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ABSTRACT 

 This study aims to explore the behavior of turbulent wakes generated by a 

spherical submerged body propagating with constant speed in a non-uniformly stratified 

fluid. The investigation is based on a series of high-resolution numerical simulations in 

which the background stratification is systematically varied. We consider one linear and 

five non-linear temperature profiles and two sets of Froude numbers (Fr), Fr = 1.0 and Fr 

= 3.2. The analysis of dissipation of thermal variance (χ) shows that the shape of the 

wake for non-uniform profiles is more horizontally spread, and internal waves are much 

stronger than in linear stratification. Experiments with Fr = 1.0 show a rather asymmetric 

energy distribution caused by internal wave reflections from low-gradient regions. An 

idealized model demonstrates that internal waves emitted at horizontal angles shallower 

than roughly 64 degrees are reflected. For Fr = 3.2, internal waves are radiated at steeper 

angles and transmitted more. Using decay rates of χ, the maximum detection time of the 

wake can be estimated, showing that for Fr = 3.2, the thermal signal lasts four to five 

times longer than for Fr = 1.0. Furthermore, concave profiles produce signals lasting 

approximately twice as long as those for linear profiles, whereas low-gradient types have 

half the duration. This research is expected to assist in the development of non-traditional 

detection algorithms for undersea warfare. 
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I. INTRODUCTION 

A. MOTIVATION 

The latest generations of quieter submarines have imposed new challenges for 

detection. Since acoustic and magnetic means may only find these objects in close 

proximity, recent research has aimed at the development of non-traditional algorithms for 

detection and tracking. One such avenue is the observation of the wakes generated by 

moving underwater vehicles. Therefore, several investigations based on laboratory, 

numerical, and observational experiments have been conducted to identify conspicuous 

features in the development and dynamics of wakes. However, the vast majority of 

numerical and theoretical wake models have assumed either homogeneous or linearly 

stratified density distribution, which do not represent the highly variable oceanic 

environment. 

B. BACKGROUND 

A moving submerged body traveling with high enough speed produces a turbulent 

wake in a fluid, and the characteristics of this disturbance depend on the properties of the 

body and the fluid. Figure 1 depicts a wake generated in the ocean by a submarine traveling 

at shallow depth and producing a noticeable perturbation at the sea surface. The 

characteristics of such wakes are often dependent on the Reynolds number (Re) of the flow, 

which measures the relative importance of viscosity and advection. In the context of wakes, 

the Reynolds number can be defined as 

 

                                                                     Re =
𝑈𝑈𝑈𝑈
𝜈𝜈

,                                                                     (1) 

 

where 𝑈𝑈 is the velocity of the body, 𝑈𝑈 is the diameter of the body, and 𝜈𝜈 is the kinematic 

viscosity. At low Reynolds numbers (Re < ~2 × 103), the flow is laminar, and no 

turbulent mixing is present. A transitional regime from laminar flow to turbulent flow 

occurs when 2 × 103  <  Re ≤  4 × 103, and the fully turbulent regime happens when 
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Re >  4 × 103. Typical Re values for surface vessels and submarines are approximately 

108, so resolving turbulent scales at these high Re is nearly impossible for numerical 

simulations, at least with present computational capabilities (Zhou and Diamessis 2019). 

This is because the Kolmogorov length scale, 𝜂𝜂, which represents the scale in a turbulent 

flow at which turbulent eddies dissipate into heat, is controlled by Re (𝜂𝜂~Re−3 4� ). 

Therefore, the higher the Reynolds number, the smaller the Kolmogorov scale will be, 

relative to the largest scales of the problem. This makes resolving both the large and small 

scales in numerical simulations difficult at high Reynolds number. In the more turbulent 

regime, the internal structure of the wake is characterized by many small-scale vortices; 

however, large-scale vortex streets are also created along the trajectory of the body and can 

be seen in both the laminar and turbulent regimes (Pao et al. 1982).  

 
Figure 1. Wake of a near-surface submerged submarine. Source: Bureau of 

Naval Personnel (1953).  

In a stratified fluid, the relationship between inertial forces and buoyancy can also 

be important to the development of the wake. This relationship can be described by the 

Froude number (Fr): 

                                                                       Fr =
𝑈𝑈
𝑁𝑁𝑈𝑈

,                                                                   (2) 
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where 𝑁𝑁 is the Brunt-Väisäla frequency, the characteristic frequency for internal waves, 

which is defined as 

 

                                                                 𝑁𝑁 = �
−𝑔𝑔
𝜌𝜌0

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

,                                                                 (3) 

 

where 𝑔𝑔, 𝜌𝜌0, and 𝜌𝜌 are the gravitational acceleration, reference density, and density, 

respectively. In the ocean, typical values for 𝑁𝑁 are on the order of 3 × 10−3s−1. The Froude 

number measures the ratio of the oscillation period of the internal waves to the wake decay 

time. When Fr is substantially larger than unity, the effects of stratification become less 

prominent, particularly at early times. The relevant timescale at which the stratification 

begins to impact the dynamics is the Brunt-Väisäla period (Lin and Pao 1979). After 

approximately one Brunt-Väisäla period after the start of the motion, internal waves 

emerge, emitted by both the body and turbulent motions in the wake. These internal waves 

serve to transfer energy from the wake to the surrounding medium, which promotes wake 

collapse (Spedding 2014). Stratification, therefore, plays an important role in wake 

dissipation, particularly at the late stages of wake development (Riley and Lelong 2000). 

Spedding (1997) identified three distinct regimes of stratified wakes: namely, the 

turbulent 3D wake, the transitional non-equilibrium (NEQ) wake, and the quasi-two-

dimensional (Q2D) wake. Figure 2 shows a schematic of those stages in the horizontal and 

vertical planes. The turbulent near-wake regime occurs when Nt ≤ 2, where t represents the 

time after the passage of the object. Within that span of time, stratification effects are not 

yet significant, allowing the wake to expand vertically and laterally, as shown in laboratory 

experiments conducted by Hopfinger et al. (1991) and Xu et al. (1995). At Nt ~ 2, buoyancy 

forces start to act significantly on the flow, and turbulent wakes stop growing vertically. 

At this point, wake collapse begins, and the wake decreases its vertical extent but continues 

to expand horizontally; this is the non-equilibrium stage and typically lasts from 2 < Nt < 

50 (Pao 1973). This motion converts potential energy into kinetic energy as the fluid 

approaches the level of neutral buoyancy. 
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The vertical and horizontal directions, represented respectively by the top and bottom 
diagrams, show how the wake evolves over time. The moment when wake-generated 
internal gravity waves are prominent is shown by the winding arrows, and pancake eddies 
are seen in the late wake, which are represented by the circular arrows.  

Figure 2. Stages of wake evolution. Source: De Stadler (2013).  

During this process, internal waves transmit the energy away from the turbulent 

wake to promote wake collapse. As viscous dissipation destroys small-scale structures, the 

large and isolated coherent structures remain, which are known as pancake vortices (Radko 

and Lewis 2019). These pancake vortices are sustained much longer due to their coherent 

quasi-steady circulation patterns. This is the so-called Q2D regime, in which vertical 

motions are constrained and the wake flattens. This tendency is generally observed when 

Nt > 50 (Redford et al. 2015), although the actual transition is strongly dependent on Re. 

For example, Diamessis et al. (2011) and Zhou (2019) reported an extended NEQ regime 

for high Reynolds number (Re ≥  105). At these late times, the Earth’s rotation can 

become important (see the discussions from Spedding 2014; Sutyrin and Radko 2017; 

Radko and Lorfeld 2018). 

Much of the energy dissipated from the wake during this process is due to the 

release of internal waves. In a homogeneous stratified environment, internal waves radiate 

in all directions and frequencies away from the path of a moving body (Keller and Munk 

1970). They can be generated in two ways: fluid shifting away from the object as it passes 

through the medium (lee waves) or through random motions in the wake itself (random 

waves), as described by Rottman et al. (2004). Lee waves are the dominant form of internal 

waves for a spherical body moving through a stratified fluid when Fr < 4, and random 
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waves are dominant at larger Fr (see discussions in Gilreath and Brandt 1985; Hopfinger 

et al. 1991). Abdilghanie and Diamessis (2013) examined near-field internal waves 

radiating from a towed sphere in a linearly stratified fluid at Re =  [5 × 103, 105] and 

Fr =  [4, 16, and 64]. They found that internal waves can persist until the extended NEQ 

regime (Nt ~ 100). Additionally, internal waves differ in their propagation angle depending 

on Re. At lower Re, waves radiate at a limited range of angles; however, at higher Re, wave 

propagation spreads over a larger range of angles, which results in a more efficient 

extraction of energy from the wake. Attempting to get a more realistic result in their 

numerical simulations, Brucker and Sarkar (2010) introduced a self-propelled object and 

compared its wake to that of a towed object in a stratified fluid. Their results supported that 

the energy transport provided by internal waves is of the same magnitude as the dissipation 

of turbulence, and the energy outflow carried by internal wave radiation dominates as a 

sink for kinetic energy. Zhou and Diamessis (2016) conducted numerical simulations to 

investigate how such far-field internal waves generated by a spherical submerged body in 

a linearly stratified fluid would affect the surface. They found that the most energetic 

waves, capable of reaching the surface are created in the early stages of the NEQ regime, 

when the wake is still being affected by stratification. However, as the system transitions 

to the Q2D regime, the internal wave intensity gradually reduces until viscosity serves as 

the major contributor to kinetic energy decay.  

C. SUMMARY OF WORK 

All the aforementioned work has been based on experiments with uniformly 

stratified or homogeneous fluid, which is not representative of typical ocean environments. 

Thus, this study focuses on a series of high-resolution numerical simulations in which the 

background stratification is systematically varied by locally perturbating the ambient 

density profiles to examine the impacts imposed by different stratification scenarios on 

turbulent wakes generated by a moving submerged body, including wake morphology, 

small-scale signature, internal waves distribution, and persistence. We find that the non-

linear perturbations significantly affect the dynamics, persistence, and the detectability of 

wakes. It is observed that stratification anomalies can cause the wake to become vertically 

asymmetric. This asymmetry is attributed to the tendency of weak stratification to inhibit 
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the transmission of internal waves, which concentrates internal waves away from weakly 

stratified regions. Other wake characteristics that are strongly affected by the ambient 

stratification include the vertical position of the wake core and the persistence of the wake.    

D. ORGANIZATION 

The remainder of the thesis is organized as follows. In Chapter II, “Methods,” the 

numerical model is introduced along with the governing equations and the model 

parameters. Chapter III, “Results,” describes the diagnostics used for the model analysis 

and the achieved outcomes. Chapter IV, “Discussion,” conveys the key conclusions and 

briefly summarizes our findings.  
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II. METHODS 

This investigation is based on a series of numerical simulations in which a 

submerged body (SB), represented by a sphere, moves with constant speed inside a 

rectilinear domain. The domain has dimensions of 600m × 100m × 125m in the x, y, and z 

directions, respectively. The x (longitudinal), y (transverse), and z (vertical) directions 

represent, respectively, the orientations for length, width, and depth of both boxes. The x-

axis extends through the range [-50m, 550m], the y-axis, [-50m, 50m], and the z-axis, [50m, 

-75m]. The body travels horizontally in the positive-x direction, starting its motion at [0m, 

0m, 0m] with a speed of 𝑢𝑢𝑏𝑏 = 0.05 𝑚𝑚
𝑠𝑠

 until x = 500m. The schematic of the simulated 

domain is shown in Figure 3. 

 
Figure 3. Overview of the model configuration. This figure represents the 

initial state, so the body and inner box are centered at [0, 0, 0]. 

A. NUMERICAL MODEL 

We evolve the governing equations in the computational domain (Figure 4) to 

simulate the behavior of fluid around the body. Since the wake timescales are shorter than 

that of planetary rotation, the Coriolis effect is neglected. Furthermore, the simulations do 

not incorporate other external phenomena present in the ocean, such as waves, wind shear, 

and tides. Thus, the governing equations are as follows:
 

                          
 

                                            
𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ∙ ∇𝐮𝐮 = −
1
𝜌𝜌0
∇𝑝𝑝 + 𝑔𝑔

𝜌𝜌 − 𝜌𝜌0
𝜌𝜌0

�̂�𝐤 + 𝜈𝜈𝑡𝑡∇2𝐮𝐮,                           (4) 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ∙ ∇𝜕𝜕 = 𝑘𝑘𝑡𝑡∇2𝜕𝜕,                                                                        (5) 

                                            ∇ ∙ 𝐮𝐮 = 0,                                                                                               (6) 

                                           
𝜌𝜌 − 𝜌𝜌0
𝜌𝜌0

= −𝛼𝛼𝑇𝑇(𝜕𝜕 − 𝜕𝜕0),                                                                      (7) 

where u = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the total velocity vector, �̂�𝐤 is the vertical unit vector, 𝑝𝑝 is the 

pressure, 𝜕𝜕 is the sea-water temperature, and 𝜕𝜕0 is a reference temperature, which is set to 

be the surface temperature. Here, we use the Boussinesq approximation, for which the 

density perturbation to a constant reference density, 𝜌𝜌0, is only retained in the buoyancy 

component of the vertical momentum equation. The thermal expansion coefficient, 𝛼𝛼𝑇𝑇, is 

set to 5 × 10−5 °C 1− , the gravitational acceleration, 𝑔𝑔, to 9.81m/s2, the turbulent kinematic 

viscosity, 𝜈𝜈𝑡𝑡 , to 1 × 10−4m2/s, the turbulent diffusivity of heat, 𝑘𝑘𝑡𝑡, to 1 × 10−4m2/s, and 

the reference density, 𝜌𝜌0, to 1024kg/m3. The turbulent Prandtl number, 𝑃𝑃𝑟𝑟𝑡𝑡, is defined as 

the ratio of the eddy viscosity to the turbulent thermal diffusivity, 𝑃𝑃𝑟𝑟𝑡𝑡 =  𝜈𝜈𝑡𝑡
𝑘𝑘𝑡𝑡� , which 

determines the relative efficiency of the vertical turbulent exchanges of momentum and 

heat. In this study, the turbulent Prandtl number is taken to be 1, which is consistent with 

the Reynolds analogy (i.e., in a turbulent flow, the turbulent eddies diffuse momentum and 

heat at equal rates). 
 

The experiments are performed using OpenFOAM v2012, a free source software 

package (Weller et al. 1998). This model is chosen because it has a wide variety of wake 

modeling features, such as dynamic meshing and turbulence modeling capabilities. 

OpenFOAM is a finite-volume code, and for these simulations, an Euler scheme is used to 

evolve the equations forward in time using a PIMPLE algorithm (Holzmann 2019). 

Dynamic meshing and overset are enabled, which allows us to incorporate a moving mesh 

inside a stationary one and permits mesh movements and interactions without the 

drawbacks of deforming meshes (Tisovska 2019).  
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B. EXPERIMENTAL SETUP 

The domain is discretized in terms of two independent meshes, one which simulates 

the bulk of the fluid and remains stationary (the outer box) and the other which simulates 

the fluid immediately around the body and which moves with it (the inner box). The inner 

box has dimensions of 30m × 30m × 30m and is centered on the body. The purpose of 

splitting the mesh into the outer and inner meshes is to create a composite domain that can 

resolve fine-scale structure near the submerged object while modeling the larger structures 

of the wake as they develop, allowing complex interactions between these structures. The 

inner mesh is overlaid on the outer mesh, and the external layer of cells in the inner mesh 

has values interpolated from the outer mesh as boundary conditions in order to solve the 

flow around the body with minimal communication between the two meshes. The fields 

from the closest cells to the body are then interpolated back to the outer mesh, which is 

then evolved independently.  

The outer rectangular box is resolved by 1-m-grid spacing in the lateral directions 

but varying spacing in depth. In this perspective, the vertical domain is divided into three 

sections of different mesh resolution: I) The shallow section, extending from z = 50m to 

z = 25m, where the grid spacing contracts gradually from 3.5m at the surface to 0.42m at 

the bottom of the section; II) the intermediate section of constant resolution of 0.4m, which 

contains most of the wake and is restricted to the range z = [25m, -25m]; and  III) the deep 

section, with  z = [-25m, -75m], which also has non-uniform spacing from 0.4m on top to 

3.46m on the bottom. The largest grid spacing of the inner box mesh is 0.5m in all three 

directions. However, within 2.5m of the submerged body, the grid spacing becomes more 

finely resolved by repeatedly dividing the grid cells into octants. As a result, each cell 

around the SB is 0.135m thick. The outer box has 10,560,000 (600 × 100 × 176) cells, and 

the inner box has 410,968 cells, including refinement levels. The outer and inner meshes 

are illustrated in Figures 4 and 5, respectively. 

In the outer box, the top boundary is impermeable and stress-free, which adequately 

represents a wake of a body below the ocean surface in an open environment. The bottom 

boundary is open, while the temperature is prescribed, and the side boundaries are periodic. 
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The submerged body boundary is impermeable and non-slip, and the normal gradient of 

temperature is set to zero on all its surfaces. 

 
Vertical section (yz-plane) of the outer box mesh. From top to bottom: Shallow section (I), 
intermediate section (II), and deep section (III). 

Figure 4. Outer mesh. 

 
Vertical section (yz-plane) of the inner box mesh. 

Figure 5. Inner mesh. 
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We perform two sets of simulations, characterized by Fr =  1.0  and Fr =

√10 (~3.2), where the latter value of Fr was obtained by decreasing density gradient by a

factor of 10. Each set contains six cases with different initial temperature profiles. For both

values of Fr, the Reynolds number is Re = 5000. The six cases within each set comprise

simulations with distinct temperature profiles, which we designate as the Linear Case (the

case with constant stratification) and number the remaining cases as 1 through 5. For three

of these—Case 1, Case 2, and Case 3—the temperature in the region is perturbed by a

Gaussian as follows:

𝜕𝜕�(𝜕𝜕) = 𝐴𝐴𝑇𝑇𝜕𝜕 + 𝛾𝛾 exp�
−𝜕𝜕2

𝜎𝜎2
� ,  (8) 

where 𝜕𝜕�(𝜕𝜕) is the vertical temperature profile, 𝐴𝐴𝑇𝑇 is the unperturbed gradient of 

temperature, 𝛾𝛾 is the regulating parameter of the local temperature perturbation, and 𝜎𝜎 is 

the size scale of the perturbation. These profiles simulate the non-linear region as a density 

perturbation centered at the SB path. The stratification at the body depth is identical to that 

of the ambient fluid. Case 2 has the same internal curvature as Case 1 but with a stronger 

temperature perturbation, and Case 3 has the largest temperature perturbation and a 

stronger curvature, where curvature, C, is defined by 

 𝐶𝐶 =  
𝜕𝜕2𝜕𝜕�(𝜕𝜕)
𝜕𝜕𝜕𝜕2

.  (9) 

The purpose here is to quantify the role of curvature in wake development. Furthermore, 

all results obtained for Cases 1–3, for both values of Fr, are also valid for a vertically 

mirrored profile if the value of the parameter 𝛾𝛾 in Equation (8) takes the opposite sign and 

all other parameters remain the same. The isomorphism of the governing equation with 

respect to this transformation is demonstrated in the Appendix. The profiles for the Linear 

Case and Cases 1–3 are shown in Figure 6. 
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Figure 6. Linear Case and Cases 1–3 temperature profiles. 

In Case 4, the non-linear region is represented by a high stratification along the SB 

trajectory, while Case 5 is characterized by a very low stratification in the same region. 

The profiles for Case 4 and Case 5 are depicted in Figure 7. These cases are described by 

𝜕𝜕�(𝜕𝜕) = 𝐴𝐴𝑇𝑇𝜕𝜕 + 𝛽𝛽 tanh �
𝜕𝜕
𝛿𝛿
� ,  (10) 

where 𝛽𝛽 and 𝛿𝛿 control the inclination and size of the perturbed area. The parameters in 

common for both sets are summarized in Table 1, and the variables defined for each case 

are shown in Table 2. 
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Figure 7. Case 4 and Case 5 temperature profiles. 

Table 1. Summary of parameters defined for both sets. 
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Table 2. Parameters controlling the stratification pattern for each case. 

Fr = 1.0 Fr = 3.2 
𝛾𝛾(°C ) 𝛽𝛽(°C ) 𝜎𝜎(m) 𝛿𝛿(m) 𝛾𝛾(°C ) 𝛽𝛽(°C ) 𝜎𝜎(m) 𝛿𝛿(m) 

Linear Case 0 - 1 - 0 - 1 - 
Case 1 1 - 20 - 0.1 - 20 - 
Case 2 1.103 - 21 - 0.1103 - 21 - 
Case 3 1.5 - 30 - 0.15 - 30 - 
Case 4 - 0.5 - 2 - -0.5 - 2 
Case 5 - 0.05 - 11 - -0.05 - 11 
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III. RESULTS

Figure 8 depicts the formation of a wake along the SB’s path in a linearly stratified 

environment. The turbulent wake begins to form immediately after the passage of the SB 

and thereafter spreads both vertically and horizontally. The wake is fully developed from 

approximately 𝑥𝑥 = 80m up to the vicinity of the body, showing a turbulent core along its 

extent. The wake begins to flatten due to stratification, which can be seen for 𝑥𝑥 < 200m, 

after expanding isotropically in the early stages. During the wake collapse, which usually 

occurs in the near-to-intermediate wake stage, the wake shrinks vertically and begins to 

expand horizontally. Additionally, internal waves can be seen past 200m, radiating out of 

the wake, and partially depleting its energy. In a uniformly stratified environment, the wake 

and internal wave propagation are vertically symmetric, but the introduction of 

perturbations could break the symmetry of the system. 

The wake core along the SB path and the internal waves radiating from the wake can be 
seen in the gradient of the velocity field. This figure shows the Linear Case, where the 
pattern of internal waves is symmetric. 

Figure 8. Wake formation for Linear Case (Fr = 1.0). 

Changes in the stratification affect the wake pattern, as well as the formation and 

propagation of internal waves. Figure 9 shows examples of the temperature perturbation 

field, 𝜕𝜕′ = 𝜕𝜕 −  𝜕𝜕�, in vertical and horizontal cross-sections. Here, we compare temperature 

signals from a linearly stratified (Linear Case) to a non-linear profile (Case 1) for Fr = 1.0. 
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For the case of the linear stratification, the wake signature is symmetrically distributed in 

z, whereas most of the signal is directed towards the bottom in the non-linear case. 

Conversely, the thermal signal spreads out more substantially in the horizontal direction 

for the perturbed case than for the case with linear stratification, which remains confined 

to the center. Therefore, preliminary evidence of changes in wake thermal signature from 

the introduction of nonlinearities in stratification led us to investigate more specific 

parameters that will be discussed below. 

From top to bottom: Vertical cross-section of 𝜕𝜕′ for the linearly stratified fluid; vertical 
cross-section of 𝜕𝜕′ for Case 1; horizontal cross-section of 𝜕𝜕′ for the linearly stratified fluid; 
and horizontal cross-section of 𝜕𝜕′ for Case 1. All figures represent Nt = 25. 

Figure 9. Vertical and horizontal temperature perturbation fields for Linear 
Case and Case 1 (non-linear stratified case) in Fr =1.0 set. 



17 

A. WAKE SIGNATURES

One of the measurable characteristics of a wake is the intensity of small-scale

turbulence in its core, which is commonly quantified by turbulent and thermal dissipation 

rates. The dissipation rate of turbulent kinetic energy, 𝜀𝜀, can be obtained from the turbulent 

kinetic energy equation and may be expressed as 

 𝜀𝜀 =  𝜈𝜈𝑇𝑇 ��
𝜕𝜕𝐮𝐮′

𝜕𝜕𝑥𝑥
�
2

+ �
𝜕𝜕𝐮𝐮′

𝜕𝜕𝜕𝜕
�
2

+ �
𝜕𝜕𝐮𝐮′

𝜕𝜕𝜕𝜕
�
2

� ,  (11) 

where  𝐮𝐮′ = (𝑢𝑢′, 𝑣𝑣′,𝑤𝑤′), and 𝐮𝐮′ = 𝐮𝐮 – 𝐮𝐮�. Similarly, the dissipation rate of thermal variance 

due to diffusion of heat, χ, can be defined as 

 χ =  2𝑘𝑘𝑇𝑇 ��
𝜕𝜕𝜕𝜕′

𝜕𝜕𝑥𝑥
�
2

+ �
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
�
2

+ �
𝜕𝜕𝜕𝜕′

𝜕𝜕𝜕𝜕
�
2

� .  (12) 

The thermal and turbulent dissipation rates offer independent and complementary 

descriptions of stratified turbulence. While they are frequently considered to be 

proportionate, this is not always the case (Gregg et al. 2018). Since the technology for 

measuring both quantities in field experiments is well-developed and widely used, a 

meaningful way to represent wake signals is to compute the dissipation rates of kinetic 

energy and thermal variance. These dissipation rates represent a potentially useful tool for 

detecting turbulent wakes (Radko and Lewis 2019). Because the small-scale signatures 

produced by the submerged body can be orders of magnitude greater than those produced 

by natural sources, it is much simpler to discriminate them from ambient processes than 

for large-scale wake signatures. The dissipation rates highlight small-scale features that are 

topologically connected to the wake-generating object. Thus, the dissipation rates of kinetic 

energy and thermal variance can be used for tracking of propagating submersibles. 
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1. Wake Morphology

Our analysis focuses on the behavior of the wake in the region from 𝑥𝑥 = 200m to 

𝑥𝑥 = 300m, far from the boundaries of the computational domain. This interval is the most 

representative region of the wake development in terms of wake size, evolution, and signal 

strength. The numerical simulations are extended for 10,000 seconds for the cases with 

Fr = 1.0, and 22,000 seconds for those with Fr = 3.2. In the following discussion, the wake 

evolution is described by referring to the non-dimensional time, Nt, which is a conventional 

approach in wake theory. Thus, the final values of Nt achieved in both Fr=1 and Fr=3.2 

sets of simulations are identical. 

We use dissipation rates to determine the wake structure and intensity and compare 

the morphology of various cases. We discover major dissimilarities in the wake evolution, 

its salient features, and propagation of internal waves between different cases. Figure 10 

shows χ for the Linear Case and Case 1 with Fr = 1.0 and Fr = 3.2, when Nt ~ 5. Comparing 

the wakes for both Fr, we notice that the turbulent wake core is generally flattened by 

stratification over time. At higher Fr, the wake has had more time to expand due to turbulent 

dissipation prior to the onset stratification effects, and this can be observed at early stages. 

In addition, internal-wave (IW) radiation for the Fr = 1.0 cases is much more prominent 

than for the Fr = 3.2 cases. Besides, we start noticing from the early stages an asymmetric 

IW propagation for Case 1, which is mostly directed towards the bottom, in contrast to the 

more balanced IW propagation in the Linear Case. 

In Figures 11 and 12, we plot χ in the y–z plane, averaged over the 200m ≤ 𝑥𝑥 ≤

300m range for the Linear Case and for Cases 1–3 with Fr = 1.0 and Fr = 3.2 at Nt = 25. 

In the Linear Case, we can clearly see the internal waves propagating symmetrically above 

and below the SB path. In Cases 1–3, the internal waves preferentially propagate 

downward, and few reach the surface. Particularly, Cases 1 and 2 are similar in terms of 

development, internal wave distribution, and strength. The evolution of Case 3 is distinct, 

and the differences become more prominent as Fr increases. In the simulations with 

Fr = 1.0, the wake core is more centralized, and its thermal signal does not fully extend to 

the surface. The signal strength in Case 3 is only slightly weaker than in Cases 1 and 2. In 

the simulations with Fr = 3.2, the wake in Case 3 is much stronger and spreads farther both 
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downward and horizontally in contrast to Cases 1 and 2. Note that the density profiles in 

Cases 1 and 2 have the same curvature and evolve in a similar manner. This suggests that 

the effect of the magnitude of the curvature, C, of the temperature perturbations plays an 

important role in the signal distribution, and those effects become more prominent as Fr 

increases. 

The y–z sections of the dissipation rate of thermal variance at Nt=5 for: a) Linear Case; b) 
Case 1 for Fr = 1.0, and c) Linear Case; d) Case 1 for Fr = 3.2. 

Figure 10. Cross-sections of χ for Linear Case and Case 1 in Fr = 1.0 and 
Fr = 3.2 at Nt ~ 5. 
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The y–z sections of the dissipation rate of thermal variance evaluated at Nt=25 for: a) 
Linear Case; b) Case 1; c) Case 2; and d) Case 3 for Fr = 1.0. 

Figure 11. Cross-sections of χ for Linear Case and Cases 1–3 in Fr = 1.0 at 
Nt = 25. 
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The y–z sections of dissipation rate of thermal variance evaluated at Nt=25 for: a) Linear 
Case; b) Case 1; c) Case 2; and d) Case 3 for Fr = 3.2. 

Figure 12. Cross-sections of χ for Linear Case and Cases 1–3 in Fr = 3.2 at 
Nt = 25. 
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a very weak signal in the middle of the wake and precludes the wake from easily 

transmitting energy via internal waves. Cases 4 and 5 behave comparably at Fr = 3.2. 

The y–z sections of the dissipation rates of thermal variance evaluate at Nt=25 for: a) Case 
4; b) Case 5; c) N profile for Case 4; and d) N profile for Case 5 for Fr = 3.2. 

Figure 13. Cross-sections of χ for Cases 4 and 5 in Fr = 3.2 at Nt = 25 and the 
respective Brunt-Väisäla frequency profile. 
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distributed, the ε signal shows that the wake core is generally located near the axis of the SB 

path. Nevertheless, upward displacements are evident for cases with higher Froude numbers.  

 

 

 

 

The y–z sections of turbulent dissipation rates evaluated at Nt=25 for: a) Linear Case for 
Fr = 1.0; b) Case 1 for Fr = 1.0; c) Case 5 for Fr = 1.0; d) Linear Case for Fr = 3.2; e) Case 
1 for Fr = 3.2; and f) Case 5 for Fr = 3.2. 

Figure 14. Cross-sections of 𝜀𝜀 for Linear Case, Case 1, and Case 5 for 
Fr = 1.0 and Fr = 3.2 at Nt = 25. 
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2. Wake Position 

Though in a uniform stratification, the wake typically remains near the trajectory 

of the object due to the symmetry of the problem, this is not guaranteed for varying 

stratification. We use the specific kinetic energy to identify the turbulent regions of the 

wake to measure this vertical drift. Therefore, the center of the wake, 𝑍𝑍𝑍𝑍(𝜕𝜕), evaluated over 

the interval 200m ≤ 𝑥𝑥 ≤ 300m, is defined by the weighted mean expression 

 

                                                𝑍𝑍𝑍𝑍(𝜕𝜕) =
∭ 𝐮𝐮𝟐𝟐𝜕𝜕𝑧𝑧𝑧𝑧𝑥𝑥=300

𝑥𝑥=200

∭ 𝐮𝐮𝟐𝟐𝑧𝑧𝑧𝑧𝑥𝑥=300
𝑥𝑥=200

,                                                           (13) 

 

where 𝑧𝑧𝑧𝑧 is the volume differential. For these calculations, only the most turbulent area 

around the wake core, which contains most of the signal and fits the actual core, has been 

selected. Those areas consist of rectangular regions between −7m ≤  z ≤  7m and 

−15m ≤  y ≤  15m for cases with Fr = 1.0, and −12m ≤  z ≤  20m and −20m ≤  y ≤

 20m for Fr = 3.2. 

Figure 15 shows the evolution of 𝑍𝑍𝑍𝑍 in both sets of simulations. In early stages of 

the simulations with Fr = 1.0, the vertical position of the center is essentially identical for 

all cases. After that, 𝑍𝑍𝑍𝑍 does not change appreciably in time and is generally located on the 

SB motion axis. In this case, the stable position of the wake indicates that the temperature 

anomalies have a small effect on the wake location, and the strong stratification keeps the 

wake tightly around the center for low Fr. For the simulations with Fr = 3.2, the wake drifts 

upward over time, stabilizing by Nt ~ 15 at a few meters higher than its original position; 

however, the various cases show a wider breadth of final values than those with Fr = 1.0. 

This suggests that as the stratification decreases, the nonlinear perturbations can 

increasingly affect the wake drift.  
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Vertical drift of the center of the wake. Figure a) represents cases with Fr = 1.0, and Figure 
b) Fr = 3.2.  

Figure 15. Vertical weighted mean position of the wake core as a function of 
time. 
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3. Wake Decay  

Figure 16 shows how the typical values of the maxima of χ and 𝜀 vary in time for 

the simulations with Fr = 1.0, and Figure 17 shows the same parameters for Fr = 3.2. These 

quantities  are determined by averaging the local maxima in the wake in the x-direction for 

200m ൑ 𝑥 ൑ 300m, as  ଵ

௕ି௔
׬ max ሾ𝑓ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ𝑑𝑥
௫ୀ௕
௫ୀ௔ ሿ, where 𝑓ሺ𝑥,𝑦, 𝑧, 𝑡ሻ is the 

parameter of interest, and the max function is applied in y and z only. The minimum 

detection threshold is also shown, as established by Peterson and Fer (2014). 

For the simulations with Fr = 1.0, the turbulent dissipation rate begins on the order 

of 10-6 W/kg for all cases and shows a monotonic decay after Nt ~ 2, having a smaller 

temporal variability for all cases after Nt ~ 8. In Case 4, the turbulence is constrained to the 

high-gradient region, and in Case 5, the turbulence spreads throughout the entire mixed-

layer region. These simulations thus become the most and least turbulent cases, 

respectively, and have the highest and the lowest turbulent dissipation rates by the end of 

simulation. The kinetic dissipation rate for the simulations with Fr = 3.2 starts near 

10ି଺ W/Kg for all cases, but for these, the power-law decay begins earlier, after Nt ~ 0.8. 

The general trends of all simulations are consistent with some stochastic variability. These 

evolutionary patterns are typical of previously reported wake experiments, with the 

turbulent dissipation rate being greatest right after the object’s passage, when the wake 

turbulence is most intense (see, e.g., Radko and Lewis 2019). 

The thermal variance dissipation rate shows a substantial dependence on the initial 

temperature profile. The simulations with Fr = 1.0 start from a range of approximately 

10ି଼ °C2/s (Case 5) to 10ିହ °C2/s (Case 4) and χ increases slightly until approximately Nt ~ 

3 for all cases except for Case 5, in which the growth continues until Nt ~ 8. The remaining 

cases, the Linear Case and Cases 1–3, have comparable dissipation rates. For Fr = 3.2, the 

thermal signal has the same variation in magnitude between the individual cases as those 

shown for the simulations with Fr = 1.0, but for these, the highest and lowest thermal signal 

are two orders of magnitude smaller, ranging from 10ି଻ °C2/s to 10ିଵ଴ °C2/s. The thermal 

signal peaks are approximately at Nt ~ 2.5 for all cases except for Case 5, which has the 

largest increase in amplitude and takes longer for it to peak, roughly at Nt ~ 4. The Linear 
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Case and Cases 1–3 have similar thermal signals until Nt ~ 8, where Case 3 deviates from 

the rest, decaying more slowly. 

The upper panel shows the dissipation rate of thermal variance, χ, and the lower panel 
shows the dissipation rate of kinetic energy, 𝜀𝜀, over time. The horizontal dashed line is the 
minimum threshold for signal detection. 

Figure 16. Quantitative analysis of wake decay for simulations with Fr = 1.0. 
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The upper panel shows the dissipation rate of thermal variance, χ, and the lower panel 
shows the dissipation rate of kinetic energy, 𝜀𝜀, as functions of time. 

Figure 17. Quantitative analysis of wake decay for simulations with Fr = 3.2. 
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persistence. The decay rate can be calculated by fitting the dissipation rates for each 

simulation with power laws: 

                                                                𝜀𝜀 = 𝐶𝐶𝜀𝜀(𝑁𝑁𝜕𝜕)−𝜆𝜆𝜀𝜀 ,                                                              (14) 

                                                               χ = 𝐶𝐶χ(𝑁𝑁𝜕𝜕)−𝜆𝜆χ ,                                                               (15) 

where �𝐶𝐶𝜀𝜀 ,𝐶𝐶χ� and �𝜆𝜆𝜀𝜀 , 𝜆𝜆χ� are fit parameters for the turbulent dissipation rate and the 

thermal variance dissipation rate, respectively. These parameters are estimated from Nt > 

1 and Nt > 4 for turbulent dissipation rate and thermal variance dissipation rate, 

respectively, when the dissipation rates begin to resemble power-law decay. Exceptions 

are made for Case 5 in Fr = 1.0 and Case 3 in Fr = 3.2 in which Nt > 10 has been chosen 

as these simulations show some later variability that might skew the power law fit. The 

delay in the maximum for χ is caused by the delay for turbulent mixing to impact the 

temperature. The values of 𝜆𝜆𝜀𝜀  and 𝜆𝜆χ are shown in Table 3 for all simulations. In our 

simulations, decay rates for both sets have comparable values but are only slightly lower 

than Spedding’s (1997) predictions, who found through dimensional arguments that a -7/3 

power-law would be expected.  

 Using 𝜆𝜆𝜀𝜀 and 𝜆𝜆χ for each case, we can estimate the turbulent and thermal signal 

decay until it becomes low enough to be undetectable. Table 4 shows the maximum time 

that turbulent and thermal signals remain detectable after their generation at Nt = 0. We use 

a minimum level for detection of 10−10 W/kg for turbulent dissipation, and 10−10 °C2/s 

for thermal variance dissipation measurements, as consistent with general instrumentation 

limits (Peterson and Fer 2014). In general, the background gradient has little effect on the 

maximum time at which the turbulent dissipation rate may be detected, but it can 

substantially affect detection time of the thermal dissipation rate. This is especially true at 

low Fr, giving maximum detection times that are roughly four to five times greater than 

those for the simulations with Fr = 3.2. In our estimates, Cases 1 and 2 generally produce 

the longest detectable values of the thermal dissipation rate, approximately twice the 

maximum detection time for the Linear Case, and four times that for Case 5. Additionally, 

Case 4 remains as the strongest thermal signal until approximately 10 hours have elapsed.  



30 

Table 3. 𝜆𝜆𝜀𝜀 and 𝜆𝜆χ for all simulations. 

 Fr = 1.0 Fr = 3.2 
 𝜆𝜆χ 𝜆𝜆𝜀𝜀 𝜆𝜆χ 𝜆𝜆𝜀𝜀 

Linear Case 1.68 1.67 2.14 1.82 
Case 1 1.57 1.80 1.61 1.60 
Case 2 1.50 1.93 1.37 1.49 
Case 3 1.77 1.82 1.50 1.89 
Case 4 2.14 1.55 2.50 1.63 
Case 5 1.59 2.28 1.79 1.87 

Table 4. Maximum time for detecting turbulent and thermal signal.  

 Fr = 1.0 Fr = 3.2 
Max detection time (h) χ 𝜀𝜀 χ 𝜀𝜀 

Linear Case 92.2 9.2 17.9 5.0 
Case 1 150.0 6.4 35.5 6.8 
Case 2 182.6 5.4 44.5 7.7 
Case 3 68.4 6.2 59.2 8.2 
Case 4 83.4 11.9 24.5 7.3 
Case 5 52.5 3.2 13.3 4.9 

 

B. INTERNAL WAVES  

A major consequence of the non-uniformity of background stratification is the way 

it can affect the transmission and reflection of internal waves through the domain. To 

investigate this, we measure the kinetic energy in the radiated internal waves in each 

simulation. Therefore, we define the kinetic energy above Zc, 𝐾𝐾𝐸𝐸𝐸𝐸, and kinetic energy 

below Zc,  𝐾𝐾𝐸𝐸𝐸𝐸, as 

 

                                 𝐾𝐾𝐸𝐸𝐸𝐸 =
1
2
�� � 𝜌𝜌0(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)

𝑥𝑥=300

𝑥𝑥=200
𝑧𝑧𝑧𝑧

𝑧𝑧=50

𝑧𝑧=𝑍𝑍𝑍𝑍
,                                (16) 

                               𝐾𝐾𝐸𝐸𝐸𝐸 =
1
2
�� � 𝜌𝜌0(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)

𝑥𝑥=300

𝑥𝑥=200
𝑧𝑧𝑧𝑧

𝑧𝑧=𝑍𝑍𝑍𝑍

𝑧𝑧=−75
.                                 (17) 

 

Since the strongest signals are around the wake core, and its center is not always exactly 

located along the body path, establishing the horizontal plane at Zc mitigates such errors. 
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The results are shown in Figure 18, in which the kinetic energy in the internal waves is 

plotted in terms of the ratio of total kinetic energy, RKE, which is the ratio 𝐾𝐾𝐸𝐸𝐸𝐸 to 𝐾𝐾𝐸𝐸𝐸𝐸. It 

is highlighted that only kinetic energy carried by internal waves is relevant for RKE results 

since Zc divides the energy contained in the wake core exactly in half. The kinetic energy 

in IW is distributed symmetrically over the domain for most cases, although some cases 

with Fr = 3.2 have most of the energy concentrated in the upper region (z > Zc). However, 

the behavior of Cases 1–3 is highly sensitive to the values of Fr. In Fr = 1.0 cases, the signal 

above 20 m is very low, as though some barrier prevented internal waves from propagating 

upward. For Fr = 3.2, the signal is more intense above that level, even though it still 

substantially diminishes near the surface. To understand this phenomenon, we investigate 

how internal waves are transmitted and reflected for both Fr sets. The IW energy 

distribution shown in Figure 18 suggests that internal waves preferentially travel downward 

for the simulations with concave stratification patterns. 
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RKE for a) Fr = 1.0, and b) Fr = 3.2. 

Figure 18. RKE. 
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Figure 19 shows vertical cross-sections of the thermal dissipation rate along with 

the corresponding profiles of the buoyancy frequency for Cases 1–3 with Fr = 1.0. It is 

evident that there are few internal waves in regions of lowest Brunt- frequency. We can 

understand this by considering an idealized model for internal wave propagation in two 

dimensions with fixed stratification: 

                                          (𝑁𝑁2(𝜕𝜕) − 𝜔𝜔2)
𝜕𝜕2

𝜕𝜕𝜕𝜕2
𝑤𝑤 = 𝜔𝜔2 𝜕𝜕

2

𝜕𝜕𝜕𝜕2
𝑤𝑤,                                                 (18) 

 

where 𝑁𝑁(z)is the buoyancy frequency, which can change with depth, 𝑤𝑤 is the vertical 

velocity field, and 𝜔𝜔 is the angular frequency of the internal wave. We assume solutions of 

the form  

                                                                𝑤𝑤 = 𝐴𝐴(𝜕𝜕)𝑒𝑒𝑖𝑖𝑘𝑘𝑦𝑦𝑦𝑦,                                                             (19) 

 

where 𝐴𝐴 is the z-dependent amplitude of the internal wave and 𝑘𝑘𝑦𝑦 is the constant horizontal 

wavenumber. It is clear from these expressions that the solutions depend only on the ratio 

between 𝑁𝑁2 and 𝜔𝜔2. For constant stratification, valid wave solutions only exist when 𝑁𝑁2 −

𝜔𝜔2 > 0. Thus, for a localized disturbance at 𝜕𝜕 =  0  waves generated far from the 

disturbance will have angular frequencies in the range of −𝑁𝑁 <  𝜔𝜔 <  𝑁𝑁. For internal 

waves to transmit, 𝑁𝑁
2

𝜔𝜔2must exceed unity on scales larger than 2π
k𝑧𝑧

; otherwise, any evanescent 

waves will be unable to penetrate the region. This serves to provide an upper bound on 

waves expected to transmit for a given expression of 𝑁𝑁2. For a typical Gaussian 

perturbation, 

 

                                                              𝜕𝜕 = 𝑟𝑟𝜕𝜕 + 𝛾𝛾𝑒𝑒−
𝑧𝑧2
𝜎𝜎2 ,                                                             (20) 

 

we define an ambient buoyancy frequency of 𝑁𝑁02 =  𝛼𝛼𝑔𝑔𝑟𝑟 and can therefore represent the 

internal wave angular frequency as 𝜔𝜔 =  𝑎𝑎𝑁𝑁0, where 0 <  𝑎𝑎 <  1. This results in an 

expression for their ratio given by 
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𝑁𝑁2

𝜔𝜔2 =
𝑁𝑁2

𝑎𝑎2𝑁𝑁0
2 =

1
𝑎𝑎2

−
2𝛾𝛾𝜕𝜕
𝑎𝑎2𝑟𝑟𝜎𝜎2

𝑒𝑒
−𝑧𝑧2
𝜎𝜎2 ,                                                (21) 

 

and this limits the range of 𝑎𝑎 that can be transmitted to 

 

                                                 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥
2 = 1 −

𝛾𝛾
𝑟𝑟𝜎𝜎

max�2�̂�𝜕𝑒𝑒−�̂�𝑧2� ,                                                 (22) 

 

where �̂�𝜕 = 𝑧𝑧
𝜎𝜎
. The maximum of 2�̂�𝜕𝑒𝑒−�̂�𝑧2 is a constant that must be found numerically and, 

therefore, so too must 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥. 
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The cross-sections of the thermal dissipation rate for a) Case 1; b) Case 2; and c) Case 3 
for Fr = 1.0, and d) N profile for Case 1; e) N profile for Case 2; and f) N profile for Case 
3.  

Figure 19. Relationship between Brunt-Vaisala frequency profile and the 
presence of internal waves. 
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To determine the transmission coefficient, we numerically integrate the amplitude 

of the internal wave from a distant point in −𝜕𝜕 (−10𝜎𝜎) to a corresponding point in 

+𝜕𝜕 (10𝜎𝜎)given an initial value of 𝐴𝐴 and 𝐴𝐴′, the z-derivative of 𝐴𝐴. We consider that the 

wave amplitude at the start, 𝐴𝐴(−10𝜎𝜎),  is the sum of the incident (assumed to have an 

amplitude of unity) and reflected waves (with an amplitude of R), and the wave amplitude 

at the end, 𝐴𝐴(10𝜎𝜎) is the amplitude of the transmitted wave (with an amplitude of Y). This 

means that the initial form of A would be well approximated by 

 

                                                            𝐴𝐴(𝜕𝜕) = 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 + 𝑅𝑅𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧,                                                 (23) 

 

and the final form by 

 

                                                            𝐴𝐴(𝜕𝜕) = 𝑌𝑌𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧.                                                                  (24) 

 

However, it is difficult to ascertain a priori the correct complex value of 𝑅𝑅 such that the 

transmitted wave contains no 𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 component. Thus, we evolve two independent waves 

with initial values of 𝐴𝐴 and 𝐴𝐴′ given by 𝐴𝐴 = 𝑒𝑒±𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧, and yielding two final values (and 

derivatives) of 𝐴𝐴, which we denote as 𝐴𝐴± (and 𝐴𝐴′±). To determine the correct value of 𝑅𝑅, 

we can construct a linear combination of 𝐴𝐴− and 𝐴𝐴+ such that Equation (24) holds true. 

Each result of the numerical integration yields a final value of 𝐴𝐴, which can be expressed 

in terms of the forward and backward propagating solutions: 

 

                                                           𝐴𝐴±(z) = 𝐹𝐹±𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 + 𝐵𝐵±𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧,                                         (25) 

 

and the amplitude of the backward propagating solution is then calculated from 

 

                                                         𝐵𝐵± = 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 �𝐴𝐴± −
1
𝑖𝑖𝑘𝑘𝑧𝑧

𝐴𝐴′±� .                                             (26) 

For this to be a valid solution, then, the final state is given by 
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                                     𝐴𝐴(𝜕𝜕) = 𝐹𝐹+𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 + 𝐵𝐵+𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 + 𝑅𝑅𝐹𝐹−𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 + 𝑅𝑅𝐵𝐵−𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧,                  (27) 

 

where we require 𝐵𝐵+ + 𝑅𝑅𝐵𝐵− =  0, so that there is no backward-propagating solution in 

the transmission region. The magnitude of the reflection coefficient is then simply 

 

                                                                        |𝑅𝑅| =  
|𝐵𝐵+|
|𝐵𝐵−|  .                                                           (28) 

Thus, the relationship of the horizontal wavenumber to the coefficient 𝑎𝑎, which can be 

shown to be cos𝜃𝜃, where 𝜃𝜃 is the IW horizontal angle, is obtained from the areas where 

IW propagating upwards should not pass, and consequently, they will be reflected. Figure 

20 shows the reflection coefficient for Cases 1–3 as a function of horizontal wavenumber 

and cos𝜃𝜃. Large values of cos𝜃𝜃 are reflected, and low values are transmitted. However, the 

value of 𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥 can also be seen on the plot as the place where R~0.5. Nevertheless, 

decreasing 𝑘𝑘𝑦𝑦 also decreases 𝑘𝑘𝑧𝑧 for a given horizontal angle, and the interactions between 

the Gaussian and the wave can partially transmit in a certain range of horizontal angles. 

 

  

The reflectivity index based on the relation between horizontal wavenumber, 𝑘𝑘𝑦𝑦, and 𝑍𝑍𝑐𝑐𝑠𝑠𝜃𝜃 
for a) Case 1, b) Case 2, and c) Case 3.  

Figure 20. Reflection coefficient. 

a) 

b) 

c) 
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As we have seen, conditions for transmission through weakly stratified areas 

depend on the wavelength and the direction of propagation, typical values of which can 

depend on Fr. Internal waves are emitted in a broad frequency range, and the two types of 

IW radiated from a wake are lee and random waves. Meunier et al. (2018) experimentally 

showed that large lee waves occur at early stages, from Nt = 0 to 30, whereas small wake 

waves are more important in later stages, from Nt = 30 to 150. Therefore, we can infer that 

the waves being reflected are mainly lee waves. Since these waves have roughly the same 

speed as the speed of the body, 𝑢𝑢𝑏𝑏, and the medium oscillates at 𝑓𝑓 = 𝑁𝑁
2𝜋𝜋

, the IW wavelength 

in the x direction, which is described as 𝑈𝑈 =  𝐿𝐿𝑥𝑥𝑓𝑓, can be also expressed as 𝐿𝐿𝑥𝑥 = 2𝜋𝜋𝑈𝑈Fr 

(Meunier et al. 2018), so we expect the wavelength to increase with Fr. From Figure 20 we 

notice that, in general, as wavenumber decreases, a smaller range of angles is susceptible 

to total reflection, but the magnitude of wavenumber should be determined for each Fr to 

ascertain how significant that difference is when comparing the range of fully reflective 

IW angles of the two Fr. 

To obtain a more accurate prediction of the amount of energy reaching the top, it is 

also necessary to estimate the angular distribution of energy carried by the IW for each 

case. In Figure 21, we show the specific kinetic energy contained by internal waves 

propagating for various angles for the two Linear Case experiments at Nt = 10, and these 

measurements are made at a 30-m radius around the x-axis. Rowe et al. (2020) found that 

the contribution of kinetic energy radiated for 10 ≤ 𝑁𝑁𝜕𝜕 ≤ 25 is significant and internal 

waves are broadcast across a wider range of angles. Therefore, Nt = 10 is chosen as 

representative of the range of IW horizontal angle. For Fr = 1.0, the specific kinetic energy 

conducted by IW at steeper horizontal angles is very low and the peaks of energy are 

radiated at shallower angles. Conversely, for Fr = 3.2, the amount of energy propagated by 

IW at steeper horizontal angles is much larger than in the Fr =1.0 Case. In addition, it is 

possible to calculate the magnitude of the wavelength, 𝐿𝐿, by measuring the distance 

between the peaks of IW energy and then decomposing in the z and y directions, 𝐿𝐿𝑧𝑧 and 

𝐿𝐿𝑦𝑦, respectively, according to the mean horizontal angle of the two most energetic 

consecutive wavefronts, 𝜃𝜃1 and 𝜃𝜃2. The values of 𝐿𝐿𝑦𝑦, 𝐿𝐿𝑧𝑧, 𝑘𝑘𝑦𝑦, 𝑘𝑘𝑧𝑧, 𝜃𝜃1, and 𝜃𝜃2 are shown in 

Table 5. Estimated ranges of horizontal angles at which internal waves are likely reflected 
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can also be made from the idealized transmission model using the values previously 

determined for 𝑘𝑘𝑦𝑦. For Fr = 3.2, the range of horizontal angles liable to be reflected are 

only a little smaller than for Fr = 1.0, 60 degrees for Fr = 3.2, and 64 degrees for Fr = 1.0, 

considering the slightly smaller 𝑘𝑘𝑦𝑦 for the highest Fr. Since the most energetic IW are being 

irradiated at horizontal angles less than 60°, and only very few IW are radiated at steeper 

angles in Fr = 1.0, we would expect more reflection in this case. Therefore, we can 

conclude that more energy should be transmitted and reach the top in Fr = 3.2 cases due to 

the steeper angles of IW emissions. 

Table 5. Estimated internal waves parameters. 

 𝐿𝐿𝑦𝑦 (m) 𝐿𝐿𝑧𝑧(m) 𝑘𝑘𝑦𝑦(m−1) 𝑘𝑘𝑧𝑧(m−1) 𝜃𝜃1(°) 𝜃𝜃2(°) 
Fr = 1.0 9.3 7 1.1 × 10−1 1.4 × 10−1 53 30 
Fr = 3.2 11.4 6.6 8.7 × 10−2 1.5 × 10−1 60 34 
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Specific kinetic energy carried out by internal waves versus the horizontal angle of IW 
emissions for the Linear Cases with a) Fr = 1.0 and b) Fr = 3.2, when Nt = 10. 

Figure 21. Distribution of specific kinetic energy emitted by IW as a function 
of the propagation angles. 
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IV. DISCUSSION 

A. CONCLUSIONS 

This study is focused on the dynamics of turbulent wakes generated by submerged 

objects moving through a stratified fluid with a nonlinear background temperature profile.  

This investigation reveals the major impacts of stratification anomalies on the wake 

strength, position, signal, and energy distribution. We note that patterns of the turbulent 

and thermal dissipation rates show asymmetric distribution of the internal waves emitted 

by the propagating object, which is attributed to non-uniformities of stratification. This 

effect is particularly noticeable for concave profiles and low Fr. The dependence on Fr is 

due to the shallower range of IW radiation angles emitted from wakes at low Fr which are 

more easily reflected. For higher Fr, steeper IW emissions allow more IW to pass through 

areas of low stratification. The wake core position is also dependent on the background 

stratification. In stronger stratifications, the wake core remains near the original path of the 

object, while in weaker stratifications, the wake core can drift substantially.  

Investigating estimated decay rates of 𝜀𝜀 and 𝜒𝜒, it is possible to measure how long 

these quantities will be detectable. Results have shown that thermal signals are very 

sensitive to total background stratification as well as temperature perturbations. In general, 

the maximum detection time is higher for stronger stratification, and concave anomalies 

remain the longest detectable signal, whereas typical mixed-layer profiles have the shortest. 

Wake signatures for low Fr are substantially longer than those for higher Fr. In addition, 

concave profiles have signatures that are longer than uniform linear stratification. The 

turbulent dissipation rate in the wake decays substantially in time, which limits the ability 

to detect the wake directly. Furthermore, we do not find much variability in the maximum 

detection time for such signals, showing that it is not significantly affected by perturbations 

in stratification.  

B. OPERATIONAL RELEVANCE 

To inform the operational community of relevant wake properties, we have 

analyzed signal strength and maximum signal detection time. We have demonstrated that 
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regions with sharp temperature changes greatly facilitate thermal signal detection. In such 

areas, thermal signatures remain detectable for roughly 9 to 11 hours after the wake is 

generated. The maximum time for detection of turbulent signals is comparable for all cases 

and is predicted to be within 3 to 12 hours, exhibiting very limited sensitivity to nonlinear 

temperature perturbations. Thermal signals, though, vary substantially depending on the 

stratification pattern. For strong stratification, the maximum detection time is much longer 

than for weak stratification, approximately 52–182 hours for strong stratification, and 13–

45 hours for weak stratification. Furthermore, concave stratifications show the longest 

detection time, ranging up to 182 hours. Some concave profiles have substantially longer 

detection time than uniform stratification, for which detection may be possible up to 92 

hours after passage. Mixed-layer type perturbations have the shortest detection times, and 

the maximum detection time can be as short as 13 hours in weaker stratification.  

C. FUTURE WORK 

This research is a gateway to further advances in the observations of turbulent 

wakes in stratified environments. Since the ocean harbors a wide variety of density 

patterns, new types of nonlinear profiles could be simulated, accounting for salinity 

anomalies. Future research project should prioritize the analysis of profiles acquired from 

areas of the most strategic interest. Laboratory or field experiments could be conducted to 

validate the results obtained from simulations. Laboratory experiments could be set up with 

a complex temperature field, through which a small body could be towed, as in Danieletto 

et al. (2019). The results from such experiments could be compared to the corresponding 

simulations. Another potentially profitable approach would be to use data for simulations 

from field experiments already conducted, such as the work done in Monterey Bay by 

Moody et al. (2017).  
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APPENDIX. TEMPERATURE PROFILES SYMMETRY 

We begin with the Boussinesq equations for a single-component fluid, 

decomposing the temperature according to 𝜕𝜕(𝜕𝜕, 𝑥𝑥,𝜕𝜕, 𝜕𝜕) + (𝜕𝜕𝜕𝜕0� 𝜕𝜕𝜕𝜕) 𝜕𝜕⁄ + 𝜕𝜕1� (𝜕𝜕, 𝜕𝜕), where 

𝜕𝜕𝜕𝜕0� 𝜕𝜕𝜕𝜕⁄  is a constant, 𝜕𝜕1� (𝜕𝜕, 𝜕𝜕) is the predetermined initial deviation away from the uniform 

temperature gradient that can evolve in time, and T is the thermal perturbation: 

                                    
𝜕𝜕𝐮𝐮
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ∙ ∇𝐮𝐮 = −
𝛻𝛻𝑝𝑝
𝜌𝜌0

+ 𝛼𝛼𝑔𝑔(𝜕𝜕 + 𝜕𝜕1� )𝑒𝑒𝑧𝑧 +  𝜈𝜈∇2𝐮𝐮,                                (29) 

                                 
𝜕𝜕(𝜕𝜕 + 𝜕𝜕1� )

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ∙ ∇(𝜕𝜕 + 𝜕𝜕1� ) + 𝑤𝑤

𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑇𝑇∇2(𝜕𝜕 + 𝜕𝜕1� ),                       (30) 

                                                                    ∇ ∙ 𝐮𝐮 = 0.                                                                    (31) 

In the absence of motion, the thermal equation becomes 

                                                                
𝜕𝜕𝜕𝜕1�
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑇𝑇∇2(𝜕𝜕1� ),                                                           (32) 

which we can subtract from Equation 23 to yield 

                                             
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ∙ ∇𝜕𝜕 = −𝑤𝑤
𝜕𝜕𝜕𝜕0�
𝜕𝜕𝜕𝜕

− 𝑤𝑤
𝜕𝜕𝜕𝜕1�
𝜕𝜕𝜕𝜕

+ 𝑘𝑘𝑇𝑇∇2𝜕𝜕.                               (33) 

Cases 1–3 and their symmetric profiles are equivalent to a Gaussian 𝜕𝜕1�  with a 

positive and negative amplitude, respectively; thus, we consider a (primed) system with 

𝜕𝜕′1����(𝜕𝜕, 𝜕𝜕) =  −𝜕𝜕1� (𝜕𝜕,−𝜕𝜕). Assuming that 𝑢𝑢, 𝑣𝑣,𝜔𝜔, 𝑝𝑝, and 𝜕𝜕 are a solution for 𝜕𝜕1� (𝜕𝜕, 𝜕𝜕), we will 

show that the following 

                                                 𝑢𝑢′(𝜕𝜕, 𝑥𝑥,𝜕𝜕, 𝜕𝜕) =  𝑢𝑢(𝜕𝜕, 𝑥𝑥,𝜕𝜕,−𝜕𝜕),                                                   (34) 

                                                 𝑣𝑣′(𝜕𝜕, 𝑥𝑥,𝜕𝜕, 𝜕𝜕) =  𝑣𝑣(𝜕𝜕, 𝑥𝑥,𝜕𝜕,−𝜕𝜕),                                                   (35) 

                                                𝑤𝑤′(𝜕𝜕, 𝑥𝑥,𝜕𝜕, 𝜕𝜕) =  −𝑤𝑤(𝜕𝜕, 𝑥𝑥,𝜕𝜕,−𝜕𝜕),                                               (36) 

                                                𝑝𝑝′(𝜕𝜕, 𝑥𝑥,𝜕𝜕, 𝜕𝜕) =  𝑝𝑝(𝜕𝜕, 𝑥𝑥, 𝜕𝜕,−𝜕𝜕),                                                    (37) 

                                                𝜕𝜕′(𝜕𝜕, 𝑥𝑥, 𝜕𝜕, 𝜕𝜕) =  −𝜕𝜕(𝜕𝜕, 𝑥𝑥,𝜕𝜕,−𝜕𝜕),                                                (38) 

form a solution for 𝜕𝜕′1����(𝜕𝜕, 𝜕𝜕). For the continuity equation, this would require 

∇ ∙ 𝐮𝐮′(𝑡𝑡,𝑥𝑥,𝑦𝑦,𝑧𝑧) =
𝜕𝜕𝑢𝑢(𝜕𝜕, 𝑥𝑥, 𝜕𝜕,−𝜕𝜕)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑣𝑣(𝜕𝜕, 𝑥𝑥,𝜕𝜕,−𝜕𝜕)

𝜕𝜕𝜕𝜕
+
𝜕𝜕�−𝑤𝑤(𝜕𝜕, 𝑥𝑥, 𝜕𝜕,−𝜕𝜕)�

𝜕𝜕𝜕𝜕
= 0.                 (39) 

Under the transformation of z′ = −z, this becomes 
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𝜕𝜕𝑢𝑢(𝜕𝜕, 𝑥𝑥,𝜕𝜕, z′)

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑣𝑣(𝜕𝜕, 𝑥𝑥,𝜕𝜕, z′)

𝜕𝜕𝜕𝜕
−
𝜕𝜕(−𝑤𝑤(𝜕𝜕, 𝑥𝑥, 𝜕𝜕, z′)

𝜕𝜕z′
= 0,                         (40) 

which is equivalent to the original continuity equation with z′ instead of z. From this point 

on, all discussion will be for variables in the (𝜕𝜕, 𝑥𝑥, 𝜕𝜕, z′) coordinate transformation and the 

coordinates will be dropped for convenience. We can treat the temperature equation in a 

similar way to the continuity equation, finding 

−
𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕 

+  𝐮𝐮
𝜕𝜕(−𝜕𝜕)
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
∂(−𝜕𝜕)
∂y

− (−𝑤𝑤)
𝜕𝜕(−𝜕𝜕)
𝜕𝜕𝜕𝜕′

= 𝑤𝑤
𝜕𝜕𝜕𝜕0�
𝜕𝜕𝜕𝜕

− 𝑤𝑤′𝜕𝜕(−𝑇𝑇1���)
𝜕𝜕𝑧𝑧′ − 𝑘𝑘𝑇𝑇𝛻𝛻′2𝜕𝜕,            (41) 

where we have denoted ∇′≡  � ∂
∂x

, ∂
∂y

, ∂
∂z′
�and where we recognize that ∂𝑇𝑇0

���

∂z
is a constant 

parameter of the system. Again, this is equivalent to the original temperature evolution 

equation. We note that converting the Laplacian to the primed coordinate system (∇′2) does 

not cause a change of sign since 

                                                      �−
𝜕𝜕
𝜕𝜕𝜕𝜕′� �

−
𝜕𝜕
𝜕𝜕𝜕𝜕′�

=
𝜕𝜕2

𝜕𝜕z′2
.                                                     (42) 

The components of the momentum equation for the primed solution can be shown to be 

equivalent to the original equation components by the same method: 

                                
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝑢𝑢 
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

− (−𝑤𝑤)
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕′

= −
1
𝜌𝜌0
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥

+ 𝜈𝜈𝛻𝛻′2𝑢𝑢,                          (43) 

                                
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕𝑢𝑢 
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

− (−𝑤𝑤)
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕′

= −
1
𝜌𝜌0
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝜈𝜈𝛻𝛻′2𝑣𝑣,                          (44) 

−
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

+ 𝑢𝑢
𝜕𝜕(−𝑤𝑤)
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕(−𝑤𝑤)
𝜕𝜕𝜕𝜕

− (−𝑤𝑤)
𝜕𝜕(−𝑤𝑤)
𝜕𝜕𝜕𝜕′

= −
1
𝜌𝜌0

𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕′

+ 𝛼𝛼𝑔𝑔(−𝜕𝜕 − 𝜕𝜕1� ) − 𝜈𝜈𝛻𝛻′2𝑤𝑤.  

                                                                                                                                                          (45) 

In summary, this shows that if a solution to the Boussinesq equations exists for an initial 

temperature field of �∂𝑇𝑇0
���

∂z
� z +  𝜕𝜕1� (0, 𝜕𝜕), then a mirrored system with initial condition 

�∂𝑇𝑇0
���

∂z
� z – 𝜕𝜕1� (0,−𝜕𝜕) will have the same solution only mirrored around z =  0 and with the 

thermal perturbation and vertical velocity of opposite sign. 
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