
Citation: da Silva, F.G.; Ramos, L.P.;

Palm, B.G.; Machado, R. Assessment

of Machine Learning Techniques for

Oil Rig Classification in C-Band SAR

Images. Remote Sens. 2022, 14, 2966.

https://doi.org/10.3390/rs14132966

Academic Editors: Hyongki Lee,

Joong-Sun Won, Sanggyu Lee and

Euiho Hwang

Received: 1 May 2022

Accepted: 17 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessment of Machine Learning Techniques for Oil Rig
Classification in C-Band SAR Images
Fabiano G. da Silva 1,* , Lucas P. Ramos 1 , Bruna G. Palm 1,2 and Renato Machado 1

1 Department of Telecommunications, Aeronautics Institute of Technology (ITA),
São José dos Campos 12228-900, Brazil; lucaspr@ita.br (L.P.R.); bruna.palm@bth.se (B.G.P.);
rmachado@ita.br (R.M.)

2 Department of Mathematics and Natural Sciences, Blekinge Institute of Technology (BTH),
371 79 Karlskrona, Sweden

* Correspondence: fabianofgs@ita.br

Abstract: This article aims at performing maritime target classification in SAR images using machine
learning (ML) and deep learning (DL) techniques. In particular, the targets of interest are oil platforms
and ships located in the Campos Basin, Brazil. Two convolutional neural networks (CNNs), VGG-16
and VGG-19, were used for attribute extraction. The logistic regression (LR), random forest (RF),
support vector machine (SVM), k-nearest neighbours (kNN), decision tree (DT), naive Bayes (NB),
neural networks (NET), and AdaBoost (ADBST) schemes were considered for classification. The
target classification methods were evaluated using polarimetric images obtained from the C-band
synthetic aperture radar (SAR) system Sentinel-1. Classifiers are assessed by the accuracy indicator.
The LR, SVM, NET, and stacking results indicate better performance, with accuracy ranging from
84.1% to 85.5%. The Kruskal–Wallis test shows a significant difference with the tested classifier,
indicating that some classifiers present different accuracy results. The optimizations provide results
with more significant accuracy gains, making them competitive with those shown in the literature.
There is no exact combination of methods for SAR image classification that will always guarantee the
best accuracy. The optimizations performed in this article were for the specific data set of the Campos
Basin, and results may change depending on the data set format and the number of images.

Keywords: classification algorithms; deep learning; machine learning; oil rig classification; SAR;
ship classification

1. Introduction

The seas and oceans are natural resources of oil, natural gas, fauna, and flora, rich
in biodiversity and ecosystems. Because of those attributes, the Brazilian marine area
is known as the “Blue Amazon” [1]. The Campos Basin, one of the largest oil and gas
producers in Brazil, is located on the northern coast of Rio de Janeiro, between the cities of
Vitória (ES) and Cabo Frio (RJ), covering an area of 120,000 km2 [2].

The production capacity of oil and natural gas at sea can be evidenced by the results
for July 2021 in the Monthly Bulletin number 131 [3], highlighting the Campos and Santos
basins. For this period, the offshore oil and natural gas production was at about 97.1%
and 82.5% capacity, respectively [3]. In particular, the Campos and Santos Basins were
responsible for 23.74% and 69.07% of national oil and natural gas production, respectively.
Consequently, the sea is of strategic importance to the Brazilian economy. Its constant
surveillance is necessary to avoid illegal exploitation, such as fishing, oil spills, maritime
traffic, and piracy [4].

Remote sensing allows the surveillance of large maritime areas [5]. The US Seasat mis-
sion provided the first earth-imaging synthetic aperture radar (SAR) from space, launched
in 1978. The European Space Agency developed and launched the first microwave SAR
systems, ERS-1 (launched on 17 July 1991) and ERS-2 (launched on 20 April 1995) [6]. SAR
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systems have been applied in earth remote sensing applications for more than 30 years due
to their ability to provide high-resolution images, independent of the weather conditions
and sunlight illumination [7]. Furthermore, SAR images play an important role in maritime
surveillance [8,9], being useful for civil and military applications [10], such as detecting
environmental accidents related to oil spills [11,12].

SAR images can be difficult to interpret with human vision. To overcome this limi-
tation, automatic target recognition (ATR) can be applied to extract features that contain
unique identifying information about the targets. ATR consists of three stages, known as
detection, recognition, and classification [13]. This article will focus on the classification
step [14], and more precisely, on the classification of two types of targets, oil rigs and ships.

Recently, artificial intelligence (AI) techniques such as machine learning (ML) [15] and
deep learning (DL) [13] have been widely used for target classification in different SAR
image applications [16–18]. As discussed in [16], a hybrid neural network was employed in
Sentinel-1 and RADARSAT-2 SAR images for classification purposes. The hybrid algorithm
consisted of a convolutional neural network (CNN) and a multilayer perceptron (MLP). As
a result, the classification performance increased. ML is a subset area of AI that enables
computer systems to learn from past experiences and improve their behavior for specific
tasks. Typical examples of ML schemes are support vector machines (SVM), decision
tree (DT), naive Bayes (NB), and k-means clustering [19,20]. Neural networks (NET) are
a subset of ML inspired by biological neural networks, being represented by artificial
neurons connected in layers [20,21], while DL is an NET technique that organizes neurons
into several layers [20,22], for example, deep neural network (DNN) and CNN [20]. DL
has become popular in object detection due to its ability to learn how to discriminate
features automatically [23]. Furthermore, ML techniques, such as logistic regression (LR)
and NET, have shown to be useful for oil slick detection in SAR images from Sentinel-1
orbital systems [11]. For instance, in [24], a CNN was used to increase the training and test
data sets in ship detection in Gaofen-3 SAR images. A SAR ATR CNN-based application
was performed with the public MSTAR data set in [25] to classify military vehicles in SAR
images, displaying competitive results with the literature in terms of accuracy.

This article compares ML techniques, such as random forest (RF), LR, NET, SVM,
AdaBoost (ADBST), k-nearest-neighbours (kNN), NB, and DT, for classifying maritime
targets in high-resolution SAR images. For attribute extraction, two visual geometry group
deep learning techniques (VGG-16 and VGG-19) are considered. In particular, we aim to
classify oil rigs and ships in the Campos Basin, on the coast of Rio de Janeiro and Espírito
Santo, Brazil, considering vertical-horizontal (VH) and vertical-vertical (VV) polarimetric
images. For that, we considered the following methods: (M1) reproduction of results
already presented in the literature, specifically the ones discussed in [26], which, to the best
of our knowledge, is the only study related to the Campos Basin data set; (M2) evaluation
of the sensitivity of the classifiers; (M3) expansion of the training data set concatenation con-
sidering the whole of the VH and VV polarization samples; (M4) expansion of the training
data set concatenating half of the VH and VV polarization samples; and (M5) combining
classifiers to obtain better accuracy results (a technique named stacked generalization).

To achieve this objective, the aims of this article are as follows:

(i) Evaluate the combination of machine learning methods associated with classification
with deep learning for feature extraction;

(ii) Evaluate ML methods in the classification of SAR images in the C-Band and DL for
attribute extraction;

(iii) Reproduce the results of [26] to validate the methodology;
(iv) Identify parameter adjustments with more significant gains than those achieved in

the literature;
(v) Combine data sets to increase the variability of training samples;
(vi) Combine classification techniques;
(vii) Analyze the performance of VGG-16 and VGG-19 networks as feature generators for

classification algorithms;
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(viii)Evaluate the significance of the results through non-parametric statistics.

The remainder of the paper is organized as follows. Section 2.1 presents the Sentinel-1
mission and the employed data set. In Section 2.2, the used classification tools are presented.
The classification setup applied in this study is described in Section 2.3. The numerical
analyses are included in Section 3. Finally, Section 4 concludes the paper.

2. Materials and Methods

This section presents the characteristics of the Sentinel-1 mission, the classification
techniques, and the methodology used in this article.

2.1. Sentinel-1 Mission

The data set employed in this studied was obtained through the Sentinel-1 mission,
which is composed of two satellites, namely Sentinel-1A and Sentinel-1B, launched in
3 April 2014 and 25 April 2016, respectively [27]. They are in a sun-synchronized near-
polar orbit, operating day and night, with a 12-day repetition cycle and an altitude of
693 km, and they perform C-band SAR imaging [28,29]. This satellite has an SAR sensor
capable of generating medium- and high-resolution measurements [28]. In Table 1, some
of the Sentinel-1 system characteristics, such as the operating band, bandwidth, antenna
size, antenna weight, and pulse repetition frequency, are presented [27]. The Sentinel-
1 systems support single- (HH or VV) and dual-polarization (HH + HV or VV + VH)
operations, implemented by a transmit chain (switchable between H or V) and two parallel
receive chains for H and V polarization. Additionally, the stripmap (SM), interferometric
wide swath (IW), and extra-wide swath (EW) products are available with single or dual-
polarization. However, the waver product is only available with single polarization [27].

Table 1. Summary of the Sentinel-1 system parameters and characteristics.

Name Sentinel-1

Band C

Bandwidth 0–100 MHz (programmable)

Centre frequency 5.405 GHz

Storage capacity 1410 Gb

Polarization HH+HV, VV+VH

VV, HH

Incidence angle range 20–46º

Look direction right

Antenna type Slotted wave-guide radiators

Antenna size 12.3 m × 0.821 m

Antenna mass 880 kg

Azimuth beam width 0.23º

PRF (pulse repetition frequency) 1–3 kHz (programmable)

Data quantization 10 bit

Total instrument mass (including antenna) 945 kg
Font: [27].

According to [27], Sentinel-1 can acquire data in four modes, which are described in
the following and shown in Figure 1. First, SM is a standard SAR stripmap imaging mode.
A continuous sequence of pulses with a fixed elevation angle illuminates a strip of ground.
Second, in IW mode, the data are acquired in three bands using the terrain observation
with progressive scanning SAR (TOPSAR) imaging technique. Third, the data are acquired
on five swaths using the TOPSAR imaging technique. The EW mode provides extensive
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swath coverage at the expense of spatial resolution. Finally, in WV mode, the data are
obtained in small stripmap scenes called “vignettes”, located at regular 100 km intervals
along the swath.

Extra Wide Swath Mode

Orbit

Sub-satellite track

45º

Orbit height
~700 km

400 km

375 km250 km

100 km

100 km

Strip Map Mode
Wave mode

Interferometric 
Wide Swath

20º

20º

36.5º

23º

25º

Figure 1. Data acquisition modes from Sentinel-1 imaging during its orbital shift.

The four acquisition modes (SM, IW, EW, WV) can generate SAR level 0, level 1 SLC,
level 1 GRD, and level 2 OCN products [27], as shown in Figure 2. The product used
in our research is level 1 GRD with high-resolution SAR images, in IW mode, as shown
in Figure 3. It consists of focused SAR data detected, multi-looked, and projected to the
ground range using an ellipsoid model. Table 2 shows some examples of applications
separated by operating modes.

STRIPMAP WAVE

LE
V

E
L2

OceanOcean

High resolution

Medium Resolution

Ground Range
Detected
Full resolution

Single Look
Complex

Ground Range
Detected

High resolution
Medium Resolution

Ground Range
Detected
High resolution
Medium Resolution

Single Look
Complex

Ocean Ocean

LE
V

E
L0

Single Look
Complex

Raw Data Raw Data

LE
V

E
L1

Raw Data

Ocean Wind Field
Ocean Swell Spectra
Surface Radial Velocity

Ocean Wind Field
Surface Radial Velocity

Ocean Wind Field
Surface Radial Velocity

Ocean Wind Field
Ocean Swell Spectra
Surface Radial Velocity

EXTRA WIDE 
SWATH MODE

INTERFEROMETRIC 
WIDE SWATH MODE

Figure 2. Composition diagram of Sentinel-1 operating modes (SW, IW, EW, and WV) in the three
product levels (L0, L1, and L2).
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Ground Range
Detected(GRD)
High resolution
Medium Resolution

INTERFEROMETRIC 
WIDE SWATH MODE (IW)

LE
V

E
L1

Figure 3. Level 1 product (GRD) of the IW mode used in the research.

Table 2. Typical Sentinel-1 applications distributed by modes.

Application
Mode

SM IW EW WV

Arctic and sea-ice X X
Open ocean ship surveillance X X

Oil pollution monitoring X X
Marine winds X X X

Forestry X
Agriculture X

Urban deformation mapping X
Flood monitoring X X

Earthquake analysis X X
Landslide and volcano monitoring X X

Sentinel-1 Image Data Set

For this study, the Sentinel-1 SAR image data set contains 400 images (patches) in VH
and VV polarization with maritime targets (platforms and ships), equally distributed (i.e.,
200 patches with platforms and 200 patches with ships). Image patches were acquired
at different times. There are targets with more than one patch. Despite being from the
same target, the patches can be considered distinct because of the SAR image formation
process, which is influenced by backscatter and sea currents that cause displacement on
the platforms.

Following the methodology employed in [26], the original amplitude-type images
were transformed into sigma-zero (dB) images. Figure 4 presents an optical image and
its respective SAR image for the following targets: (i) Floating Production Storage and
Offloading (FPSO) platforms P-48; (ii) Floating and Production Unit (FPU) P-53; (iii) Tension
Leg Wellhead Platform (TLWP) P-61; (iv) Fixed Platform (FIX) PCH-1; and (v) Semisub-
mersible (SS) P-65. These images were collected with the ground-range-detected product;
interferometric wide swath mode; high spatial resolution (20 m× 22 m—range × azimuth);
pixel spacing equal to 10 m× 10 m in range and azimuth, respectively; and 5× 1 number
of looks (the equivalent number of looks is 4.4 [30]).

The legends (υ1, υ2, υ3, υ4, υ5, υ6, υ7, υ8) represent the images with VH polarization and
the legends (ι1, ι2, ι3, ι4, ι5, ι6, ι7, ι8) represent the images with VV polarization, taken on the
dates mentioned in Table 3.
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Floating Production Storage and Offloading (FPSO) P-48

Floating and Production Unit (FPU) P-53

Tension Leg Wellhead Platform (TLWP) P-61

OPTICS

Fixed platforms (FIX) PCH-1 

SAR - VH

Semi-submersible Floating Production Unit  SS P-65

SAR - VV

Figure 4. Examples of oil platforms with optical and SAR (VH and VV polarizations) images in the
Campos Basin, Brazil. Optical and SAR images extracted from [31] and [26], respectively.

Table 3. Number of targets extracted in each SAR image.

Polarization

VH VV

SAR Image Date Legend Oil Rig Ship Legend Oil Rig Ship

20180430 at 08:04 a.m. υ1 42 50 ι1 42 50
20180605 at 08:05 a.m. υ2 40 49 ι2 40 49
20180512 at 08:05 a.m. υ3 40 48 ι3 40 48
20171118 at 08:13 a.m. υ4 12 29 ι4 12 29
20180524 at 08:05 a.m. υ5 38 11 ι5 38 11
20180617 at 08:04 a.m. υ6 8 0 ι6 8 0
20180622 at 08:13 a.m. υ7 13 0 ι7 13 0
20180430 at 08:05 a.m. υ8 7 13 ι8 7 13

2.2. Classification Tools

This section presents the classifier methods employed in this article. In particular,
a classifier can be defined as a function f that maps the input vectors of features, x ∈ χ,
into the output class labels, y ∈ {1, 2, . . . , C}, where χ is the attribute space and C is the
number of classes. Usually, it is assumed that χ = RD or χ = {0, 1}D, that is, that the
attribute vector is a vector of D real numbers or binary bits [32]. Classification is one of
the most important topics in data mining, especially for large amounts of data (big data)
applications. The main task of classification is to predict the labels of the test data based on
the training data [33]. In the following, the employed classifiers in this study are presented.
The first considered method is the SVM scheme, which is a class of statistical models first
developed in the 1960s by Vladimir Vapnik [34] that can be used for classification [35].
SVM has become popular due to its applicability in a variety of contexts, such as extreme
learning machines [34], automatic target recognition for CNN-based in SAR images [36],
SAR ATR, and independent component analysis [37].

The second scheme applied in our study is the DT, which is a nonparametric super-
vised learning method used for classification and regression [38].
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The main idea of this algorithm is that the trees learn how to approximate a sine curve
with a set of decision rules. They are visualized using a graph, which makes them easy
to interpret. In addition, they require little previous information and can handle both
numerical and categorical data. On the other hand, instability due to small variations in
the data can cause changes in the tree [39,40].

Another employed method is the RF, which is a hybrid of the bagging algorithm
and random subspace method and uses DT as a basis in the classification process [41].
In other words, RF is a combination of tree predictors, where each tree depends on the
values of a random vector sampled independently with the same distribution for all
the trees in the forest [42], that is, each tree is built from a sample, which is taken with
replacement from the training set. Individual DTs have high variance and tend to overfit.
However, the randomness injected into forests produces DTs with reduced prediction
errors. Furthermore, increasing the number of trees can produce better accuracy results
and limit the generalization error [42].

The NB and kNN methods were investigated in this study. The NB is one of the most
efficient algorithms used in ML, classification, pattern recognition, and data mining, and it
is based on Bayes’ theorem [43–45]. The kNN is a nonparametric classification method that
has been used in different real-world applications due to its simplicity and efficiency [33,46].
The main idea of the kNN method is to predict the label of a test data point by the majority
rule. In other words, the test data label is predicted with the main class with its k most
similar training data points in the attribute space [33]. To avoid inaccurate prediction
results, it is necessary to choose an appropriate value of k. A simple way to choose k is to
load the algorithm several times with different values of k and select the one with the best
result [47].

We also considered the LR scheme, which is a linear model useful for classification
tasks. The sigmoid function is the basis for LR. Particularly, the logistic sigmoid function is
expressed as

σ(x) =
1

1 + exp{−x} , (1)

where the input x ∈ (−∞, ∞) produces results in the range of [0, 1]. LR adds an exponential
function at the linear regression, bounding the output yi ∈ [0, 1], and i = 1, 2, . . . , n, where
n is the total number of training samples [48]. The relationship between the input and the
predicted output for LR is presented as

ŷi = σ

(
n

∑
j=1

xijwj + w0

)
, (2)

where xij is the input given by an n-dimensional vector belonging to reals; yi is the current
output value that is given by a one-dimensional array; ŷi is the predicted output value that
is given by an array; wj is the weight parameters; and w0 a bias term. Since the output is
limited to the interval [0, 1], it can be interpreted as a probabilistic measure, that is, the LR
is a variation of the linear regression [48].

This article also considered the AdaBoost (ADBST) classifier. ADBST is an adaptive
boosting algorithm proposed by Freund and Schapire in 1999 [49], developed for binary
classifications. The purpose of the classifier is to train predictors sequentially, trying
to correct previous predictors and focusing on the most difficult cases. The algorithm
increases the weight for training samples that have been misclassified, that is, the classifier
learns from previous prediction errors [46]. The weight is associated with the degree of
difficulty in getting it right. It builds a stronger classifier from a combination of weaker
classifiers. If there are correct answers, then the classifier is rewarded. The process is
repeated in T rounds, for t = {0, 1, . . . , T}, and n training samples. In each iteration of
the algorithm, the weights are adjusted, and the samples are trained [50]. The final model
is defined by the weighted majority of weak T learners, where their weights are adjusted
during the training [46,50]. Initially, all training samples must have the same weight,
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so wi = 1/n, ∀ xi, i = 1, 2, . . . , n. Then, the algorithm considers all possible classifiers and
identifies the fi(x) that minimizes εt, which is the sum of the weights of the misclassified
points. The weight αt of the new classifier is expressed as

αt =
1
2

ln
(

1− εt

εt

)
, (3)

which depends on the accuracy with respect to the current set of measured points. The
weights are then normalized as ∑n

i=1 = wi = 1, and as a result, we have a classifier with an
error εt ≤ 0.53. In the next round, incorrect classifications have their weights adjusted to
make them more significant. Let ŷt(xi) be a class—assuming values of 1 or −1—predicted
for xi, and yi be the correct value of the class. For the situation where ŷt (predicted) value
is equal to yi (observed) value, the ŷt(xi).y signal is a positive value; otherwise, it will
assume a negative. The adjusted weights are expressed as w′i,t+1 = wi,t exp{−yiαtŷt(xi)},
before renormalizing them all, so that they continue to sum to 1, that is, C = ∑n

i=1 w′i,t+1,
and wi,t+1 = w′i,t+1/C [50].

We also employed a neural network as a classification tool. A NET is a very complex
technology that requires a large amount of data for the training process, which is based on
how human neurons work, receiving a set of inputs that are used to predict one or more
outputs [51]. One of the main uses of NETs is in grouping data into two or more classes.
Neural networks can be trained in two ways: (i) supervised learning, where each training
input vector is paired with a target vector or desired output, and (ii) unsupervised learning,
where the net self-organizes to extract patterns from data with no target information. In
the n-dimensional space, the input vectors are represented as (x1, x2, . . . , xn) or x, and the
coefficients or weights are represented as (v1, v2, . . . , vn) or v, i.e., x.v = y [52].

Finally, the stacking or stacked generalization technique is an ensemble method that
combines multiple models to achieve better classification results [53,54], and this was
also used in our study. This type of scheme can be more accurate than an individual
classifier [55]. For instance, [56] demonstrates the efficiency of the technique by combining
three different algorithms, DT, NB, and IB1 (a variation of the lazy algorithm).

2.3. Classification Setup

This section describes the methodology employed in this article, introducing the
training and test groups and the steps used in the classification tools. To obtain the
training and test groups, we adopted the methodology proposed in [26], where 50 groups
were created randomly, resulting in 320 training images (80% of the total samples) and
80 test images (20% of the total samples). Before starting the classification steps, the image
attributes are extracted using CNN VGG-16 and VGG-19 [57]. A VGG is a CNN with a
convolutional layer stacking with different levels of depth.

The difference between VGG-16 and VGG-19 is in the number of convolutional lay-
ers. More precisely, VGG-16 comprises 13 convolutional layers [58,59], while VGG-19 is
made up of 16 convolutional layers [60,61]. This difference can be seen in
Figures 5 and 6. The VGG-16 is composed of: (i) conv 1—two convolutional layers
with 64 channels; (ii) conv 2—two convolutional layers with 128 channels; (iii) conv 3—
three convolutional layers with 256 channels; (iv) conv 4—three convolutional layers with
512 channels; (v) conv 5—three convolutional layers with 512 channels; (vi) fc6—4096
channels; (vii) fc7—4096 channels; and (viii) fc8—1000 channels. On the other hand,
VGG-19 is composed of: (i) conv 1—two convolutional layers of 64 channels; (ii) conv
2—two convolutional layers with 128 channels; (iii) conv 3—four convolutional layers with
256 channels; (iv) conv 4—four convolutional layers with 512 channels; (v) conv 5—four
convolutional layers with 512 channels; (vi) fc6—4096 channels; (vii) fc7—4096 channels;
and (viii) fc8—1000 channels. In short, the difference between the two occurs in conv 3–5.
The VGG architecture used in the research ends in the FC7 layer. Therefore, the FC7 layer
with the embedding is the input for the classification algorithms, as shown in Figure 7.
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Figure 5. VGG-16 formation diagram.
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Figure 6. VGG-19 formation diagram.
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Figure 7. VGG-16 formation diagram.

After extracting attributes with the CNNs, four different data sets are created, df-16vh,
df–16vv, df-19vh, and df-19vv, which are the results of the combinations of the two CNNs,
VGG-16/VGG-19, and the VH/VV polarizations.

The bootstrap technique was used to ensure reproducibility and to make sure that
the classifiers are evaluated under the same conditions. Bootstrap is a random resampling
technique with replacement from the primary dataset [39,62]. This technique makes it
possible to estimate the empirical distribution of statistics [39,63]. In this work, each data
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set (i.e., df-16vh, df-16vv, df-19vh, df-19vv) is resampled 50 times, as described in Figure 8.
Similar to [26], each resampling consists of 320 training samples and 80 test samples.

TRAIN TEST

TRAIN TEST

TRAIN TEST

GROUP 1

GROUP 2

GROUP 3

TRAIN TEST

GROUP 50

ORIGINAL DATA SET

df-16vv

df-19vh

df-19vv

df-16vh

Figure 8. Formation of the 50 training and test groups using the bootstrap resampling technique.

The methodology of this work is described in the items below and shown in Figure 9.

VH VV

M1 M2 M3 M4 M5

SENTINEL-1

OIL RIG SHIP

SHAPIRO-WILK

G1
G2

G50

.

..

TRAIN

TEST

Gn
DF1 DF2

DUNNKRUSKAL-WALLIS

DEEP LEARNING
VGG-16 VGG-19

SAR DATA

P P

LEGEND
DF1 - Data set after vectorization
DF2 - Data set after vectorization
VH, VV - Polarizations
ML1, ML2 - Machine Learning Algorithms
M1 - Reproducion of results
M2 - Parameter setting of classifiers
M3 - data merge VH and VV
M4 - data merge half data VH and VV
M5 - Stacking of classifiers
P - Processing

ML1 ML2

Pretrained Imagenet

1

2

3
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Figure 9. Flowchart with image acquisition, attribute extraction with DL algorithm, image classifica-
tion (five methods), and statistical analysis of classification accuracy.
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(1) Data set

The data set consists of eight Sentinel-1 SAR images in VH polarization and eight in
VV polarization, GRD product, IW mode, obtained through ESA’s Copernicus project [64]
in the periods listed in Table 3.

(2) Preprocessing

The original data set went through a calibration process using SNAP software (Sen-
tinel Application Platform) to transform the amplitude image into zero-sigma. Then, the
cutouts of the targets were made manually through SNAP. The dimensions of the im-
ages are displayed in Table 4. The identification of oil platforms is through geolocation
(latitude × longitude) provided by the ANP [65]. Targets without geolocation are consid-
ered ships. The number of targets extracted in each SAR image is presented in Table 3.
Each patch is individually exported as a TIFF image. The types of platforms in the images
are listed in Table 5. TIFF image patches form the VH and VV data sets from platforms
and ships.

Table 4. Size of image patches.

Dimension: Range × Azimuth

912 × 596 pixels
968 × 596 pixels
939 × 596 pixels
901 × 596 pixels
930 × 596 pixels
944 × 596 pixels
985 × 596 pixels

1057 × 596 pixels

Table 5. Distribution of platform patches between training and testing samples.

Polarization

TotalVGG-16VH VGG-16VV VGG-19VH VGG-19VV

Id Oil Rig Test Train Test Train Test Train Test Train

1 FIX PCA1 2 2 2 1 1 8
2 FIX PCA2 1 1 2 2 2 8
3 FIX PCH1 2 3 2 3 2 3 1 4 20
4 FIX PCP1 1 2 1 2 3 3 12
5 FIX PCP2 3 3 3 1 2 12
6 FIX PEREGRINOA 1 1 1 1 4
7 FIX PNA1 1 4 2 3 5 2 3 20
8 FIX PNA2 1 4 5 5 1 4 20
9 FIX POLVOA 1 1 1 1 4
10 FIX PPG1 1 4 5 1 4 5 20
11 FIX PPM1 2 1 1 2 2 8
12 FIX PRA1 1 3 4 2 2 1 3 16
13 FIX PVM1 1 4 1 4 5 5 20
14 FIX PVM2 2 3 1 4 5 1 4 20
15 FIX PVM3 1 4 5 1 4 5 20
16 FPSO CAPX 1 1 2 1 1 1 1 8
17 FPSO CDAN 1 2 3 2 1 1 2 12
18 FPSO DYNAMIC 1 1 1 1 4
19 FPSO ESPST 2 2 2 2 8
20 FPSO FPF 3 2 1 4 5 5 20
21 FPSO FPNIT 3 1 2 3 1 2 12
22 FPSO FPRJ 4 2 2 4 1 3 16
23 FPSO FPRO 2 2 1 3 1 3 2 2 16
24 FPSO FRADE 1 1 2 2 1 1 8
25 FPSO OSX3 1 1 1 1 4
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Table 5. Cont.

Polarization

TotalVGG-16VH VGG-16VV VGG-19VH VGG-19VV

Id Oil Rig Test Train Test Train Test Train Test Train

26 FPSO P31 4 4 4 4 16
27 FPSO P33 1 3 1 3 1 3 3 1 16
28 FPSO P35 4 1 3 1 3 1 3 16
29 FPSO P37 4 4 4 4 16
30 FPSO P43 1 3 4 4 2 2 16
31 FPSO P47 3 1 2 3 2 1 12
32 FPSO P48 1 2 1 2 3 1 2 12
33 FPSO P49 1 1 1 1 4
34 FPSO P50 4 1 3 1 3 1 3 16
35 FPSO P54 3 3 1 2 3 12
36 FPSO P57 3 3 1 2 3 12
37 FPSO P58 3 3 1 2 1 2 12
38 FPSO P62 5 3 2 1 4 2 3 20
39 FPSO P63 1 1 1 1 4
40 FPSO P64 1 1 1 1 4
41 FPSO PEREGRINO 1 1 1 1 4
42 FPSO POLVO 1 1 1 1 4
43 FPU P53 1 2 3 2 1 3 12
44 FSO MACAE 4 4 4 1 3 16
45 FSO P32 1 1 2 2 2 8
46 FSO P38 3 1 2 3 1 2 12
47 SS P07 2 3 5 2 3 5 20
48 SS P08 1 4 1 4 3 2 1 4 20
49 SS P15 5 2 3 1 4 5 20
50 SS P18 2 2 4 2 2 2 2 16
51 SS P19 1 3 1 3 4 4 16
52 SS P20 3 2 1 4 5 2 3 20
53 SS P25 1 3 2 2 2 2 4 16
54 SS P26 1 3 1 3 1 3 1 3 16
55 SS P40 1 3 1 3 2 2 1 3 16
56 SS P51 1 3 1 3 1 3 4 16
57 SS P52 2 2 2 2 8
58 SS P55 4 4 4 4 16
59 SS P56 1 3 1 3 1 3 4 16
60 SS P65 1 3 1 3 3 1 1 3 16
61 TWLP P61 1 1 1 1 4

Total 40 160 40 160 40 160 40 160 800

(3) Extraction of attributes

The VH and VV image patches are the input of two CNNs, VGG-16 and VGG-19,
pre-trained in the ImageNet data set, which extract features and generate four data sets:
df-16vh, df-16vv, df-19vh, and df-19vv. Figure 5 presents an example of the application of
VGG-16. It is noticed that the VGG-16 of our research uses the FC7 layer to provide the
attributes to the classification algorithms. In this article, VGG-19 also uses the FC7 layer to
provide the attributes to the classification algorithms.

(4) Formation of train and test samples

The proportion of 80% (training) and 20% (test) is considered. Training and testing
samples are generated randomly. This was the methodology applied by [26].

(5) Classification with the M1 method

In this method, ML techniques are applied in order to reproduce the results of [26].

(6) Bootstrap formation

The samples vectored in the four data sets (df-16vh, df-16vv, df-19vh, df-19vv) are
randomly distributed with replacement in 50 bootstrap groups and saved to submit the
classifiers to the same reproducibility conditions. Table 5 presents the distribution of
platforms between training and test samples in a bootstrap group.
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(7) Bootstrap and formation of train and test samples

Each of the 50 bootstrap groups comprises subsets of the original data sets (df-16vh,
df-16vv, df-19vh, df-19vv).

(8) Classification with the M2-M5 method

ML techniques are applied to the M2–M5 methods considering the kNN, SVM, LR,
DT, RF, NB, NET, and ADBST algorithms.

(9) Statistical analysis

Statistical analysis is performed using the Shapiro–Wilk methods (normality analysis);
Kruskal–Wallis (significant difference analysis); and Dunn (identifies who owns differs).
For brevity purposes, the two best results in each method (M1–M5) were considered.

To perform the classification, we used the following five methods, namely M1, M2,
M3, M4, and M5, defined as follows:

(M1) Aiming at reproducing the results obtained by [26], the LR, SVM, RF, kNN, DT,
and NB classifiers were used with parameters in the default setting. To the best
of our knowledge, [26] is the only study available in the literature for maritime
target classification in Sentinel-1 SAR data based on ML techniques. For comparison
purposes, in this method, the samples were randomly generated only at the time of
classification and were not saved, and the parameters of the applied classification
tool are the ones predefined as default in the Orange Canvas software [66], which are
described in Table 6.

(M2) The number of algorithms used in M1 was increased with the addition of the NET
and ADBST methods. In this step, an extensive computational search was performed,
varying the parameters of the considered classification algorithms, aiming to maximize
their performance. The employed parameters are presented in Table 7. The basis for
parameter adjustment is empirical and was optimized to improve the results presented
by [26]. For example, [67] shows that 500 trees are a good choice for constituting the RF.
However, this number can be increased to approximately 3000 to evaluate the results.
For SVM and ADBST, [67] shows that the proper adjustment is made by gradually
changing the parameter values. Indeed, there is no analytical methodology to reach
optimal parameter values because the optimization depends on the data. This was
evident when [68] optimized the parameters of SVM, kNN, and DT, demonstrating
that the ideal values of the parameters can vary with the size of the training data.

(M3) In this method, the training data set was expanded with the concatenation of all
samples from the VH and VV data sets. The test data set remained unchanged.

(M4) The training data set was extended with the concatenation of half of the samples of
the VH and VV image data set. The test set remained with the same samples.

(M5) The stacked generalization technique consists of combining several classifiers, aiming
to obtain better classification results [53,56,69]. Since supervised classification is
performed in all steps, the distribution of the training and test sets is done according
to Table 8.

In this section, the numerical results are presented and discussed. To perform the
maritime target classification in the Sentinel SAR data based on ML techniques, we extracted
4096 features from the images using CNNs VGG-16 and VGG-19, available in the Orange
Canvas software [66]. For this architecture, the number of filters doubles after each max
pool layer [20]. Consequently, from the data set generated by feature extraction, 50 distinct
groups were defined, separated by networks VGG-16 and VGG-19, and polarizations VH
and VV. Additionally, to perform the classification, we employed the tools described in
Section 2.2 and the steps presented in Section 2.3.
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Table 6. Default parameters available of the employed classification methods in Orange Canvas
software [66].

Classifier Parameter Value

kNN

Number of neighbors 3

Distance Euclidean

Weight Uniform

DT

Tree type Binary

Minimum instances per sheet 2

Minimum instances for splitting a node 5

Tree depth limit 100 node levels

Stop criteria based on majority 95%

RF
Number of trees 10

Minimum instances for splitting a node 5

SVM

Cost 1

Regression loss epsilon 0.1

Kernel RBF

Numerical tolerance 0.001

Number of interactions 100

NB No parameters -

LR
Regularization method Ridge (L2)

Force 1

Table 7. Parameters employed in the classification tools.

Classifier Parameter Value

RF Number of trees

10, 50, 100, 200, 300, 400

500, 600, 700, 800, 900

1000, 1100, 1200, 1300

kNN
Number of neighbors 3, 5, 7, 10

Distance used Euclidean and Manhattan

ADBST Number of estimators 10, 50, 100

LR Strength 0.6, 1, 10, 50, 100, 200

NET Number of neurons 10, 50, 100, 200

SVM

Cost 1, 2, 3, 4, 5

Kernel RBF and SIGM

Number of interactions 100 and 200

DT Minimum instances per sheet 2, 5, 7, 10, and 20

NB No parameters

Table 8. Distribution of the training and test samples.

Samples

CNN Pol Total Training Test

M1, M2, and M5 M3 M4

VGG-16 VH 400 320 640 160 (VH) + 160 (VV) 80
VV 400 320 80

VGG-19 VH 400 320 640 160 (VH) + 160 (VV) 80
VV 400 320 80
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To evaluate the performance of the employed methods, we considered the following
metrics: area under the curve (AUC), accuracy (Acc), F1 score, precision, and recall. The
mean for each metric was computed considering the 50 groups of data (randomly created, as
mentioned in Section 2.3). Since all the results lead to the same conclusion, we decided only
to discuss the Acc results in this section. The remaining results are detailed in Appendix A.

Finally, statistical analyses, such as the Shapiro–Wilk and Kruskal–Wallis tests, are
presented to assess the overall performance of the methods. A flowchart with the stages of
image acquisition, attribute extraction with DL algorithm, image classification methods,
and statistical analysis of classification accuracy is presented in Figure 9.

Table 9 presents the setups that optimize the performance of the tested methods. The
parameters are the number of CNN layers and the polarization channel. The NB and
ADBST methods parameters are not presented since NB has no configuration parameters,
and ADBST presented the same results, regardless of the parameter setup.

Considering the parameters displayed in Table 9, Table 10 shows the Acc mean values
of 50 classification results; the best results are highlighted in bold. The classifiers that ex-
celled in classification results were LR, NET, SVM, RF, and kNN, presenting a classification
gain of 32.5%, 32.5%, 17.5%, 15.5%, and 2.5%, respectively.

Comparing our results with [26], the accuracy of the CNN VGG-16 was increased
by 7.7% and 4.2% for the M4-kNN (VV polarization) and M2-SVM (VH polarization),
respectively. For the CNN VGG-19, the gains are about 7.0% and 3% for the M4-kNN (VV
polarization) and M2-SVM (VH polarization), respectively. In methods M3 and M4, there is
an upgrade in the variability of the samples and the accuracy of the classification results.
The stacking technique presents accuracy results ranging from 76.1% to 84.1%. Compared
with the results shown in [26], the stacking technique does not excel only for the LR scheme.

Therefore, the RF, SVM, and NET classifiers excel in all the evaluated scenarios, and
the LR had poor performance in method M4. In summary, considering all the classification
techniques, the following ones stand out: LR, SVM, NET, STACK, and RF, with the highest
accuracy results ranging between 80.5% and 85.45% for all the tested scenarios.

The VH polarization presents better results in detecting targets, mainly on oil platforms
formed by large metallic structures of complex geometry. In general, the brightness of
the targets is more intense in the VH polarization, and the background (sea) in the VV
polarization. Therefore, feature extraction is best represented in VH polarization in the
VGG-16 and VGG-19 networks.

To emphasize the results highlighted in Table 10, Figure 10 demonstrates the top
two classification results in each method with VGG-16VH. The other graphical results for
VGG-19VH, VGG-16VV, and VGG-19VV are presented in Appendix A.

Table 9. Optimized parameters in step M2.

Parameter

Classifier

CNN Pol kNN LR RF SVM DT NET

VGG-16
VH 7-Manhattan 1 50 4-SIGM-200 7 10

VV 3-Manhattan 1 200 3-SIGM-200 5 50

VGG-19
VH 5-Manhattan 1 1200 1-SIGM-100 2 50

VV 5-Euclidean 0.6 100 2-SIGM-200 5 100



Remote Sens. 2022, 14, 2966 16 of 24

Table 10. Overall summary of accuracy mean results of the employed classification methods for the
VGG—16VH, 16VV, 19VH, and 19VV SAR images. The best results are highlighted in bold. The
symbol (i) “-” indicates that the classification result is absent, and (ii) “x” indicates which classifiers
are combined to obtain the final result with the stacked generalization technique in step M5.

Classifier Mre f M1 M2 M3 M4 M5

VGG - 16VH

kNN 0.772 0.778± 0.04 0.792± 0.04 0.768± 0.03 0.772± 0.04
LR 0.864 0.852± 0.03 0.855± 0.03 0.627± 0.08 0.846± 0.04 x
NB 0.698 0.711± 0.05 0.696± 0.04 0.691± 0.04 0.687± 0.05
RF 0.802 0.792± 0.04 0.818± 0.04 0.799± 0.04 0.780± 0.04 x

SVM 0.804 0.806± 0.04 0.838± 0.03 0.785± 0.04 0.792± 0.04 x
DT 0.750 0.744± 0.04 0.738± 0.04 0.757± 0.05 0.724± 0.05 x

ADBST – – 0.732± 0.05 0.739± 0.05 0.726± 0.04
NET – – 0.838± 0.03 0.840± 0.03 0.830± 0.03
Stack – – – – – 0.844± 0.03

VGG - 16VV

kNN 0.694 0.701± 0.04 0.708± 0.04 0.748± 0.04 0.700± 0.05

LR 0.781 0.782± 0.04 0.783± 0.03 0.608± 0.07 0.783± 0.04 x
NB 0.660 0.645± 0.04 0.657± 0.04 0.656± 0.04 0.658± 0.05
RF 0.704 0.695± 0.05 0.740± 0.04 0.728± 0.05 0.703± 0.04 x

SVM 0.723 0.714± 0.04 0.760± 0.03 0.729± 0.04 0.722± 0.04 x
DT 0.659 0.642± 0.04 0.654± 0.04 0.676± 0.05 0.668± 0.04 x

ADBST – – 0.650± 0.05 0.688± 0.05 0.667± 0.05
NET – – 0.784± 0.03 0.776± 0.04 0.757± 0.04
Stack – – – – – 0.763± 0.03

VGG - 19VH

kNN 0.801 0.801± 0.04 0.802± 0.04 0.793± 0.04 0.788± 0.04
LR 0.841 0.851± 0.03 0.842± 0.03 0.641± 0.09 0.845± 0.03 x
NB 0.707 0.699± 0.05 0.704± 0.04 0.707± 0.04 0.698± 0.04
RF 0.815 0.806± 0.03 0.833± 0.05 0.810± 0.04 0.804± 0.03 x

SVM 0.824 0.816± 0.04 0.849± 0.03 0.789± 0.04 0.799± 0.04 x
DT 0.776 0.762± 0.04 0.765± 0.04 0.775± 0.04 0.758± 0.04 x

ADBST – – 0.768± 0.05 0.770± 0.05 0.752± 0.04
NET – – 0.836± 0.04 0.844± 0.04 0.833± 0.03
Stack – – – – – 0.841± 0.03

VGG - 19VV

kNN 0.713 0.713± 0.04 0.724± 0.04 0.763± 0.04 0.710± 0.04

LR 0.774 0.766± 0.04 0.768± 0.06 0.624± 0.07 0.773± 0.05 x
NB 0.643 0.653± 0.04 0.652± 0.04 0.658± 0.04 0.657± 0.04
RF 0.719 0.717± 0.05 0.751± 0.05 0.742± 0.05 0.727± 0.05 x

SVM 0.737 0.731± 0.05 0.754± 0.06 0.766± 0.04 0.746± 0.05 x
DT 0.670 0.667± 0.05 0.663± 0.05 0.706± 0.04 0.692± 0.05 x

ADBST – – 0.640± 0.05 0.698± 0.04 0.680± 0.04
NET – – 0.761± 0.06 0.777± 0.04 0.761± 0.05
Stack – – – – – 0.761± 0.04

Complementing the results of Table 10, Table 11 displays the average of the classifi-
cation results for the M1 method with the CNN VGG-16/VGG-19 and the classification
metrics (AUC, F1 Score, Precision, and Recall). In addition, it reproduces the results of [26],
using the same training/testing and classification data generation approach. Each metric
is calculated for the six classifiers (kNN, LR, NB, RF, SVM, and DT). As in [26], LR is the
classifier with the best performance. Furthermore, it is observed that the results with VH
polarization are superior to those with VV polarization. Methods M2 to M5 present result
tables with the same structure as M1 for the metrics (AUC, F1 Score, Precision, and Recall).
Therefore, tables are included in Appendix A.
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Figure 10. Summary of the two best classification results obtained in each method with CNN VGG-16
and VH polarization.

Table 11. Overall summary of the average of all metrics employed in the classification method—
method M1.

Classifier

Method CNN-Pol Metric kNN LR NB RF SVM DT

M1

VGG-16VH

AUC 0.837 0.928 0.738 0.876 0.897 0.719
F1 0.776 0.851 0.707 0.791 0.803 0.743

Precision 0.782 0.855 0.721 0.795 0.826 0.747
Recall 0.778 0.852 0.711 0.792 0.806 0.744

VGG-16VV

AUC 0.746 0.873 0.663 0.767 0.802 0.633
F1 0.700 0.781 0.638 0.694 0.712 0.641

Precision 0.703 0.785 0.657 0.697 0.722 0.645
Recall 0.701 0.782 0.645 0.695 0.714 0.642

VGG-19VH

AUC 0.842 0.923 0.737 0.886 0.911 0.723
F1 0.800 0.850 0.695 0.805 0.814 0.761

Precision 0.803 0.852 0.708 0.809 0.825 0.766
Recall 0.801 0.851 0.699 0.806 0.816 0.762

VGG-19VV

AUC 0.761 0.850 0.679 0.793 0.809 0.652
F1 0.711 0.765 0.647 0.716 0.730 0.666

Precision 0.718 0.769 0.666 0.720 0.734 0.670
Recall 0.713 0.766 0.653 0.717 0.731 0.667

3. Results and Discussion

To further evaluate the performance of the tested methods, we considered the Kruskal–
Wallis and post hoc Dunn’s tests to identify if the employed methods present significantly
different mean behavior in terms of accuracy in comparison with the approaches described
in [26]. Both tests are widely explored in several non-Gaussian signal processing applications
for comparison purposes of machine learning tools, such as in [70–74]. To verify the normality
of the data, we performed the Shapiro–Wilk test, which indicates that 70%, 10%, 30%, and
30% of the VGG-16VH, VGG-16VV, VGG-19VH, and VGG-19VV data cannot be modeled by
the normal distribution, respectively. For all the employed tests, we set the significance level
equal to 0.05, which is a convenient cutoff level to reject the null hypothesis [75].

Table 12 shows the p-values of the Kruskal–Wallis and Dunn’s tests for the results
reproduced from [26] (M1) and the proposed tools; for brevity, just the significant results
are displayed. Among them, SVM results in an accuracy gain of 4.17%, 3.94%, and 3.03%
for VGG-16VH (M2), VGG-19VV (M4), and VGG -19VH (M2), respectively, in comparison
with the results presented in [26].



Remote Sens. 2022, 14, 2966 18 of 24

Table 12. Kruskal–Wallis and Dunn’s test results, comparing the proposed methods with the ap-
proaches presented in [26]. For brevity, only the cases with a significant difference in the mean
behavior are displayed.

M Classifier M Classifier p-Value M Classifier M Classifier p-Value

VGG-16VH VGG-19VH
p-value <0.001 p-value < 0.001

1 SVM 2 LR <0.001 1 SVM 2 SVM 0.003
1 SVM 2 SVM 0.027 1 LR 3 RF <0.001
1 SVM 3 NET 0.008 1 NET 3 RF 0.006
1 LR 3 RF <0.001 1 SVM 4 LR 0.024
1 SVM 4 LR <0.001
1 LR 4 NET 0.041

VGG-16VV VGG-19VV
p-value < 0.001 p-value < 0.001

1 SVM 2 LR <0.001 1 SVM 2 LR 0.009
1 SVM 2 NET <0.001 1 SVM 3 NET <0.001
1 LR 3 kNN 0.021 1 SVM 3 SVM 0.047
1 SVM 3 kNN 0.026 1 SVM 4 LR 0.008
1 SVM 3 NET <0.001
1 SVM 4 NET <0.001

Another analysis to consider is comparing the methods that present the best perfor-
mances. For VGG-16VH (M2), the LR classifier presents gains of 0.35%, 1.76%, 0.97%, and
1.24% about M1, M3, M4,and M5, respectively. For VGG-19VH (M1), the LR classifier
presents gains of 0.18%, 0.77%, 0.65%, 1.13% over M2, M3, M4, and M5, respectively.

The performed analysis and statistical tests highlight that the applied schemes pre-
sented competitive performance when compared with [26], which, to the best of our
knowledge, is the only study available in the literature related to detecting maritime targets
in Sentinel-1 SAR images from the Campos Basin.

4. Conclusions

This article applied machine learning algorithms to classify maritime targets in Pol-
SAR images (VH and VV) obtained with the Sentinel-1 system. The classifiers were
evaluated considering five different methods (M1, M2, M3, M4, M5). As a pre-stage, the
features were extracted using two CNN algorithms: VGG-16 and VGG-19. The classifiers
were assessed in terms of accuracy. The RF, SVM, and NET classifiers excelled in all the
evaluated scenarios over the reference methods, and the LR classifier performed poorly in
M3. The classification results for all the tested classifiers except LR presented mean accuracy
values above 80%, which were 1.44 times better than the baseline results in VGG-16VH
and 1.55 better in VGG-19VH. VH polarization stands out in the classification of maritime
targets, as oil platforms and ships have higher brightness (i.e., higher backscattering)
because of their geometries formed by large metallic structures. With the parameters
optimization, the tested classifiers showed more accurate classification results. The stacking
technique also showed satisfactory accuracy results.
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ADBST AdaBoost
AI Artificial Intelligence
AIS Automatic Identification System
ATR Automatic Target Recognition
Acc Classification Accuracy
AUC Area Under the Curve
CNN Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
DT Decison Tree
EW Extra-Wide
GAN Generative Adversarial Network
GRD Ground Range Detected
IW Interferometric Wide
kNN k-Nearest Neighbor
LR Logistic Regression
ML Machine Learning
MLP Multilayer Perceptron
MSTAR Moving and Stationary Target Acquisition and Recognition
NB Naive Bayes
NET Neural Networks
NLP Natural Language Processing
OCN Ocean
RF Random Forest
RNN Recurrent Neural Network
SAR Synthetic Aperture Radar
SLC Single Look Complex
SM Stripmap
SVM Support Vector Machine
VGG Visual Geometry Group

Appendix A. Numerical Analysis

In this appendix, the mean of the 50 results in all classification methods in terms of
AUC, F1 Score, Precision, and Recall are presented. Tables A1–A4 show the numerical
results for M2, M3, M4, and M5, respectively. The two best ranking results by methods are
summarized in Figures A1–A3.
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Table A1. Overall summary of the average of all metrics employed in the classification methods—M2.

Classifier

Method CNN-Pol Metric ADBST kNN LR NB NET RF SVM DT

M2

VGG-16VH

AUC 0.732 0.865 0.927 0.724 0.903 0.905 0.910 0.754
F1 0.731 0.791 0.854 0.691 0.837 0.818 0.837 0.737

Precision 0.734 0.798 0.858 0.707 0.842 0.822 0.844 0.742
Recall 0.732 0.792 0.855 0.696 0.838 0.818 0.838 0.738

VGG-16VV

AUC 0.650 0.752 0.868 0.674 0.851 0.825 0.835 0.654
F1 0.649 0.707 0.782 0.650 0.783 0.738 0.759 0.652

Precision 0.652 0.710 0.786 0.669 0.788 0.744 0.765 0.656
Recall 0.650 0.708 0.783 0.657 0.784 0.740 0.760 0.654

VGG-19VH

AUC 0.768 0.861 0.917 0.741 0.903 0.907 0.911 0.732
F1 0.767 0.802 0.841 0.699 0.835 0.833 0.848 0.764

Precision 0.770 0.805 0.844 0.714 0.838 0.837 0.854 0.768
Recall 0.768 0.802 0.842 0.704 0.836 0.833 0.849 0.765

VGG-19VV

AUC 0.640 0.772 0.845 0.683 0.817 0.830 0.830 0.669
F1 0.637 0.724 0.767 0.644 0.758 0.750 0.753 0.661

Precision 0.642 0.737 0.770 0.664 0.761 0.753 0.756 0.665
Recall 0.640 0.728 0.768 0.652 0.761 0.751 0.754 0.663

Table A2. Overall summary of the average of all metrics employed in the classification methods—M3.

Classifier

Method CNN-Pol Metric ADBST kNN LR NB NET RF SVM DT

M3

VGG-16VH

AUC 0.739 0.829 0.747 0.718 0.913 0.880 0.878 0.724
F1 0.738 0.767 0.578 0.686 0.839 0.798 0.784 0.756

Precision 0.741 0.773 0.573 0.703 0.843 0.802 0.789 0.761
Recall 0.739 0.768 0.627 0.691 0.840 0.799 0.785 0.757

VGG-16VV

AUC 0.688 0.805 0.717 0.672 0.856 0.808 0.816 0.643
F1 0.687 0.747 0.560 0.650 0.775 0.727 0.725 0.675

Precision 0.689 0.750 0.549 0.667 0.778 0.731 0.739 0.677
Recall 0.688 0.748 0.608 0.656 0.776 0.728 0.729 0.676

VGG-19VH

AUC 0.770 0.855 0.785 0.736 0.924 0.893 0.884 0.733
F1 0.769 0.793 0.600 0.703 0.844 0.810 0.787 0.774

Precision 0.774 0.796 0.595 0.719 0.847 0.813 0.797 0.778
Recall 0.770 0.793 0.641 0.707 0.844 0.810 0.789 0.775

VGG-19VV

AUC 0.698 0.827 0.738 0.688 0.865 0.819 0.833 0.668
F1 0.697 0.763 0.582 0.653 0.777 0.741 0.764 0.705

Precision 0.700 0.765 0.577 0.667 0.779 0.744 0.776 0.708
Recall 0.698 0.763 0.624 0.658 0.777 0.742 0.766 0.706
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Table A3. Overall summary of the average of all metrics employed in the classification methods—M4.

Classifier

Method CNN-Pol Metric ADBST kNN LR NB NET RF SVM DT

M4

VGG-16VH

AUC 0.726 0.822 0.919 0.722 0.908 0.863 0.888 0.699
F1 0.724 0.771 0.846 0.682 0.830 0.779 0.791 0.723

Precision 0.729 0.778 0.851 0.700 0.836 0.783 0.800 0.727
Recall 0.726 0.772 0.846 0.687 0.830 0.780 0.792 0.724

VGG-16VV

AUC 0.667 0.754 0.862 0.679 0.829 0.778 0.810 0.647
F1 0.666 0.699 0.782 0.652 0.756 0.701 0.720 0.666

Precision 0.670 0.702 0.785 0.668 0.759 0.705 0.728 0.671
Recall 0.667 0.700 0.783 0.658 0.757 0.703 0.722 0.668

VGG-19VH

AUC 0.752 0.840 0.924 0.735 0.891 0.875 0.894 0.724
F1 0.751 0.787 0.844 0.693 0.832 0.804 0.797 0.757

Precision 0.755 0.792 0.848 0.709 0.836 0.807 0.805 0.761
Recall 0.752 0.788 0.845 0.698 0.833 0.804 0.799 0.758

VGG-19VV

AUC 0.680 0.756 0.850 0.688 0.834 0.804 0.830 0.668
F1 0.678 0.708 0.772 0.651 0.760 0.725 0.745 0.691

Precision 0.683 0.713 0.776 0.666 0.764 0.730 0.749 0.694
Recall 0.680 0.710 0.773 0.657 0.761 0.727 0.746 0.692

Table A4. Overall summary of the average of all metrics employed in the classification methods—M5.

Method CNN-Pol AUC F1 Precision Recall

M5

VGG-16VH 0.917 0.842 0.856 0.844
VGG-16VV 0.844 0.756 0.779 0.763
VGG-19VH 0.913 0.840 0.846 0.841
VGG-19VV 0.841 0.757 0.772 0.761

M1 LR M1 SVM M2 LR M2 SVM M3 NET M3 RF M4 LR M4 NET M5 STACK
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Figure A1. Summary of the two best classification results obtained in each method with CNN VGG-19
and VH polarization.
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Figure A2. Summary of the two best classification results obtained in each method with CNN VGG-16
and VV polarization.

M1 LR M1 SVM M2 LR M2 NET M3 NET M3 SVM M4 LR M4 NET M5 STACK

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

Figure A3. Summary of the two best classification results obtained in each method with CNN VGG-19
and VV polarization.
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