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ABSTRACT 

Safety of navigation depends on our knowledge of seabed and its features, and, as such, 

any improvements in deriving bathymetry for nautical chart updating are of major importance. 

Satellite-Derived Bathymetry (SDB) is an alternative to traditional surveys using ship and 

airborne sensors, particularly for mapping remote and shallow areas, due to its reduced cost 

and the absence of navigational risks in very shallow and unsurveyed areas. However, the 

accuracy of SDB can be judged as relatively low for nautical charting purposes and, therefore, 

is mostly used for reconnaissance or/and for filling gaps in remote or very shallow areas. One 

of the reasons may be that the conventional approaches assume that bottom type and water 

clarity are constant and negligible within the entire image, and consequently, a single (global) 

and linear model is performed to retrieve bathymetric information. To address the spatial 

heterogeneity within a scene and with the aim to increase the accuracy and coverage of 

estimated depths, this work investigates the segmentation of the scene, both horizontally and 

vertically, into smaller spatial units, and accounts for water column parameters in the SDB 

equation. In practice, the main idea of the segmentation is to divide the image scene into small 

spatial units and then calibrate the model within each segment. The individual models use the 

same algorithm but varying model parameters from place to place. Also, to account for water 

column and sea bottom variations, an extended Dierssen model is applied. The performance of 

the methods is evaluated in two study areas in the Dry Tortugas, Florida, and St. Thomas East 

and Reserve, U.S. Virgin Islands. Overall, the results indicate that the accuracy of bathymetry 

may be improved when the area is divided into smaller spatial units, particularly with a vertical 

(by depth) segmentation of the scene. In detail, compared to the conventional global and linear 

approach, the accuracy in both study areas is increased by over 40% with segmenting the area 

and calibrating the water parameters within each spatial unit. Furthermore, as it is demonstrated 

with the two study areas, besides the improvements in the depth accuracy, the SDB coverage 
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is increased with the extraction of bathymetry beyond the depth considered as the effective 

optical depth of the conventional global and linear approach. However, further work is 

recommended to investigate and verify the accuracy improvement demonstrated by the vertical 

segmentation and particularly that of the smallest utilized depth range of 1m. since questions 

are raised about the discontinuity of the models and their quantized depth predictions, and more 

precisely whether this is due to overfitting rather than an actual improvement in accuracy. 

Lastly, the results demonstrate that considering the water column and sea bottom heterogeneity 

for solving the global SDB model increases the accuracy of bathymetry estimates. Nonetheless, 

when the area is segmented into small spatial units, adding the water column contribution as a 

parameter to the equation did not produce a significant contribution.  
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CHAPTER 1 : INTRODUCTION 

The nautical chart is one of the most important tools used by mariners for safe 

navigation, providing detailed information about the coastal and marine environment. Among 

the variety of elements portrayed on nautical charts, the soundings, shorelines, and depth curves  

are of utmost importance. In the past, these elements were traditionally drawn by hand by 

skilled nautical cartographers. Advances in technology and increasing users’ needs led to the 

transformation of the nautical chart from its analog form to a digital vector product, Electronic 

Navigational Chart (ENCs). The ENC contains not only the information available in paper 

charts but also additional information that facilitates the use of nautical charts (Kastrisios et 

al., 2022), providing significant advantages over the paper chart (Mavraeidopoulos, et al., 

2017). The technical design of ENCs in circulation is defined by the IHO standards S-57 (2000) 

and S-52 (2014). Since 2005, the IHO has been working on developing a new, more versatile 

standard, the S-100, which, besides incorporating the requirements of S-57 for ENCs, supports 

items that go beyond the scope of traditional hydrography (Ward, et al., 2009). With the 

increase in cartographic production in recent years, and the expansion of the chart’s portfolio 

with S-100, there has been an increasing need for improving chart production workflow by 

automating chart compilation routines. The efforts of the nautical charting community have 

allowed for the automation of various ENC compilation tasks and the transformation of chart 

compilation from a manual to a semi-automated process (Kastrisios & Calder, 2018).  

Besides the needs for automation, there has been an even more pressing need for 

keeping the charts up-to-date with resurveying shallow coastal waters and surveying areas that 

have not been previously surveyed, due to factors such as the increasing sizes of ships that 

operate in tighter spaces (Kastrisios & Ware, 2022) and the global effort to map the world’s 

ocean by 2030 (Seabed 2030 Project) (GEBCO, 2020). The most traditional techniques used 

to achieve reliable bathymetric data to use and keep up-to-date nautical charts are those 
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collected by echo-sounding systems, such as Single Beam Echo Sounders (SBESs) that 

transmit and receives a single beam of sound waves, and Multibeam Echo Sounders (MBESs) 

that hundreds of beams are received simultaneously in a single swath providing complete 

insonification of the area and better coverage than SBESs. Also, due to some drawbacks and 

challenges in surveying in very shallow waters presented by MBES and SBES, such as 

saturation or/and inaccessibility of survey vessels (Su et al., 2008), Airborne Lidar Bathymetry 

(ALB), Remotely Operated Vehicle (ROV’s), and Autonomous Underwater Vehicles (AUV’s) 

have emerged for acquiring bottom-depth measurements. Although these technologies can 

collect high resolution and accurate bathymetry, they also come with limitations. For example, 

some remote and complex areas with difficult access pose challenges in undertaking 

hydrographic surveys, due to risk for the crew and loss of materials (Forfinski-Sarkozi et al., 

2019). Furthermore, in shallow areas, the swath becomes narrow, which limits the seabed 

coverage and increases the time and effort to survey these areas. Consequently, surveying very 

shallow waters with boat-based multibeam sensors is costly, often challenging, and, possibly, 

unsafe. Therefore, conventional surveying and mapping technologies, although are very 

accurate information, they represent an operational and logistical challenge, due to time-

limitations, the risk of surveying in nearshore environments, and mainly the high cost of 

operations. 

The above limitations and difficulties have led researchers to search for alternative 

methods to collect bathymetric information, including solutions provided by space technology. 

In this context, Satellite Derived Bathymetry (SDB), a technique that utilizes optical satellite 

image for bathymetric purposes, provides a cost-effective reconnaissance tool for assessing 

remote areas and mapping shallow waters (Freire, 2017). SDB also presents some limitations 

that prevent accurate depth information. Depending on the method applied, for instance, SDB 

is highly dependent on the available depths to perform surface modeling (Freire, 2017), the 
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approach is limited to optically shallow waters (Westley, 2021), and, usually, depth 

information cannot be retrieved beyond 30 m, even in clear water. In addition, the accuracy is 

considerably low when compared to conventional surveying and mapping technologies. 

Although IHO S-4 (2018) recognizes the use of satellite images for representing shallow areas 

when reliable hydrographic survey data is limited or non-existent, the use of SDB data on charts 

is still in its infancy. While the IHO decision represents an excellent beginning for the use of 

SDB in nautical cartography products, further investigation related to the accuracy, datasets, 

and models of this technique is required. 

Despite the limitations, previous studies have demonstrated the potential of estimating 

bathymetry using satellite data. Assuming homogeneity of bottom type and water clarity within 

the image, the usual practice is to apply a single global bathymetric calibration model for the 

entire area. This assumption also considers the water column parameters to be negligible, while 

a linear relationship between reference depths and the SDB model (e.g., that developed by 

Stumpf, et al., 2003) is applied to retrieve bathymetry. However, recognizing that homogeneity 

does not generally exist in the entire scene and that spatial heterogeneity of sea bottom type 

and water column may affect the model calibration (and, thus, depth estimation), this work 

investigates: 

• an extended Dierssen model including the water column parameters into the SDB 

model, and 

• vertically and horizontally segmenting the image scene into smaller spatial units for 

model training 

with the aim to minimize the bottom and water clarity heterogeneity reflected in the 

model calibration and enhance the overall accuracy and coverage of the bathymetry estimation 

model. The remainder of this work is organized in the following manner:  

Chapter 2 discusses the problem, questions, and objectives of this research work.  
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Chapter 3 provides a review of the important concepts for the development of this study, 

especially with the focus on SDB concepts and the development of the extended Dierssen 

model. 

Chapter 4 presents the methodology used to develop the geographic models and the 

steps necessary for its application.  

Chapter 5 details the areas of study and the results of each segmentation approach and 

a comparison to those of the conventional approach. 

Chapter 6 is the discussions and suggestions for future works, and, lastly, 

Chapter 7 is the conclusion. 
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CHAPTER 2 : RESEARCH QUESTIONS AND OBJECTIVES 

Due to the limited resources and the limitations of traditional survey methods discussed in the 

Introduction, the current availability of accurate bathymetric data remains incomplete for 

nautical chart purposes, regardless of the many efforts to keep charts up-to-date and fill coastal 

data gaps. Given the advantages of deriving bathymetry from satellite images over large areas 

at low cost, SDB is considered to have a potential to supplement traditional surveys in shallow 

areas. The common practice in previous studies has been to consider the bottom type and water 

column contribution constant within the scene. In reality, and especially in complex 

environments, the assumed homogeneity is usually violated, something that degrades the 

performance of the conventional method and the accuracy of estimated depths. To overcome 

this limitation, this study attempts to incorporate the spatial heterogeneity of seabed and water 

column into the solution with the aim to improve the accuracy and coverage of the derived 

bathymetry from imageries. Thus, accuracy improvement of retrieved depths from satellite 

images is of major interest in this research, in an attempt to demonstrate the ability of SDB as 

an alternative solution for nautical chart purposes.  

2.1 - Research Questions 

Focusing on the statement previously described, the following questions summarize the present 

study: 

a. Can the calculation of water column parameters improve the accuracy of depth 

estimation? 

b. Can the horizontal segmentation of the scene improve the accuracy of depth 

estimation? 

c. Can the vertical segmentation of the scene improve the accuracy of depth 

estimation? 
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2.2 - Research Objectives 

To answer the research questions, the following objectives are defined in this study: 

1. Enhance the SDB with a extended Dierssen model by adding information from 

water column contribution as a parameter in calibrating the model. 

2. Apply the extended Dierssen model to estimate bathymetry using geographic 

models, i.e., subdividing the scene into vertical and horizontal segments. 

3. Evaluate the performance of the various geographic model against the 

conventional global and linear method. 
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CHAPTER 3 : BACKGROUND INFORMATION 

3.1 SDB concept 

The ability to retrieve bathymetric information from satellite image is a promising technique 

that emphasizes the potential use of optical satellite remote sensing sensors to support various 

applications, such as coastal zone management, reconnaissance surveys, or safety of 

navigation. It began to be considered a tool for bathymetric purposes in the early 1970’s with 

the mapping of shallow areas in the Bahamas and off the coast of Florida using Landsat 1 

(Polcyn and Lyzengam, 1973).   

SDB relies on the observed radiance as a function of wavelength and depth. Irradiance 

decays exponentially with depth, due to properties that depend on the water and its constituents 

(Ashphaq, 2021). Several factors, such as the nature of seabed, atmospheric conditions, and 

water column parameters, attenuate the signal and the radiance captured by the sensor. 

 

Figure 1 - Physical principle of the SDB (adapted from Vojinovic, 2013). 
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The light (upwelling radiance) from the sun (Lu),captured and recorded by the remote 

sensor, comprises four components: the bottom reflectance (Lb), which represents the energy 

reflected from the seafloor and carries the information about the water depth; the atmospheric 

path radiance (La), which is the light that never reaches the water and is scattered one or more 

times by the atmospheric gases and aerosols; the subsurface volumetric radiance (Lv), which is 

the result of energy reflecting in the water by inorganic and organic constituents; and the 

surface radiance (Ls), which represents the radiance reflected toward the sensor by the water 

surface (Mobley, 2021). Based on the above and as illustrated in the Figure 1, the radiance 

registered (Lu) in the sensor is provided by the following equation: 

 

3.1.1 Optical properties 

The sunlight that is scattered upward within the water is captured by the sensor. Its radiant 

power per unit area incident on the surface is defined as solar irradiance (Ed), while the 

electromagnetic radiation collected by the sensor within a given solid angle in a specified 

direction is the radiance (Lu) (Mobley, 1994). The energy flow within the sun results in a 

surface temperature of around 5800 K, so the solar radiation spectrum is like that of a 5800 K 

blackbody. However, the spectral range of solar radiation flux reaching the Earth's surface is 

slightly different after the absorption and dispersion of the solar irradiance in the atmosphere 

due to various gas components. Visible rays (distributed from 400 to 700nm), for example, 

represent 38.2% of the irradiance at sea level of the total solar energy (Mobley, 1994). Figure 

2 shows the spectral solar radiance for different wavelengths at the top of the atmosphere and 

after interaction with gases and aerosols on the sea surface. 

𝐿𝑢 =  𝐿𝑏 + 𝐿𝑎 + 𝐿𝑣 + 𝐿𝑠 (1) 
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Figure 2 - The spectral energy distribution of solar radiation at the top of the atmosphere 

compared with that at sea level (Northern Arizona Wind & Sun, 2022). 

The light’s behavior is highly affected by the nature of the medium it is crossing. 

Properties that depend only on the water and its constituents are defined as inherent optical 

properties (IOPs). Absorption and scattering are the two most important IOPs, represented by 

the absorption coefficient and the volume scattering (Mobley, 1994). In contrast, the apparent 

optical properties (AOPs) depend on the water's physical proprieties and its constituents and 

the geometric structure of the ambient light field. Since it is relatively easy to measure AOPs, 

such as upwelling radiance (Lu) and downwelling radiance (Ed), they are usually computed to 

retrieve unknown parameters from the water body. 

Diffuse attenuation coefficient (K) is the main AOP used for describing optical 

properties in natural water bodies. This parameter represents the sunlight decay and depends 

on water and atmospheric conditions and wavelength (𝜆) (Herlevi, 2002). Under typical water 

conditions, i.e., ignoring water surface and bottom boundary conditions, the solar irradiance 

decreases almost exponentially as going with depth. Assuming no losses of energy in the 
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atmosphere, the radiance on the water surface is L(0, 𝜆i) and the radiance at some optical depth 

L(z, 𝜆i), can be calculated by applying Beer’s Law (Beer, 1852): 

Following Equation 2, observed radiance 𝐿obs(𝜆𝑖) captured by the sensor can be related 

to the radiance interacting with the water column and bottom throughout a simplified radiative 

transfer equation (RTE) (Maritorena et al. 1994; Philpot 1989). 

Where 𝐿𝑏(𝜆𝑖) is the contribution from the bottom/target radiance, 𝐿w(𝜆𝑖) represents the 

radiance from optically deep water (i.e., the depth beyond which contribution are only from 

water color and suspended particles (Pe’eri et al., 2014)), and K(𝜆𝑖) is the diffuse attenuation 

coefficient, to water depth (z). It is important to mention that most of the light is absorbed or 

scattered in the first meters of the ocean, with most (78%) of the visible spectrum being 

absorbed within 10 meters (Godwin, 2021). In clear water conditions, longer wavelengths of 

visible spectrum, such as red are absorbed at a shallower depth than shorter wavelengths such 

as blue (around 0.4 - 0.5 μm) and green (around 0.5 - 0.6 μm), that contain more energy and 

penetrate deeper into water (Godwin, 2021). In fact, from 100 to 200 meters deep, practically 

the total solar radiation has been absorbed, and at some point, depending on the wavelength, 

the light will not penetrate the water (Figure 3). This maximum depth that the light can 

penetrate water and the sensor capture the reflected radiance (Lobs → Lw) is defined as the 

extinction depth in SDB approaches (Pe’eri et al., 2014).  

 

𝐿(𝑧, λ𝑖) =  𝐿(0, λ𝑖)  × 𝑒
−2𝐾(λ𝑖).𝑧 (2) 

𝐿𝑜𝑏𝑠( λ𝑖) =  (𝐿𝑏( λ𝑖) − 𝐿𝑤( λ𝑖))   × 𝑒
−2𝐾(λ𝑖).𝑧 + 𝐿𝑤( λ𝑖)  (3) 
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Figure 3 – Different wavelengths of visible light penetrate differently into the ocean depths, 

(University of Minnesota Sea Grant Program). 

 

3.1.2 Approaches 

Researchers have focused on developing and improving cheaper methods of deriving 

bathymetry since the late 1970s. SDB from multispectral remote sensing has shown to be a 

promising approach to providing a solution for shallow areas at a low cost. The simplified RTE, 

defined by Equation 3, can describe light propagation through the water column, including 

reflection from the bottom. However, an inverse model is required to extract depth information 

from remotely sensed image, driving different approaches. According to Philpot et al. (2004), 

the techniques are classified into analytical (Lyzenga, 1978; Philpot, 1989; Frener et al., 2012) 

and optimization methods (Dierssen et al., 2003; Stumpf et al., 2003; Vanderstraete et al., 

2006; Su et al., 2008): 

• The analytical methods are purely based on the manner of light penetration in 

water. The optical properties of the water body, such as the absorption coefficient, 

bottom reflectance, and sediment concentration, are related to the light within the 

water through the RTE (Zandbergen, 2020). However, even for a very simple 

situation, many variables are required to achieve an analytical solution. 
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Consequently, these methods result in highly accurate estimations of water depth; 

however, they are very complex to execute as several in-situ parameters are 

required, including a precise atmospheric correction. The feasibility of deriving 

bathymetry from remote sensing image was first demonstrated by Lyzenga in 1978 

using the analytical method to formulate a relationship between radiance observed 

in aerial imageries over clear shallow water and bottom reflectance. Afterwards, 

numerous approaches have been developed relating the optical properties of the 

water body and light using RTE. Philpot (1989) expanded Lyzenga’s work by 

discussing an extension of the inversion algorithm to more complex scenes where 

both bottom types and water clarity vary spatially within the scene. Lyzenga et al. 

(2006) presented a correction for sun-glint effects applied prior to the application 

of the algorithm without compromising the correlation between radiance and 

depths. 

• In the optimization methods, the relationship between the observed radiance of a 

water body and the depth is established empirically without regard to how light 

propagates in water. The statistical relationship between the water depth and the 

radiance of spectral bands is used for SDB estimation (Holman, 2020). 

Optimization methods have also been widely used due to their relative simplicity. 

The most common approach was proposed by Stumpf et al. (2003) where a band-

ratio algorithm was suggested assuming the ratio of logarithms of band reflectance 

varies linearly with depth. Dierssen et al. (2003), following the same principle, 

applied a log-difference concept to derive bathymetry in turbid waters. Su et al. 

(2008) enhanced Stumpf’s algorithm by using Levenberg-Marquardt optimization 

to deal with the nonlinear inversion by applying an automated method for model 

calibration. Kanno et al. (2011) presented a semi-parametric regression model by 
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combining Lyzenga et al. (2006) method and spatial interpolation for more accurate 

water-depth mapping.   

Besides analytical and optimization methods, other methodologies have been 

investigated, such as quasi-analytical or semi-analytical methods (McKinna et al., (2015), 

Werdell et al., (2018), and Lee, et al. (2002). Thenceforth several algorithms have been 

proposed and tested to extract bathymetry for a variety of environmental conditions and 

satellite imageries by establishing the relationship between image pixel values and known 

water depth values. 

In the context of optimization approaches, typically, constant water column parameters 

within a scene are assumed, resulting in poor bathymetry estimates in areas with non-uniform 

bottom and water column conditions (Freire, 2017). Freire (2017) developed a solution into an 

extended SDB model based on Dierssen’s band ratio algorithm to reduce bottom heterogeneity 

and address these constraints.  

Furthermore, common practice is to apply a single model for the entire area. Based on 

that, Su et al. (2013) presented a log-linear Lyzenga’s model partitioning the study area into 

geographic regions based on bottom depths, distance from the shoreline, and distribution of the 

prediction residuals of the model, and then calibrated the parameters within each subregion. 

Poursanidis et al. (2019) investigated the effectiveness of deriving depth information from high 

temporal and spatial resolution data, using PlanetScope CubeSats imagery. For a best-fitted 

model, two regressions were applied training polynomial models in 0-10m and 10-25m depth 

ranges. Vargas, et al. (2021) tested different depth ranges with a simple regression, replacing 

green by red band to estimate depth in shallow water.   

Wei & Theuerkauf, 2020 proposed a multitemporal SDB workflow based on three 

different regression procedures partitioning the dataset and pointing out areas suitable for each 

case.  
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3.1.3 Band-ratio method 

A subcategory of the optimization approaches, is the band-ratio algorithm. This technique uses 

the band-ratio transform to linearize the relationship between bands and depth (Wei & 

Theuerkauf, 2020). It is based on the concept that solar irradiance for each wavelength is 

absorbed differently due to the IOP of the water. The changes in depth compared to the change 

in spectral reflectance due to bottom variation will have more influence (Figure 4). Therefore, 

at different depths, the difference in ratio between two bands will be more evident than the 

change caused by bottom type heterogeneity (Stumpf et al., 2003). 

Typically, the procedure for deriving bathymetry using the band-ratio technique can be 

summarized in the following steps (Pe’eri et al., 2014): 

1. Preprocessing 

2. Radiometric enhancement 

3. Land/water separation  

4. Spatial filtering 

5. Applying the bathymetry algorithm  

6. Identifying the extinction depth 

7. Vertical referencing. 

Preprocessing refers to a set of data preparation tasks. It begins with the study area 

selection and discovery of satellite images with suitable environmental conditions for 

bathymetric extraction (Pe’eri et al., 2014). Besides finding the appropriate location, applying 

a radiometric enhancement of atmospheric effects to the image is also beneficial. Radiometric 

enhancement can improve the accuracy of the products, which is particularly important for 

marine and inland water analysis. In this context, spatial filters guarantee a radiometric 

enhancement and provide more quality to the image.  
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Next, land areas are separated from water bodies based on a remote sensing derived 

index that relates their reflectance in different bands. The Normalized Difference Water Index 

(NDWI) is commonly used among several approaches. As water is close to opaque (lower 

reflectance) in the NIR portion of the electromagnetic spectrum, the water appears dark (low 

digital values), while land areas appear brighter (high digital values) (Gao, 1996). On the other 

hand, the water body is characterized by higher digital values than NIR-band pixel values in 

visible bands (Figure 4). By relating the green and NIR bands, NDWI positive values represent 

water areas, while negative values represent land areas (McFeeters, 1996). 

 where, 𝐿𝐺 represents the reflectance of the green band and 𝐿𝑁𝐼𝑅 , the reflectance of the 

near-infrared wavelengths.  

 

Figure 4 - Reflectance of soil and water at different wavelength (SEOS, 2022). 

The next step refers to the application of the algorithm to extract bathymetry. The band-

ratio algorithm utilizes in-situ water depth data to establish a statistical relationship between 

water depth and radiance (pixel value) to estimate bathymetry (Lyzenga, 1978; Lyzenga, 1985; 

Stumpf et al., 2003). This step includes the selection of control points used for training and 

𝑁𝐷𝑊𝐼 =  
𝐿𝐺 − 𝐿𝑁𝐼𝑅
𝐿𝐺 + 𝐿𝑁𝐼𝑅

 (4) 



 

 

16 

 

testing of the model. Ideally, soundings should come from a temporally near to the image, 

survey (ALB or acoustic); however, chart soundings may also be used to aid the process. 

While many of these algorithms are well-established, their performance is subject to 

environmental conditions, availability of auxiliary data, quality, and preprocessing of images 

(Holman, 2020). Thus, most research has focused on developing algorithms to improve the 

accuracy of bathymetry through the above. The development of detailed calculations is 

described to understand the origin of this algorithm. The band ratio is derived by rearranging 

Equation 3 and isolating the radiance parameters, considering bands 1(𝜆1) and 2 (𝜆2). 

 

By dividing both wavelengths, the equation becomes: 

 

This allows to reduce the computation and isolate depth z: 

 

Subsequently, the solution for depth z is given by: 

 

(𝐿𝑜𝑏𝑠( λ1) − 𝐿𝑤( λ1))

(𝐿𝑏( λ1) − 𝐿𝑤( λ1))
=  𝑒−2𝐾(λ1).𝑧 

(𝐿𝑜𝑏𝑠( λ2) − 𝐿𝑤( λ2))

(𝐿𝑏( λ2) − 𝐿𝑤( λ2))
=  𝑒−2𝐾(λ2).𝑧 

(5) 

(𝐿𝑜𝑏𝑠( λ1) − 𝐿𝑤( λ1))

(𝐿𝑜𝑏𝑠( λ2) − 𝐿𝑤( λ2))
.
(𝐿𝑏( λ2) − 𝐿𝑤( λ2))

(𝐿𝑏( λ1) − 𝐿𝑤( λ1))
=  
𝑒−2𝐾(λ1).𝑧

𝑒−2𝐾(λ2).𝑧
 (6) 

ln [
(𝐿𝑜𝑏𝑠( λ1) − 𝐿𝑤( λ1))

(𝐿𝑜𝑏𝑠( λ2) − 𝐿𝑤( λ2))
× 
(𝐿𝑏( λ2) − 𝐿𝑤( λ2))

(𝐿𝑏( λ1) − 𝐿𝑤( λ1))
]

=  −2𝐾(λ1)z + 2𝐾(λ2)z 

(7) 
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For simplifications, m0 and m1 are applied, and Equation 9 can be written: 

 

 

The most common band-ratio optimization methods were developed by Dierssen et al. 

(2003) and Stumpf et al. (2003). Under the assumption of the bottom type and water column 

homogeneity within the entire scene, both algorithms consider the water column (Lw) as 

approximately zero. Thus, the procedure to extract bathymetric information is relatively simple 

and requires solving for only two parameters, m0 and m1. Dierssen et al. (2003) used a log-

difference concept to derive bathymetry according to the following Equation: 

Similarly, Stumpf et al. (2003) presented a model that applies the division between the 

observed radiance log values of two bands: 

Where 𝐿𝑜𝑏𝑠(𝜆) represents the observed radiance for each band; m0, the translation 

coefficient, based on bottom return and a diffuse attenuation coefficient; and m1, the scaling 

coefficient based on the diffuse attenuation. The main advantage of these algorithms is that 

𝑧 =
1

−2(𝐾(λ1) − 𝐾(λ2))
[ln (

𝐿𝑜𝑏𝑠( λ1) − 𝐿𝑤( λ1)

𝐿𝑜𝑏𝑠( λ2) − 𝐿𝑤( λ2)
)

+ ln (
𝐿𝑏( λ2) − 𝐿𝑤( λ2)

𝐿𝑏( λ1) − 𝐿𝑤( λ1)
)] 

(8) 

𝑚1 = 
1

−2(𝐾(λ1) − 𝐾(λ2))
         𝑚0 = 𝑚1ln [

𝐿𝑏( λ2) − 𝐿𝑤( λ2)

𝐿𝑏( λ1) − 𝐿𝑤( λ1)
] (9) 

  𝑧 = 𝑚1 × ln [
𝐿𝑜𝑏𝑠( λ1) − 𝐿𝑤( λ1)

𝐿𝑜𝑏𝑠( λ2) − 𝐿𝑤( λ2)
] + 𝑚0 (10) 

𝑧 = 𝑚1 × ln (
𝐿𝑜𝑏𝑠( λ𝑖)

𝐿𝑜𝑏𝑠( λ𝑗)
) + 𝑚0  (11) 

𝑧 = 𝑚1 × (
ln (𝐿𝑜𝑏𝑠( λ𝑖))

ln (𝐿𝑜𝑏𝑠( λ𝑗))
) − 𝑚0  (12) 
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they do not require any optical properties to determine the depth and consider very few 

parameters.  

When the linear model is applied, depth estimation is limited by the best linearity 

between the algorithm and depth (6m in Figure 5). Areas deeper than this point will show an 

almost constant value and are assumed optically deep water, where the seafloor is too deep for 

a bottom reflectance signal to be returned. This depth is commonly referred to as “extinction 

depth”, however, in the context of this work the term “effective optical depth” is used, due to 

that it is still possible to extract information from the seafloor beyond this depth, represented 

by quasi-optically deep (areas with weak correlation but still detectable) instead of optically 

deep water.  

When a single and linear model is applied, the effective optical depth is identified by 

plotting the SDB algorithm (pseudo bathymetry (pSDB)) against the reference bathymetry. 

Based on a visual inspection of the graph, the area with the best linearity (highest coefficient 

of determination R2) between reference bathymetry and the SDB algorithm can be selected 

(Pe’eri et al., 2014). Over this area, the calculated parameters in the regression analysis, gain 

(m1), and offset (m0) can be estimated and applied to the ratio transform output for each pixel 

value, performing vertical referencing. This procedure excludes the need for tide correctors 

and tide-coordinated images because this is automatically accounted for using control points 

selected from a nautical chart to determine the transformation parameters (gain and offset) 

(Pe’eri et al. 2014). 
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Figure 5 - Extinction depth determination based on linear band ratio algorithm applied over a 

study area in Cape Ann, MA (Pe’eri et. al, 2014). 

Although the linear model, represented by equation (11) is simple and, in my opinion 

reasonably adequate, areas with variable seafloor types and/or water optical proprieties will 

affect depth estimates using SDB (Holman, 2020). As such, including a water contribution in 

the model can produce improved results over areas with a rough bottom. 

To address these constraints and recognizing that water column contribution is 

considerable, Freire (2017) extended Dierssen’s algorithm assuming the water column as a 

parameter, solving four unknowns (𝑚1, 𝐿𝑤( λ1), 𝐿𝑤( λ2),𝑚0), of Equation 10. To reach a 

solution, Freire (2017) used the Least Squares Method (LSM) by applying parametric 

adjustment. Following the LSM steps presented by Wells and Krakiwsky (1971), a nonlinear 

solution can be obtained by the following steps: 

1. Linearization of the function using Taylor’s series generating an approximated 

solution. 

2. Form the Jacobian matrix, the derivative of the equation.  
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3. Apply the Least squares estimation to minimize the quadratic sum of the 

residuals.  

The process is repeated until it achieves minimum Root Mean Square Error (RMSE).  

The first consideration is that if the mathematical model expresses the sum of the total 

observation vector (𝐿𝑎) as a function of the sum of the total solution vector (𝑋𝑎), it can be 

solved by applying the parametric method. 

Considering the full Dierssen’s model, i.e., accounting for the water column parameter, 

the function can be written as: 

Where, L is the observation vector, V, the residual vector and F(X), the nonlinear 

function. As mentioned above, the first step is given by the linearization of the model (Equation 

15) using Taylor’s series, and an initial estimate of the solution vector X0 needs to be defined 

to perform the solution. 

Since 𝐿𝑎 = 𝐿𝑏 + 𝑉, where 𝐿𝑎 refers to the sum of the observation vector, 𝐿𝑏 represents 

the observation vector and 𝑉 the residual vector, the linearization can be expressed as: 

The minimum value of 𝑉𝑇PV is the metric for adjustment goodness under LSM 

(Camargo, 2000). Assigning the minimum 𝑉𝑇PV to 𝐿0 + 𝐴𝑋 − 𝐿𝑏 = 𝑉, the solution is given 

by: 

𝐹(𝑋𝑎) = 𝐿𝑎      (13) 

 
(

𝑧1
.
.
𝑧𝑛

)

⏟  

𝐿

+ 
(

𝑣1
.
.
𝑣𝑛

)

⏟  

𝑉

=

(

 
 
 
𝑚1.ln [

𝐿( λ1)1 − 𝐿𝑤( λ1)

𝐿( λ2)1 − 𝐿𝑤( λ2)
] + 𝑚0

.

.

𝑚1. ln [
𝐿( λ1)𝑛 − 𝐿𝑤( λ1)

𝐿( λ2)𝑛 − 𝐿𝑤( λ2)
] + 𝑚0

)

 
 
 

⏟                      

𝐹(𝑋)

    (14) 

𝐿𝑎 = 𝐹(𝑋0) +
𝜕𝐹

𝜕𝑋𝑎
|
𝑋0

(𝑋 − 𝑋0) (15) 

𝐹(𝑋0)⏟  

𝐿0
+

𝜕𝐹

𝜕𝑋𝑎
|
𝑋0⏟  

𝐴

𝑋 − (𝐿𝑏 + 𝑉) = 0 →  𝐿0 + 𝐴𝑋 − 𝐿𝑏 = 𝑉 (16) 
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Where: 

𝐿 = 𝐿0 − 𝐿𝑏 

The second step is expressed by the Jacobian or design matrix (A). In the case of the  

extended Dierssen model, A is represented by: 

 

 

Since adopting the initial approximation vector introduces errors in the adjustment, an 

iteration process is required (Camargo, 2020). The convergence criterion adopted in this work 

is the minimum RMSE between the observation vector (𝐿𝑏) and the model (𝐹(𝑋)). Figure 6 

shows the flowchart of steps required in the nonlinear model.  

The biggest challenge in solving a system of nonlinear equations is the definition of the 

initial approximation to the solution, the vector X0. If it is poorly defined, it will induce non-

convergence of the model or converging to an incorrect solution.   

 

Figure 6 - Flowchart of nonlinear adjustment solution. 

 

                                                 𝑋 = −(𝐴𝑇𝑃𝐴)(𝐴𝑇𝑃𝐿)                                       (17) 

𝐴 =

(

 
 
 
ln [
𝐿( λ1)1 − 𝐿𝑤( λ1)

𝐿( λ2)1 − 𝐿𝑤( λ2)
]

.

.

ln [
𝐿( λ1)𝑛 − 𝐿𝑤( λ1)

𝐿( λ2)𝑛 − 𝐿𝑤( λ2)
]

     

 −
𝑚1

𝐿( λ1)1 − 𝐿𝑤( λ1).
.

  −
𝑚1

𝐿( λ1)𝑛 − 𝐿𝑤( λ1)

       

𝑚1
𝐿( λ2)1 − 𝐿𝑤( λ2).

.
𝑚1

𝐿( λ2)𝑛 − 𝐿𝑤( λ2)

         

1
.
.
1
)

 
 
 

  (18) 
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3.2 SDB and Nautical Charts  

Nautical charts provide important information that enables the mariner to make decisions 

necessary for safe navigation. Collecting and keeping the information up to date in a chart is a 

continuous process. However, despite the best efforts of the hydrographic community, the chart 

will always depict elements compiled from data of varying quality, collected using different 

technologies, and at different times (Kastrisios & Ware, 2022). To support mariners 

information on data reliability, one of the elements compiled in the nautical chart is data 

quality,  more recently portrayed by the Zone of Confidence (ZOC), classified in six categories: 

A1, A2, B, C, D, and U (where data is yet to be assessed) (IHO, 2002). ZOC or categorical 

ZOC (CATZOC) classification is a result of the total horizontal (THU) and vertical (TVU) 

uncertainties of the hydrographic data, seafloor coverage requirements, and typical survey 

characteristics. Table 1 summarizes the CATZOC categories and the associated TVU required 

of charted soundings for depths of 10 and 20 m. 

Table 1 - A summary of the ZOC classification with the associated THU, TVU, seabed coverage 

and feature detection. 

ZOC THU (m) 
TVU (m) Full Seabed 

Coverage 

Achieved 

Significant Features 

Detected Accuracy 10m 20m 

A1 5 + 5%d 0.5 + 1%d 0.6 0.7 Yes Yes 

A2 20 1 + 2%d 1.2 1.4 Yes Yes 

B 50 1 + 2%d 1.2 1.4 No 
Undetected features 

may exist 

C 500 2 + 5%d 2.5 3 No 
Anomalies may be 

expected 

D >500 > 2 + 5%d - - No 
Large anomalies may 

be expected 

U The Quality of data has yet to be assessed 

 

For SDB to be incorporated into cartographic products, it is necessary to assign a 

CATZOC, and meet all data quality parameters. However, this practice can lead to 

underrepresentation of horizontal and vertical uncertainty when they are more accurate than 
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the other requirements. As an alternative, SOUACC and POSACC are attributes, defined by 

IHO standards S-57 (2000), capable of individually indicating the reliability of the value of a 

sounding, or position, respectively. Nonetheless, a major challenge in using SDB for nautical 

charting purposes is the achievable vertical accuracy, especially when compared to traditional 

surveys. 

Although meeting a high level of depth accuracy is not a simple task in SDB, as it 

strongly depends on the environmental conditions and the image quality, in recent years, 

extracting bathymetry from imagery has been recognized as a powerful tool to be used in 

cartographic production. Several studies have been conducted to demonstrate the ability to 

produce and update nautical charts. For instance, Service Hydrographique et Océanographique 

de la Marine (SHOM), the French Hydrographic Office, produced the first satellite-derived 

chart (SDC) in 1983, using Spot SDB simulation with a CASI radiometer in New Caledonia, 

and is investigating different sources and approaches to this day. Dekker et al. (2012), using 

ALOS and Quickbird data in Queensland, Australia, demonstrated the adequacy of SDB for 

use in nautical charts, providing a TVU value within (IHO,2008) 1a and 1b Order survey 

standards. The United Kingdom Hydrographic Office (UKHO) published in 2015 its first 

nautical chart (chart number 2066 – Figure 7), with depths derived from satellite image. In 

2018, the Canadian Hydrographic Service (CHS) also used information derived from SDB on 

a chart for Havre-aux-Maisons (chart number 4955), classified as CATZOC C level.  

Despite the advances using SDB to estimate depths for cartographic purposes, there is 

still the need to improve the models and testing different datasets in different geographic 

configurations and environmental conditions in order to achieve better accuracy.     
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Figure 7 - Nautical Chart BA 2066, using SDB for mapping shalow water bathymetry ( 

Mavraeidopoulos, et al., 2017) 
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CHAPTER 4 : METHODOLOGY 

4.1 Overview 

This research investigates how segmenting the area can achieve better bathymetric estimates 

using satellite image for nautical charting purposes, aiming to assist in safe and efficient 

maritime navigation. The proposed methodology, presented in this Section and summarized in 

the workflow (Figure 8), uses the extended Dierssen model (Freire, 2007) that incorporates 

water column parameters. By splitting the data spatially into smaller units, this work aims to 

account for non-uniform sea-bottom conditions and improve the accuracy of estimated depths. 

The rationale behind the segmentation is that in smaller spatial units the environmental 

conditions should be more stable than within the entire scene, an assumption that finds its basis 

on Tobler’s (1970) first law of geography.  

 

Figure 8 - Workflow for deriving bathymetry using the geographic model. 

4.1.1 Radiometric enhancement 

Obtaining a satellite image free of clouds, waves, and turbidity across an entire area is a 

challenging task. Depending on the environmental conditions and image quality, the estimated 
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depth for a target area obtained from a given satellite image may be different from another 

image. Therefore, SDB is typically used in regions with clear water conditions since the light 

penetration will be higher (Pe’eri et al., 2014). 

Also, ideally, the survey data should had been collected shortly before or after the 

acquisition of satellite image, which will enable the solution provide more accurate depth 

estimates. Therefore, besides the image quality, images should be selected as near in time as 

possible to the available survey dataset. 

A few works do not consider rigorous atmospheric correction with the rationale that 

band ratio mitigates these effects. However, this work incorporates atmospheric correction to 

improve depth estimation accuracy. The ACOLITE algorithm, a free processor developed by 

Vanhellemont (2019) and Vanhellemont & Ruddick (2016) of the Royal Belgian Institute of 

Natural Sciences (RBINS), has been used for image quality enhancement, as demonstrated by 

Cabalerro et al., 2019. ACOLITE allows removal of the scattering effects of aerosol 

components over clear and turbid water (Martins et al., 2017) and supports atmospheric 

corrections of both Landsat-8 and Sentinel-2, and includes two algorithms, Dark Spectrum 

Fitting (DSF) and Exponential extrapolation (EXP) (Caballero et al., 2020). 

The EXP assumes that the signal reflected from the water is zero in the SWIR bands, 

which means that any signal in the SWIR is assumed to be entirely caused by aerosol and 

Rayleigh scattering (Holman, 2020). After Rayleigh correction, the signal that remains is 

assumed to come from aerosol scattering, and it can be extrapolated from the SWIR to visible 

and near-infrared bands using an exponential function. However, this algorithm has generally 

poor performance in the blue bands. To address this common issue pointed out in the EXP 

algorithm, the "Dark Spectrum Fitting" (DSF) algorithm includes a robust automated band 

selection process and an optional image-based glint correction (Vanhellemont, 2019). 
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The DSF computes the best fitting aerosol model to estimate the atmospheric path 

reflectance by using multiple dark targets in the scene or sub-scene to construct a “dark 

spectrum” with no prior defined band (Vanhellemont, 2019).  

ACOLITE products correspond to Remote sensing reflectance (Rrs, 1/sr) in all visible 

and Near-infrared (NIR) bands resampled to 10m pixel size (Caballero et al., 2020), which can 

be directly utilized to retrieve depth information.  

The atmospheric correction algorithm applied in this study is the recommended DSF. 

Both radiometric enhancements with ACOLITE and uncorrected atmospheric imageries were 

tested for further analysis. 

 

4.1.2 Spatial filtering 

To avoid speckle noise and enhance the image quality, a smoothing Low Pass Filter (LPF) is 

applied to bands blue coastal (B01), blue (B02), green (B03), and red (B04) utilizing the 

ArcGIS filter tool. A simple 2D convolution with 2 smoothing Kernel is applied removing 

noise and local variation. By default, it calculates the average value for each 3x3 neighborhood.  

4.1.3 Land/ water separation  

NDWI is computed to separate water bodies from land areas, using the green (B03) and the 

near-infrared (B08) bands in Sentinel-2, as proposed by McFeeters (1996) (Equation 4). This 

step is performed using the raster calculator tool in ArcGIS to create the NDWI and the set null 

tool to identify cell locations where NDWI presented negative values. These values represented 

by dry areas are removed from coastal aerosol, blue, green, and red bands. Figure 9 illustrates 

an example, where the white color represents land and the shades of grey the water body.  
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Figure 9 - NDWI for Dry Tortugas on the left and for STEER on the right. 

 

4.1.4 SDB algorithm 

The procedure to derive bathymetry from satellite scenes applied in this thesis is based upon 

the concept of Dierssen et al. (2003), which uses a linear log-difference concept to extract 

depth, resulting in the following Equation: 

The pixel value of the ratio of two bands (𝐿𝑜𝑏𝑠( λ1)/𝐿𝑜𝑏𝑠( λ2)) was captured for each 

training point to create a list containing the log-difference model (pSDB) and depths. The data 

were reviewed for possible null values, and the depths were organized in ascending order. 

Averages of the band ratio values were compiled for each unique depth and plotted against the 

control points. By analyzing the scatter plot it is possible to infer the effective optical depth 

(Figure 10). 

𝑧 = 𝑚0 +𝑚1 × ln (
𝐿𝑜𝑏𝑠( λ1)

𝐿𝑜𝑏𝑠( λ2)
)  (19) 
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Figure 10 -Scatter plot showing the correlation between the band ratio (linear) values and the 

training points (control points) to estimate effective optical depth in the SDB (red line). Plot above 
shows the linear regression through the selected data up to extinction depth to extract m1=14.659 and 

m0=2.984. 

Usually, the depth where the plotted points no longer portray a linear trend (represented 

by a red line in Figure 10) is considered the effective optical depth up to which depths can be 

estimated, and the single linear regression is applied to derive bathymetry. The parameters, m0, 

and m1, from the linear regression up to the limit depth are computed and applied to the image. 

These steps generate depth estimates referenced to the reference bathymetry according to a 

linear function. 

The Dierssen model was extended by Freire (2017), who incorporated the water column 

parameters to address the heterogeneity of the bottom and water quality within the scene, as 

shown in Equation 20: 

As in the linear case (Dierssen model), for the extended Dierssen model a solution is 

reached through linear regression, using depth measurements as control points. However, due 

to the model not being linear, the final estimate represents an approximated solution to the 

observations. In addition, instead of two control points, at least four points are required for the 

 𝑧 = 𝑚0 +𝑚1 × ln [
𝐿𝑜𝑏𝑠( λ1) − 𝐿𝑤( λ1)

𝐿𝑜𝑏𝑠( λ2) − 𝐿𝑤( λ2)
] (20) 
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extended Dierssen model solution. The process, implemented in Python, consists of the 

development of the following LSM steps:  

1. Estimation of the initial vector, 

2. Development of the Jacobian matrix, and 

3. Minimization of the quadratic sum of the residuals.  

The four parameters calculated for the entire image are applied to each image pixel. 

These steps generate the estimated SDB according to a extended Dierssen function. 

4.1.4.1 Estimation of the initial vector 

The unknown variables (𝑚1, 𝐿𝑤( λ1), 𝐿𝑤( λ2),𝑚0) are split into linear (X01 and X04) and 

nonlinear (X02 and X03) parameters to estimate the initial approximation vector. Initially, 

considering the correlation between the log-difference bands and control points, the parametric 

method of the LSM is used to calculate the scaling coefficient (X01) and the translation 

coefficient (X04). 

The steps are the same as the flowchart described in Figure 6. The difference refers to 

the Jacobian matrix, as the function to be solved is provided by Equation 19 instead of Equation 

20. Also, the iteration process is not performed as it relates to just an initial solution. The 

following Jacobian matrix is applied to find X01(𝑚1
0) and X04 (𝑚0

0). 

Where 𝐿( λ1) represents the radiance in the band 1, 𝐿( λ2) the radiance in the band 2, 

and 𝑛, the number of control points used to calibrate the model. Once X01(𝑚1
0) and X04 (𝑚0

0) 

are calculated, the nonlinear model is used to estimate the initial water column components, 

considering the first guess as zero (𝐿𝑤1
0 = 𝐿𝑤2

0 =0). The parametric method of the LSM is 

𝐴 =

(

 
 
 
ln [
𝐿( λ1)1
𝐿( λ2)1

]

.

.

ln [
𝐿( λ1)𝑛
𝐿( λ2)𝑛

]

    

1
.
.
1
)

 
 
 

 

              

(21) 
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conducted again to calculate the remaining parameters, which are composed of the initial 

solution vector X02 (𝐿𝑤1
0 ) and X03 (𝐿𝑤2

0 ), based on the following Jacobian matrix.  

The initial approximation vector of the solution X0 = [𝑚1
0, 𝐿𝑤1

0 , 𝐿𝑤2
0 , 𝑚0

0] is then used 

to start an interactive adjustment for the nonlinear case.  

4.1.4.2 Solution of vector  

To calculate the solution vector X =  [𝑚1, 𝐿𝑤1, 𝐿𝑤1, 𝑚0], X0 is implemented in the Jacobian 

matrix:  

To calculate the solution X = −(𝐴𝑇𝐴)(𝐴𝑇𝐿), it is necessary to compute the vector 𝐿 , 

based on the depths of the control points and expressed by: 

4.1.4.3 Minimize the quadratic sum of the residuals  

Among different convergence criteria, this study uses the quadratic sum of the residuals 

(RMSE) as a threshold. The final solution is achieved after n-iterations, (𝑛), when no further 

𝐴 =

(

 
 
 
−

𝑚1
0

𝐿( λ1)1 − 𝐿𝑤1
0

.

.

−
𝑚1
0

𝐿( λ1)𝑛 − 𝐿𝑤1
0

    

𝑚1
0

𝐿( λ2)1 − 𝐿𝑤2
0

.

.
𝑚1
0

𝐿( λ2)𝑛 − 𝐿𝑤2
0

       

)
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𝐴 =

(

 
 
 
ln [
𝐿( λ1)1  − 𝐿𝑤1

0

𝐿( λ2)1  − 𝐿𝑤2
0 ]

.

.

ln [
𝐿( λ1)𝑛  − 𝐿𝑤1

0

𝐿( λ2)𝑛 − 𝐿𝑤2
0 ]

     

−
𝑚1
0

𝐿( λ1)1 − 𝐿𝑤1
0

.

.

−
𝑚1
0

𝐿( λ1)𝑛 − 𝐿𝑤1
0

       

𝑚1
0

𝐿( λ2)1 − 𝐿𝑤2
0

.
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0
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𝐿 =  

(

 
 
 
𝑚1
0ln [

𝐿( λ1)1  − 𝐿𝑤1
0

𝐿( λ2)1  − 𝐿𝑤2
0 ] + 𝑚1

0

.

.

𝑚1
0ln [

𝐿( λ1)𝑛  − 𝐿𝑤1
0

𝐿( λ2)𝑛 − 𝐿𝑤2
0 ] + 𝑚1

0

   

)
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convergence occurs, i.e., the RMSE between the observation vector, 𝐿, and the nonlinear 

model, 𝐹(𝑋), converges, 𝑅𝑀𝑆𝐸𝑛−1 < 𝑅𝑀𝑆𝐸𝑛.  

Where, 𝑁, represents the number of equations, i.e., the number of control points, and 

𝑈, the number of parameters, i.e., 4 (𝑚1, 𝐿𝑤1, 𝐿𝑤1,𝑚0).  

4.1.5 Vertical Referencing 

4.1.5.1 Reference system 

Existing bathymetry is used as control points for the vertical referencing. Since different data 

sources can be applied to compile bathymetry, a common reference system between the dataset 

is essential to avoid irregularities. VDatum, a vertical datum transformation tool developed by 

the National Oceanic and Atmospheric Administration (NOAA), provides easy horizontal and 

vertical transformation into the same reference system for all coastal regions of the continental 

U.S., Puerto Rico, and the U.S. Virgin Islands.  

 

4.1.5.2 ALB gridding 

Control points from a reference dataset are used to establish a vertical transformation between 

the reference bathymetry and algorithm values. In most scenarios, where different source data 

constitute the study area, the control points' density and spatial distribution varies within the 

area under investigation. When sounding density is greater, the number of soundings must be 

reduced to a single point value per image pixel, usually using the average of the reference 

depths within each image pixel. 

𝑅𝑀𝑆𝐸n−1 = √
𝑉𝑛−1
𝑇 𝑉𝑛−1
𝑁 −𝑈

     𝑅𝑀𝑆𝐸𝑛 = √
𝑉𝑛𝑇𝑉𝑛
𝑁 −𝑈

  

                

(25) 
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4.1.5.3 Selection of control points 

From the reference bathymetry, depths are selected for training and testing of the model. If a 

small number of control points is selected, the solution may not converge; on the other hand, 

with a large number of control points the processing time required to calculate the vertical 

transformation increases and sometimes this crashes the system. After some testing, it was 

found that  5% of the available data for the control points performs satisfactorily, whereas with 

twice as many points, the system crashed. Of the 5%, randomly selected using the create 

random points in ArcGIS, two independent subsets are created in order to split training and test 

data sets - 70% are randomly selected again for training the model, and the remainder are used 

for testing (30%). 

4.2 Geographic approaches 

Assuming spatial homogeneity of bottom and water quality within a scene, the parameters 

defined by a single global model are ideal for the entire area, and the conventional model 

(hereinafter “conventional global”), is applicable to the entire image scene. However, 

conventional models present limited results due to the spatial heterogeneity of bottom type and 

water quality within the scene (Su et. al, 2013; Freire, 2017). Assuming that the magnitude of 

spatial heterogeneity is smaller (and possibly non-existent) in small regions, segmenting the 

scene into smaller spatial units should enable the algorithm estimate optimal parameters in a 

sufficient manner.  

In addition, defining a threshold for a single model (considering the highest correlation 

between model and depths as the limit to derive depths) suggests that the bathymetric data are 

unexplored and losing potential information since the seafloor is still detectable depending on 

the water conditions. Vertical and horizontal segmentation of the scene might identify depths 

in quasi-optically deep water, previously defined as "optically-deep water" limiting 

bathymetric extraction. 
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In this work, six different segmentation approaches (highlighted in gray in Figure 11) 

are investigated. The are divided into two broad categories, horizontal and vertical 

segmentation methods.  

• Horizontal segmentation 

o Regular segmentation 

o Irregular segmentation:  

▪ Global-Local 

▪ Depth areas 

• Vertical segmentation and 

• Merged segmentation 

o Global-Local by Depth Range (GLDR) 

o Depth Areas by Depth Range (DADR) 

 

Figure 11 - Flowchart to represent the geographic approaches. The rounded square represents 

the geographic approaches applied, and the diamond represents the procedure involved for the merged 

approach. 
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4.2.1 Horizontal Segmentation 

Dividing the scene horizontally is an effort to account for a certain level of heterogeneity due 

to the horizontal distribution of phenomena. Regular and irregular segmentation methods are 

investigated. 

 

4.2.1.1 Regular Segmentation 

This method divides the image scene into regular cells and provides the SDB solution within 

each cell. Two arbitrarily selected grid cell sizes are tested, one of 30 × 30 pixels and one 150 

× 150 pixels. Initially, the image is divided into the smaller square grids of 30  × 30 pixels and 

if a solution of the model cannot be derived due to insufficient control points within small grid 

cells, they are merged into larger grid cells of 150 × 150 pixels.  

 

Figure 12 - Workflow of geographic approach based on the regular segmentation. 

 

4.2.1.2 Irregular Segmentation 

4.2.1.2.1 Global-Local 

The method begins with calibrating a single extended Dierssen model (“Global”), similarly to 

conventional approaches. Accordingly, the prediction residuals are calculated for the Global 
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model (i.e., the difference between the Global model (𝑧𝑔𝑙𝑜𝑏𝑎𝑙) and the referenced depths (𝑧𝑟𝑒𝑓) 

as shown in Equation 26) and the area is subdivided into classes/regions for the residual and 

depths (“Local”).  

A model is calibrated for each class using the training data points within each area. 

Figure 13 shows a workflow of the procedure implemented in the irregular horizontal approach 

by Global-Local, which is summarized as follows: 

1. Global model: calibration of a single extended Dierssen model for the entire scene. 

2. Regions are created based on two variables: depths and the prediction of residuals from 

the global model. 

3. Local model: calibration of the extended Dierssen model for each segment. 

 

 

Figure 13 - Workflow of geographic approach based on the irregular segmentation – Global-

Local segmentation. 

4.2.1.2.2 Depth Areas 

For the Depth Areas method, the image scene is segmented into depth areas of defined ranges 

and a model is calibrated within each depth area. When a small depth area does not contain the 

minimum necessary number of control points, it is merged with the same depth in a different 

location. For this work, depth areas are formed every 5m, i.e., 0-5m, 5-10m (Figure 14). Figure 

15 summarizes the workflow. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝑧𝑟𝑒𝑓 − 𝑧𝑔𝑙𝑜𝑏𝑎𝑙     (26)       
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Figure 14 - Area segmented according to depth areas of 5 meters to calibrate the depth area 

approach. 

 

Figure 15 - Workflow of geographic approach based on the irregular segmentation – Depth 

Area. 

 

4.2.2 Vertical Segmentation 

Conventional approaches search for the best solution using a linear regression for the band-

ratio/depth (Figure 16). However, this results in increased depth estimation uncertainty beyond 

the effective optical depth which is represented by the plot break (represented by a dashed pink 

line in Figure 16). Such approaches prevent deriving depth information beyond this point, i.e., 

from quasi-optically deep water. To address this limitation of a linear regression, the vertical 

segmentation approach applies a piecewise regression to the band-ratio/depth to improve the 

accuracy in depths below the effective optical depth and to attempt the extraction of bathymetry 

beyond this point. To accomplish the vertical segmentation, the dataset is divided by depth, 

beginning with depth ranges of 5m which progressively decrease to 1m, and, given that enough 

control points exist, a model is calibrated for each subset of training data points (Figure 17). 
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Based on the resulting RMSE, the best range selection provides the final bathymetry 

estimation. Figure 18 shows the workflow developed in this approach. 

 

Figure 16 - Concept of conventional approach rather than the vertical segmentation. On the left, 

the linear regression for the entire area up to the effective optical depth, and on the right the solution is 

approximated with a piecewise function by depth ranges, even beyond the conventional method’s 

“effective optical depth” 

 

   

1 m 2 m 5 m 

Figure 17 - Area segmented into three different depth ranges, every 1, 2 and 5 meters to calibrate 

the vertical approach.  

 

 

Figure 18 - Workflow of geographic approach based on the irregular segmentation. 
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It should be highlighted that in a few cases, especially in deeper areas charted with 

fewer soundings, adjoined depth ranges are merged to complement the reference data required 

for the model performance.  

 

4.2.3 Merged Segmentation 

The merged segmentation is the combination of the horizontal and vertical segmentation 

methods. In detail, each spatial unit created with the above two horizontal segmentation 

approaches is divided vertically into depth ranges of 1 m. Thus, two merged approaches are 

performed: 

• Global-Local by Depth Range (GLDR): spatial segments created in the Global- 

Local approach are vertically divided every 1 m.   

• Depth Areas by Depth Range (DADR): spatial segments created in the Depth Area 

approach are divided into depth ranges every 1 m. 

4.2.3.1 Depth Areas by Depth Range (DADR) 

This method merges the Depth Areas and Vertical Segmentation approaches. In detail, after 

dividing the image scene into the depth areas, each depth area polygon is vertically segmented 

by depth. 

It is noted that dividing depth areas into depth ranges of 1 m is the same as dividing the 

depth ranges of 1 m according to their horizontal distribution, which explains the arrows from 

two methods in the flowchart to generate the DADR approach (Figure 11).  

Figure 19 illustrates the difference between Depth Area, Vertical Segmentation and 

DADR approaches. In the first one, depth areas of 5 m are formed, i.e., same depth range (0 – 

5 m) creates more than one segments (three segments in Figure 19 - a). Figure 19 - b, the same 

depth range belongs to a unique segment, computing a single model for this region. In contrast, 
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in the DADR, the same depth range is divided into subareas (depth areas), as for the Depth 

Area approach, however divided every 1 m. In Figure 19 – c, for example, there are three 

models instead of only one for a depth range of 1 m. Figure 20 shows the workflow of the 

geographic approach based on the merged DADR segmentation. 

 

Figure 19 - Difference between Depth Area, Vertical segmentation and DADR approaches. a – 
three depth area of 5 m are formed, b - the area in blue represents a depth range of 5 m, and c - the same 

depth range is divided according to its horizontal distribution, forming three depth areas of 1m, in figure 

depth range of 3 – 4m. 

 

 

Figure 20 - Workflow of geographic approach based on the merged DADR segmentation. 
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When the number of control points is insufficient (fewer than four) within any of the 

subareas, it is merged with the adjoining depth area to reach the required number of training 

depths. 

4.2.3.2 Global-Local by Depth Range (GLDR)  

Each class provided by the Global-Local approach is divided, vertically, in smaller regions, 

every 1m depth range. Instead of applying and calculating the model for classes created in the 

Global-Local horizontal segmentation, the solution in the GLDR is computed for a larger 

number of classes subdivided by depth intervals of 1 m (Figure 21). Figure 22 shows the 

workflow of the geographic approach based on the merged GLDR segmentation. 

 

Global-Local GLDR 
 

Figure 21 – Example of segments created in the global-local approach (horizontal 

segmentation) (left) and in the GLDR (right). 

 

 

Figure 22 - Workflow of geographic approach based on the merged GLDR segmentation. 



 

 

42 

 

4.3 Accuracy assessment 

The accuracy of the geographic models for SDB is assessed by comparing estimated and 

reference bathymetry, applying the following metrics: 

• Root Mean Square Error (RMSE) statistic: it is widely used among SDB to 

assess the quality of predictions. This metric indicates how the data is dispersed 

around the best-fit line and describes a standard deviation of residuals. 

Independent testing points are used for the RMSE calculation. 

• CATZOC: the metric defined by IHO and used to classify electronic 

navigational chart accuracy, indicating whether data meets a set of criteria for 

the position, depth accuracy, and seafloor coverage. Five categories may 

represent CATZOC on a chart: A1 (best accurate data), A2, B, C, D (least 

accurate data), or U (quality data unassessed). In this study, CATZOC is 

assigned only with respect to vertical accuracy, computed at the 95% confidence 

level. With the assumption that the vertical error is normally distributed, a factor 

of 1.96 is applied to compute the vertical (depth) accuracy (FGDS, 1998): 

Accuracyz = 1.96 * RMSE   

• Comparison of the geographic models with conventional Stumpf and Dierssen 

models, both calibrated as a single linear model for the entire image scene. 
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CHAPTER 5 : STUDY AREAS, TESTS AND RESULTS 

5.1 Study area 

For the evaluation of the proposed methods, two study areas were selected: Dry Tortugas (study 

site 1), west of Key West between the Gulf of Mexico and the Atlantic Ocean, and St. Thomas 

East End Reserve (STEER), U.S. Virgin Islands (study site 2). The locations were chosen based 

on their clear water conditions, medium to low turbidity levels, and complex aquatic 

environments, while, for both regions, LiDAR and chart data were freely available from a 

NOAA website. 

5.1.1 Study Site 1 - Dry Tortugas 

The Dry Tortugas is a small archipelago of coral islands in South Florida, consisting of seven 

islands (NPS, 2014). The specific area under investigation is Loggerhead Key (Figure 23), the 

largest island of the complex (NPS, 2014). Loggerhead Key is approximately 1,430 m (4,690 

ft) long by 200 m (650 ft) wide, and its highest point is 3 m (10 ft) above sea level on the 

northeastern tip of the island (Ginsburg, 1953). Loggerhead Key is considered a stable island 

that suffers from only minimal erosion due to the protection afforded by the extensive beach 

rock deposits, unlike the other islands in Dry Tortugas that compose mainly of carbonate sand 

and smaller amounts of coral rubble (NPS, 2014). 

Figure 24 illustrates a benthic map of the area published in 2014 by the National Park 

Service (NPS), Natural Resource Stewardship and Science. This map shows a large 

concentration of aggregated path reef (APR) southwest of Loggerhead Key, surrounded by 

sand (US). In the northwest, a large variety of benthic habitats is notable, settling the largest 

area of reef terrace (RT) in the park. Between Loggerhead Key and the reef terrace is a large 

remnant (RM) area and low relief spur and groove (LRSG) (NPS, 2014).  
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Figure 23 - The geographic location of study site 1: Loggerhead Key Island, Dry Tortugas. 

 

Figure 24 - Benthic Map of Loggerhead Key Island (NPS, 2014). 

5.1.2  Study Site 2 – St. Thomas East End Reserve  

The STEER, located on the southeastern end of the island of St. Thomas in the U. S. 

Virgin Islands, is a marine protected area (MPA) with a total area of approximately 9.6 km2 

(Figure 25). This area has been the focus of studies for providing a management plan to the 

community to guide conservation and sustainable use activities (Costa et al., 2013). The 

benthic habitat map illustrated in Figure 26 was developed by NOAA in 2013 and represents 

some of the products provided to support the management plan in the STEER.  
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The STEER represents a complex environment covered by unconsolidated sediments 

(74.3%), mainly categorized by rhodoliths and sand. Coral reef and hardbottom represent the 

rest of the seafloor, mainly covered by pavement structure type (Costa et al., 2013). Concerning 

biological cover (Figure 26), sand habitats are dominated by continuous seagrass beds, 

comprising more than 20% of the mapped area inside the STEER’s boundary. Hardbottom 

habitats are primarily colonized by algae (Costa et al., 2013). 

 

Figure 25 - The geographic location of study site  St. Thomas East End Reserve (STEER), U.S. 

Virgin Islands. 

 

Figure 26 - Geomorphological structure types (left) and biological cover types (right) in the 

STEER (Costa et al., 2013). 

5.2 Datasets 

5.2.1 Satellite images  

After the selection of the study areas, the criteria adopted to choose the image was low cloud 

coverage (<10%) and the time span between the bathymetry data and the image. In the STEER, 
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the efforts also focused on finding images taken before Hurricane Dorian (September 2019) 

since intense resuspension and currents may have modified shallow seafloor morphology.  

This study used images captured by Sentinel-2 Multispectral Instrument (MSI), 

acquired from the United States Geological Survey (USGS) Earth Explorer, which currently 

provides a freely available multispectral dataset. The Sentinel-2 mission is managed by the 

European Space Agency (ESA) and provides a high spatial resolution (four bands at 10 m, six 

bands at 20 m, and three bands at 60 m) multispectral imagery. Each Sentinel mission 

comprises a constellation of two satellites, Sentinel-2A, launched in June 2015, and Sentinel-

2B, launched in March 2017. Sharing the same orbital plane, but separated by 180° degrees, 

Sentinel-2A and Sentinel-2B cross in the equator at 10:30 AM local time and have a collective 

repeat cycle of 5 days (10 days individually) (Forfinski-Sarkozi, 2019). 

The Sentinel-2 MSI acquires data in 13 spectral bands ranging from the visible and near 

infra-red to the shortwave infrared parts of the electromagnetic spectrum. For this work, blue 

(490nm) and green (560nm) bands were utilized; however, in searching for higher correlation, 

other combinations were also investigated, e.g., coastal-blue and red bands. 

Sentinel-2 products are available in Level-1C (L1C) and Level-2A (L2A), compiled in 

a minimum indivisible product partition denominated granule. The granules, also called tiles, 

are 100 x 100 km2 ortho-images in UTM/WGS84 projection. The acquired packages used in 

this study were Sentinel-2 L1C - top of atmosphere (TOA) products, i.e., data were 

radiometrically and geometrically corrected. To derive bathymetry utilizing the information 

from the image, TOA must be processed to the bottom of atmosphere (BOA), which represents 

Level-2A. This step was performed using ACOLITE, described in Section 4.1.1. Table 2 

provides the description of the dataset used for the two study sites. 
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5.2.2 Depth datasets  

For the Dry Tortugas lidar and chart soundings are utilized. The topographic and 

bathymetric airborne lidar bathymetry (ALB) was collected by the National Geodetic Survey 

(NGS) in 2015, covering shallow waters from 0 up to 8.8 m. A Riegl VQ-820-G sensor, 

providing high-resolution surveying of the bottom of shallow waters, was used. The products 

include a 5 m resolution BAG/CSAR surface, referenced to Mean Lower Low Water (MLLW) 

(NOAA, 2017). The high-resolution lidar observations are used as the reference bathymetry to 

train and test the model. Also, charted depths from ENC US5FL91M are used as 

complementary data for the areas unserved by ALB, dated up to 2015. In Dry Tortugas, 6338 

points were randomly selected over the entire area (6203 from ALB data and the total number 

of available chart depth beyond 8.8 m – 135 depth points), while in the STEER, 7644 ALB 

data were selected. The independence between training and test data was provided by the 

random selection of 70% of the points for training while the remaining 30% for testing the 

model performance. The selection was performed using the using the create random points in 

ArcGIS. 

In the STEER area, NOAA NGS collected ALB data from January 20, 2019, to June 2, 

2019 using a Riegl VQ-880-G II sensor. The horizontal and vertical datum is NAD83 (2011) 

and, coordinate system UTM Zone 20 N. As the ALB fully covers the area under investigation, 

no additional chart depth is required.   

Table 2 summarizes the datasets used for the two study sites. 

Table 2 – Study sites dataset specifications. 

Data Description Dry Tortugas, FL STEER, VI 

Sentinel-2 

ID 
L1C_T17RLH_A008531 

_20170208T160849 

L1C_T20QKF_A018626_

20190115T145721 

Acquisition date 08/02/2017 15/01/2019 

Cloud Cover (%) 0.0 0.0 
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Coordinate system UTM 17N UTM 20N 

Horizontal datum WGS84 (G1762) WGS84 (G1762) 

Grid resolution 10m 10m 

ALB 

Collecting agency NOAA NOAA 

Date of survey 03/14/2015-03/23/2015 01/20/2019-06/02/2019 

Equipment Riegl VQ-820-G Riegl VQ-880-G II 

Horizontal Datum NAD83 (2011) NAD83 (2011) 

Vertical Datum MLLW NAD83 (2011) 

Depth range 0 – 8.8m 0 – 20m 

Number of control 

points 
6203 7644 

Chart 

depth 

Surveys year 1850 - 2015 - 

Horizontal Datum WGS84 (2011) - 

Vertical Datum MLLW - 

Depth range 0 – 30m - 

Number of control 

points 
135 - 

                       
 

5.3 Band and SDB model selection 

To select the best band configuration for retrieving depths from satellite images, different 

scenarios were considered. The analysis was carried out in both study sites using the 

conventional global approach by correlating four band combinations in the log-difference 

model. In the visible spectrum, blue and green wavelengths are typically used as they reach the 

deepest depths (Su et al., 2008). Nonetheless, the depth of light penetration is dependent on the 

environmental conditions, such as turbidity, which reduces light penetration. Traditional 

optimization methods usually disregard the red band in the pair combination, however 

depending on the water quality, red light may provide additional information in shallower 

regions of 6 – 8 m (Caballero et al., 2019), while blue coastal is the least absorbed (in clearest 
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waters, Jerlov, 1976) and it may provide a closer inspection of the coastal and inland waters 

depending on the water quality, useful for imaging shallow water (Staff, 2013). Blue coastal 

and red bands ratios were tested through the log difference to extract bathymetry, but, blue and 

green performed best.  

In Dry Tortugas, all band ratio combinations presented the same effective optical depth 

of 10 m (illustrated by the red line in Figure 27). However, coastal blue-green and blue-green 

showed a likely depth extraction beyond 10 m (represented by quasi-optically deep waters), 

while blue-red and green-red showed a negative correlation between model and depth, 

preventing bathymetric extraction. Unlike Dry Tortugas, in STEER the effective optical depth 

depends on the band-ratio. Blue-red and green-red bands could recover depths only up to 5 m, 

while for the blue-green and blue coastal-green bands, the effective optical depth was 20 m. 

Among the band combinations, in both study sites, the best configuration was blue and green 

bands, with RMSE of 1.30 (Dry Tortugas) and 1.29 m (STEER) (Table 3).  

Table 3 – RMSE and effective optical depths from band-ratio combinations investigated 

in Dry Tortugas and STEER. 

 
 

Dry Tortugas STEER 

Band-ratio 

combination 

Application of 

ACOLITE 

Effective 

optical 

depth (m) 

RMSE (m) 

Effective 

optical 

depth (m) 

RMSE (m) 

Blue Coastal/ 

Green 
✓ 10 1.76 20 2.16 

Blue/Red ✓ 10 2.17 5 4.68 

Green/Red ✓ 10 2.47 5 5.46 

Blue/Green  10 1.49 20 1.73 

Blue/Green ✓ 10 1.30 20 1.29 
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Figure 27 - Scatter plots of estimated SDB using blue coastal-green (a), blue-red (b), green-red 

(c), and blue-green (d) band ratios against reference bathymetry in Dry Tortugas and STEER. The 

horizontal red line represents the effective optical depth. 
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In addition, this study confirmed the findings of other works (e.g., Cabellero et al., 

1019; Cabellero et al., 2020) that ACOLITE is a robust and consistent atmospheric correction 

method for Sentinel-2, as it increased the accuracy in both locations. In Dry Tortugas, an 

improvement of 12.7% was observed (RMSE = 1.30 m) compared to the same band ratio 

without atmospheric correction (RMSE of 1.49 m). Similarly, in the STEER, ACOLITE 

improved the RMSE to 1.29 m instead of RMSE 1.73 m without the correction. 

Accordingly, an extended Dierssen model was applied. In Dry Tortugas, the extended 

Dierssen model improved the accuracy by 31.5%, while in the STEER, by 10.8% relative to 

the simplified Dierssen model (Table 4). Figure 28 represents the scatter plots of estimated 

SDB using the blue-green Dierssen and extended Dierssen models versus reference depth 

points in both study sites. 

 

Figure 28 - Scatter plots of SDB referenced blue-green bands using Dierssen model (a) and 
blue-green bands using extended Dierssen model (b) against reference depth measurements in Dry 

Tortugas and STEER. 
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Table 4 - RMSE from Dierssen and extended Dierssen models investigated in Dry 

Tortugas and STEER. 

 

 

 

 

Based on the results in Table 3 and 4, the blue-green band-ratio with the extended 

Dierssen model with ACOLITE performed best, thus is used hereafter for the evaluation of the 

geographic models. 

 

5.4 Results 

By subdividing the image scene into multiple small segments and calibrating the extended 

Dierssen model within each subarea, new depth estimations (SDB solution) were calculated. 

In this section, the performance of geographic models is compared with the conventional global 

model for the entire scene, based on the aggregated RMSE, using the independent points from 

reference depth datasets (see Section 5.2.2), and classified according to the CATZOC. 

Furthermore, the accuracy of the derived bathymetry every 5 meters of depth is also 

investigated, as this may reveal a pattern and direction of errors in the estimation. Subsequently, 

each geographic model is analyzed individually, discussing their limitations and benefits. 

Finally, the geographic model that yields the best estimation results is evaluated for its 

performance using both the Dierssen and extended Dierssen equations for the model 

calibration, and compared with the most traditional Stumpf et al. (2003) model. 

 

5.4.1 Summary of Geographic vs Conventional Models  

The RMSE presented in Table 5 represents the error between the estimated SDB and the 

reference bathymetry dataset, calculated for depth ranges of 5 m and the overall result in both 

Model RMSE (m) 

Band-ratio Model Dry Tortugas STEER 

Blue/green 
Dierssen 1.30 1.29 

Extended Dierssen 0.89 1.15 
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study areas. The green numbers represent results better than the conventional model, red 

numbers when was worst than conventional approach, and in blue the best RMSE. Based on 

the achieved accuracy, the respective CATZOC for TVU at 10m and 20m has been defined, at 

95% CI, and the coefficient of determination (R2). The number of segments created in each 

approach is treated as Unit.  

Table 5 - Comparison between geographic approaches according to RMSE and 

CATZOC in the STEER and Dry Tortugas 

 Approach 0-5 5-10 10-15 15-20 20-25 25-30 
RMSE 

(10 m) 

RMSE 

(Overall) 
Unit 

ZOC 

10m 

ZOC 

20m 
R2 

D
r
y

 T
o

r
tu

g
a

s 

H
o

ri
zo

n
ta

l 

Regular 0.56 0.62 2.48 5.07 4.94 5.05 0.58 0.83 400 A2/B C 0.91 

DA 0.38 0.49 1.38 1.41 1.55 3.75 0.42 0.47 10 A2/B A2/B 0.95 

Global- 

Local 
0.41 0.46 1.14 3.28 7.5 2.87 0.43 0.72 5 A2/B A2/B 0.93 

V
er

ti
ca

l 

1m  0.29 0.28 0.49 0.65 0.88 1.42 0.29 0.30 20 A1 A1 0.99 

M
er

g
ed

 DADR 0.29 0.29 0.49 0.65 0.88 1.42 0.29 0.30 32 A1 A1 0.99 

GLDR 0.29 0.31 0.78 1.10 3.13 2.87 0.30 0.40 28 A1 A1 0.98 

C
o

n
v

en
ti

o
n
al

 

Entire 

scene 
0.49 0.55 5.04 7.18 10.2 16 0.51 1.30 1 A2/B A2/B 0.88 

S
T

E
E

R
 

H
o

ri
zo

n
ta

l 

Regular 0.81 0.63 0.93 1.16 - - - 0.90 122 C C 0.97 

DA 0.57 0.54 0.68 1.04 - - - 0.72 16 C C 0.98 

Global-

Local 
0.65 0.88 0.99 1.44 - - - 1.02 5 C C 0.96 

V
er

ti
ca

l 

1m  0.41 0.33 0.32 0.36 - - - 0.35 20 A2/B A1 0.99 

M
er

g
ed

 

DADR 0.34 0.33 0.32 0.37 - - - 0.34 55 A2/B A1 0.99 

GLDR 0.37 0.52 0.34 1.01 - - - 0.60 78 A2/B A2/B 0.98 

C
o

n
v

en
ti

o
n
al

 

Entire 

scene 
1.13 1.54 0.95 1.54 - - - 1.29 1 C C 0.94 
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Following the procedures applied in the conventional approach, the optical depth limit 

for inferring bathymetry in Dry Tortugas is 10 m, while the geographic models were able to 

estimate bathymetry beyond this depth. For a fair comparison between methods, the 

comparison between the geographic model and the conventional methods is limited to optically 

shallow waters, i.e., 10 m. 

In the geographic models, the calculated RMSE ranges from  0.29 to 0.58 m in Dry 

Tortugas and from 0.34 m to 1.02 m in the STEER. As would generally be expected, the R2 

coefficient of determination is strongly related to the magnitude of the RMSE, i.e., a lower 

correlation coefficient is associated with greater error. Among all approaches, for both study 

sites, the vertical segmentation (depth range of 1 m) and DADR performed the best in terms of 

RMSE (0.29 m in Dry Tortugas and 0.34 in the STEER) and R2, improving the overall accuracy 

by 43.1% in Dry Tortugas and 73.64% in the STEER compared to the conventional global 

method up to the effective optical depth. On the other hand, the regular segmentation 

performed worst among the geographic approaches in Dry Tortugas (RMSE = 0.58 m), whereas 

the Global-Local approach performed worst in the STEER (RMSE = 1.02 m). The Depth Areas 

approach, presented the best performance among horizontal segmentation approaches, 

reinforcing the RMSE reduction performed by vertical data division. The accuracy of 

bathymetric estimates with the geographic models is improved in all depth ranges compared to 

the conventional global approach, with the exception of the 0 – 10m regular segmentation in 

Dry Tortugas, and between 10 – 15 Global-Local in the STEER. In addition to the overall 

accuracy, a significantly reduced error in depth estimates for depths beyond the conventional 

method’s effective optical depth is noticed with the geographic methods.        

Besides wide data availability to calibrate the model and better estimate depths, in terms 

of benthic habitats, the STEER area presents greater bottom heterogeneity than that found in 

Dry Tortugas (illustrated in Figure 24 and Figure 26 of Section 5.1). Comparing the depth 
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estimation up to 20 m for both locations, the best geographic model provided an accuracy 

improvement of 73.6% in the STEER (0.34m vs 1.29m of the conventional global) and 52.4% 

(0.29m vs 0.61m for the conventional approach) in Dry Tortugas. This suggests that areas of 

greater bottom heterogeneity are better estimated when the dataset is divided into small spatial 

units, however this is subject to further research. 

Figure 29 shows an accuracy analysis from each method in Dry Tortugas computed 

every 2 m up to 20 m and every 5 m beyond the 20m, (due to the fact that fewer reference 

points being available, splitting every 2m was not possible). The increase of error in greater 

depths for the conventional and horizontal segmentations indicates that the model generally 

performs well in the optically shallow waters (between 0 to 10 m), but more deviations tend to 

occur in the quasi-optically deep waters (beyond 10 m). Nonetheless, it is evident that for the 

vertical and merged approaches, the model can estimate depths beyond 10 m with accuracy 

comparable to that in shallow waters. Thus, the piecewise linear regression implemented with 

the vertical and merged approaches improves the coverage of SDB as it allows estimation of 

depths beyond the depth that is considered the limit for the conventional global approaches. 

 

Figure 29 - Performance of geographic models and conventional SDB approach in Dry 

Tortugas. The error variation is represented in depth ranges of 2 m 
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In the STEER (Figure 30) the conventional and horizontal segmentation methods 

displayed an overall accuracy increasing trend, whereas the error of the GLDR approach 

fluctuated around 0.5 m (with an increase trend for depths deeper than 16 m)). The DADR and 

vertical segmentation displayed similar performance, with RMSEs constant around 0.35 m for 

the entire area (thus, demonstrating the ability to estimate depths).  

 

Figure 30 - Variation of error of geographic models and conventional SDB approaches in the 

STEER. 

In the following sub-sections, a detailed analysis of the geographic methods is 

performed. 

5.4.2 Horizontal Geographic 

5.4.2.1 Regular Segmentation 

Analyzing the RMSE in the regular segmentation (Table 6), the error in Dry Tortugas 

significantly increases beyond 10 meters, which represents the effective optical depth of the 

conventional approach. On the other hand, in the STEER area, the error is more consistent with 

traditional SDB results, i.e., reducing accuracy with deeper bottom and very shallow water. The 

reason is that regular segmentation is highly dependent on the number of points available 
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within each grid. When a small or insufficient number of depth reference points are within the 

small cell (30x30 pixels), the larger size grid cell is used (150x150 pixels) (as explained in 

Section 4.2.1.1), a model less representative of sea-bottom variances is calibrated for the bigger 

grid cells. Characteristically, in Dry Tortugas, the studied area included sparse nautical charts 

depths in deeper areas; thus a large number of big grid cells were used for the model calibration, 

while only 26% of the 400 small grid cells were used. On the other hand, for the STEER area, 

covered by dense ALB reference depth points, a large proportion (77%) of the smaller grids 

were used for the model calibration.   

The final bathymetric map by regular segmentation after combining two SDB cell sizes 

is shown in Figure 31 (Dry Tortugas) and Figure 32 (STEER). 

 

Figure 31 - SDB surface from the regular segmentation of 150 x 150 pixels cells (A), SDB 

surface of 30 x 30 pixels cells (B) and the final bathymetry produced by regular segmentation in Dry 

Tortugas. 
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Figure 32 - SDB surface from the regular segmentation of 150 x 150 pixels cells (A), SDB 

surface of 30 x 30 pixels cells (B) and the final bathymetry produced by regular segmentation in the 

STEER. 

Table 6 - RMSE of the estimated depths from regular segmentation approach in STEER 

and Dry Tortugas. 

RMSE 

(m) 
Approach 0–5 5–10 10–15 15–20 20-25 25-30 Overall 

Dry 

Tortugas Regular 

Segmentation 

0.56 0.62 2.48 5.07 4.94 5.05 0.83 

STEER 0.81 0.63 0.93 1.16 - - 0.90 

 

5.4.2.2 Depth areas 

The segmentation by Depth Areas aims to account for the variations of the sea bottom, 

considering five meters of depth range. In Dry Tortugas, 10 regions were created, resulting in 

an overall RMSE of 0.47 m. In the STEER, despite the smaller depth range (0 - 20m), a greater 

number of segments were created (16) resulting in an overall performance of RMSE = 0.72 m 

(Table 7). 

Table 7 – RMSE of the estimated depths from irregular segmentation approach – DA 

in STEER and Dry Tortugas. 

RMSE (m) Approach 0–5 5–10 10–15 15–20 20-25 25-30 Overall 

Dry Tortugas Irregular 

segmentation 

DA 

0.38 0.49 1.38 1.41 1.55 3.75 0.47 

STEER 0.57 0.54 0.68 1.04 - - 0.72 



 

 

59 

 

5.4.2.3 Global-Local 

For the Global-Local, first, a standard conventional global extended Dierssen model 

was calibrated for the entire scene using blue-green bands and the corresponding depth points 

in the calibration dataset. Figure 33 shows the parameters used to predict bottom depths using 

four parameters in both study sites. In Dry Tortugas, 𝑚1 = 9.1332, 𝐿𝑤1 = 0.0269, 𝐿𝑤2 =

0.0271 and 𝑚0 = 2.8871, while in the STEER 𝑚1 = 9.8015, 𝐿𝑤1 = 0.008, 𝐿𝑤2 = 0.0114 

and 𝑚0 = 3.1398. Applying these parameters for all image pixels provides the global SDB 

approach. 

 

 

Figure 33 - Scatter plots of estimated SDB from global model against reference bathymetry in 
Dry Tortugas (left) and STEER (right), and the equation of the extended Dierssen model showing the 

parameters applied in the image. 

 

Considering the SDB results provided by the global model, five groups were created 

based on two variables: the global model prediction residuals (i.e., the difference between the 

global estimated depths and the observed depths) and depths. A model was then calibrated for 

each of the five regions using the training points within each of the formed regions, 

denominated as the Local model. Table 8 presents the accuracy of Global-Local model in both 

study sites. The followed steps with the Global-Local approach are illustrated in Figures 34 
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(Dry Tortugas) and Figure 35 (STEER). These figures show the SDB applied to the entire area, 

the classes created, and the final bathymetry produced by Global-Local irregular segmentation. 

The Global model resulted in an overall RMSE of 0.89 m in Dry Tortugas while by dividing 

into five regions for the Local, the overall RMSE was decreased to 0.72 m. 

 

Figure 34 – Sequence of results from global model SDB; five regions created according to 

control points clustered based on two variables and the final bathymetry produced by irregular 
segmentation – Global-Local – in Dry Tortugas. 

 

In contrast, in the STEER, smaller segments applied from the local approach did not 

produce any difference for depths up to 10 m in terms of accuracy. However, deeper bottom 

depths presented a slight improvement, resulting in a better overall result for the local approach 

than that applied for the entire area. The Global model produced an overall RMSE of 1.15 m, 

while with Local method the overall RMSE decreased to 1.02 m. 

Table 8 – RMSE of the estimated depths from irregular segmentation approach in 

STEER and Dry Tortugas.  

RMSE 

(m) 
Approach 0–5 5–10 10–15 15–20 20-25 25-30 

Overall 

(up to 30) 

Dry 

Tortugas 

Global 0.46 0.56 4.13 8.19 8.07 9.42 0.89 

Local  0.41 0.46 1.14 3.28 7.5 2.87 0.72 

STEER 

Global  0.65 0.88 1.15 1.72 - - 1.15 

Local 0.65 0.88 0.99 1.44 - - 1.02 
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The comparison between Global-Local models suggests that dividing the area into 

small spatial units produces better depth estimation, which was expected since geographically 

smaller areas imply a higher level of homogeneity in terms of water clarity and bottom type. 

 

Figure 35 - SDB surface created from global model; five regions created according to control 
points clustered based on two variables and the final bathymetry produced by irregular segmentation – 

Global-Local – in STEER. 

 

5.4.3 Vertical Geographic 

With vertical segmentation, the division of the area into smaller depth intervals substantially 

increased the accuracy, particularly in relatively deep waters. In Dry Tortugas, the overall 

RMSE of vertical segmentation every 1 m was reduced by 33.3% relative to every 2 m and 

54.5% compared to 5 m segmentation (Table 9). The scatter plot represents the final SDB 

against the reference bottom depths, presenting a coefficient of determination of 0.99 and 

RMSE of 0.30 m. The residuals plot shows the coefficient of determination of 0.99 in the 

vertical segmentation (Figure 36). The final bathymetric surface based on the best performing 

segmentation interval (1 m) is displayed in Figure 37. 

Table 9 - RMSE of the estimated depths from vertical segmentation approach in STEER 

and Dry Tortugas by depth ranges of 1, 2, 5 and 10 meters. 

RMSE 

(m) 
Approach 

Depth      

range 
0–5 5–10 10–15 15–20 20-25 25-30 Overall 

Dry 

Tortugas 

Vertical 

Segmentation 

1m  0.29 0.28 0.49 0.65 0.88 1.42 0.30 

2m 0.34 0.40 0.77 1.49 1.73 5.11 0.45 

5m 0.39 0.50 1.35 1.75 4.29 9.69 0.66 
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Figure 36 - The scatter plot (left) of the estimated SDB with the vertical segmentation (1 m 

interval) against reference bathymetry, and the respective residuals plot (right) for Dry Tortugas. 

 

Figure 37 - SDB surface created from vertical segmentation (1 m interval) in Dry Tortugas. 

The results in the STEER are even more impressive for the 1 m segmentation compared 

to the depth intervals of 2m and 5m. The overall RMSE using a 1 m interval was 0.35 m, 

improved by 31.37% relative to the 2m segmentation m and 60.22% compared to the 5 m 

segmentation. The scatter plot of the final SDB against the reference bottom depths along with 

residuals plot demonstrated a high coefficient of determination of 0.99 (RMSE = 0.35 m) 

STEER 

1m  0.41 0.33 0.32 0.36 - - 0.35 

2m 0.45 0.55 0.51 0.54 - - 0.51 

5m 0.66 0.96 0.83 1.06 - - 0.88 
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(Figure 38). Figure 39 illustrates the bathymetric surface from the vertical segmentation 

approach based on the best performing depth interval (1 m). 

 

Figure 38 - The scatter plot (left) of the estimated SDB with the vertical segmentation (1 m 

interval) against reference bathymetry, and the respective residuals plot (right) for STEER. 

 

 

Figure 39 - SDB surface created from vertical segmentation (1 m interval) in the STEER. 

5.4.4 Merged Geographic 

5.4.4.1 Depth Areas by Depth Range (DADR)  

For the DADR, after dividing the entire scene according to the depth areas of 5 m 

(resulting in 10 spatial units in Dry Tortugas and 16 in the STEER), each region was vertically 

subdivided into intervals of 1 m (that resulted in 32 spatial units in Dry Tortugas and 55 units 

in the STEER). Conceptually, this procedure is the same as subdividing the 1m vertical 
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segments of Section 5.4.3 in terms of depth areas. Therefore, the accuracy of depth estimates 

by the DADR approach is compared with that of horizontal Depth Areas segmentation and the 

vertical segmentation to assess the benefits of the merged method (Table 10).   

Table 10 - RMSE of the estimated depths from vertical and DA segmentation in 

comparison to the merged DADR approach in both sites.  

RMSE 

(m) 
Approach Units 0-5 5–10 10–15  15–20  20-25 25-30 Overall  

Dry 

Tortugas 

Horizontal DA 10 0.38 0.49 1.38 1.41 1.55 3.75 0.47 

Vertical 1 m  20 0.29 0.28 0.49 0.65 0.88 1.42 0.30 

Merged DADR 32 0.29 0.29 0.49 0.65 0.88 1.42 0.30 

STEER 

Horizontal DA 16 0.57 0.54 0.68 1.04 - - 0.72 

Vertical 1 m  20 0.41 0.33 0.32 0.36 - - 0.35 

Merged DADR 55 0.34 0.33 0.32 0.37 - - 0.34 

 

There is no statistically significant difference between the vertical and merged 

segmentations (Table 11). The overall estimated depth values were equivalent, with RMSE of 

0.30 m in Dry Tortugas and 0.34 m in the STEER. In the STEER, the improvement in the 

DADR approach compared to the vertical segmentation was between 0 to 5 m and 10 to 15 m, 

while for 5 to 10 and 15 to 20, the error decreases, which supports the conclusion that besides 

having more procedures, subdividing the vertical segments did not improve the estimated final 

bathymetry. 

Table 11 - Statistics details from ANOVA test 

Area Approach Mean Std. dev. f p 

Dry Tortugas 

Vertical -0.0221 0.2949 

0.00687 0.93399 

DADR -0.0241 0.2965 

STEER 

Vertical -0.0287 0.3847 

0.26275 0.60842 

DADR -0.0137 0.3287 
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On the contrary, comparing the Depth Areas horizontal irregular segmentation 

approach (DA) with the DADR, the RMSE is 36.1% greater in Dry Tortugas and 52.77 % in 

STEER. Thus, the merged DADR approach is better than the DA method. 

5.4.4.2 Global-Local by Depth Range (GLDR)  

The performance of the extended Dierssen model from GLDR is compared to the 

Global-Local model. Five models (regions) were calculated with the Global-Local, whereas 

28 models in Dry Tortugas and 78 in the STEER were created with the GLDR. GLDR offered 

more accurate depth estimates in all computed depths ranges, reducing the overall RMSE by 

44.4% in Dry Tortugas and 41.1% in the STEER relative to the Global-Local approach (Table 

12). 

Table 12 – RMSE of horizontal irregular segmentation- Global-Local approach 

compared with the merged GLDR in both sites. 

RMSE 

(m) 
Approach Units 0–5 5–10 10-15 15–20 20-25 25-30 Overall 

Dry 

Tortugas 

Horizontal 
Global- 

Local 
5 0.41 0.46 1.14 3.28 7.5 2.87 0.72 

Merged GLDR 28 0.29 0.31 0.78 1.10 3.13  2.87 0.40 

STEER 

Horizontal 
Global- 

Local 
5 0.65 0.88 0.99 1.44 - - 1.02 

Merged GLDR 78 0.37 0.52 0.34 1.01 - - 0.60 

 

According to the above analysis, the vertical segmentation (1 m depth intervals) and 

DADR performed the best. The final SDB surface using the vertical segmentation approach at 

both study sites is shown in Figure 40 and Figure 41. 
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Figure 40 - Final Bathymetry derived from the vertical segmentation approach using the 

extended Dierssen model in Dry Tortugas. 

 

 

Figure 41 - Final Bathymetry derived from the vertical segmentation approach using the 
extended Dierssen model in the STEER area. 
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5.4.5 Dierssen vs. extended Dierssen Geographic 

The geographic approaches discussed in the previous sections were carried out using 

the extended Dierssen model as extended by Freire (2017). The extended Dierssen model was 

proven more accurate than the conventional global models (see Table 4 in Section 5.3); 

however it is more complex in its implementation and poses the risk of the model not 

converring (or converging to the wrong solution) if the initial vector is not appropriately 

selected. Therefore, in this section we evaluate the best performing extended Dierssen 

geographic approach against the respective linear model (Dierssen). 

Section 5.4.1 demonstrated that the vertical segmentation and the merged DADR 

methods perform the best. However, due to simplicity of the vertical segmentation method, 

compared to the DADR that requires additional steps and computations, for the evaluation of 

the Dierssen vs. extended Dierssen algorithm, the vertical segmentation is utilized. 

 

Figure 42 - Scatter plot of estimated SDB against reference bathymetry from the vertical 

segmentation using extended Dierssen model (a) and using Dierssen (b) in Dry Tortugas and STEER. 
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The scatter plots of Figure 42 present the correlation between control points and the 

estimated depths from: (a) the vertical segmentation approach using the extended Dierssen 

model; (b) the vertical segmentation approach using the Dierssen model (simplified). Table 13 

summarizes the results in the form of the computed RMSE for every 5 m depth ranges. 

Table 13 - Comparison of the vertical segmentation using Dierssen and extended Dierssen 

model according RMSE in Dry Tortugas and STEER. 

 
Approach 0 – 5 5–10 10–15 15–20 20-25 25-30 Overall   

D
ry

 

T
o
rt

u
g
as

 

V
er

ti
ca

l 

extended 

Dierssen 
0.29 0.28 0.49 0.65 0.88 1.42 0.30 

Dierssen 0.29 0.29 0.43 0.88 0.94 1.36 0.31 

S
T

E
E

R
 extended 

Dierssen 
0.41 0.33 0.32 0.36   0.35 

Dierssen 0.33 0.34 0.31 0.31   0.32 

 

Figure 42 illustrates similar performance between the vertical segmentation using 

Dierssen and extended Dierssen models in both areas, with no statistically significant 

difference at 95% (f-1=0.66306; p=0.415805 in Dry Tortugas, and f-1=0.49994; p=0.479801 

in STEER) and the same coefficient of determination. The overall accuracy in Dry Tortugas 

was 0.30 m in the extended Dierssen model and 0.31 in the Dierssen (simplified), while in the 

STEER, 0.35 m in the extended Dierssen, compared to 0.32 m in the Dierssen (Table 13).  

 

5.4.6 Geographic (vertical) vs. conventional algorithms 

In this section the best performing geographic approach (vertical segmentation) was compared 

against linear Dierssen and the most used conventional band-ratio Stumpf (2003) model (Pe’eri 

et al., 2014, Wei & Theuerkauf, 2020) applied for the entire area. Again, the comparison in 

Dry Tortugas was limited to optically shallow waters, i.e., 10 m. However, it is important to 

reiterate the ability of geographic models, especially the vertical segmentation, to estimate 
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depths beyond the effective optical depth from the conventional approach, allowing depth 

extraction in quasi-optically deep waters. Figure 43 shows the final SDB surface using the 

conventional approach and the surface obtained in the vertical segmentation in Dry Tortugas, 

demonstrating the ability to  increase the mapped coverage. 

Furthermore, as the analysis was reduced to depths up to 10 m, the accuracy of the 

derived bathymetry every 2 m of depth is also investigated, as this may reveal a pattern and 

direction of errors in the estimation. 

 

Figure 43 - Final Bathymetry derived from the conventional approach for the entire area and 

from vertical segmentation in Dry Tortugas. 

 

When comparing the vertical segmentation with the conventional approaches in Dry 

Tortugas (Table 14), the accuracy has been substantially improved at all 2 m depth ranges, 

particularly in the relatively shallow-water areas, between 0 to 2 m. The overall accuracy of 

depth estimation with the vertical segmentation was increased by 43.1% compared to the 

conventional Dierssen model and 53.9% compared to the traditional Stumpf model. In addition, 

depth accuracy per CATZOC classification has been improved from A2/B and C to A1. 

Figures 44 (Dry Tortugas) and Figure 45 (STEER) show the correlation of estimated 

bottom depts from SDB versus the reference bathymetry (a) and the residuals (b) for the 
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conventional and vertical segmentation approaches. The residual plot of the conventional 

approach in both areas indicates a curve pattern which suggests that the independent variables 

have not captured the entire deterministic component. This trend coincides with the spatial 

distribution of prediction residuals in Figure 46. On the other hand, in the vertical segmentation, 

there is no clear tendency since the residuals are randomly distributed for the depth ranges. 

 

Figure 44 - Scatter plot of estimated SDB against reference bathymetry (a) and residuals plot 

of the model (b) from the conventional algorithm and vertical segmentation in Dry Tortugas . 

Table 14 - Comparison of the vertical segmentation and the conventional algorithms according 

RMSE and CATZOC in Dry Tortugas. 

Area Approach 0 – 2 2 – 4 4 – 6 6 – 8 8 – 10 
Overall 

(0– 10m)  
ZOC 

Dry 

Tortugas 

Vertical 0.37 0.26 0.32 0.27 0.28 0.29 A1 

Dierssen 0.64 0.45 0.63 0.48 0.42 0.51 A2/B 

Stumpf 1.11 0.47 0.59 0.68 1.20 0.63 C 
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In the STEER, the overall RMSE of the vertical segmentation approach was reduced 

by 72.8% relative to the RMSE of the conventional Dierssen model and 81.8% relative to the 

Stumpf model. The CATZOC is improved from C and D to A1 (Table 15). 

 

Figure 45 - Scatter plot of estimated SDB against reference bathymetry (a) and residuals plot 

of the model (b) from the conventional algorithm and vertical segmentation in the STEER. 

 

Table 15 - Comparison of the vertical segmentation and the conventional algorithms according 

RMSE and CATZOC in STEER. 

Area Approach 0 – 5 5 – 10 10 – 15 15 – 20 
Overall 

(0– 20m)  
ZOC 

STEER 

Vertical 0.41 0.33 0.32 0.36 0.35 A1 

Dierssen 1.13 1.54 0.95 1.54 1.29 C 

Stumpf 1.58 2.47 1.11 2.43 1.93 D 
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Compared to the conventional model, dividing the entire area according to the vertical 

segmentation 1 m depth ranges has evidently improved the estimated depths. Nonetheless, the 

prediction residuals in the vertical segmentation and traditional approaches were mapped in 

order to investigate patterns related to their distribution. If the model is robust to bottom type 

variation, the prediction of residuals will be randomly distributed over the scene. On the other 

hand, if any cluster is observed, it will suggest an overestimation or underestimation of water 

depth depending on the bottom variations (Su et. al., 2008). Figure 46 shows the spatial 

distribution of prediction residuals for both sites. The two maps on the left represent the spatial 

distribution of error, i.e., the difference between SDB estimated depths and the reference 

points, using the conventional approach, and the maps on the right show the distribution of 

error in the vertical segmentation. As discussed in Section 3.1.3, the band-ratio is based on the 

concept that the change in ratio between two bands due to bottom variation is less affected than 

the change in depth. However, the results of this work demonstrate that a degree of bottom 

heterogeneity is not captured by applying a single model in the entire scene (Figure 46). 

Clearly, the conventional global method - a single model - did not compensate for variations 

in the bottom type, and clusters of positive and negative residuals suggest that bottom variation 

is significant to the model's performance in depth estimation. On the other hand, the vertical 

segmentation - multiple models - approach presented smaller residuals and random location 

mapped distributed within the scene, which demonstrated a process with reduced heterogeneity 

of bottom type and water quality. 
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Figure 46 - Spatial distribution of prediction residuals of the models: (a) from the conventional 

approach using the Dierssen model and (b) from the vertical segmentation approach. 
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CHAPTER 6 : DISCUSSIONS, AND SUGGESTIONS FOR FUTURE WORKS 

6.1 Discussion 

This study sought to explore different segmentation procedures to address the inadequacy of 

conventional SDB models when the bottom type and water clarity vary spatially within the 

scene. By adding the water column contribution (Lw) to the model, six approaches were 

investigated based on horizontal (Regular, Global-Local, and Depth-Areas), vertical (Depth-

Range), and merged (Global-Local by Depth Range and (GLDR) and Depth-Areas by Depth 

Range (DADR)) segmentation for inferring bathymetry.  

By incorporating the water column contributions to the model through the Dierssen 

model (as extended by Freire (2007)), the Lw enhanced the overall SDB results, particularly 

when the model was calibrated globally, i.e., one model for the entire scene. The results from 

the two study areas demonstrated that, by including Lw to the SDB solution, it is possible to 

account for a certain level of the spatial heterogeneity of bottom type and water quality and 

better estimate depths. Nonetheless, when the area is segmented into smaller spatial units using 

our geographic models, no significant difference could be noted compared to the Dierssen 

model. This can be explained by that, with segmenting the scene into smaller spatial units, the 

water column contribution and bottom returns are approximately constant and/or insignificant 

within the small spatial units. Consequently, as Section 5.4.5. demonstrated, the Dierssen 

model (simplified) performs equally well to the extended Dierssen model when the geographic 

models are utilized.  

The extended Dierssen model requires more effort and presents more limitations: the 

required number of control points within each spatial unit is greater than that for solving the 

Dierssen model, while calibrating the extended Dierssen model is also more computationally 

demanding. More importantly, the extended Dierssen function solution can fail if the pseudo-

SDB (pSDB) computes a negative value or if the approximation vector (X0) is insufficiently 
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defined and, thereby, the solution does not converge. In this study, the initial vector (X0) was 

derived performing two steps: first by considering water column contributions as negligible for 

computing the translation (m0) and scaling (m1) coefficients from a linear correlation between 

pixel values log-difference and depth measurements; second, to retrieve water column 

parameters, by the linearization of the RTE using the initial m0 and m1 thus computing an initial 

solution for the four parameters. As the extended Dierssen parameters are restricted to linear 

calculations, a meaningful SDB solution could be estimated. 

Regardless of the Dierssen or extended Dierssen model, the application of the 

geographic approaches demonstrated promising results for the inclusion of SDB in 

hydrography in terms of depth accuracy, and especially for use on nautical charts. Categorizing 

the SDB results according to CATZOC showed that the area segmentation resulted in higher 

CATZOCs, i.e., higher level of depth accuracy category. In detail, in Dry Tortugas the 

CATZOC increased from A2/B to A1 (depth up to 10 m) and from C to A1 in the STEER study 

area (depth up to 20 m) when compared to the conventional Dierssen algorithm. Compared to 

the conventional Stumpf algorithm the improvement was even more impressive:  from C to A1 

in Dry Tortugas and from D to A1 in the STEER. However, it is pointed out that the above 

results and CATZOCs represent only the vertical accuracy. For a survey to be assigned a 

CATZOC, all data quality parameters must meet the requirements, i.e., feature detection, 

coverage, and horizontal accuracy besides the depth accuracy. Considering that full seabed 

coverage and feature detection requirements are not met with SDB, as well as the horizontal 

accuracy requirements for A1 and A2, it makes sense that the improved depth accuracy of the 

proposed methods may be reflected on the charts not with a higher CATZOC but rather with 

populating the QUASOU attribute for the derived soundings. The QUASOU attribute provides 

the reliability of a sounding which is meant to be populated when the depth uncertainty of 

charted soundings is better than that of the aggregated CATZOC for the area.  
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The findings of this study showed that all the investigated geographic approaches (i.e., 

horizontal, vertical, and merged) could better estimate depth and improve SDB coverage 

compared to the widely used conventional band-ratio algorithms. By segmenting the area and 

recognizing water column contribution to the model, the effects of the variation of bottom type 

and water quality were reduced, improving the accuracy and reliability of depth estimates from 

the image. One of the limitations of the method is the required number of training depths; as 

the segments become smaller, the total number of points to train the model increases. When 

the Dierssen model is applied, two points for each segment are required to provide a solution, 

whereas, for the extended Dierssen model, four training points are required for each spatial 

unit. While these numbers of points are capable of providing a solution, to achieve a good 

model performance and, consequently, better depth estimation, in practice a greater number of 

calibration points are necessary. The optimal number of calibration points may depend on 

factors, such as the geomorphology of the study area, the number and types of substrates and 

benthic cover types, and the size of the study area. This and the determination of the minimum 

/ optimal number of points, from a model performance perspective, is part of future work.  

Furthermore, the geographic models consist of multiple steps compared to the 

conventional method, thus, increased processing time is required. Since the individual steps 

and analysis were performed as a semi-automated process, Table 16 represents only an 

estimation of the total processing time for each geographic model (based on the experience 

derived from this work), where T is the processing time for the conventional Dierssen 

approach. Besides the estimated processing time, Table 16 summarizes the minimum number 

of training points required to derive a solution for each approach in the STEER, the number of 

models that were calibrated (in parenthesis), and the factors that may influence the number of 

points needed for an optimal solution.  
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Table 16 – Factors to be considered by applying geographic models. 

Approach 

Number of training 

points Estimated 

Processing Time 
Determinant Factors 

Dierssen  
Extended 

Dierssen 

Horizontal 

Regular (#122) 
188 376 7 x Required accuracy 

 
The size of the investigated area 

 

Presence of estuary, bays, and 
freshwater outflow 

 

Geomorphological factors 

 
Number and types of substracts 

and benthic cover types 

 
 

Depth Area (#16) 32 64 7 x 

Global-Local (#5) 10 20 5 x 

Vertical – 1m 
(#20) 

40 80 5 x 

DADR (#55) 110 220 10 x 

GLDR (#78) 156 312 10 x 

Conventional (#1) 2 4 1 x 

 

Among the different geographic approaches, some considerations can be pointed out 

regarding the horizontal, vertical, and merged segmentation methods: 

• Vertical: as the Results section demonstrated, dividing the image scene 

into smaller depth ranges improved the accuracy of estimated depths. In detail, 

for the depth ranges of 5m, 2m, and 1m used in this study, the accuracy of the 

depth estimates was improved by more than 15%, 29% and 43%, respectively, 

compared to the conventional approach in the optically shallow waters, and 

more than 49%, 65%, and 76%, respectively, in the quasi-optically deep area, 

in Dry Tortugas. Furthermore, the method demonstrated the capacity to estimate 

depths beyond the effective optical depth, considered as a fundamental 

limitation of the conventional approach, due to the piecewise nonlinear 

approximation of the depth. Nevertheless, it is important to point out the 

quantized prediction appearance (discontinuous surface) related to the depth 

range size. The discontinuity of depth estimates is an artifact caused by the 

segmentation since the models are calibrated separately for each depth range. 
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As the intervals become smaller, the depths are adjusted within the segment, 

resulting in the quantized appearance of Figure 47. The discretized appearance 

caused by piecewise functions is also mentioned by Wei & Theuerkauf (2020) 

and Rubert et al. (2003), wherein the latter presented similar residual plot pattern 

as those illustrated in Figures. 35 and 36, indicating that the homoscedasticity 

assumption is reasonable. This inherent attribute / limitation of the piecewise 

linear regression leads to a fundamental questions that requires further 

investigation: What is the optimal range that result in acceptable discontinuities 

and quantization of predictions vs. the improvement in accuracy? In this regard, 

and by looking at Figure 48, another research question is which approach 

provides the most reliable and useful estimated bathymetry for the application. 

In addition, the vertical segmentation presented cell size dependencies. 

Different spatial resolutions between satellite images and reference bathymetry 

surface can cause estimated out-of-range depths. Due to the image clipping 

having a lower spatial resolution than contour lines, some depth points may fall 

within the adjoined model. In practice, the estimated out-of-range depths are 

located on the wrong spatial unit/segment for which the adjacent depth range 

model is applied, resulting in these outliers and reducing accuracy. 

 

Figure 47 - The quantized appearance in different depth ranges – 1m depth range (left), 2m 

(center), and 5m (right). 
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Figure 48 - Vertical profiles of the estimated bathymetry with the different models: (a) Lidar 

surface, (b) Global Dierssen – Conventional, (c) Vertical segmentation – 1m, (d) Vertical segmentation 

– 2m, and (e) Vertical segmentation – 5m in the STEER. 



 

 

80 

 

• Horizontal: despite observing that segmenting the area horizontally enhanced 

depth estimation compared to the conventional model applied in the entire 

scene, some limitations are evident. Defining the cell size to calculate the 

solution can be challenging with different bottom types and water quality, and 

can cause potential problems in estimating depths: in the Global-Local 

approach, 5 classes were created in both study sites, but in increasing the number 

of classes no significant improvement was noticed; for Depth-Areas horizontal 

segmentation, 10 classes were created in Dry Tortugas and 16 in the STEER; 

and contrary to the DA and Global-Local, the regular segmentation resulted in 

a considerably bigger number of small regions (400 segments in Dry Tortugas 

and 122 in the STEER) that, consequently, often contained a low number of 

control points for training the model. Fewer than four depths within a grid cell 

results in cells merging as a solution cannot be achieved. The fact that Dry 

Tortugas presents lower accuracy in the horizontal segmentation compared to 

the STEER is the number of small cells required to be merged with the larger 

ones: 74% compared to 23% in the STEER. Also, as the number of cells created 

is significantly greater in the regular segmentation than from the other 

horizontal segmentation approaches, the number of the required control points 

to calibrate the model and represent the bottom depth is also greater. And the 

computational cost to fit all the required models.  

• Merged: the results of the merged method presented no statistical difference 

when compared to the vertical approach. In addition to its complexity, as it 

requires a greater number of steps, number of control points is required to 

calibrate the model. Likewise to those discussed for the vertical segmentation, 
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the quantized prediction and model discontinuity issue remains (with the 

aforementioned concerns).  

While the vertical segmentation approach tested in this study was found to have 

substantially better accuracy than the conventional approach using a single (global) linear 

model, it is important to note that questions remain about the interpretation of this result, and, 

in particular, whether it might be related to overfitting, rather than an actual improvement in 

accuracy, particularly for the 1m segmentation. This concern arises from the analysis of the 

plots in Figures. 44, 45, and 47, and the quantized appearance of the vertically-segmented SDB 

vs. reference bathymetry scatterplots. Further analysis indicated that the reason for this 

quantization is that, in the vertical segmentation approach, many of the individual models 

(where each model corresponds to a particular depth range, such as 1-2 m) have low linear 

correlation between relative SDB and the lidar-derived depths used for training, with low 

slopes of the regression lines (Figure 49). This means that within a particular segment, the 

model output is within a narrow depth range (approximately 0.4m in the 1m segments) around 

the mean depth.which results in clustering of outputs and the quantized appearance of the 

scatterplots. Based on this analysis, it is strongly recommended that future work include an 

additional test to investigate whether the vertical segmentation approach is actually leading to 

a substantial increase in accuracy. Specifically, it is recommended to train the vertical-

segmentation model using lidar data for one area, and then test it (without retraining) using a 

different data set (e.g., MBES) in a nearby but spatially-separate site. 

 

Figure 49 - Regression line in individual models in the vertical segmentation– depth range of 0 

– 1m (left), 1 – 2m (center), and 2 – 3m (right). 



 

 

82 

 

Although previous works have investigated dataset segmentation, a comparison would 

not be possible due to differences between datasets, conditions of the area under investigation, 

and the model applied. As example, while this work implemented the Dierssen algorithm by 

vertically and horizontally segmenting the image scene into smaller spatial units, Poursanidis 

et al. (2019) divided the dataset in two groups of depth using the empirical method by Lyzenga 

(1985), and Vargas et al. (2021) tested three groups of depths using Stumpf algorithm. 

 

6.2 Future work 

Regarding the SDB model, the estimation of optical parameters was conducted from the 

Diersssen model using LSM adjustment to derive a solution. Further research could be 

conducted exploring IOP’s and AOP’s of water, such as diffuse attenuation, bottom sediments, 

and turbidity, in order to provide more accurate meanings of parameters. 

Segmentation approaches, may be further investigated: 

• the regular segmentation comes with some limitations, i.e., the size of the grids, 

that influences the bathymetric estimation. When the grid is too large, it may 

not contain the proper homogeneity of bottom type, while if it is too small, it 

may not include the number of control points required to model the surface 

sufficiently or it may result in overfitted models. In this context, the grid size 

was arbitrarily defined, but more complex approaches could be investigated. 

Quadtree data structures, for example, could be applied to partition the image 

scene by recursive subdivisions based on maintaining a sufficient number of 

control points within each cell. This approach could ensure an appropriate grid 

size to cover bottom type and water quality heterogeneity.  

• vertical segmentation also is characterized by a limitation. The quantized 

prediction toward the center leads to a discontinuous surface with break points 

between the segments. As demonstrated in this study, the piecewise function 
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produces this discretized appearance; however, it is highly dependent on the 

depth range size. Instead of fixed depth intervals, such as 1, 2, and 5 m preset 

in the vertical segmentation, future research could include tests to find a good 

agreement between relative SDB and referenced bathymetry and, 

simultaneously, provide a smoother surface. Instead of only using RMSE as a 

criterion to find the best solution, the analysis could, as well, include a 

minimum coefficient of determination (R2) as a threshold.  

Although geographic models demonstrated an ability to estimate depth very well in all 

depth intervals, up to the effective optical depth and in quasi-optically water, they may be 

overfitting. Identifying whether the vertical segmentation approach is actually leading to a 

substantial increase in accuracy is strongly recommended. To evaluate model performance 

more accurately, further studies could train the vertical model using lidar data for one area and 

then test it for a nearby site (geographically separate) with a different dataset (e.g., existing, 

ALB, MBES, or other reference data). 

This study showed an improvement in estimate depth when vertical segmentation is 

applied over the area. Although, clearly this approach was able to account for variations in the 

water column and seabottom, when the prediction of residuals was plotted over the benthic 

habitat map developed by NOAA (Figure 50), there is a possible correlation between residuals 

and specific bottom types. Further potential research could investigate the influence of bottom 

type on SDB final results.  
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Figure 50 - Spatial distribution of prediction residuals from verical approach againt depth and 

benthic habitat in STEER. 
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CHAPTER 7 : CONCLUSION 

This study investigated the segmentation of geographic space and the incorporation of the 

extended Dierssen model to address SDB limitations regarding bottom type and water quality 

heterogeneity in order to extract more accurate depth information from satellite images. The 

key assumption was that in small areas the water column and sea bottom demonstrate sufficient 

homogeneity to provide a better bottom depth discrimination. In practice, contrary to the 

conventional approach, where a single model for the entire scene is calculated, the area was 

partitioned vertically and/or horizontally. Each subarea was modeled over the extended 

Dierssen function varying from place to place. 

Although the conventional approach can account for a certain level of heterogeneity in 

bottom types returns, this study demonstrated the capability of reducing the variation by 

segmenting Sentinel-2 satellite image acquired over Dry Tortugas and the St. Thomas East End 

Reserve (STEER). The estimated depths in both study areas presented a significantly improved 

accuracy, more than 40% in Dry Tortugas and more than 60% in the STEER, compared to 

conventional approaches in optically shallow water. Vertical segmentation provided greater 

performance in detecting and improving depth accuracy due to the piecewise functions and the 

reduced heterogeneity of bottom type and water quality by depth ranges. Furthermore, when 

the data was vertically divided in Dry Tortugas, the depths presented the same accuracy 

estimation for the entire dataset (shallow and quasi-optically deep water), demonstrating an 

ability to infer bathymetry beyond the effective optical depth (10 m in the particular study area) 

which is the limit for depth estimation in the conventional approaches. However, the quantized 

predictions of the individual linear regression models demonstrated by the vertical 

segmentation raises the question of overfitting rather than an actual improvement in accuracy, 

something that is part of future work.  
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On the other hand, although there was an improvement in estimating depth with the 

horizontal segmentation methods compared to the traditional method, this work’s results 

indicated the need for additional control points and cell size dependencies. At the same time, 

in spite of providing the same accuracy as the vertical segmentation, the merged approach 

suggested a limit to splitting the area. If it is too small, it can create segments where the number 

of points will not ensure a better depth estimation, besides being more computationally 

demanding and requiring more control points. This makes the vertical segmentation the 

preferable method.  

The two case studies also suggested that applying the extended Dierssen model and 

fully considering the RTE improves the bottom discrimination when the entire area is 

considered to calibrate the model. However, by adding the water column parameter into the 

model, the extended Dierssen model did not add significant contribution by sub-dividing the 

scene into small pieces. Furthermore, the extended Dierssen model adds complexity and 

limitations, which suggests that the simpler function is preferable for the geographic models. 

Although geographic models provides significant improvements, the need for an 

increased number of control points should be noted, due to the greater number of segments 

formed for model training. Therefore, data with dense coverage of points is necessary, and 

studies with a reduced number of control points should be investigated. 

Overall, the accuracy of bathymetric estimates was improved when the scene was 

segmented into smaller spatial units. The findings presented in this study are an exciting 

opportunity to lead to many potential new and improved applications for HOs. Since the 

accuracy has increased substantially, the bathymetry data generated using the geographic 

model can be used to provide valuable information to help ensure safe navigation. As such, 

understanding the potential of remote sensing for contributing to improved nautical products 
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is critical for HOs to ensure another step of being included for regular application as a mapping 

tool within the IHO standards. 
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APPENDIX 

Python Codes 

#Reading the radiance of the blue and green bands and depth. 

 

import os 

from datetime import datetime, timezone 

import matplotlib.pyplot as plt 

from numpy import pi, cos, sin, log, exp 

import numpy as np 

 

class Depth: 

    """A Class for Data""" 

          

    def __init__(self): 

        self.data_path = str() 

        self.metadata = dict()   

        self.w = list()   #index 

        self.x = list()   #radiance blue band  

        self.y = list()   #radiance green band 

        self.z = list()   #depth 

         

    def read_jhc_file(self, fullpath): 

 

        if os.path.exists(fullpath): 

            self.metadata["Source File"] = fullpath 

            print('Opening water level data file:' + fullpath) 

        else: 

            raise RuntimeError('Unable to locate the input file' 

+ fullpath) 

        d_file = open(fullpath) 

        d_content = d_file.read() 

        d_file.close 

        d_lines = d_content.splitlines() 

        count = 0   

        for d_line in d_lines: 

            observations = d_line.split()   

            self.w.append(float(observations[0])) 

            self.x.append(float(observations[1])) 

            self.y.append(float(observations[2])) 

            self.z.append(float(observations[3])) 

            count += 1 
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#Importing modules 

 

from PIL import Image 

from IPython.display import display 

 

%reload_ext autoreload 

%autoreload 3 

%matplotlib inline 

 

import math 

import sys 

import os 

import matplotlib 

import matplotlib.pyplot as plt 

import matplotlib.ticker as ticker 

from scipy.optimize import curve_fit  

import numpy as np 

from numpy import log as ln 

from collections import Counter 

import pandas as pd 

from osgeo import gdal 

from osgeo import ogr 

from osgeo import osr 

 

#Importing Sentinel-2 images 

 

sys.path.append(os.getcwd())  # add the current folder to the 

list of paths where Python looks for modules  

np.set_printoptions(precision=2, floatmode='fixed') 

print("GDAL version: %s" % (gdal.__version__, )) 

 

bag_path_B_AC = os.path.join(os.getcwd(), "Sentinel", 

"B_AC.tif") 

bag_path_G_AC = os.path.join(os.getcwd(), "Sentinel", 

"G_AC.tif") # the 'sh2007.bag' file is located under the ̀ data` folder 

 

dataset_B_AC = gdal.Open(bag_path_B_AC, gdal.GA_ReadOnly) 

if not dataset_B_AC: 

    raise RuntimeError("Issue in opening the BAG file: %s" % 

bag_path_B_AC) 

print("BAG file was successfully opened: %s" % (bag_path_B_AC,)) 

 

dataset_G_AC = gdal.Open(bag_path_G_AC, gdal.GA_ReadOnly) 

if not dataset_G_AC: 

    raise RuntimeError("Issue in opening the BAG file: %s" % 

bag_path_G_AC) 

print("BAG file was successfully opened: %s" % (bag_path_G_AC,)) 

 

 

#Reading control points 

 

#Reading calibration points  

from mycode.SDB_Grid import Depth 

abs_path=os.path.abspath(os.path.curdir)+"/Data/HORIZONTAL/" 

 

Data = Depth() 
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Data.read_jhc_file(abs_path+"DRY_RANGE_HOR_9.txt") 

 

#Transforming list in vector 

gr = np.c_[Data.w] 

Lb = np.c_[Data.x] 

Lg = np.c_[Data.y] 

z = np.c_[Data.z] 

 

#Reading validation points  

from mycode.SDB_Grid import Depth 

abs_path=os.path.abspath(os.path.curdir)+"/Data/HORIZONTAL/" 

 

Data = Depth() 

Data.read_jhc_file(abs_path+"DRY_VAL_HOR_9.txt") 

 

#Transforming list in vector 

grV = np.c_[Data.w] 

LbV = np.c_[Data.x] 

LgV = np.c_[Data.y] 

zV= np.c_[Data.z] 
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#Image settings  

 

print("Projection:") 

projection_B_AC = dataset_B_AC.GetProjection() 

print("- WKT:\n%s" % projection_B_AC) 

 

srs_B_AC = osr.SpatialReference(wkt=projection_B_AC) 

projection_name_B_AC = srs_B_AC.GetAttrValue('projcs') 

print("- name: %s" % projection_name_B_AC) 

 

B_AC= dataset_B_AC.GetRasterBand(1) 

B_AC_P2_nodata = B_AC.GetNoDataValue() 

B = B_AC.ReadAsArray() 

 

G_AC = dataset_G_AC.GetRasterBand(1) 

G_AC_P2_nodata = G_AC.GetNoDataValue() 

G = G_AC.ReadAsArray() 
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# Per-pixel vector solution application 

 

        # Columns first 

         B_splice = B[i*n:(i+1)*n, j*m:(j+1)*m]         

         G_splice = G[i*n:(i+1)*n, j*m:(j+1)*m] 

 

  # Rows first 

         B_splice = B[j*n:(j+1)*n, i*m:(i+1)*m]        

         G_splice = G[j*n:(j+1)*n, i*m:(i+1)*m] 

         

        # Columns first with origin in the lower left corner 

        B_splice =  B[(((i)*n)):(((i+1)*n)), j*m:(j+1)*m] 

        G_splice =  G[(((i)*n)):(((i+1)*n)), j*m:(j+1)*m] 

        Dep = np.zeros((n,m)) 

     

        for l in range(n):       

            for c in range (m): 

                num=(m0*(ln((B_splice[l,c]-

Lw1)/(G_splice[l,c]-Lw2)))) + m1 

                Dep[l,c] = num  

                DepM[(((i)*n)):(((i+1)*n)), j*m:(j+1)*m] = 

Dep[:,:]  

        countV = np.count_nonzero(grV==gr_value) 

        Z_SDB_V=(m0*ln((LbV[grV==gr_value]-

Lw1)/(LgV[grV==gr_value]-Lw2)))+m1 

        Diff = Z_SDB_V - zV[grV==gr_value]  

        quadrado = Diff*Diff 

        soma = sum(quadrado) 

   

        if countV >0: 

            RMSE_V = (soma/countV)**0.5  

        print (XA) 

        print (RMSE20) 

        print (RMSE_V) 

        plt.figure() 

       

plt.figure() 

plt.imshow(DepM) 

 

image_Full_Poly_1_1_NL = os.path.join(os.getcwd(), "Output", 

"SDB_VI_2019_9_NL.tif")  

driver = gdal.GetDriverByName('GTiff') 

dataset = driver.Create(image_Full_Poly_1_1_NL, 450, 450, 1, 

gdal.GDT_Float32)        

dataset.GetRasterBand(1).WriteArray(DepM) 

        

dataset.SetGeoTransform(dataset_B_AC.GetGeoTransform())   

##sets same geotransform as input 

dataset.SetProjection(dataset_B_AC.GetProjection()) ##sets same 

projection as input 

 

dataset.FlushCache() 

dataset = None 

band = None 

dataset_B_AC = None 
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#Application of geographic model – HORIZONTAL AND EXTENDED 

DIERSSEN 

#Initial vector (X0)  

 

#Definition 

 

import numpy as np 

u = 2 

u1 = 1 

u4 = 4 

 

gr_nr= int(np.amax(gr)) #number of groups 

 

A_list = list() 

U_list = list() 

X_list = list() 

V_list = list() 

z_list = list() 

N_list = list() 

RMSE_list = list() 

 

A1_list = list() 

U1_list = list() 

X1_list = list() 

V1_list = list() 

N1_list = list() 

RMSE1_list = list() 

 

L0_list = list() 

L_list = list() 

 

n=150 

m=150 

 

x_dim = dataset_B_AC.RasterXSize 

y_dim = dataset_B_AC.RasterYSize 

 

n_grids_x = x_dim//n 

n_grids_y = y_dim//m 

 

DepM = np.zeros((x_dim,y_dim))       

 

for j in range(0,n_grids_y): 

    for i in range(0,n_grids_x):         

        gr_value =  i + (n_grids_y)*j     

        count = np.count_nonzero(gr==gr_value) # number of 

control points in group 

        A = np.zeros((count,u))    

        z_grp = z[gr==gr_value] 

 

        A[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

        A[:, 1] = 1   

        N=A.T@A 

        U=A.T@-z_grp 

        inv_N = np.linalg.inv(N) 

        X= -inv_N@U 
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        V= (A@X) - z_grp    

        RMSE = ((V.T@V)/(count-u))**(1/2) 

 

        U_list.append(U) 

        N_list.append(N) 

        X_list.append(X) 

        V_list.append(V) 

        A_list.append(A) 

        z_list.append(z_grp) 

        RMSE_list.append(RMSE) 

 

        # X01 and X04 → m0 and m1 

 

        Lw1=0 

        Lw2=0 

        L0=np.zeros((count,1))     

        L0=(((X[0]*(ln((Lb[gr==gr_value]-

Lw1)/(Lg[gr==gr_value]-Lw2))) + X[1])))  

        L = L0 - z_grp   

        A1=np.zeros((count,u)) 

        A1[:, 0]= (-X[0] / (Lb[gr==gr_value] - Lw1)) 

        A1[:, 1]= (X[0] / (Lg[gr==gr_value] - Lw2))  

        N1=A1.T@A1 

        U1=A1.T@ L 

        inv_N1 = np.linalg.inv(N1) 

        X1= -inv_N1@U1 

        V1= (A1@X1) + L 

        RMSE1 = ((V1.T@V1)/(count-u))**(1/2)  

        U1_list.append(U1) 

        N1_list.append(N1) 

        X1_list.append(X1) 

        V1_list.append(V1) 

        A1_list.append(A1) 

        RMSE1_list.append(RMSE1) 

 

        # X02 and X03 → Lw1 and Lw2 

 

        X0=np.array([X[0],X1[0],X1[1],X[1]])  #[m0 , Lw1, Lw2, 

m1] 

 

        # First iteration  

 

        RMSE30 = -10  

        iteracao = 1 

        RMSE20 = 10 

 

        while RMSE30 < RMSE20: 

            m0 = X0[0] 

            Lw1 = X0[1] 

            Lw2 = X0[2] 

            m1 = X0[3] 

            L0 = np.zeros((count,1)) 

            L0 = ((X0[0]*(n((Lb[gr==gr_value]-

X0[1])/(Lg[gr==gr_value]-X0[2])))+X0[3]))  

            L = L0-z_grp 
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            A2=np.zeros((count,u4)) 

            A2[:, 0] = ln( (Lb[gr==gr_value] - Lw1 )/ 

((Lg[gr==gr_value]) - Lw2) ) 

            A2[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

            A2[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

            A2[:, 3]= 1 

 

            N2=A2.T@A2 

            U2=A2.T@L 

            inv_N2 = np.linalg.inv(N2) 

            X2= -inv_N2@U2 

            XA= X0 + X2       

            V2= (A2@X2) + L  

            RMSE20 = ((V2.T@V2)/(count-u4))**(1/2) 

 

            # Second iteration 

             

            L01 =np.zeros((count,1)) 

            L01= ((XA[0] * ( ln(( Lb[gr==gr_value] - XA[1]) / 

(Lg[gr==gr_value] - XA[2]))) + XA[3] )) 

                 

            L1 = L01 - z_grp 

            m0 = XA[0] 

            Lw1 = XA[1] 

            Lw2 = XA[2] 

            m1 = XA[3]     

 

            A3=np.zeros((count,u4)) 

            A3[:, 0] = ln( (Lb[gr==gr_value] - Lw1 )/ 

((Lg[gr==gr_value]) - Lw2) ) 

            A3[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

            A3[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

            A3[:, 3]= 1 

            N3=A3.T@A3 

            U3=A3.T@L1 

            inv_N3 = np.linalg.inv(N3) 

            X3= -inv_N3@U3 

            XA1= XA + X3       

            V3= (A3@X3) + L1  

            RMSE30 = ((V3.T@V3)/(count-u4))**(1/2) 

 

#Solution Vector (X)  

 

            iteracao = iteracao +1      

            X0=XA 

 

            sigma3= (V3.T@V3) / (count-u) 

            MVC3 = sigma3*inv_N3 

 

 

 

 

 

 

 

mailto:V2.T@V2)/(count-u4))**(1/2
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#Application of geographic model – HORIZONTAL AND DIERSSEN 

 

#Solution Vector (X)  

 

for j in range(0,n_grids_y): 

    for i in range(0,n_grids_x): 

        gr_value =  i + (n_grids_y)*j     

        count = np.count_nonzero(gr==gr_value) # number of 

control points in group 

        A = np.zeros((count,u))    

 

        z_grp = z[gr==gr_value] 

 

        A[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

        A[:, 1] = 1   

        N=A.T@A 

        U=A.T@-z_grp 

        inv_N = np.linalg.inv(N) 

        X= -inv_N@U 

        V= (A@X) - z_grp    

        RMSE = ((V.T@V)/(count-u))**(1/2) 

 

        # X01 e X04 

 

        m0 = X[0] 

        m1 = X[1] 
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#Application of geographic model – VERTICAL AND EXTENDED 

DIERSSEN  

 

#Definition 

 

import numpy as np 

u = 2 

u1 = 1 

u4 = 4 

 

gr_nr= int(np.amax(gr))    # number of groups 

 

A_list = list() 

U_list = list() 

X_list = list() 

V_list = list() 

z_list = list() 

N_list = list() 

RMSE_list = list() 

 

A1_list = list() 

U1_list = list() 

X1_list = list() 

V1_list = list() 

N1_list = list() 

RMSE1_list = list() 

 

AR1_list = list() 

UR1_list = list() 

XR1_list = list() 

VR1_list = list() 

NR1_list = list() 

zR1_list = list() 

RMSER1_list = list() 

 

AR22_list = list() 

UR22_list = list() 

XR22_list = list() 

VR22_list = list() 

NR22_list = list() 

zR22_list = list() 

RMSER22_list = list() 

 

L0_list = list() 

L_list = list() 

L0R1_list = list() 

LR1_list = list() 

 

ERROR= list() 

ERROR1= list() 

ERROR2= list() 

ERROR3= list() 

ERROR4= list() 

ERROR5= list() 

ERROR6= list() 

ERROR7= list() 
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ERROR8= list() 

 

Diff_list = list() 

 

# RANGE OF 0 - 5 

 

# Initial vector (X0) 

 

for gr_value in range(0, gr_nr+1): 

     

    n =np.count_nonzero(gr==gr_value) #n. of control points in 

group 

    A = np.zeros((n,u)) 

     

    z_grp = z[gr==gr_value] 

     

    A[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A[:, 1] = 1   

    N=A.T@A 

    U=A.T@-z_grp 

    inv_N = np.linalg.inv(N) 

    X= -inv_N@U 

    V= (A@X) - z_grp    

    RMSE = ((V.T@V)/(n-u))**(1/2) 

 

    U_list.append(U) 

    N_list.append(N) 

    X_list.append(X) 

    V_list.append(V) 

    A_list.append(A) 

    z_list.append(z_grp) 

    RMSE_list.append(RMSE) 

    

    # X01 and X04 

     

    Lw1=0 

    Lw2=0 

     

    L0 =np.zeros((n,1))     

    L0 =  (((X[0] * ( ln(( Lb[gr==gr_value] - Lw1) / 

(Lg[gr==gr_value] - Lw2))) + X[1] )))  

    L = L0 - z_grp   

 

    A1=np.zeros((n,u)) 

    A1[:, 0] = (-X[0] / (Lb[gr==gr_value] - Lw1)) 

    A1[:, 1]= (X[0] / (Lg[gr==gr_value] - Lw2))  

    N1=A1.T@A1 

    U1=A1.T@ L 

    inv_N1 = np.linalg.inv(N1) 

    X1= -inv_N1@U1 

    V1= (A1@X1) + L 

    RMSE1 = ((V1.T@V1)/(n-u))**(1/2)  

 

    U1_list.append(U1) 

    N1_list.append(N1) 

    X1_list.append(X1) 
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    V1_list.append(V1) 

    A1_list.append(A1) 

    RMSE1_list.append(RMSE1) 

     

    # X02 and X03  

     

    X0 = np.array([X[0], X1[0], X1[1], X[1]])   #[m0 , Lw1, Lw2, 

m1] 

     

    # First iteration  

     

    RMSE30 = -10  

    iteracao = 1 

    RMSE20 = 10 

         

    while RMSE30 < RMSE20: 

         

        m0 = X0[0] 

        Lw1 = X0[1] 

        Lw2 = X0[2] 

        m1 = X0[3] 

        

        L0 =np.zeros((n,1)) 

        L0 = ((X0[0] * ( ln(( Lb[gr==gr_value] - X0[1]) / 

(Lg[gr==gr_value] - X0[2]))) + X0[3] ))  

        L = L0 -  z_grp 

                 

        A2=np.zeros((n,u4)) 

        A2[:, 0] = ln( (Lb[gr==gr_value] - Lw1 )/ 

((Lg[gr==gr_value]) - Lw2) ) 

        A2[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

        A2[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

        A2[:, 3]= 1 

     

        N2=A2.T@A2 

        U2=A2.T@L 

        inv_N2 = np.linalg.inv(N2) 

        X2= -inv_N2@U2 

 

        XA= X0 + X2       

        V2= (A2@X2) + L  

        RMSE20 = ((V2.T@V2)/(n-u4))**(1/2) 

 

   # Second iteration  

 

        L01 =np.zeros((n,1)) 

        L01= ((XA[0] * ( ln(( Lb[gr==gr_value] - XA[1]) / 

(Lg[gr==gr_value] - XA[2]))) + XA[3] )) 

        L1 = L01 - z_grp 

     

        m0 = XA[0] 

        Lw1 = XA[1] 

        Lw2 = XA[2] 

        m1 = XA[3]     

     

        A3=np.zeros((n,u4)) 

mailto:V2.T@V2)/(n-u4))**(1/2
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        A3[:, 0]=ln((Lb[gr==gr_value]-Lw1)/((Lg[gr==gr_value])-

Lw2)) 

        A3[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

        A3[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

        A3[:, 3]= 1 

     

        N3=A3.T@A3 

        U3=A3.T@L1 

        inv_N3 = np.linalg.inv(N3) 

        X3= -inv_N3@U3 

     

        XA1= XA + X3       

        V3= (A3@X3) + L1  

        RMSE30 = ((V3.T@V3)/(n-u4))**(1/2) 

    

  # Solution Vector (X)  

        iteracao = iteracao +1      

        X0=XA 

         

        sigma3= (V3.T@V3) / (n-u) 

        MVC3 = sigma3*inv_N3 

     

        count = np.count_nonzero(gr5==gr_value) 

        Z_SDB_5 = (XA[0]*ln ((Lb5[gr5==gr_value] - 

XA[1])/(Lg5[gr5==gr_value] - XA[2])))+XA[3] 

        Diff = Z_SDB_5 - z5[gr5==gr_value]  

        quadrado = Diff*Diff 

        soma = sum(quadrado) 

   

        if count >0: 

            RMSE_5 = (soma/count)**0.5  

 

        Diff_list.append(Diff) 

 

    ERROR.append(RMSE_5)  

 

 

    print( "\033[0;35m" +  "\033[1m" + "Solution of Group: " + 

str((gr_value * 5))  +  " A " + str(((gr_value *5) +5))) 

    print ("\033[0m" + "RMSE: " + str(RMSE20)) 

    print ("\033[0m" + "RMSE_VAL: " + str(RMSE_5)) 

    print ("X: " + str(XA) + "\n ") 

 

range0_5_i5 = ERROR[0]  

range5_10_i5 = ERROR[1] 

range10_15_i5 = ERROR[2] 

range15_20_i5 = ERROR[3] 

 

# RANGE OF 0 - 10 

 

# Initial vector (X0) 

 

for gr_value in range(0, gr_nr): 

     

    n11 = np.count_nonzero(gr==gr_value) #n. of control points 

in group 
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    n22 = np.count_nonzero(gr==gr_value+1) 

    n = n11+n22 

     

    z_grp1 =np.zeros((n11,1)) 

    z_grp2 =np.zeros((n22,1)) 

    z_grpR1 =np.zeros((n,1)) 

     

    z_grp1[:,0] = z[gr==gr_value] 

    z_grp2[:,0] = z[gr==gr_value+1] 

    z_grpR1[:,0] = np.concatenate([z_grp1[:, 0],z_grp2[:, 0]]) 

     

    A11 = np.zeros((n11,u)) 

    A22 = np.zeros((n22,u)) 

    AR1 = np.zeros((n,u)) 

     

    A11[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A22[:, 0] = ln(Lb[gr==gr_value+1] / Lg[gr==gr_value+1]) 

     

    AR1[:, 0]= np.concatenate([A11[:, 0],A22[:, 0]]) 

    AR1[:, 1] = 1   

     

    NR1=AR1.T@AR1 

    UR1=AR1.T@-z_grpR1 

    inv_NR1 = np.linalg.inv(NR1) 

    XR1= -inv_NR1@UR1 

    VR1= (AR1@XR1) - z_grpR1    

    RMSER1 = ((VR1.T@VR1)/(n-u))**(1/2) 

 

    UR1_list.append(UR1) 

    NR1_list.append(NR1) 

    XR1_list.append(XR1) 

    VR1_list.append(VR1) 

    AR1_list.append(AR1) 

    zR1_list.append(z_grpR1) 

    

    # X01 and X04 

     

    Lw1=0 

    Lw2=0  

 

    L01 =np.zeros((n11,1)) 

    L02 =np.zeros((n22,1)) 

    L0R1=np.zeros((n,1))     

     

    L01[:,0] =  (((XR1[0] * ( ln(( Lb[gr==gr_value] - Lw1) / 

(Lg[gr==gr_value] - Lw2))) + XR1[1] )))  

    L02[:,0] =  (((XR1[0] * ( ln(( Lb[gr==gr_value+1] - Lw1) / 

(Lg[gr==gr_value+1] - Lw2))) + XR1[1] )))  

    L0R1[:,0] = np.concatenate([L01[:, 0],L02[:, 0]]) 

     

    LR1 = L0R1 - z_grpR1   

 

    A33 = np.zeros((n11,u)) 

    A44 = np.zeros((n22,u)) 

    A1R1 = np.zeros((n,u)) 
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    A33[:, 0] = (-XR1[0] / (Lb[gr==gr_value] - Lw1)) 

    A44[:, 0] = (-XR1[0] / (Lb[gr==gr_value+1] - Lw1)) 

    A33[:, 1]= (XR1[0] / (Lg[gr==gr_value] - Lw2))  

    A44[:, 1]= (XR1[0] / (Lg[gr==gr_value+1] - Lw2)) 

    A1R1[:, :]= np.concatenate([A33[:,:],A44[:, :]]) 

     

    N1R1=A1R1.T@A1R1 

    U1R1=A1R1.T@ LR1 

    inv_N1R1 = np.linalg.inv(N1R1) 

    X1R1= -inv_N1R1@U1R1 

    V1R1= (A1R1@X1R1) + LR1 

    RMSE1R1 = ((V1R1.T@V1R1)/(n-u))**(1/2)  

 

    U1_list.append(U1) 

    N1_list.append(N1) 

    X1_list.append(X1) 

    V1_list.append(V1) 

    A1_list.append(A1) 

    RMSE1_list.append(RMSE1R1) 

     

    # X02 and X03  

     

    X0R1=np.array([XR1[0],X1R1[0],X1R1[1],XR1[1]]) #[m0 ,Lw1, 

Lw2, m1]   

     

    # First iteration 

     

    RMSE30R1 = -10  

    iteracao = 1 

    RMSE20R1 = 10 

     

    while RMSE30R1 < RMSE20R1: 

             

        m0R1 = X0R1[0] 

        Lw1R1 = X0R1[1] 

        Lw2R1 = X0R1[2] 

        m1R1 = X0R1[3] 

         

        L01 =np.zeros((n11,1)) 

        L02 =np.zeros((n22,1)) 

        L0R1=np.zeros((n,1))     

 

        L01[:,0] = ((X0R1[0] * ( ln(( Lb[gr==gr_value] - 

X0R1[1]) / (Lg[gr==gr_value] - X0R1[2]))) + X0R1[3] ))  

        L02[:,0] = ((X0R1[0] * ( ln(( Lb[gr==gr_value+1] - 

X0R1[1]) / (Lg[gr==gr_value+1] - X0R1[2]))) + X0R1[3] ))  

        L0R1[:,0] = np.concatenate([L01[:, 0],L02[:, 0]]) 

        LR1 = L0R1 -  z_grpR1 

         

        A22R1 = np.zeros((n22,u4)) 

        A11R1 = np.zeros((n11,u4)) 

        A2R1 = np.zeros((n,u4)) 

         

        A11R1[:, 0] = ln( (Lb[gr==gr_value] - Lw1R1 )/ 

((Lg[gr==gr_value]) - Lw2R1) ) 

        A11R1[:, 1]= -m0R1/(Lb[gr==gr_value]- Lw1R1) 
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        A11R1[:, 2]= m0R1/(Lg[gr==gr_value] - Lw2R1) 

        A11R1[:, 3]= 1 

         

        A22R1[:, 0] = ln( (Lb[gr==gr_value+1] - Lw1R1 )/ 

((Lg[gr==gr_value+1]) - Lw2R1) ) 

        A22R1[:, 1]= -m0R1/(Lb[gr==gr_value+1]- Lw1R1) 

        A22R1[:, 2]= m0R1/(Lg[gr==gr_value+1] - Lw2R1) 

        A22R1[:, 3]= 1 

         

        A2R1[:, :]= np.concatenate([A11R1[:,:],A22R1[:, :]])  

     

        N2R1=A2R1.T@A2R1 

        U2R1=A2R1.T@LR1 

        inv_N2R1 = np.linalg.inv(N2R1) 

        X2R1= -inv_N2R1@U2R1 

 

        XAR1= X0R1 + X2R1       

        V2R1= (A2R1@X2R1) + LR1  

         

 

   # Second iteration 

                

        L01R1 =np.zeros((n11,1)) 

        L02R1 =np.zeros((n22,1)) 

        L00R1=np.zeros((n,1)) 

         

        L01R1[:,0]= ((XAR1[0] * ( ln(( Lb[gr==gr_value] - 

XAR1[1]) / (Lg[gr==gr_value] - XAR1[2]))) + XAR1[3] )) 

        L02R1[:,0]= ((XAR1[0] * ( ln(( Lb[gr==gr_value+1] - 

XAR1[1]) / (Lg[gr==gr_value+1] - XAR1[2]))) + XAR1[3] )) 

        L00R1[:,0] = np.concatenate([L01R1[:, 0],L02R1[:, 0]]) 

        L1R1 = L00R1 - z_grpR1 

     

        m0 = XAR1[0] 

        Lw1 = XAR1[1] 

        Lw2 = XAR1[2] 

        m1 = XAR1[3]     

     

        A44R1 = np.zeros((n22,u4)) 

        A33R1 = np.zeros((n11,u4)) 

        A3R1 = np.zeros((n,u4)) 

         

        A33R1[:, 0] = ln( (Lb[gr==gr_value] - Lw1 )/ 

((Lg[gr==gr_value]) - Lw2) ) 

        A33R1[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

        A33R1[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

        A33R1[:, 3]= 1 

         

        A44R1[:, 0] = ln( (Lb[gr==gr_value+1] - Lw1 )/ 

((Lg[gr==gr_value+1]) - Lw2) ) 

        A44R1[:, 1]= -m0/(Lb[gr==gr_value+1]- Lw1) 

        A44R1[:, 2]= m0/(Lg[gr==gr_value+1] - Lw2) 

        A44R1[:, 3]= 1 

         

        A3R1[:, :]= np.concatenate([A33R1[:,:],A44R1[:, :]])  
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        N3R1=A3R1.T@A3R1 

        U3R1=A3R1.T@L1R1 

        inv_N3R1 = np.linalg.inv(N3R1) 

        X3R1= -inv_N3R1@U3R1 

     

        XA1R1= XAR1 + X3R1       

        V3R1= (A3R1@X3R1) + L1R1  

        RMSE30R1 = ((V3R1.T@V3R1)/(n-u4))**(1/2) 

         

        iteracao = iteracao +1      

        X0R1=XAR1         

         

        c1 = np.count_nonzero(gr5==gr_value) 

        c2 = np.count_nonzero(gr5==gr_value +1 ) 

        count = c1 + c2 

                 

        Z_SDB_10_1 =np.zeros((c1,1)) 

        Z_SDB_10_2 =np.zeros((c2,1)) 

        Z_SDB_10=np.zeros((count,1)) 

         

        Z_SDB_10_1[:,0] = (XAR1[0]*ln ((Lb5[gr5==gr_value] - 

XAR1[1])/(Lg5[gr5==gr_value] - XAR1[2])))+XAR1[3] 

        Z_SDB_10_2[:,0] = (XAR1[0]*ln ((Lb5[gr5==gr_value+1] - 

XAR1[1])/(Lg5[gr5==gr_value+1] - XAR1[2])))+XAR1[3] 

        Z_SDB_10[:,0] = np.concatenate([Z_SDB_10_1[:, 

0],Z_SDB_10_2[:, 0]]) 

 

        z_10_1 =np.zeros((c1,1)) 

        z_10_2 =np.zeros((c2,1)) 

        z_10 =np.zeros((count,1)) 

     

        z_10_1[:,0] = z5[gr5==gr_value] 

        z_10_2[:,0] = z5[gr5==gr_value+1] 

        z_10[:,0] = np.concatenate([z_10_1[:, 0],z_10_2[:, 0]]) 

     

        Diff_10 = Z_SDB_10 - z_10 

        quadrado = Diff_10*Diff_10 

        soma = sum(quadrado) 

   

        if count >0: 

            RMSE_10 = (soma/count)**0.5  

 

        Diff_list.append(Diff) 

         

    ERROR1.append(RMSE_10)  

                

    print( "\033[0;35m" +  "\033[1m"  + "Solution of Group: " + 

str((gr_value * 5))  +  " A " + str(((gr_value *5) +10)))     

    print ("\033[0m" + "RMSE: " + str(RMSE20R1)) 

    print ("\033[0m" + "RMSE_VAL: " + str(RMSE_10)) 

    print ("X: " + str(XAR1) + "\n ") 

 

range0_10_i10 = ERROR1[0]      

range5_15_i10 = ERROR1[1]  

range10_20_i10 = ERROR1[2] 
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# RANGE OF 0 - 15 

 

# Initial vector (X0) 

 

for gr_value in range(0, gr_nr-1): 

     

    n33= np.count_nonzero(gr==gr_value)# n. of control points in 

group 

    n44 = np.count_nonzero(gr==gr_value+1) 

    n55 = np.count_nonzero(gr==gr_value+2) 

    n2 = n33+n44+n55 

     

    z_grp12 =np.zeros((n33,1)) 

    z_grp22 =np.zeros((n44,1)) 

    z_grp32 =np.zeros((n55,1)) 

    z_grpR22 =np.zeros((n2,1)) 

     

    z_grp12[:,0] = z[gr==gr_value] 

    z_grp22[:,0] = z[gr==gr_value+1] 

    z_grp32[:,0] = z[gr==gr_value+2] 

    z_grpR22[:,0] = np.concatenate([z_grp12[:, 0],z_grp22[:, 

0],z_grp32[:, 0] ]) 

     

    A112 = np.zeros((n33,u)) 

    A222 = np.zeros((n44,u)) 

    A332 = np.zeros((n55,u)) 

    AR22 = np.zeros((n2,u)) 

     

    A112[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A222[:, 0] = ln(Lb[gr==gr_value+1] / Lg[gr==gr_value+1]) 

    A332[:, 0] = ln(Lb[gr==gr_value+2] / Lg[gr==gr_value+2]) 

     

    AR22[:, 0]= np.concatenate([A112[:, 0],A222[:, 0], A332[:, 

0]]) 

    AR22[:, 1] = 1   

     

    NR22=AR22.T@AR22 

    UR22=AR22.T@-z_grpR22 

    inv_NR22= np.linalg.inv(NR22) 

    XR22= -inv_NR22@UR22 

    VR22= (AR22@XR22) - z_grpR22    

    RMSER22 = ((VR22.T@VR22)/(n2-u))**(1/2) 

 

    UR22_list.append(UR22) 

    NR22_list.append(NR22) 

    XR22_list.append(XR22) 

    VR22_list.append(VR22) 

    AR22_list.append(AR22) 

    zR22_list.append(z_grpR22) 

        

    # X01 and X04 

     

    Lw1=0 

    Lw2=0    

 

    L012 =np.zeros((n33,1)) 
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    L022 =np.zeros((n44,1)) 

    L032 =np.zeros((n55,1)) 

    L0R22=np.zeros((n2,1))     

     

    L012[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value] - Lw1) / 

(Lg[gr==gr_value] - Lw2))) + XR22[1] )))  

    L022[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value+1] - Lw1) 

/ (Lg[gr==gr_value+1] - Lw2))) + XR22[1] )))  

    L032[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value+2] - Lw1) 

/ (Lg[gr==gr_value+2] - Lw2))) + XR22[1] )))  

    L0R22[:,0] = np.concatenate([L012[:, 0],L022[:, 0],L032[:, 

0] ]) 

     

    LR22 = L0R22 - z_grpR22   

 

    A33 = np.zeros((n33,u)) 

    A44 = np.zeros((n44,u)) 

    A55 = np.zeros((n55,u)) 

    A1R22 = np.zeros((n2,u)) 

 

    A33[:, 0] = (-XR22[0] / (Lb[gr==gr_value] - Lw1)) 

    A44[:, 0] = (-XR22[0] / (Lb[gr==gr_value+1] - Lw1)) 

    A55[:, 0] = (-XR22[0] / (Lb[gr==gr_value+2] - Lw1)) 

     

    A33[:, 1]= (XR22[0] / (Lg[gr==gr_value] - Lw2))  

    A44[:, 1]= (XR22[0] / (Lg[gr==gr_value+1] - Lw2)) 

    A55[:, 1]= (XR22[0] / (Lg[gr==gr_value+2] - Lw2)) 

     

    A1R22[:, :]= np.concatenate([A33[:,:],A44[:, :], A55[:, :]]) 

   

    N1R22=A1R22.T@A1R22 

    U1R22=A1R22.T@ LR22 

    inv_N1R22 = np.linalg.inv(N1R22) 

    X1R22= -inv_N1R22@U1R22 

    V1R22= (A1R22@X1R22) + LR22 

    RMSE1R22 = ((V1R22.T@V1R22)/(n2-u))**(1/2)  

    

    # X02 and X03 

     

    

X0R22=np.array([XR22[0],X1R22[0],X1R22[1],XR22[1]])#[m0,Lw1,Lw2, m1] 

     

    # First iteration 

     

    RMSE30R2 = -10 

    iteracao = 1 

    RMSE20R2 = 10 

  

    while RMSE30R2 < RMSE20R2:    

        m0R22 = X0R22[0] 

        Lw1R22 = X0R22[1] 

        Lw2R22 = X0R22[2] 

        m1R22 = X0R22[3] 

         

        L012 =np.zeros((n33,1)) 

        L022 =np.zeros((n44,1)) 
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        L032 =np.zeros((n55,1)) 

        L0R22=np.zeros((n2,1))     

 

        L012[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value] - 

X0R22[1]) / (Lg[gr==gr_value] - X0R22[2]))) + X0R22[3] ))  

        L022[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value+1] - 

X0R22[1]) / (Lg[gr==gr_value+1] - X0R22[2]))) + X0R22[3] ))  

        L032[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value+2] - 

X0R22[1]) / (Lg[gr==gr_value+2] - X0R22[2]))) + X0R22[3] ))  

         

        L0R22[:,0] = 

np.concatenate([L012[:,0],L022[:,0],L032[:,0]]) 

        LR22 = L0R22 -  z_grpR22 

          

        A33R22 = np.zeros((n33,u4)) 

        A44R22 = np.zeros((n44,u4)) 

        A55R22 = np.zeros((n55,u4)) 

         

        A2R22 = np.zeros((n2,u4)) 

         

        A33R22[:, 0] = ln( (Lb[gr==gr_value] - Lw1R22 )/ 

((Lg[gr==gr_value]) - Lw2R22) ) 

        A33R22[:, 1]= -m0R22/(Lb[gr==gr_value]- Lw1R22) 

        A33R22[:, 2]= m0R22/(Lg[gr==gr_value] - Lw2R22) 

        A33R22[:, 3]= 1 

         

        A44R22[:, 0] = ln( (Lb[gr==gr_value+1] - Lw1R22 )/ 

((Lg[gr==gr_value+1]) - Lw2R22) ) 

        A44R22[:, 1]= -m0R22/(Lb[gr==gr_value+1]- Lw1R22) 

        A44R22[:, 2]= m0R22/(Lg[gr==gr_value+1] - Lw2R22) 

        A44R22[:, 3]= 1 

         

        A55R22[:, 0] = ln( (Lb[gr==gr_value+2] - Lw1R22 )/ 

((Lg[gr==gr_value+2]) - Lw2R22) ) 

        A55R22[:, 1]= -m0R22/(Lb[gr==gr_value+2]- Lw1R22) 

        A55R22[:, 2]= m0R22/(Lg[gr==gr_value+2] - Lw2R22) 

        A55R22[:, 3]= 1 

         

        A2R22[:, :]= np.concatenate([A33R22[:,:],A44R22[:, :], 

A55R22[:, :] ])  

     

        N2R22=A2R22.T@A2R22 

        U2R22=A2R22.T@LR22 

        inv_N2R22 = np.linalg.inv(N2R22) 

        X2R22= -inv_N2R22@U2R22 

 

        XAR22= X0R22 + X2R22       

        V2R22= (A2R22@X2R22) + LR22  

        RMSE20R2 = ((V2R22.T@V2R22)/(n2-u4))**(1/2)     

 

        # Second iteration 

         

        L01R22 =np.zeros((n33,1)) 

        L02R22 =np.zeros((n44,1)) 

        L03R22 =np.zeros((n55,1)) 

        L00R22=np.zeros((n2,1)) 
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        L01R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value] - 

XAR22[1]) / (Lg[gr==gr_value] - XAR22[2]))) + XAR22[3] )) 

        L02R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value+1] - 

XAR22[1]) / (Lg[gr==gr_value+1] - XAR22[2]))) + XAR22[3] )) 

        L03R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value+2] - 

XAR22[1]) / (Lg[gr==gr_value+2] - XAR22[2]))) + XAR22[3] )) 

        L00R22[:,0] = np.concatenate([L01R22[:, 0],L02R22[:, 

0],L03R22[:, 0] ]) 

        L1R22 = L00R22 - z_grpR22 

     

        m0 = XAR22[0] 

        Lw1 = XAR22[1] 

        Lw2 = XAR22[2] 

        m1 = XAR22[3]     

         

        A33R222 = np.zeros((n33,u4)) 

        A44R222 = np.zeros((n44,u4)) 

        A55R222 = np.zeros((n55,u4)) 

        A3R222 = np.zeros((n2,u4)) 

         

        A33R222[:, 0] = ln( (Lb[gr==gr_value] - Lw1 )/ 

((Lg[gr==gr_value]) - Lw2) ) 

        A33R222[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

        A33R222[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

        A33R222[:, 3]= 1 

         

        A44R222[:, 0] = ln( (Lb[gr==gr_value+1] - Lw1 )/ 

((Lg[gr==gr_value+1]) - Lw2) ) 

        A44R222[:, 1]= -m0/(Lb[gr==gr_value+1]- Lw1) 

        A44R222[:, 2]= m0/(Lg[gr==gr_value+1] - Lw2) 

        A44R222[:, 3]= 1 

         

        A55R222[:, 0] = ln( (Lb[gr==gr_value+2] - Lw1 )/ 

((Lg[gr==gr_value+2]) - Lw2) ) 

        A55R222[:, 1]= -m0/(Lb[gr==gr_value+2]- Lw1) 

        A55R222[:, 2]= m0/(Lg[gr==gr_value+2] - Lw2) 

        A55R222[:, 3]= 1 

         

        A3R222[:, :]= np.concatenate([A33R222[:,:],A44R222[:, 

:],A55R222[:, :] ])  

         

        N3R22=A3R222.T@A3R222 

        U3R22=A3R222.T@L1R22 

        inv_N3R22 = np.linalg.inv(N3R22) 

        X3R22= -inv_N3R22@U3R22 

     

        XA1R22= XAR22 + X3R22       

        V3R22= (A3R222@X3R22) + L1R22 

        RMSE30R2 = ((V3R22.T@V3R22)/(n2-u4))**(1/2) 

         

        iteracao = iteracao +1      

        X0R22=XAR22 

         

        c1 = np.count_nonzero(gr5==gr_value) 

        c2 = np.count_nonzero(gr5==gr_value +1 ) 
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        c3 = np.count_nonzero(gr5==gr_value +2 ) 

        count = c1 + c2 +c3 

                 

        Z_SDB_15_1 =np.zeros((c1,1)) 

        Z_SDB_15_2 =np.zeros((c2,1)) 

        Z_SDB_15_3 =np.zeros((c3,1)) 

        Z_SDB_15=np.zeros((count,1)) 

         

        Z_SDB_15_1[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value] - 

XAR22[1])/(Lg5[gr5==gr_value] - XAR22[2])))+XAR22[3] 

        Z_SDB_15_2[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value+1] - 

XAR22[1])/(Lg5[gr5==gr_value+1] - XAR22[2])))+XAR22[3] 

        Z_SDB_15_3[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value+2] - 

XAR22[1])/(Lg5[gr5==gr_value+2] - XAR22[2])))+XAR22[3] 

        Z_SDB_15[:,0] = np.concatenate([Z_SDB_15_1[:, 

0],Z_SDB_15_2[:, 0],Z_SDB_15_3[:, 0]]) 

 

        z_15_1 =np.zeros((c1,1)) 

        z_15_2 =np.zeros((c2,1)) 

        z_15_3 =np.zeros((c3,1)) 

        z_15 =np.zeros((count,1)) 

     

        z_15_1[:,0] = z5[gr5==gr_value] 

        z_15_2[:,0] = z5[gr5==gr_value+1] 

        z_15_3[:,0] = z5[gr5==gr_value+2] 

        z_15[:,0] = np.concatenate([z_15_1[:, 0],z_15_2[:, 

0],z_15_3[:, 0] ]) 

     

        Diff_15 = Z_SDB_15 - z_15 

        quadrado = Diff_15*Diff_15 

        soma = sum(quadrado) 

   

        if count >0: 

            RMSE_15 = (soma/count)**0.5  

 

        Diff_list.append(Diff) 

         

    ERROR2.append(RMSE_15)  

       

#    print( "\033[0;35m" +  "\033[1m"  + "Solution of Group: " 

+ str((gr_value * 5))  +  " A " + str(((gr_value *5) +15)))  

#    print ("\033[0m" + "RMSE: " + str(RMSE20R2)) 

#    print ("\033[0m" + "RMSE_VAL: " + str(RMSE_15)) 

#    print ("X: " + str(XAR22) + "\n ") 

     

range0_15_i15 = ERROR2[0]      

range5_20_i15 = ERROR2[1] 

 

 

# RANGE OF 0 – 20 

 

# Initial vector (X0) 

 

for gr_value in range(0, gr_nr-2): 
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    n33= np.count_nonzero(gr==gr_value)# n. of control points in 

group 

    n44 = np.count_nonzero(gr==gr_value+1) 

    n55 = np.count_nonzero(gr==gr_value+2) 

    n66 = np.count_nonzero(gr==gr_value+3) 

    n20 = n33+n44+n55+n66 

     

    z_grp12 =np.zeros((n33,1)) 

    z_grp22 =np.zeros((n44,1)) 

    z_grp32 =np.zeros((n55,1)) 

    z_grp42 =np.zeros((n66,1)) 

    z_grpR20 =np.zeros((n20,1)) 

     

    z_grp12[:,0] = z[gr==gr_value] 

    z_grp22[:,0] = z[gr==gr_value+1] 

    z_grp32[:,0] = z[gr==gr_value+2] 

    z_grp42[:,0] = z[gr==gr_value+3] 

    z_grpR20[:,0] = np.concatenate([z_grp12[:, 0],z_grp22[:, 

0],z_grp32[:, 0], z_grp42[:, 0] ]) 

     

    A112 = np.zeros((n33,u)) 

    A222 = np.zeros((n44,u)) 

    A332 = np.zeros((n55,u)) 

    A442 = np.zeros((n66,u)) 

    AR22 = np.zeros((n20,u)) 

     

    A112[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A222[:, 0] = ln(Lb[gr==gr_value+1] / Lg[gr==gr_value+1]) 

    A332[:, 0] = ln(Lb[gr==gr_value+2] / Lg[gr==gr_value+2]) 

    A442[:, 0] = ln(Lb[gr==gr_value+3] / Lg[gr==gr_value+3]) 

     

    AR22[:, 0]= np.concatenate([A112[:, 0],A222[:, 0], A332[:, 

0], A442[:, 0]]) 

    AR22[:, 1] = 1   

     

    NR22=AR22.T@AR22 

    UR22=AR22.T@-z_grpR20 

    inv_NR22= np.linalg.inv(NR22) 

    XR22= -inv_NR22@UR22 

    VR22= (AR22@XR22) - z_grpR20    

    RMSER22 = ((VR22.T@VR22)/(n20-u))**(1/2) 

 

    UR22_list.append(UR22) 

    NR22_list.append(NR22) 

    XR22_list.append(XR22) 

    VR22_list.append(VR22) 

    AR22_list.append(AR22) 

    zR22_list.append(z_grpR20) 

    

    # X01 and X04 

     

    Lw1=0 

    Lw2=0 

     

    L012 =np.zeros((n33,1)) 

    L022 =np.zeros((n44,1)) 
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    L032 =np.zeros((n55,1)) 

    L042 =np.zeros((n66,1)) 

    L0R22=np.zeros((n20,1))     

     

    L012[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value] - Lw1) / 

(Lg[gr==gr_value] - Lw2))) + XR22[1] )))  

    L022[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value+1] - Lw1) 

/ (Lg[gr==gr_value+1] - Lw2))) + XR22[1] )))  

    L032[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value+2] - Lw1) 

/ (Lg[gr==gr_value+2] - Lw2))) + XR22[1] )))  

    L042[:,0] =  (((XR22[0] * ( ln(( Lb[gr==gr_value+3] - Lw1) 

/ (Lg[gr==gr_value+3] - Lw2))) + XR22[1] )))  

    L0R22[:,0] = np.concatenate([L012[:, 0],L022[:, 0],L032[:, 

0], L042[:, 0]  ]) 

     

    LR22 = L0R22 - z_grpR20 

 

    A33 = np.zeros((n33,u)) 

    A44 = np.zeros((n44,u)) 

    A55 = np.zeros((n55,u)) 

    A66 = np.zeros((n66,u)) 

    A1R22 = np.zeros((n20,u)) 

 

    A33[:, 0] = (-XR22[0] / (Lb[gr==gr_value] - Lw1)) 

    A44[:, 0] = (-XR22[0] / (Lb[gr==gr_value+1] - Lw1)) 

    A55[:, 0] = (-XR22[0] / (Lb[gr==gr_value+2] - Lw1)) 

    A66[:, 0] = (-XR22[0] / (Lb[gr==gr_value+3] - Lw1)) 

     

    A33[:, 1]= (XR22[0] / (Lg[gr==gr_value] - Lw2))  

    A44[:, 1]= (XR22[0] / (Lg[gr==gr_value+1] - Lw2)) 

    A55[:, 1]= (XR22[0] / (Lg[gr==gr_value+2] - Lw2)) 

    A66[:, 1]= (XR22[0] / (Lg[gr==gr_value+3] - Lw2)) 

     

    A1R22[:, :]= np.concatenate([A33[:,:],A44[:, :], A55[:, :], 

A66[:, :] ]) 

     

    N1R22=A1R22.T@A1R22 

    U1R22=A1R22.T@ LR22 

    inv_N1R22 = np.linalg.inv(N1R22) 

    X1R22= -inv_N1R22@U1R22 

    V1R22= (A1R22@X1R22) + LR22 

    RMSE1R22 = ((V1R22.T@V1R22)/(n20-u))**(1/2)  

     

    # X02 and X03 

     

    X0R22 = np.array([XR22[0], X1R22[0], X1R22[1], XR22[1]])   

#[m0 , Lw1, Lw2, m1] 

     

    # First iteration 

     

    RMSE30R2 = -10 

    iteracao = 1 

    RMSE20R2 = 10  

 

    while RMSE30R2 < RMSE20R2: 
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        m0R22 = X0R22[0] 

        Lw1R22 = X0R22[1] 

        Lw2R22 = X0R22[2] 

        m1R22 = X0R22[3] 

         

        L012 =np.zeros((n33,1)) 

        L022 =np.zeros((n44,1)) 

        L032 =np.zeros((n55,1)) 

        L042 =np.zeros((n66,1)) 

        L0R22=np.zeros((n20,1))     

 

        L012[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value] - 

X0R22[1]) / (Lg[gr==gr_value] - X0R22[2]))) + X0R22[3] ))  

        L022[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value+1] - 

X0R22[1]) / (Lg[gr==gr_value+1] - X0R22[2]))) + X0R22[3] ))  

        L032[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value+2] - 

X0R22[1]) / (Lg[gr==gr_value+2] - X0R22[2]))) + X0R22[3] )) 

        L042[:,0] = ((X0R22[0] * ( ln(( Lb[gr==gr_value+3] - 

X0R22[1]) / (Lg[gr==gr_value+3] - X0R22[2]))) + X0R22[3] )) 

         

        L0R22[:,0] = np.concatenate([L012[:, 0],L022[:, 

0],L032[:, 0], L042[:, 0] ]) 

        LR22 = L0R22 -  z_grpR20 

         

        A33R22 = np.zeros((n33,u4)) 

        A44R22 = np.zeros((n44,u4)) 

        A55R22 = np.zeros((n55,u4)) 

        A66R22 = np.zeros((n66,u4)) 

         

        A2R22 = np.zeros((n20,u4)) 

         

        A33R22[:, 0] = ln( (Lb[gr==gr_value] - Lw1R22 )/ 

((Lg[gr==gr_value]) - Lw2R22) ) 

        A33R22[:, 1]= -m0R22/(Lb[gr==gr_value]- Lw1R22) 

        A33R22[:, 2]= m0R22/(Lg[gr==gr_value] - Lw2R22) 

        A33R22[:, 3]= 1 

         

        A44R22[:, 0] = ln( (Lb[gr==gr_value+1] - Lw1R22 )/ 

((Lg[gr==gr_value+1]) - Lw2R22) ) 

        A44R22[:, 1]= -m0R22/(Lb[gr==gr_value+1]- Lw1R22) 

        A44R22[:, 2]= m0R22/(Lg[gr==gr_value+1] - Lw2R22) 

        A44R22[:, 3]= 1 

         

        A55R22[:, 0] = ln( (Lb[gr==gr_value+2] - Lw1R22 )/ 

((Lg[gr==gr_value+2]) - Lw2R22) ) 

        A55R22[:, 1]= -m0R22/(Lb[gr==gr_value+2]- Lw1R22) 

        A55R22[:, 2]= m0R22/(Lg[gr==gr_value+2] - Lw2R22) 

        A55R22[:, 3]= 1         

                 

        A66R22[:, 0] = ln( (Lb[gr==gr_value+3] - Lw1R22 )/ 

((Lg[gr==gr_value+3]) - Lw2R22) ) 

        A66R22[:, 1]= -m0R22/(Lb[gr==gr_value+3]- Lw1R22) 

        A66R22[:, 2]= m0R22/(Lg[gr==gr_value+3] - Lw2R22) 

        A66R22[:, 3]= 1 
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        A2R22[:, :]= np.concatenate([A33R22[:,:],A44R22[:, :], 

A55R22[:, :] , A66R22[:, :]])  

     

        N2R22=A2R22.T@A2R22 

        N2R22=A2R22.T@A2R22 

        U2R22=A2R22.T@LR22 

        inv_N2R22 = np.linalg.inv(N2R22) 

        X2R22= -inv_N2R22@U2R22 

 

        XAR22= X0R22 + X2R22       

        V2R22= (A2R22@X2R22) + LR22  

        RMSE20R2 = ((V2R22.T@V2R22)/(n20-u4))**(1/2)     

 

        # Second iteration 

             

        L01R22 =np.zeros((n33,1)) 

        L02R22 =np.zeros((n44,1)) 

        L03R22 =np.zeros((n55,1)) 

        L04R22 =np.zeros((n66,1)) 

        L00R22=np.zeros((n20,1))     

         

        L01R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value] - 

XAR22[1]) / (Lg[gr==gr_value] - XAR22[2]))) + XAR22[3] )) 

        L02R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value+1] - 

XAR22[1]) / (Lg[gr==gr_value+1] - XAR22[2]))) + XAR22[3] )) 

        L03R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value+2] - 

XAR22[1]) / (Lg[gr==gr_value+2] - XAR22[2]))) + XAR22[3] )) 

        L04R22[:,0]= ((XAR22[0] * ( ln(( Lb[gr==gr_value+3] - 

XAR22[1]) / (Lg[gr==gr_value+3] - XAR22[2]))) + XAR22[3] )) 

        L00R22[:,0] = np.concatenate([L01R22[:, 0],L02R22[:, 

0],L03R22[:, 0], L04R22[:, 0] ]) 

        L1R22 = L00R22 - z_grpR20 

     

        m0 = XAR22[0] 

        Lw1 = XAR22[1] 

        Lw2 = XAR22[2] 

        m1 = XAR22[3]   

         

        A33R222 = np.zeros((n33,u4)) 

        A44R222 = np.zeros((n44,u4)) 

        A55R222 = np.zeros((n55,u4)) 

        A66R222 = np.zeros((n66,u4)) 

        A3R222 = np.zeros((n20,u4)) 

         

        A33R222[:, 0] = ln( (Lb[gr==gr_value] - Lw1 )/ 

((Lg[gr==gr_value]) - Lw2) ) 

        A33R222[:, 1]= -m0/(Lb[gr==gr_value]- Lw1) 

        A33R222[:, 2]= m0/(Lg[gr==gr_value] - Lw2) 

        A33R222[:, 3]= 1 

         

        A44R222[:, 0] = ln( (Lb[gr==gr_value+1] - Lw1 )/ 

((Lg[gr==gr_value+1]) - Lw2) ) 

        A44R222[:, 1]= -m0/(Lb[gr==gr_value+1]- Lw1) 

        A44R222[:, 2]= m0/(Lg[gr==gr_value+1] - Lw2) 

        A44R222[:, 3]= 1 
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        A55R222[:, 0] = ln( (Lb[gr==gr_value+2] - Lw1 )/ 

((Lg[gr==gr_value+2]) - Lw2) ) 

        A55R222[:, 1]= -m0/(Lb[gr==gr_value+2]- Lw1) 

        A55R222[:, 2]= m0/(Lg[gr==gr_value+2] - Lw2) 

        A55R222[:, 3]= 1 

         

        A66R222[:, 0] = ln( (Lb[gr==gr_value+3] - Lw1 )/ 

((Lg[gr==gr_value+3]) - Lw2) ) 

        A66R222[:, 1]= -m0/(Lb[gr==gr_value+3]- Lw1) 

        A66R222[:, 2]= m0/(Lg[gr==gr_value+3] - Lw2) 

        A66R222[:, 3]= 1 

         

        A3R222[:, :]= np.concatenate([A33R222[:,:],A44R222[:, 

:],A55R222[:, :],A66R222[:, :] ])  

         

        N3R22=A3R222.T@A3R222 

        U3R22=A3R222.T@L1R22 

        inv_N3R22 = np.linalg.inv(N3R22) 

        X3R22= -inv_N3R22@U3R22 

     

        XA1R22= XAR22 + X3R22       

        V3R22= (A3R222@X3R22) + L1R22 

        RMSE30R2 = ((V3R22.T@V3R22)/(n20-u4))**(1/2) 

         

        iteracao = iteracao +1      

        X0R22=XAR22 

         

        c1 = np.count_nonzero(gr5==gr_value) 

        c2 = np.count_nonzero(gr5==gr_value +1 ) 

        c3 = np.count_nonzero(gr5==gr_value +2 ) 

        c4 = np.count_nonzero(gr5==gr_value +3 ) 

        count = c1 + c2 +c3 + c4 

                 

        Z_SDB_20_1 =np.zeros((c1,1)) 

        Z_SDB_20_2 =np.zeros((c2,1)) 

        Z_SDB_20_3 =np.zeros((c3,1)) 

        Z_SDB_20_4 =np.zeros((c4,1)) 

        Z_SDB_20=np.zeros((count,1)) 

         

        Z_SDB_20_1[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value] - 

XAR22[1])/(Lg5[gr5==gr_value] - XAR22[2])))+XAR22[3] 

        Z_SDB_20_2[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value+1] - 

XAR22[1])/(Lg5[gr5==gr_value+1] - XAR22[2])))+XAR22[3] 

        Z_SDB_20_3[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value+2] - 

XAR22[1])/(Lg5[gr5==gr_value+2] - XAR22[2])))+XAR22[3] 

        Z_SDB_20_4[:,0] = (XAR22[0]*ln ((Lb5[gr5==gr_value+3] - 

XAR22[1])/(Lg5[gr5==gr_value+3] - XAR22[2])))+XAR22[3] 

        Z_SDB_20[:,0] = np.concatenate([Z_SDB_20_1[:, 

0],Z_SDB_20_2[:, 0],Z_SDB_20_3[:, 0],Z_SDB_20_4[:, 0]]) 

 

        z_20_1 =np.zeros((c1,1)) 

        z_20_2 =np.zeros((c2,1)) 

        z_20_3 =np.zeros((c3,1)) 

        z_20_4 =np.zeros((c4,1)) 

        z_20 =np.zeros((count,1)) 
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        z_20_1[:,0] = z5[gr5==gr_value] 

        z_20_2[:,0] = z5[gr5==gr_value+1] 

        z_20_3[:,0] = z5[gr5==gr_value+2] 

        z_20_4[:,0] = z5[gr5==gr_value+3] 

        z_20[:,0] = np.concatenate([z_20_1[:, 0],z_20_2[:, 

0],z_20_3[:, 0],z_20_4[:, 0 ]]) 

     

        Diff_20 = Z_SDB_20 - z_20 

        quadrado = Diff_20*Diff_20 

        soma = sum(quadrado) 

   

        if count >0: 

            RMSE_20 = (soma/count)**0.5  

 

        Diff_list.append(Diff) 

       

    ERROR3.append(RMSE_20) 

         

#    print(   "\033[0;35m" +  "\033[1m"  + "Solution of Group: 

" + str((gr_value * 5))  +  " A "  + str(((gr_value *5) +20)))  

#    print ("\033[0m" + "RMSE: " + str(RMSE30R2)) 

#    print ("\033[0m" + "RMSE_VAL: " + str(RMSE_20)) 

#    print ("X: " + str(XAR22) + "\n ") 

 

range0_20_i20 = ERROR3[0]      
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#Application of geographic model – VERTICAL AND DIERSSEN 

 

# RANGE OF 0 - 5 

 

# Solution Vector (X)  

 

for gr_value in range(0, gr_nr+1): 

    nL= np.count_nonzero(gr==gr_value) # n. of control points in 

group 

    AL = np.zeros((nL,u)) 

     

    z_grpL = z[gr==gr_value] 

     

    AL[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    AL[:, 1] = 1   

    NL=AL.T@AL 

    UL=AL.T@-z_grpL 

    inv_NL = np.linalg.inv(NL) 

    XL= -inv_NL@UL 

    VL= (AL@XL) - z_grpL    

    RMSEL = ((VL.T@VL)/(nL-u))**(1/2) 

     

    X0L = np.array([XL[0], XL[1]])   #[m0 , m1] 

     

    count = np.count_nonzero(gr5==gr_value) 

    Z_SDB_5L = (X0L[0]*ln ((Lb5[gr5==gr_value] 

)/(Lg5[gr5==gr_value] )))+X0L[1] 

    Diff = Z_SDB_5L - z5[gr5==gr_value]  

    quadrado = Diff*Diff 

    soma = sum(quadrado) 

   

    if count >0: 

        RMSE_5L = (soma/count)**0.5  

 

    Diff_list.append(Diff) 

 

#    print( "\033[0;35m" +  "\033[1m"  + "Solution of Group: " 

+ str((gr_value * 5))  +  " A " + str(((gr_value *5) +5)))  

#    print ("\033[0m" + "RMSE: " + str(RMSEL)) 

#    print ("\033[0m" + "RMSE: " + str(RMSE_5L)) 

#    print ("X: " + str(X0L) + "\n ") 

     

    ERROR4.append(RMSE_5L) 

 

range0_5_i5L = ERROR4[0]  

range5_10_i5L = ERROR4[1] 

range10_15_i5L = ERROR4[2] 

range15_20_i5L = ERROR4[3] 

 

# RANGE OF 0 - 10 

 

# Solution Vector (X)      

 

for gr_value in range(0, gr_nr+1):     

    n11L=np.count_nonzero(gr==gr_value) #n. of control points in 

group 
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    n22L = np.count_nonzero(gr==gr_value+1) 

    nL = n11L+n22L 

     

    z_grp1L =np.zeros((n11L,1)) 

    z_grp2L =np.zeros((n22L,1)) 

    z_grpR1L =np.zeros((nL,1)) 

     

    z_grp1L[:,0] = z[gr==gr_value] 

    z_grp2L[:,0] = z[gr==gr_value+1] 

    z_grpR1L[:,0] = np.concatenate([z_grp1L[:, 0],z_grp2L[:, 

0]]) 

     

    A11L = np.zeros((n11L,u)) 

    A22L = np.zeros((n22L,u)) 

    AR1L = np.zeros((nL,u)) 

     

    A11L[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A22L[:, 0] = ln(Lb[gr==gr_value+1] / Lg[gr==gr_value+1]) 

     

    AR1L[:, 0]= np.concatenate([A11L[:, 0],A22L[:, 0]]) 

    AR1L[:, 1] = 1   

     

    NR1L=AR1L.T@AR1L 

    UR1L=AR1L.T@-z_grpR1L 

    inv_NR1L = np.linalg.inv(NR1L) 

    XR1L= -inv_NR1L@UR1L 

    VR1L= (AR1L@XR1L) - z_grpR1L    

    RMSER1L = ((VR1L.T@VR1L)/(nL-u))**(1/2) 

     

    X0LL = np.array([XR1L[0], XR1L[1]])   #[m0 , m1] 

     

    c1 = np.count_nonzero(gr5==gr_value) 

    c2 = np.count_nonzero(gr5==gr_value +1 ) 

    count = c1 + c2 

                 

    Z_SDB_10_1L =np.zeros((c1,1)) 

    Z_SDB_10_2L =np.zeros((c2,1)) 

    Z_SDB_10L=np.zeros((count,1)) 

         

    Z_SDB_10_1L[:,0] = (X0LL[0]*ln ((Lb5[gr5==gr_value] 

)/(Lg5[gr5==gr_value] )))+X0LL[1] 

    Z_SDB_10_2L[:,0] = (X0LL[0]*ln ((Lb5[gr5==gr_value+1] 

)/(Lg5[gr5==gr_value+1] )))+X0LL[1] 

    Z_SDB_10L[:,0] = np.concatenate([Z_SDB_10_1L[:, 0], 

Z_SDB_10_2L[:, 0]]) 

 

    z_10_1L =np.zeros((c1,1)) 

    z_10_2L =np.zeros((c2,1)) 

    z_10L =np.zeros((count,1)) 

     

    z_10_1L[:,0] = z5[gr5==gr_value] 

    z_10_2L[:,0] = z5[gr5==gr_value+1] 

    z_10L[:,0] = np.concatenate([z_10_1L[:, 0],z_10_2L[:, 0]]) 

     

    Diff_10L = Z_SDB_10L - z_10L 

    quadrado = Diff_10L*Diff_10L 
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    soma = sum(quadrado) 

   

    if count >0: 

        RMSE_10L = (soma/count)**0.5  

 

    Diff_list.append(Diff)     

     

#    print( "\033[0;35m" +  "\033[1m"  + "Solution of Group: " 

+ str((gr_value * 5))  +  " A " + str(((gr_value *5) +10)))  

#    print ("\033[0m" + "RMSE: " + str(RMSER1L)) 

#    print ("\033[0m" + "RMSE: " + str(RMSE_10L)) 

#    print ("X: " + str(X0LL) + "\n ") 

     

    ERROR5.append(RMSE_10L) 

 

range0_10_i10L = ERROR5[0]      

range5_15_i10L = ERROR5[1]  

range10_20_i10L = ERROR5[2] 

 

# RANGE OF 0 - 15 

 

# Solution Vector (X)      

 

for gr_value in range(0, gr_nr-1):  

    n33L=np.count_nonzero(gr==gr_value) #n. of control points in 

group 

    n44L = np.count_nonzero(gr==gr_value+1) 

    n55L = np.count_nonzero(gr==gr_value+2) 

    n2L = n33L+n44L+n55L 

  

    z_grp12L =np.zeros((n33L,1)) 

    z_grp22L =np.zeros((n44L,1)) 

    z_grp32L =np.zeros((n55L,1)) 

    z_grpR22L =np.zeros((n2L,1)) 

     

    z_grp12L[:,0] = z[gr==gr_value] 

    z_grp22L[:,0] = z[gr==gr_value+1] 

    z_grp32L[:,0] = z[gr==gr_value+2] 

    z_grpR22L[:,0] = np.concatenate([z_grp12L[:, 0],z_grp22L[:, 

0],z_grp32L[:, 0] ]) 

     

    A112L = np.zeros((n33L,u)) 

    A222L = np.zeros((n44L,u)) 

    A332L = np.zeros((n55L,u)) 

    AR22L = np.zeros((n2L,u)) 

     

    A112L[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A222L[:, 0] = ln(Lb[gr==gr_value+1] / Lg[gr==gr_value+1]) 

    A332L[:, 0] = ln(Lb[gr==gr_value+2] / Lg[gr==gr_value+2]) 

     

    AR22L[:, 0]= np.concatenate([A112L[:, 0],A222L[:, 0], 

A332L[:, 0]]) 

    AR22L[:, 1] = 1   

     

    NR22L=AR22L.T@AR22L 

    UR22L=AR22L.T@-z_grpR22L 
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    inv_NR22L= np.linalg.inv(NR22L) 

    XR22L= -inv_NR22L@UR22L 

    VR22L= (AR22L@XR22L) - z_grpR22L    

    RMSER22L = ((VR22L.T@VR22L)/(n2L-u))**(1/2) 

     

    X0LL2 = np.array([XR22L[0], XR22L[1]])   #[m0 , m1] 

     

    c1 = np.count_nonzero(gr5==gr_value) 

    c2 = np.count_nonzero(gr5==gr_value +1 ) 

    c3 = np.count_nonzero(gr5==gr_value +2 ) 

    count = c1 + c2 +c3 

                 

    Z_SDB_15_1L =np.zeros((c1,1)) 

    Z_SDB_15_2L =np.zeros((c2,1)) 

    Z_SDB_15_3L =np.zeros((c3,1)) 

    Z_SDB_15L=np.zeros((count,1)) 

         

    Z_SDB_15_1L[:,0] = (X0LL2[0]*ln ((Lb5[gr5==gr_value] 

)/(Lg5[gr5==gr_value] )))+X0LL2[1] 

    Z_SDB_15_2L[:,0] = (X0LL2[0]*ln ((Lb5[gr5==gr_value+1] 

)/(Lg5[gr5==gr_value+1] )))+X0LL2[1] 

    Z_SDB_15_3L[:,0] = (X0LL2[0]*ln ((Lb5[gr5==gr_value+2] 

)/(Lg5[gr5==gr_value+2] )))+X0LL2[1] 

    Z_SDB_15L[:,0] = np.concatenate([Z_SDB_15_1L[:, 0], 

Z_SDB_15_2L[:, 0], Z_SDB_15_3L[:, 0]]) 

 

    z_15_1L =np.zeros((c1,1)) 

    z_15_2L =np.zeros((c2,1)) 

    z_15_3L =np.zeros((c3,1)) 

    z_15L =np.zeros((count,1)) 

     

    z_15_1L[:,0] = z5[gr5==gr_value] 

    z_15_2L[:,0] = z5[gr5==gr_value+1] 

    z_15_3L[:,0] = z5[gr5==gr_value+2] 

    z_15L[:,0] = np.concatenate([z_15_1L[:, 0],z_15_2L[:, 

0],z_15_3L[:, 0]]) 

     

    Diff_15L = Z_SDB_15L - z_15L 

    quadrado = Diff_15L*Diff_15L 

    soma = sum(quadrado) 

   

    if count >0: 

        RMSE_15L = (soma/count)**0.5  

 

    Diff_list.append(Diff)     

     

#    print( "\033[0;35m" +  "\033[1m"  + "Solution of Group: " 

+ str((gr_value * 5))  +  " A " + str(((gr_value *5) +15)))  

#    print ("\033[0m" + "RMSE: " + str(RMSER22L)) 

#    print ("\033[0m" + "RMSE: " + str(RMSE_15L)) 

#    print ("X: " + str(X0LL2) + "\n ") 

     

    ERROR6.append(RMSE_15L)  

     

range0_15_i15L = ERROR6[0]      

range5_20_i15L = ERROR6[1] 
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# RANGE OF 0 - 20 

 

# Solution Vector (X)      

 

for gr_value in range(0, gr_nr-2): 

    n33L=np.count_nonzero(gr==gr_value) #n. of control points in 

group 

    n44L = np.count_nonzero(gr==gr_value+1) 

    n55L = np.count_nonzero(gr==gr_value+2) 

    n66L = np.count_nonzero(gr==gr_value+3) 

    n3L = n33L+n44L+n55L+n66L 

     

    z_grp13L =np.zeros((n33L,1)) 

    z_grp23L =np.zeros((n44L,1)) 

    z_grp33L =np.zeros((n55L,1)) 

    z_grp43L =np.zeros((n66L,1)) 

    z_grpR23L =np.zeros((n3L,1)) 

     

    z_grp13L[:,0] = z[gr==gr_value] 

    z_grp23L[:,0] = z[gr==gr_value+1] 

    z_grp33L[:,0] = z[gr==gr_value+2] 

    z_grp43L[:,0] = z[gr==gr_value+3] 

    z_grpR23L[:,0] = np.concatenate([z_grp13L[:, 0],z_grp23L[:, 

0],z_grp33L[:, 0],z_grp43L[:, 0] ]) 

     

    A113L = np.zeros((n33L,u)) 

    A223L = np.zeros((n44L,u)) 

    A333L = np.zeros((n55L,u)) 

    A433L = np.zeros((n66L,u)) 

    AR23L = np.zeros((n3L,u)) 

     

    A113L[:, 0] = ln(Lb[gr==gr_value] / Lg[gr==gr_value]) 

    A223L[:, 0] = ln(Lb[gr==gr_value+1] / Lg[gr==gr_value+1]) 

    A333L[:, 0] = ln(Lb[gr==gr_value+2] / Lg[gr==gr_value+2]) 

    A433L[:, 0] = ln(Lb[gr==gr_value+3] / Lg[gr==gr_value+3]) 

     

    AR23L[:, 0]= np.concatenate([A113L[:, 0],A223L[:, 0], 

A333L[:, 0], A433L[:, 0]]) 

    AR23L[:, 1] = 1   

     

    NR23L=AR23L.T@AR23L 

    UR23L=AR23L.T@-z_grpR23L 

    inv_NR23L= np.linalg.inv(NR23L) 

    XR23L= -inv_NR23L@UR23L 

    VR23L= (AR23L@XR23L) - z_grpR23L    

    RMSER23L = ((VR23L.T@VR23L)/(n3L-u))**(1/2) 

     

    X0LL3 = np.array([XR23L[0], XR23L[1]])   #[m0 , m1] 

     

    c1 = np.count_nonzero(gr5==gr_value) 

    c2 = np.count_nonzero(gr5==gr_value +1 ) 

    c3 = np.count_nonzero(gr5==gr_value +2 ) 

    c4 = np.count_nonzero(gr5==gr_value +3 ) 

    count = c1 + c2 +c3 +c4 

                 



 

 

127 

 

    Z_SDB_20_1L =np.zeros((c1,1)) 

    Z_SDB_20_2L =np.zeros((c2,1)) 

    Z_SDB_20_3L =np.zeros((c3,1)) 

    Z_SDB_20_4L =np.zeros((c4,1)) 

    Z_SDB_20L=np.zeros((count,1)) 

         

    Z_SDB_20_1L[:,0] = (X0LL3[0]*ln ((Lb5[gr5==gr_value] 

)/(Lg5[gr5==gr_value] )))+X0LL3[1] 

    Z_SDB_20_2L[:,0] = (X0LL3[0]*ln ((Lb5[gr5==gr_value+1] 

)/(Lg5[gr5==gr_value+1] )))+X0LL3[1] 

    Z_SDB_20_3L[:,0] = (X0LL3[0]*ln ((Lb5[gr5==gr_value+2] 

)/(Lg5[gr5==gr_value+2] )))+X0LL3[1] 

    Z_SDB_20_4L[:,0] = (X0LL3[0]*ln ((Lb5[gr5==gr_value+3] 

)/(Lg5[gr5==gr_value+3] )))+X0LL3[1] 

    Z_SDB_20L[:,0] = np.concatenate([Z_SDB_20_1L[:, 0], 

Z_SDB_20_2L[:, 0], Z_SDB_20_3L[:, 0], Z_SDB_20_4L[:, 0]]) 

 

    z_20_1L =np.zeros((c1,1)) 

    z_20_2L =np.zeros((c2,1)) 

    z_20_3L =np.zeros((c3,1)) 

    z_20_4L =np.zeros((c4,1)) 

    z_20L =np.zeros((count,1)) 

     

    z_20_1L[:,0] = z5[gr5==gr_value] 

    z_20_2L[:,0] = z5[gr5==gr_value+1] 

    z_20_3L[:,0] = z5[gr5==gr_value+2] 

    z_20_4L[:,0] = z5[gr5==gr_value+3] 

    z_20L[:,0] = np.concatenate([z_20_1L[:, 0],z_20_2L[:, 

0],z_20_3L[:, 0],z_20_4L[:, 0]]) 

     

    Diff_20L = Z_SDB_20L - z_20L 

    quadrado = Diff_20L*Diff_20L 

    soma = sum(quadrado) 

   

    if count >0: 

        RMSE_20L = (soma/count)**0.5  

 

    Diff_list.append(Diff)     

     

#    print( "\033[0;35m" +  "\033[1m"  + "Solution of Group: " 

+ str((gr_value * 5))  +  " A " + str(((gr_value *5) +20)))  

#    print ("\033[0m" + "RMSE: " + str(RMSER23L)) 

#    print ("\033[0m" + "RMSE VAL: " + str(RMSE_20L)) 

#    print ("X: " + str(X0LL3) + "\n ")     

      

    ERROR7.append(RMSE_20L) 

     

range0_20_i20L = ERROR7[0]      

 

 

         

 

 


