structures or optimization processes. 
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In the context of label noise, M. Ren et al. [64] introduced a novel using a meta-

learning algorithm that assigned weights to training examples based on their gradient 

orientations. This technique involved a gradient descent step on the batch weights to 

minimize the loss on a uncontaminated, unbiased validation set. The suggested approach 

achieved impressive results, especially in cases of disproportionate class distribution and 

distorted labeling, where only a limited amount of uncontaminated validation data was 

accessible [64]. 

Tackling label noise, S. Thulasidasan et al. [65] proposed a deep abstaining 

classifier (DAC) capable of avoiding confusing samples during training. This approach 

showed promise, especially in structured or systematic label noise, where features 

associated with unreliable labels could still contribute to representation learning. 

Chen et al. in [66] introduced a hierarchical structure that embeds labels 

hierarchically into the model’s training. The primary concept involves enhancing the 

conventional NN by incorporating a mapping function for label hierarchy and a weighted 

loss function to perform a fine adjustment to deal with different noise ratios [66]. They 

argued that their method increased the robustness of models without necessitating 

considerable modifications to the network architecture or optimization procedure. The 

approach showed superior performance over conventional deep NNs in label noise. 

The work developed by H. Narasimhan et al. in [67] extends the work done by 

Thulasidasan et al. in [65] and other authors using the learning-to-reject (L2R) [68], [69], 

an approach combining with out-of-distribution (OOD) [70] detection. L2R aims to 

identify complex samples for abstention, whereas OOD detects outlier samples that do not 

belong to the training distribution. Impressively, they demonstrated that these issues, 

usually tackled individually, can be solved collectively, indicating a way to abstain from 

complex and outlier samples while controlling the total abstention of training data. 

All these contributions have significantly advanced our understanding and 

management of various challenges inherent in deep learning, mainly related to label noise 

and the need for model robustness. 
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The study by Royset et al. [25] introduced Rockafellian relaxation to address the 

problem of inaccuracies in optimization models due to suspect assumptions and 

compromised data labels. They proposed an “optimistic” framework, facilitating 

optimization over the original decision space and a range of model perturbations, 

demonstrating their applicability in CV affected by label noise. 

Rockafellian relaxation helps ensure the validity and stability of optimization 

models by analyzing the sensitivity of assumptions and parameters [71]. This approach 

allows for flexibility in considering potential changes and aids in understanding the 

robustness of the solution, guiding decision-making processes during optimization [71]. 

Chapter III will provide a thorough mathematical explanation of the Rockafellian 

relaxation algorithm used in this study. 

In this thesis, we seek to extend and explore the work initiated by Royset et al. [25] 

and apply their approach to enhance the reliability of CV in maritime settings. We aim to 

embrace their positive approach and investigate the possibilities for further progress. We 

will specifically address the fundamental issues of label inaccuracies and the need for 

model stability.  

Furthermore, we will investigate the impacts of the Rockafellian approach on the 

model’s resilience to label noise. Through this research, we aspire to push the boundaries 

of our understanding of these techniques, ultimately contributing to the broader field of 

robust and noise-resilient deep learning models. 
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III. ROCKAFELLIAN RISK MINIMIZATION 

This chapter develops Rockafellian relaxation in the context of ML, leading to 

Rockafellian Risk Minimization (RRM) as a means for training in settings with corrupt 

data. We contrast the approach with ERM and discuss computational aspects. 

A. FORMULATION 

Give a labeled dataset { , , = 1, … , } of images, where  specifies the attributes 

for each pixel of the jth image and  is the corresponding label, we seek to determine a 

parameter vector w in a NN such that its prediction for each image matches the label. In the 

following, we assume that there are only two labels 1 and 1. Let  be the prediction 

by the NN for the jth image. It is interpreted as the probability that the jth image has label 1. 

We determine the best parameter vector w by minimizing binary cross entropy loss given by 

( ) =  
ln  if =  1

ln 1  if =  1.
 

Classical ERM then amounts to solving the optimization problem 

minimize  ( ), 

where  =1  typically but the data points can also be weighted differently. 

In many applications, data corruption can occur due to various reasons such as data 

collection and labelling entry errors, or even adversarial attacks intended to poison the training 

data and disrupt the system. As pointed out by Royset et al. [25], and elaborated in section D 

of Chapter II, a NN that has been trained using ERM may not perform well if the training data 

is corrupted. This observation provides a strong motivation for RRM, an adaptive method to 

identify and remove corrupted data points, hence improving the overall performance and 

reliability of the model. 

RRM leverages auxiliary decision variables  , … ,  , to adjust the probability 

associated with each data point. This leads to the formulation 
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minimize
,

 ( + ) ( ) + , 

where  represents a penalty parameter, and u is a perturbation vector with n dimensions 

that alters the nominal probability vector , and the set 

=      , = 0 . 

We adjust the probability associated with each data point by adding  to . To 

identify corrupted data points, we optimize  based on their calculated loss with the goal 

of reducing the probability that affects ( ) to zero. This effectively eliminates the data 

point from being considered in the training process. 

B. TRAINING ALGORITHMS 

The RRM method consists of the usage of an Alternating Direction Heuristic 

(ADH), which alternates between optimizing different sets of variables while keeping the 

others fixed, hence the name “alternating direction.” This strategy begins by optimizing w, 

which adjusts the neural network weights. Subsequently, we optimize u to modify each 

data point’s probability, isolating and discarding potential data corruption. The model is 

refined progressively in each cycle until it reaches the number of iterations defined by the 

user. The details of the algorithm are given next. 

 

Alternating Direction Heuristic (ADH) 

Data.  Number of epochs , number of iterations , initial weights . 

Step 0.  Set iteration counter = 1, = , = 0. 

Step 1.  Starting from , apply SGD-type algorithm for  epochs to the   
  problem 

minimize  ( ). 
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  Let  be resulting solution. 

Step 2.  Select  using some subroutine, which in turn is based on  and .  

Step 3.  If <  , set = + , replace  by  + 1, and back to Step 1.  
  Else, stop. 

We are considering two approaches for Step 2 of ADH: a Linear Programming 

Based approach (ADH-LP) and a Subgradient Based approach (ADH-SUB). 

In ADH-LP, we use linear programming to determine the values of u by optimizing 

a linear objective function and considering linear equality and inequality constraints. The 

parameter  (0,1] is the stepsize of that approach to update the u values in each iteration 

i. In the following, we have the ADH-LP steps:  

 

ADH-LP 

Data.  Set stepsize .  

LP-Step 2a. Solve the linear optimization problem 

minimize
  ,  

 +  . . , , = 1, … , . 

Let ( , ) be a minimizer. 

LP-Step 2b. Set =  + (1  ) .  
  Go to Step 3. 

We note that components of  sum to zero and are always greater than . 

In an alternate approach to the second stage of ADH minimization, we utilize the 

subgradient method [71, Section 2.I], augmented with projection onto the probability 

simplex [72]. Rather than relying on gradients, this method uses subgradients at points 

where the function may not be differentiable. The method produces practical solutions by 

combining subgradients with projection onto the probability simplex, even when the 

objective function is not smooth. The parameter , (  >  0), will be the stepsize of that 

approach. In the following we have the ADH-SUB steps:  
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ADH-SUB 

Data.  Set stepsize  > 0 and number of sub-iterations . 

SUB-Step 2a. Set  =   p, where  is computed as follows. 

SUB-Step 2b.  Set  = p +  and iteration counter k = 1.  

SUB-Step 2c. Compute the vector  be setting 

  =  +  

 if  >  

0 if =  

 if  <   .

  

SUB-Step 2d. Compute =   . 

SUB-Step 2e.  Project  onto the probability simplex to obtain  by carrying out  
  the following substeps: 

  Sort  into a vector r with    …  . 

  Find =  max {  |  +  (1  )/  >  0} 

  Define  = (1  )/ . 

  Set = max{  + , 0} for each = 1, … , .  

SUB-Step 2f. If k < , replace k by k + 1, and go to Step 1. Else, stop. 
  Go to Step 3. 

To solve the classic ERM problem, we consider the empirical distribution, a 

discrete probability distribution assigning equal probabilities to the observed data points 

within the training set. RRM can improve the overall performance during training and 

achieve better results by adjusting these probabilities. 

In our current methodology, we have extended the set of hyperparameters to include 

new ones in ADH-LP  and  and ADH-SUB   and  alongside the regular 

hyperparameters (learning rate, number of epochs, batch size). By carefully fine-tuning 

these hyperparameters, our objective is to enhance the model’s accuracy and robustness. 

This iterative process empowers our model to effectively address data corruption, such as 

label errors and adversarial attacks, enabling it to perform reliably in real-world scenarios. 
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IV. EXPERIMENTS 

In this chapter, we delve into the model’s results. However, we first discuss the 

datasets, data preprocessing, optimizers, and network structures. Then, we present the 

results our ERM and RRM model achieve without contamination and with different 

degrees of label contamination in training data. Next, we analyze the behavior of our 

perturbation vector values in certain cases. Finally, with all results presented, we can assess 

the adaptability and robustness of RRM compared to ERM across different contamination 

levels.  

We are utilizing two separate datasets: the Airbus Ship Detection (AIRBUS) [73] 

and Maritime Satellite Imagery (MASATI) [52] datasets. Each of these datasets is 

comprehensively explored in their respective subsections, with additional details provided 

to understand their unique attributes and the specific challenges they pose. In both datasets, 

we consider an environment without label contamination and another where we gradually 

increase levels of label contamination in the training set, starting with 10%, 20%, 30%, and 

40% by randomly swapping training example labels. We have tested higher contamination 

levels of 50% and 60%, but the CNNs used have difficulty learning patterns at those levels. 

In this research, we utilize Tensorflow version 2.11.0 to conduct our experiments. 

During the first phase of the ADH process, concerning w-optimization, we try two distinct 

NN optimizers: Adam [74] and SGD [71, Section 3.G]. The Adam optimizer is configured 

with a learning rate of 1.0 ·  10 , while the SGD optimizer has two distinct learning rates 

being employed based on the dataset used: a learning rate of 0.1 for the AIRBUS dataset, 

and a learning rate of 0.02 for the MASATI dataset. The momentum is consistently set at 

0.9 for SGD in both datasets. We run our experiments on a singular GPU, the Nvidia Tesla 

V100, with 32GB of memory capacity. 

As we progress into the second phase of the ADH process, we can employ either 

the ADH-LP or the ADH-SUB algorithm for u-optimization. The ADH-LP method 

incorporates Pyomo version 6.4.0, in conjunction with the CPLEX solver. The ADH-SUB 

technique is written in Python without requiring supplementary libraries or solvers. 
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We investigate numerous network architectures, learning rates, and other hyper-

parameter combinations. Our work, however, is not centered on enhancing performance 

through network architecture modifications. Rather, we aim to show that for any given 

choice of network architecture, an RRM approach can confer benefits over an ERM 

approach. To this end, we settle on two adequate network configurations to conduct our 

comparison.  

Both CNNs receive input images resized to 128 x 128 x 3 at their input layers. In 

their hidden layers, the activation function used is ReLU, while the output layer consists 

of two output units with softmax activation applied for binary classification. The total 

number of trainable weights is significantly different for the two networks. In the case of 

the CNN designed for the Adam optimizer, there are 2,228,002 trainable parameters, while 

the CNN designed for the SGD optimizer has 8,409,026. Tables 1 and 2 describe the CNN 

structure used for Adam and SGD optimizers. The loss function we used for training both 

networks is binary cross-entropy. 

Once we establish a satisfactory baseline model using ERM, we execute the RRM 

algorithms ADH-LP and ADH-SUB using identical network configurations. 

Table 1. Description of the CNN used for Adam 

# Layer Filters Kernel 

 

Output Size # Parameters 

1 
Convolution 

16 
3x3 128 x 128 x 16 

448 
Max-Pooling 2x2 64 x 64 x 16 

2 
Convolution 

32 
3x3 64 x 64 x 32 

4,640 
Max-Pooling 2x2 32 x 32 x 32 

3 
Convolution 

64 
3x3 32 x 32 x 64 

18,496 
Max-Pooling 2x2 16 x 16 x 64 

4 
Convolution 

128 
3x3 16 x 16 x 128 

73,856 
Max-Pooling 2x2 8 x 8 x 128 

5 Fully-connected 256  1 x 256 2,097,408 

6 Fully-connected 128  1 x 128 32,896 

7 Softmax (Output) 2  1 x 2 258 
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Table 2. Description of the CNN used for SGD 

# Layer Filters Kernel Size Output Size # Parameters 

1 Convolution 
32 3x3 128 x 128 x 32 

896 

2 Batch Normalization 
Activation 128 

3 Max-Pooling  2x2 64 x 64 x 32 - 

4 
Convolution 
Activation 64 

3x3 64 x 64 x 64 
18,496 

Max-Pooling 2x2 32 x 32 x 64 

5 Fully-connected 
128  1 x 128 

8,388,736 

6 Batch Normalization 
Activation 512 

7 Softmax (Output) 2  1 x 2 258 

 

For ERM, we set the number of epochs  = 500. For RRM algorithms, we establish 

 = 10 and iterations  = 50, which guarantees that all heuristic runs will include 500 

epochs. The ADH-LP uses the default stepsize parameter µ = 0.5. At the same time, the 

ADH-SUB algorithm uses a stepsize parameter  = 0.3. and a default number of sub-

iterations parameter  = 10. Concerning the penalty parameter  in both RRM, we show 5 

different levels of  to evaluate their performance in the u-optimization across the values 

of   {0.15, 0.20, 0.25, 0.30, 0.35}. Table 3 summarizes the parameters described. 

Table 3. Parameters for ERM and RRM 

 Parameters 

Algorithm 

Number of 
epochs ( ) 

Number of 
iterations ( ) 

Stepsize 
(µ or ) 

Sub-iterations 
( ) 

Penalty ( ) 

ERM 500 1 - - - 

RRM(ADH-LP) 10 50 0.5 - 0.15, 0.20, 
0.25, 0.30, 

0.35 RRM(ADH-SUB) 10 50 0.3 10 
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In order to compare results, we ensure that the random seed is the same at two 

specific times for all runs: when we divide the data into training and testing sets and when 

we execute closed-set contamination through label swapping. 

Table 4 summarizes the algorithm runtimes over 500 epochs, separating the time 

used for the w-optimization and for u-optimization processes in both datasets.  

Table 4. Computational time of algorithms 

 Dataset 

 MASATI AIRBUS 

 CNN optimizer CNN optimizer 

 Adam SGD Adam SGD 

Optimization 
phase 

w u w u w u w u 

Algorithm Total Runtime in seconds over optimization phases 

ERM 500 - 1,400 - 22,500 - 68,500 - 

RRM 
(ADH-LP) 

500 
600 

1,400 
600 

22,500 
1,000 

68,500 
1,000 

RRM 
(ADH-SUB) 

400 400 600 600 

 

There are noticeable differences between the MASATI and AIRBUS datasets and 

the Adam and SGD optimizers. When using the Adam optimizer on the MASATI dataset, 

the ADH-LP method takes 1,100 seconds, while the ADH-SUB method takes 800 seconds. 

However, if we switch to the SGD optimizer, ADH-LP takes 2,000 seconds, while ADH-

SUB only requires 1,800 seconds. Looking at the AIRBUS dataset, with the Adam 

optimizer, RRM with ADH-LP takes 23,500 seconds to complete, while ADH-SUB is 

slightly faster at 23,100 seconds. Under the SGD optimizer, ADH-LP requires 69,500 

seconds, while ADH-SUB needs 69,100 seconds. It is worth noting that the ADH-SUB 

method is considerably faster than ADH-LP in the u-optimization process, especially in the 

larger AIRBUS dataset. 
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A. MASATI DATASET

This dataset provides maritime scenes of optical aerial images from the visible

spectrum. The MASATI dataset contains color images in dynamic marine environments,

and it is used to evaluate ship detection methods. The images may have one or more targets

and vary in weather and lighting. All files are RGB images with a resolution of 512 × 512

pixels, stored in PNG format.

The dataset comprises 7,389 satellite images labeled according to the following

seven classes: coast, land, ship, sea, coast-ship, multi, and detail. However, as we

performed a binary classification problem, we used just two classes: “ship,” containing

1,027 images, and “sea,” containing 1,022 images, yielding a set of 2,049 images.

While this total of 2,049 images constitutes a relatively small dataset, despite its

size, it presents a unique opportunity to assess whether the algorithms are robust and

versatile enough to deliver accurate results even when the available data is limited. Figure

21 illustrates some images of MASATI.

Figure 21. MASATI dataset images. Source: [52].
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1. Accuracy Results with MASATI 

In this section, we show our results in the MASATI dataset, explicitly focusing on 

the accuracy score, which indicates how effectively our models can classify images within 

the test set. Along with presenting the results, we also provide a thorough analysis to 

interpret the observed performance.  

In MASATI, the train-test split is done using a 90/10 proportion, which results in 

1,844 images in the training set and 205 in the test set. 

The final test accuracy results for ERM and RRM with ADH-SUB and ADH-LP 

using Adam optimizer are shown in Tables 5 and 6, respectively, at various levels of 

corruption. 

Table 5. Final test accuracy in MASATI for ERM and RRM  
(ADH-SUB / Adam) 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

In both ERM and RRM approaches, an increased proportion of corrupted data in 

the training set negatively affects the accuracy. However, this degradation can be mitigated 

by employing RRM and selecting an appropriate value for the penalty parameter . 

While the RRM method underperforms ERM at higher corruption levels (40% and 

30%) for most values of , it consistently outperforms or matches ERM as the corruption 

percentage decreases (20%, 10%, and 0%), given an appropriate . Notably, at 0% 

corrupted data, RRM surpasses ERM for every  except for  = 0.35. 

 Corrupted training data percentage 

Method 40% 30% 20% 10% 0% 

ERM 0.624 0.653 0.785 0.858 0.941 

RRM (  = 0.3)      

 = 0.15 0.585 0.721 0.746 0.843 0.956 

 = 0.20 0.560 0.678 0.795 0.858 0.951 

 = 0.25 0.575 0.643 0.829 0.863 0.941 

 = 0.30 0.629 0.600 0.765 0.834 0.951 

 = 0.35 0.663 0.712 0.770 0.848 0.912 
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RRM also shows a more nuanced response to the data’s corruption percentage. 

Choosing  = 0.20 or 0.25 in the RRM method presents an attractive balance between 

maintaining performance in scenarios of high data corruption while also taking advantage 

of cases with lower corruption levels. 

Table 6. Final test accuracy in MASATI for ERM and RRM 
(ADH-LP / Adam) 

 Corrupted training data percentage 

Method  40% 30% 20% 10% 0% 

ERM 0.624 0.653 0.785 0.858 0.941 

RRM (  = 0.5)      

 = 0.15 0.624 0.668 0.800 0.863 0.951 

 = 0.20 0.609 0.726 0.848 0.878 0.931 

 = 0.25 0.668 0.682 0.814 0.863 0.941 

 = 0.30 0.604 0.702 0.804 0.843 0.926 

 = 0.35 0.614 0.692 0.756 0.834 0.921 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

The RRM method exhibits performance at par or even superior to ERM at various 

levels of data corruption, especially for specific penalty values. Remarkably, when the 

values of 0.15, 0.20, and 0.25 are chosen for , they yield the best overall performance. For 

example,  = 0.15 performs exceptionally well at lower corruption levels,  = 0.20 

outperforms all other  values at a 20% corruption level, and  = 0.25 performs best at a 

30% corruption level. 

The performance difference is relatively minimal in scenarios where the RRM 

method does not surpass ERM. This finding implies that even with non-optimal selections 

of , the RRM method can deliver performance nearly equivalent to ERM. It accentuates 

the versatility of the RRM method as a promising alternative to ERM, especially in 

environments fraught with corrupted data. 

These results suggest that a set of   {0.15, 0.20, 0.25} provides an optimal 

balance in modulating the penalty for model complexity versus the fit to training data. This 
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balance contributes to superior generalization of the test data, particularly at intermediate 

corruption levels. 

Now turning to SGD optimizer, Tables 7 and 8 display the final test accuracy results 

for ERM and RRM in ADH-SUB and ADH-LP at various levels of corruption, 

respectively.  

Table 7. Final test accuracy in MASATI for ERM and RRM  
(ADH-SUB / SGD) 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

The findings indicate the RRM method’s best performances, which match or 

exceed ERM’s, particularly at the 20% and 30% corruption levels. 

When examining how well different settings handle varying levels of corruption, 

the configuration with  = 0.35 stands out as a great option. It achieves the highest accuracy 

when there is 20% corruption, showing it can easily handle moderately corrupted 

situations. While there may be slight differences in performance at other corruption levels, 

 = 0.35 consistently performs well and can adapt to different data conditions. 

Meanwhile, the  = 0.30 configuration is not to be overlooked. Though it may not 

consistently outperform other configurations, it provides valuable stability across all 

corruption levels. It often matches, if not slightly surpasses, the ERM’s accuracy, 

suggesting its capability to resist the adverse effects of data corruption. 

 Corrupted training data percentage 

Method  40% 30% 20% 10% 0% 

ERM 0.556 0.546 0.581 0.663 0.648 

RRM (  = 0.3)      

 = 0.15 0.502 0.560 0.575 0.629 0.634 

 = 0.20 0.512 0.526 0.619 0.604 0.639 

 = 0.25 0.541 0.536 0.600 0.629 0.658 

 = 0.30 0.517 0.560 0.614 0.653 0.634 

 = 0.35 0.546 0.521 0.624 0.678 0.639 
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In conclusion,  = 0.35 and  = 0.30 configurations represent different advantages. 

While  = 0.35 exhibits superior performance in specific corruption scenarios,  = 0.30 

offers consistent performance across all levels. 

Table 8. Final test accuracy in MASATI for ERM and RRM 
(ADH-LP / SGD) 

 Corrupted training data percentage 

Method  40% 30% 20% 10% 0% 

ERM 0.556 0.546 0.581 0.663 0.648 

RRM (  = 0.5)      

 = 0.15 0.604 0.648 0.648 0.639 0.634 

 = 0.20 0.663 0.692 0.648 0.648 0.609 

 = 0.25 0.639 0.687 0.658 0.629 0.614 

 = 0.30 0.668 0.585 0.600 0.643 0.634 

 = 0.35 0.624 0.556 0.639 0.648 0.653 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

From Table 8, the RRM method, when compared with ERM, delivers better or 

comparable performance at different levels of data corruption. 

Examining the selection of the   {0.20, 0.25, 0.30}, we observe that these 

selections yield the highest accuracies across the range of data corruption levels. 

At a 40% corruption level, the RRM outperforms the ERM method. For  = 0.20, 

the accuracy improvement is a substantial 10.7%. Similarly, for  = 0.30, the performance 

is enhanced by 11.2% compared to ERM. When faced with 30%, the accuracy 

improvement for  = 0.20 over ERM is an impressive 14.6%, the highest observed in this 

data set. In the 20% corruption level, the RRM with a  = 0.25 exhibits a promising 7.7% 

improvement in accuracy over the ERM. 

Interestingly, at lower corruption levels of 10% and 0%, the performance of RRM 

remains comparable to ERM. This reveals the versatility of the RRM method, maintaining 

robust performance even as the corruption level diminishes. 
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The superior performance of RRM at higher corruption levels (20%, 30%, and 

40%) across all  values, combined with its comparable performance at lower corruption 

levels, indicates its resilience. 

2. U-optimization Analysis with MASATI 

In the following section, we aim to examine the u-vector behavior in some 

MASATI cases. We show the dynamic evolution of the perturbation vector values across 

the iterative steps of the RRM algorithm and how it influences performance and resilience, 

thereby illustrating its crucial role within this methodology. 

The u-vector helps improve the model’s performance by adjusting the probability 

of each data point. It assigns lower values to mislabeled examples excluding them from the 

NN training process. The penalty parameter  regulates the u-values and determines the 

amount of non-zero u-values. It is important to note that increasing  value results in a 

higher penalty for non-zero u-values. However, setting  to excessively low values can 

cause too many examples to be assigned low u-values, resulting in a small training set for 

the NN that cannot effectively learn patterns. Conversely, high  values may incentivize 

the model to select zero for all u-values, making the RRM model work as the traditional 

ERM. Therefore, one must search for a  value that can outperform ERM. 

Table 9 illustrates the relationship between  and u-values; we take one experiment 

using RRM (ADH-LP) in various contamination levels and compare  with mislabeled 

images excluded from the NN training. An image is considered excluded from training if 

its associated u-value achieves a value of 1/N, where N represents the total number of 

training observations and 1/N is the nominal probability. 
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Table 9. Penalty parameter and perturbation vector relationship in MASATI

Looking at the 30% label contamination column in Table 8, we take a closer look

at the cases where the best ( = 0.20) and the worst ( = 0.35) test accuracies were achieved.

Starting with the worst case, where = 0.35, Figure 22 displays the accuracy of training

(red curve) and test (blue curve) of ERM (left) and RRM (right) over 500 epochs. The test

accuracies are very comparable in both approaches, where RRM achieves 0.556 against

0.546 of ERM.

Figure 22. Training and test accuracy for ERM (left) and RRM ADH-LP/ =
0.35 (right) on MASATI with 30% of contamination.

Now turning to Table 10 we have the report of the u-vector evolution in the two

early updates and how it finished in its last update. The columns are labeled by the i-counter

ADH-LP /
SGD
RRM

( = 0.5)

Contamination levels

40%
(737 mislabeled

images)

30%
(553 mislabeled

images)

20%
(368 mislabeled images)

10%
(184 mislabeled images)

Value of
penalty

Model
accuracy

# of
mislabeled

images
excluded

Model
accuracy

# of
mislabeled

images
excluded

Model
accuracy

# of
mislabeled

images
excluded

Model
accuracy

# of
mislabeled

images
excluded

0.15 0.604 327 0.648 286 0.648 211 0.639 99

0.20 0.663 338 0.692 290 0.648 197 0.648 91

0.25 0.639 318 0.687 263 0.658 163 0.629 94
0.30 0.668 295 0.585 230 0.600 159 0.643 87
0.35 0.624 253 0.556 213 0.639 140 0.648 71
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value indicating in which update the u-vector is and show the distribution of -values after 

their respective u-optimization across the 553 mislabeled images and 1,291 correctly 

labeled images. 

During the initial iteration, some images from both label categories receive a -

value of  · 10 . A larger number from both groups retains their initial -value of 

zero, indicating no changes are made. With the second update, there is a discernible shift 

within the range of u-values as the algorithm seeks to adjust probabilities in its u-

optimization process. 

Upon the final update, the algorithm identifies 213 out of 553 incorrectly labeled 

images. These images are assigned a -value of  · 10 , effectively excluding them 

from further NN training. This exclusion stems from the fact that this -value nullifies the 

nominal probability assigned to the images at the inception. 

While a minor proportion of the correctly labeled images receive this lowest -

value, the majority (1,005 out of 1,291) retain their initial probability or a value close to it 

and continue contributing to the NN training process. 

Table 10. Evolution of u-vector across ADH-LP / SGD in MASATI 
 (30% of contamination and  = 0.35)  

Nominal probability 
(1/N) 

 
5.4 · 10  

Iteration number 

i=1 i=2 i=49 

-values 
mislabeled 

images 

correct 
labeled 
images 

mislabeled 
images 

correct 
labeled 
images 

mislabeled 
images 

correct 
labeled 
images 

>>0 0 1 0 1 1 1 

 0 304 813 266 782 338 1,005 

 · 10  0 0 37 92 1 5 

 · 10  249 477 38 41 0 1 

 · 10  0 0 212 375 0 1 

 · 10  0 0 0 0 213 278 

Total of images 553 1,291 553 1,291 553 1,291 
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The scenario is different when we shift to the best accuracy of RRM where =

0.20. Figure 23 displays the accuracy of training (red curve) and test (blue curve) of ERM

(right) and RRM (left) over 500 epochs. The test accuracies are different, and we clearly

note the improvement of RRM against ERM. In that case, RRM achieves 0.692 against

0.546 of ERM. The accuracy plots show much less noise and more stability in the RRM

test accuracy curve compared to the ERM and the previous RRM test accuracy curve.

Figure 23. Training and test accuracy for ERM (left) and RRM ADH-LP/ =
0.20 (right) on MASATI with 30% of contamination.

Table 11 displays the u-vector evolution of the RRM best case scenario in the two

early updates and how it finished in its last update.

During the initial iteration, we have more images from both label categories

receiving the -value of · 10 , and the minority from both groups retaining their

initial -value of zero. In the second update just 93 of the 553 incorrectly labeled images

remained with the initial -value of zero. Observing RRM test accuracy in Figure 23, we

notice that it stabilizes around epoch 75 and even slightly improves with additional epochs.

This suggests that RRM may benefit from additional training past 500 epochs. Moreover,

the stabilization of the test accuracy corresponds to the stabilization of u-value

assignments.
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Upon the final update, the algorithm identifies 290 out of 553 incorrectly labeled 

images, 77 more than the worst case. These images are assigned a -value of  · 10 , 

effectively excluding them from further NN training. 

While a considerable proportion of the correctly labeled images receive this lowest 

-value, the majority (863 out of 1,291) retain their initial probability or a value close to 

it and continue contributing to the NN training process. 

Table 11. Evolution of u-vector across ADH-LP / SGD in MASATI  
(30% of contamination and  = 0.20) 

 

B. AIRBUS DATASET 

The Airbus Ship Detection dataset was part of a challenge realized in Kaggle in 

2018 and comprises satellite images provided by the Airbus company. All files are RGB 

images with a resolution of 768 x 768 pixels, stored in JPG format. 

The whole dataset contains a total of 18,392 images. We extracted a balanced 

random sample of this set to perform our analysis; We selected 10,428 images evenly 

divided between the “ship” and “no ship” categories, with 5,214 images in each category. 

Figure 24 illustrates some images of AIRBUS. 

Nominal probability 
(1/N) 

5.4 · 10  

Iteration number 

i = 1 i = 2 i = 49 

-values 
mislabeled 

images 

correct 
labeled 
images 

mislabeled 
images 

correct labeled 
images 

mislabeled 
images 

correct 
labeled 
images 

>>0 0 1 0 1 0 1 
 0 133 453 93 370 260 863 

 · 10  0 0 39 105 3 1 
 · 10  420 837 40 83 0 0 
 · 10  0 0 381 732 0 0 
 · 10  0 0 0 0 290 426 

Total of labels 553 1,291 553 1,291 553 1,291 
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Figure 24. AIRBUS dataset images. Source: [73].

The MASATI dataset contains 2,049 images. In contrast, the AIRBUS dataset,

containing nearly five times more images, allows us to evaluate our algorithm in a more

data-rich environment. Both data-limited and data-rich situations are likely in practical

scenarios. Therefore, analyzing our algorithms in a more data-rich environment adds an

important dimension.

1. Accuracy Results with AIRBUS

In this section, we present the results of the AIRBUS dataset, focusing on the test

accuracy score, which measures how effectively our models can classify images in the test

set. We also provide a comprehensive analysis to interpret the observed performance.

In this dataset, the train-test split was done using an 80/20 proportion, which

resulted in 8,340 images in the training set and 2,086 in the test set.
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The final test accuracy results for ERM and RRM with ADH-SUB and ADH-LP 

using Adam optimizer are shown in Tables 12 and 13, respectively, at various levels of 

corruption. 

Table 12. Final test accuracy in AIRBUS for ERM and RRM 
(ADH-SUB / Adam) 

 Corrupted training data percentage 

Method  40% 30% 20% 10% 0% 

ERM 0.588 0.657 0.729 0.797 0.867 

RRM (  = 0.3)      

 = 0.15 0.554 0.657 0.734 0.790 0.877 

 = 0.20 0.555 0.643 0.744 0.796 0.873 

 = 0.25 0.569 0.651 0.733 0.799 0.870 

 = 0.30 0.545 0.673 0.741 0.809 0.877 

 = 0.35 0.562 0.644 0.735 0.797 0.871 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

Upon evaluating the findings, a comparative analysis highlights the consistent 

performance of RRM over ERM, regardless of the penalty parameter selected. This is 

particularly evident across varying degrees of data corruption represented by the different 

percentage categories. 

RRM has comparable, if not slightly superior, accuracy to ERM at all levels of 

corruption. This extends to the 0% corruption scenario, where RRM still holds up favorably 

against ERM, suggesting that RRM’s effectiveness is not limited to handling corrupted 

data. 

The performance of RRM varies depending on the  value selected. Notably, all  

configurations demonstrate competitive performance, although certain  values exhibit 

marginal advantages in specific corruption scenarios. 

Regarding the overall best choices for the  parameter, the  = 0.25 and  = 0.30 

configurations stand out. Specifically,  = 0.25 offers promising results across all 

corruption levels, including higher contamination scenarios, signifying its adaptability and 



51 

resilience. On the other hand, the  = 0.30 configuration displays consistent performance 

across all corruption levels, thus asserting its robustness. 

Table 13. Final test accuracy in AIRBUS for ERM and RRM 
(ADH-LP / Adam) 

 Corrupted training data percentage 

Method 40% 30% 20% 10% 0% 

ERM 0.588 0.657 0.729 0.797 0.867 

RRM (  = 0.5)      

 = 0.15 0.602 0.692 0.758 0.831 0.868 

 = 0.20 0.607 0.668 0.751 0.819 0.875 

 = 0.25 0.616 0.690 0.763 0.823 0.867 

 = 0.30 0.619 0.686 0.783 0.824 0.872 

 = 0.35 0.602 0.695 0.767 0.819 0.872 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

Despite the data corruption level, RRM consistently delivers better accuracy than 

ERM. This performance advantage holds across all tested  values. 

In all corruption levels, the superior performance of RRM is evident, even in a no-

corruption setting. This highlights the effectiveness of the RRM methodology not just in 

handling corrupted data but also in solving complex hidden data patterns. 

At the 20% corruption level, RRM with a  = 0.30 demonstrates a substantial 

increase in accuracy, as high as 5.4% over ERM, which showcases the potential 

effectiveness of RRM when dealing with moderate data corruption. Similarly, the most 

remarkable improvement for the 30% corruption scenario was 3.8% with a  = 0.35. 

Looking at the overall performance across different corruption levels, the  = 0.25 

setting emerges as a consistently strong choice. This configuration delivers higher or 

equivalent accuracy compared to ERM across all contamination levels. 

In summary, these findings underscore RRM’s potential as a resilient and practical 

approach to handling various levels of data corruption, consistently matching or even 
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slightly outperforming the ERM. The analysis supports the robustness of RRM and its 

broader applicability in tasks that involve varying degrees of data corruption. 

Now turning to the SGD optimizer, Tables 14 and 15 display the final test accuracy 

results for ERM and RRM in ADH-SUB and ADH-LP at various levels of corruption, 

respectively. 

Table 14. Final test accuracy in AIRBUS for ERM and RRM  
(ADH-SUB / SGD) 

 Corrupted training data percentage 

Method 40% 30% 20% 10% 0% 

ERM 0.560 0.629 0.681 0.735 0.769 

RRM (  = 0.3)      

 = 0.15 0.544 0.628 0.699 0.723 0.793 

 = 0.20 0.571 0.628 0.687 0.708 0.788 

 = 0.25 0.553 0.630 0.685 0.728 0.776 

 = 0.30 0.564 0.607 0.692 0.748 0.783 

 = 0.35 0.574 0.620 0.703 0.752 0.785 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

At a high corruption level of 40%, the RRM approach, when using  set to 0.20 and 

0.35, displays slightly better accuracy than ERM. In situations of moderate corruption, 

precisely the 30% level, the performance of RRM and ERM is comparable, mainly when 

the  = 0.15 or  = 0.20 are employed for RRM. This comparable performance further 

showcases RRM’s robustness across different corruption levels. 

Interestingly, at a 20% corruption level, RRM’s performance exceeds ERM’s 

across all tested  values, demonstrating its effectiveness in scenarios of lower data 

corruption. Furthermore, at a 10% corruption level, RRM with  = 0.30 and  = 0.35 again 

displays slightly better accuracies. 

Even in the absence of corruption, RRM performed better in all  configurations; it 

shows slightly better accuracies, asserting that RRM’s efficiency. 
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The set of   {0.25, 0.30, 0.35} consistently displays competitive performance. 

Sometimes, these  configurations might deliver slightly lower accuracies than ERM. 

However, the differences are minor, making the performance broadly equivalent to ERM. 

Table 15. Final test accuracy in AIRBUS for ERM and RRM 
(ADH-LP /SGD) 

 Corrupted training data percentage 

Method 40% 30% 20% 10% 0% 

ERM 0.560 0.629 0.681 0.735 0.769 

RRM (  = 0.5)      

 = 0.15 0.603 0.739 0.745 0.774 0.764 

 = 0.20 0.671 0.755 0.753 0.775 0.769 

 = 0.25 0.687 0.733 0.757 0.769 0.767 

 = 0.30 0.684 0.744 0.764 0.765 0.774 

 = 0.35 0.661 0.747 0.764 0.770 0.779 

The values highlighted in gray represent the cases where RRM outperform or match ERM. 

 

Similar to the previous example the table shows that the RRM consistently delivers 

better accuracy than ERM. This performance advantage holds across all tested  values. 

At the 20% corruption level, the RRM method exhibits superior performance, 

particularly when configured with a  value of 0.30. It shows a remarkable 8.3% 

improvement in accuracy over ERM. As the corruption level rises to 30% and  = 0.20, 

RRM demonstrates an impressive accuracy improvement of 12.6% compared to ERM. 

Finally, at the 40% corruption level, the robustness of RRM becomes even more evident. 

In the set   {0.20, 0.25, 0.30}, the RRM method delivers substantial accuracy 

improvements of 11.1%, 12.7%, and 12.4% over ERM, respectively.  

In the lower corruption levels of 10% and 0%, the performance of RRM remains 

comparable or slightly superior to ERM. This underlines the flexibility of the RRM 

method, as it maintains strong performance even when the level of corruption decreases. 

The most consistently effective choice of  across the range of corruption levels 

appears to be  = 0.30. It is the best choice for managing different levels of corruption in 
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the Airbus dataset when using ADH-LP with SGD, as it consistently performs well, even 

in high corruption levels, and maintains similar results to other values in scenarios with 

10% or no corruption. 

2. U-optimization Analysis with AIRBUS 

In the following section, we aim to examine the u-vector behavior in some AIRBUS 

cases. Table 16 illustrates the relationship between  and excluded images by the 

perturbation vector using RRM (ADH-LP) in different levels of label contamination. 

Table 16. Penalty parameter and perturbation vector relationship in AIRBUS 

ADH-
LP / 
SGD 

Contamination levels in AIRBUS 
40%  

(3,336 mislabeled 
images) 

30% 
(2,502 mislabeled 

images) 

20% 
(1,668 mislabeled 

images) 

10% 
(834 mislabeled 

 images) 
Value 

of 
penalty 

 

Model 
accuracy  

 

# of 
mislabeled 

images 
excluded 

Model 
accuracy  

 

# of 
mislabeled 

images 
excluded 

Model 
accuracy  

 

# of 
mislabeled 

images 
excluded 

Model 
accuracy  

 

# of 
mislabeled 

images 
excluded 

0.15 0.603 1,985 0.739 1,812 0.745 1,210 0.774 621 
0.20 0.671 2,108 0.755 1,767 0.753 1,200 0.775 587 
0.25 0.687 2,127 0.733 1,701 0.757 1,158 0.769 573 

0.30 0.684 2,019 0.744 1,636 0.764 1,154 0.765 564 
0.35 0.661 1,737 0.747 1,635 0.764 1,109 0.770 538 

 

Looking at the 40% label contamination column in Table 15, when the  = 0.25 we 

have the highest number of mislabeled images excluded (2,127 images) and the best test 

accuracy achieved (0.687) at this contamination level. The worst accuracy (0.603) is 

achieved when  = 0.15. Figure 25 displays the accuracy of training (red curve) and test 

(blue curve) of ERM (left) and RRM (right) over 500 epochs. The test accuracies differ in 

4.3%, where RRM achieves 0.603 against 0.560 of ERM. 
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Figure 25. Training and test accuracy for ERM (left) and RRM ADH-LP/ =
0.15 (right) on AIRBUS with 40% of contamination.

Table 17 reports the u-vector evolution of u-optimization across 3,336 mislabeled

images and 5,004 correctly labeled images, when = 0.15.

During the initial iteration, as the penalty is very low ( = 0.15) the vast majority

of images from both label categories receives the -value of · 10 , and the rest

retains their initial -value of zero. In the second update just 64 of the 3336 incorrected

labeled images remained with the initial -value of zero. Eventually, over iterations, the

u-value distribution stabilizes, along with test accuracy.

At the final update, the algorithm identifies 1985 out of 3336 incorrectly labeled

images. These images are assigned a -value of · 10 , effectively excluding them

from further NN training, as this value represents the nominal probability in AIRBUS

dataset. In the correct labeled images column, we notice a very similar number of images

(1860) receives the lowest -value and the majority (3,135 out of 5,004) retain their initial

probability or a value close to it and contributes to the NN training process.
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Table 17. Evolution of u-vector across ADH-LP / SGD in AIRBUS
(40% of contamination and = 0.15)

Nominal probability 
(1/N)

12.0 · 10

Iteration number

i=1 i=2 i=49

-values
mislabeled 

images

correct 
labeled 
images

mislabeled 
images

correct 
labeled 
images

mislabeled 
images

correct 
labeled 
images

>>0 0 1 0 1 0 2
131 264 64 194 1,346 3,135

10 0 0 24 63 2 1
10 3,205 4,739 67 153 3 6
10 0 0 3,181 4,593 0 0

10 0 0 0 0 1,985 1,860
Total of images 3,336 5,004 3,336 5,004 3,336 5,004

We also analyze the case where = 0.25, and it shows how crucial is the choice of

our penalty parameter . Using RRM, this experiment reaches the best test accuracy of

0.687, an improvement of 12.7% in accuracy compared to the 0.560 of ERM. Figure 26

shows the accuracy of training (red curve) and test (blue curve) of ERM (left) and RRM

(right) over 500 epochs.

Figure 26. Training and test accuracy for ERM (left) and RRM ADH-LP/ =
0.25 (right) on AIRBUS with 40% of contamination.

Table 18 reports the u-vector evolution of u-optimization across 3,336 mislabeled

images and 5,004 correctly labeled images, when = 0.25.
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During the initial iteration, a considerable number of images from both label 

categories receives the -value of  · 10 , 2,917 of 3,336 in the mislabeled portion 

and 3747 of 5004 in the correct labeled portion, the rest retains their initial -value of zero. 

In the second update, until the run reaches 50 epochs, we have a picture of how the u-

optimization process of assigning more mislabeled images with lower and lower u-values 

iteratively coincides with iterative improvements in test accuracy. Looking at Figure 26, 

this appears to manifest as “sawtooth” jumps improvements in test accuracy early 

iterations. 

At the final update, the algorithm identifies 2,129 out of 3,336 incorrectly labeled 

images, 144 more than when  = 0.15. These images are assigned a -value of  · 10 , 

and they are effectively excluded of the NN learning process. Otherwise, in the correct 

labeled images column, the number of images retaining zero -value increased to 3,591, 

which guarantees 456 more correctly labeled images to the NN training process. 

Table 18. Evolution of u-vector across ADH-LP / SGD in AIRBUS 
 (40% of contamination and  = 0.25)  

 

  

Nominal 
probability (1/N) 

12.0 · 10  

Iteration number 

i=1 i=2 i=49 

-values 
mislabeled 

images 

correct 
labeled 
images 

mislabeled 
images 

correct 
labeled 
images 

mislabeled 
images 

correct 
labeled 
images 

>>0 1 0 1 0 1 0 
 0 418 1,257 312 1,117 1,192 3,591 

 · 10  0 0 142 590 7 1 
 · 10  2,917 3,747 106 140 2 2 
 · 10  0 0 2,775 3,157 5 6 
 · 10  0 0 0 0 2,129 1,404 

Total of images 3,336 5,004 3,336 5,004 3,336 5,004 
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

In this study, we offer a different strategy for training Neural Networks (NNs) that 

deviates from the traditional Empirical Risk Minimization (ERM) approach. Our method, 

known as Rockafellian Risk Minimization (RRM), yields a more robust model that may 

exceed the performance of ERM in situations where the data is somewhat contaminated 

with label noise. 

We apply our methodology to two separate datasets (MASATI and AIRBUS). We 

settle on a reasonable NN architecture for both sets and conduct our analysis under two 

choices of optimizer configurations (Adam and SGD). In each case, we compare ERM 

against RRM ADH-LP and RRM ADH-SUB. 

In the context of MASATI dataset, when using the Adam optimizer context, ADH-

SUB and ADH-LP benefit from the RRM method, with appropriate  values outperforming 

or matching ERM. For ADH-SUB, the best balance between handling data corruption and 

optimizing performance is found at  values of 0.20-0.25. ADH-LP’s balance is observed 

at  values of 0.15-0.25. Shifting to SGD optimizer context, RRM also performs well with 

ADH-SUB and ADH-LP, specifically when data corruption ranges from 20–40%. The 

optimal  values are approximately 0.30-0.35 for ADH-SUB and 0.20-0.30 for ADH-LP.  

While both the ADH-SUB and ADH-LP algorithms benefit from the RRM method 

with an appropriately chosen  across varying levels of data corruption and different 

optimizers (Adam and SGD), ADH-LP consistently emerges as the superior performer. 

Whether operating under Adam or SGD, ADH-LP strikes an exceptional balance between 

handling data corruption and optimizing performance. ADH-LP excels in the SGD context, 

showing remarkable resilience against data corruption while maintaining high-

performance levels. This unique ability to delay performance degradation in the face of 

high data corruption sets ADH-LP apart as the preferred algorithm for both the Adam and 

SGD optimizer contexts. 
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For the AIRBUS dataset, using Adam in RRM for ADH-SUB and ADH-LP 

exhibits competitive or superior performance compared to the ERM method across all 

corruption levels. Specifically, the optimal  values were around 0.25 and 0.30 for ADH-

SUB and 0.25 for ADH-LP. This demonstrates RRM’s robustness in handling data 

corruption and discovering complex hidden data patterns. For the SGD context, RRM again 

shows a similar trend. In the ADH-SUB architecture, RRM performance is on par or better 

than ERM, with   {0.25, 0.30, 0.35} offering competitive performance across all 

corruption levels. For the ADH-LP structure, RRM outperforms ERM, in almost all 

corruption scenarios (20%, 30%, 40%), especially with  = 0.30, showing impressive 

improvements of up to 12.6%. 

An intriguing observation from the AIRBUS dataset is the superior performance of 

ADH-SUB in scenarios where we do not introduce label contamination in the training set. 

In these cases, it achieves the highest accuracy in both CNN architectures, suggesting that 

RRM can effectively manage complex patterns within the dataset. This capability allows 

it to outperform the traditional ERM method. 

To conclude, RRM demonstrates its potential as a robust and resilient method for 

handling varying degrees of label corruption in the AIRBUS dataset. In all cases, the ADH-

LP architecture under the SGD optimizer performed remarkably well, showing the ability 

to delay performance degradation even under high corruption levels, establishing it as the 

top choice across all scenarios. 

Overall, the analysis of our methodologies across the MASATI and AIRBUS 

datasets, with varying optimizers and degrees of data corruption, consistently establishes 

the ADH-LP as the superior performer. The key strength of ADH-LP lies in its exceptional 

balance between handling data corruption and optimizing performance, demonstrating 

remarkable resilience against label contamination while maintaining high-performance 

levels. Even under high corruption levels, this ability to delay performance degradation 

sets ADH-LP apart as the preferred algorithm in Adam and SGD optimizer contexts. With 

respect to total runtimes of the RRM ADH-SUB method tends to complete the u-

optimization phase slightly quicker than ADH-LP. Nonetheless, the choice of algorithm 

should be more than just a matter of processing time. In terms of test accuracy-
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performance, ADH-LP stands out as the overall best choice, offering robustness and

resilience despite the slightly longer processing time in the face of varying degrees of data

corruption.

B. FUTURE WORK

Despite the notable improvements in accuracy and robustness achieved through the

implementation of the RRM method, there is still room for improvements. A key aspect

yet to be fully investigated is the u-optimization process. In the current setup, u-

optimization excludes up to 64% of mislabeled images in all experiments where RRM

outperforms ERM. Perhaps a greater percentage can be achieved by employing novel

approaches in the u-optimization procedure.

Another point of interest is the further refinement of the ADH-SUB algorithm. This

algorithm shows promise, especially regarding computational time, as it runs faster than

ADH-LP. However, when considering accuracy levels, it falls short compared to ADH-LP.

Thus, further research and optimization efforts are needed to enhance the performance of

ADH-SUB to the level of its counterpart or beyond, creating an overall more efficient and

accurate solution.

As we advance toward more autonomous solutions, there is a rising need to

automate ship detection accurately. Maritime surveillance capabilities can be significantly

improved by integrating advanced models like the enhanced ADH-LP and ADH-SUB

algorithms in automated surveillance systems, particularly those employing unmanned

vehicles.
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