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ABSTRACT 

 Modern statistical inference involves processing extensive datasets, with multiple 

hypothesis testing being one methodology to draw conclusions on many features at once. 

Control of the false discovery rate (FDR) is essential. Target classification via satellite 

imagery and acoustic signal processing are examples in military applications where false 

detections can be costly for a Command and Control framework. These contexts also 

showcase another layer of complexity: the volume of data is often processed online, with 

decisions having to be made sequentially on evolving, incomplete datasets. This 

underscores the need for FDR control in an online environment. Current methods for 

online FDR control are successful in this regard; however, they are not designed with 

data error or, worse, data corruption in mind. This research will explore the level of 

robustness of the Levels Based On Recent Discovery (LORD) algorithm. The 

fundamental objective is to learn how to corrupt data and make it robust against such 

corruption efficiently. This work will draw insights from studying corruption-robust 

bandit algorithms and aim to advance the adversarial online multiple-hypothesis testing 

field. 
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Executive Summary

This thesis examines the robustness of the Levels Based On Recent Discovery (LORD)
algorithm when exposed to corrupted data, particularly within critical real-time processing
environments like the Brazilian Navy’s Blue Amazon Management System (SisGAAz).
Our study reveals that maintaining the integrity of statistical testing is crucial, mainly where
decision-making depends on the accuracy of data analysis conducted online.

Our research identifies and rigorously evaluates effective mitigation strategies against prob-
abilistic data corruption scenarios. Key findings highlight the robust efficacy of “phantom”
rejections and the strategic integration of the LORD algorithm with the online Benjamini
and Hochberg (BH) algorithm, a variation adapted from the traditional offline BH method.
These approaches, we assert, maintain testing power significantly, even under adversarial
manipulations, instilling confidence in their effectiveness.

We propose a controlled adversarial setup involving two entities: “Blue,” the defender who
aims to make true discoveries, and “Red,” the attacker focused on data corruption. Our
analysis investigates several attack scenarios. The first is a singular anticipated attack that
manipulates the first true discovery and traditionally triggers a cascade effect, countered by
adjusting the decay rate of each test level to buffer against such disruptions. Additionally,
we explore multiple p-value corruption scenarios where strategically placed “phantom”
rejections can reclaim compromised testing power, although this strategy faces practical
challenges due to the necessity of predicting attack probabilities. Lastly, indiscriminate
attacks on any p-value show that integrating the LORD algorithm with the online BH
algorithm is exceptionally effective, maintaining the algorithm’s robustness even amidst
widespread corruption.

The thesis concludes that while prevalent algorithms are adequate for handling FDR in
trustworthy data scenarios, their effectiveness diminishes under adversarial data manipula-
tion, a common issue in real-time data environments. Our findings suggest that enhancing
algorithmic robustness against data corruption supports reliability in statistical testing and
contributes to broader research and application in adversarial conditions. We propose new
avenues for future investigation, such as exploring data corruption impacts on other exist-

xv



ing algorithms and developing a “pure” algorithm. This new algorithm could offer a more
robust alternative to the current mixed approach, providing a stronger defense against data
manipulation.
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CHAPTER 1:
Introduction

Hypothesis testing is a cornerstone of empirical research, offering a systematic framework
to validate theories and assumptions across diverse fields. This statistical tool has been
pivotal in various domains, ranging from medical research, where it aids in determining
the effectiveness of new treatments, to environmental science, where it is employed to
assess the impact of human activities on ecosystems. It is also used in A/B testing, an
approach used to compare two versions of a web page, application feature, or other product
offerings to determine which one performs better in terms of specific metrics. In finance,
it is instrumental in evaluating investment strategies and market trends. These applications
underscore its versatility and critical role in evidence-based decision-making.

In the military context, particularly within the Brazilian Navy (BN), the significance of hy-
pothesis testing takes on a more strategic dimension. The BN, entrusted with safeguarding
Brazil’s sovereignty and maritime interests, finds itself at the forefront of an era where data-
driven decision-making is preeminent. The Blue Amazon Management System (SisGAAz)
exemplifies this paradigm shift as a sophisticated surveillance mechanism designed to pro-
tect Brazil’s vast maritime jurisdiction, known as the “Blue Amazon.” SisGAAz is designed
to leverage large-scale datasets and sophisticated statistical inference for immediate con-
clusions, especially in classifying targets. In such a system, controlling the False Discovery
Rate (FDR) is critical, as errors in classification can lead to detrimental impacts on further
(i.e., downstream) decision-making. While prevalent algorithms effectively manage FDR
in trustworthy data scenarios, their effectiveness in environments susceptible to adversarial
data manipulation remains unexamined.

The overarching goal of this thesis is to analyze and enhance the robustness of online multiple
hypothesis testing methodologies to corruption. By investigating strategies for efficient
data corruption targeted at the Levels Based On Recent Discovery (LORD) algorithm
and developing countermeasures against different corruption scenarios, the study aims to
strengthen the reliability and integrity of online multiple hypothesis testing.
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1.1 Background
Brazil’s sea and inland waterways, crucial for the nation’s well-being, necessitate effective
protection. In this regard, the Strategic Plan of the Brazilian Navy (PEM) is instrumental,
steering both medium- and long-term strategic planning via Naval Objectives. Then, the
Naval Strategic Actions are meticulously crafted by dissecting these objectives, delineating
a clear execution strategy to fulfill the overarching mission of the BN.

According to the Third United Nations Convention on the Law of the Sea (UNCLOS III),
Brazil has property rights and sovereignty in the Brazilian Jurisdictional Waters (AJB) up to
200 nautical miles. Beyond that, the nation also has the extension of the soil and subsoil of
the submarine areas, defined by the limits of the continental Shelf. This area encompasses
about 5.7 million square kilometers rich in natural resources, accounting for approximately
95% of Brazil’s oil and 83% of the country’s natural gas (Andrade and Franco 2018).
Andrade et al. (2021), citing a 2002 report from the National Agency of Petroleum, Natural
Gas and Biofuels (ANP), asserted that Brazil’s reserves of these resources amounted to 9.81
billion barrels, and most of this, 8.87 billion barrels, originated from the AJB. In a related
discussion, Husseini (2018) mentioned the discovery in 2006 of substantial oil deposits
located beneath a salt layer approximately 2,000 meters thick, under a layer of sediment
of similar thickness in the Santos Basin, about 300 kilometers southeast of Brazil’s coast.
More than two decades later, based on a new report released by the ANP, Smith (2023)
highlighted that July’s production from the pre-salt layers constituted 75% of Brazil’s total
oil output for that month. This substantial share underscores Brazil’s capacity to emerge as
the fourth-biggest oil producer worldwide.

Additionally, Andrade et al. (2021) claimed that data from the Brazilian Institute of Geog-
raphy and Statistics reveals that a significant portion of Brazil’s population, approximately
80%, resides within 200 kilometers of the coast. Consequently, according to these authors,
this coastal proximity is a hub for economic activity, containing about 90% of the country’s
infrastructure and industrial production and roughly 80% of overall production. Further-
more, the oceans and river basins play a vital role as an intercommunicating element: 90%
of the volume of this trade is made by sea (Rodrigues 2021).
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The AJB are not merely conduits for transporting commodities; they represent an extensive
reservoir of biodiversity and natural resources that are pivotal for the nation’s advancement.
The exigency for safeguarding and conserving these waters as a legacy for succeeding
generations is of key importance (Rodrigues 2021).

1.1.1 Blue Amazon
The PEM explains the Blue Amazon concept, a term that the BN has spread to raise
awareness among society and national institutions about the importance of the AJB’s
protection, a domain as vast as the Amazon rainforest. Figure 1.1 should not be perceived
merely as an area encompassing the sea surface, waters overlying the seabed, and marine soil
and subsoil within the Atlantic extension from the coast to the outer limit of the Brazilian
continental Shelf. Rather, according to the Navy’s plan document, it should be understood
as a multifaceted concept embodying four distinct aspects:

1. Sovereignty – linked to the roles of the BN, which represents the authority of
the state and oversees the use of force at sea.

2. Scientific – addresses the opportunities for research and technological advance-
ment, the economic impact of using marine biodiversity, and the importance of
maintaining knowledge about the maritime environment. Naval forces can use
this knowledge to protect the interests of their respective nations.

3. Environmental – adopts a stance that goes beyond mere regulatory matters,
considering that the unbroken expanse of oceanic areas and the movement of
ocean currents enhance the risk of introducing and spreading non-native species
and activities that endanger the marine ecosystem. This includes the need for
mechanisms to monitor and tackle pollution, whether by accident or deliberate.

4. Economic – related to national development, based on the wealth of living and
non-living resources in the AJB and the importance of maritime transportation
for foreign trade.

3



Figure 1.1. Blue Amazon. Source: Gerhardinger et al. (2018).

Regarding the aspect of sovereignty, the BN undertakes strategic programs aligned with its
institutional mission—the preparation and deployment of naval power as a component of
national defense. Andrade et al. (2021) articulated that these initiatives are instrumental in
overseeing and administrating the Blue Amazon.

Central to these projects is SisGAAz, a system primarily aimed at extensively monitoring
and managing the BN’s area of responsibility, enhancing the Navy’s capability to respond to
challenges, including threats, hostilities, illicit activities, emergencies, and ecological crises.
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Consequently, Andrade et al. (2021) concluded that this system will bolster the situational
awareness of national authorities in these zones, elevating their monitoring and regulatory
capabilities and strengthening their surveillance and protection of these maritime areas.

1.1.2 Blue Amazon Management System
The discussion paper titled “Blue Amazon Management System (SisGAAz): Sovereignty,
Surveillance, and Defense of the Brazilian Jurisdictional Waters” developed by researchers
from the Institute for Applied Economic Research “aims to demonstrate the importance of
developing and implementing SisGAAz to monitor the Blue Amazon. It also discusses the
implications of its reformulation and the possible alternatives” (Andrade et al. 2021).

The Blue Amazon Management System (SisGAAz) project, initiated in 2009, as explained
by the scholars, was designed to fulfill the need for effective monitoring, surveillance, and
defense within the Blue Amazon. The study claimed that its objective is to establish a
unified and cohesive monitoring system that leverages and integrates others, improving the
application of resources that are already in place instead of creating something entirely new.
The research also noted that it will enable data gathering, analysis, and generating sup-
portive information for decision-making, ultimately facilitating informed decisions that will
guide the deployment of available resources (protection). Figure 1.2 illustrates SisGAAz’s
conception.

According to the study, in terms of its integration with other platforms, SisGAAz will be
interconnected with various systems both within and outside the BN, including the Military
Command and Control System of the Ministry of Defense, which encompasses the Brazilian
Army Integrated Border Monitoring System and the Brazilian Aerospace Defense System
of the Brazilian Air Force (BAF). Additionally, the authors pointed out that SisGAAz will
integrate with institutions outside the national defense realm, including those affiliated with
ministries such as Finance, Transportation, Mines and Energy, Science and Technology, and
Justice, as well as regulatory bodies and corporations.
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Moreover, the paper stated further that the system will also receive data from various
external sources, such as over-the-horizon radar, maritime patrol aircraft from the BAF, and
unmanned aerial vehicles, and with systems from other nations and global entities, like the
International Maritime Organization’s Long Range Identification System (LRIT) and the
Trans-Regional Maritime Network (T-RMN).

Figure 1.2. Operation and functioning of SisGAAz. Source: Andrade et al.
(2021).

SisGAAz, tasked with the vigilant surveillance of the Blue Amazon, is instrumental in the
continuous collection and analysis of comprehensive data to safeguard Brazil’s maritime
domain. It operates as an unceasing sentinel, meticulously sifting through current and
historical data—unperturbed by the potential for data corruption—to categorize each vessel
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as either suspect or non-suspect. This ongoing vigilance mirrors the principles of online
hypothesis testing, whereby the system dynamically assesses new (online) information to
make informed decisions.

1.2 Study Objective
This thesis investigates data corruption on online multiple hypothesis testing, along with
mitigating strategies. While the literature on this topic is extensive, there remains a gap
in developing tools or methodologies specifically designed for environments vulnerable to
data corruption.

At the heart of this work is introducing a novel procedure tailored for scenarios where data
corruption is likely. This approach aims to provide a robust framework for maintaining the
integrity and reliability of hypothesis testing despite the challenges posed by data corruption.

1.3 Thesis Organization
This thesis is organized into five chapters: an introduction, a literature review, a comparison
among main online hypothesis testing algorithms with the methodology section, different
scenarios of online hypothesis testing with corrupted data and simulation results, and a
conclusion.

In Chapter II, the literature review summarizes the concepts of hypothesis testing, reviews
the main algorithms, and clearly distinguishes between an offline and an online setting.

7



Chapter III presents the LORD, Adaptive Algorithm that Discards Conservative Nulls
(ADDIS), and Serial Estimate of the Alpha Fraction that is Futilely Rationed on True
Null Hypotheses (SAFFRON) algorithms for online multiple hypothesis testing and the
methodology for generating the data necessary for all simulations.

Chapter IV examines different data corruption scenarios to show its impact on power and
FDR, and new procedures are proposed to mitigate it.

Chapter V summarizes the findings and suggests possible future research.
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CHAPTER 2:
Literature Review

In this chapter, we comprehensively review the literature surrounding hypothesis test-
ing, starting from the fundamental concepts of single hypothesis testing and extending to
the more intricate and continually evolving domain of online multiple hypothesis testing.
Through this detailed review, we will highlight these methods’ significance, advantages, and
limitations, offering a balanced and insightful perspective on this critical statistical tool.

2.1 Single Hypothesis Testing
In “Probability and Statistics for Engineering and the Sciences,” Devore (2015) claimed
that a statistical hypothesis, often referred to simply as a hypothesis, represents a statement
or assertion regarding the value of a single parameter, of multiple parameters, or of the
shape of an entire probability distribution. The book emphasized that, in hypothesis testing,
there are typically two conflicting hypotheses to examine: the null hypothesis (𝐻0), the
initially assumed claim, and the alternative hypothesis (𝐻𝑎), which contradicts 𝐻0. Using
data from a sample, the author remarked that the prime objective is to determine which of
these two hypotheses is true, pointing out that the null hypothesis will only be discarded in
favor of the alternative hypothesis if the evidence from the sample strongly suggests that
𝐻0 is incorrect. Consequently, hypothesis testing has two potential outcomes: rejecting 𝐻0

or failing to reject 𝐻0.

The statistician Fisher (1970) defined p-value as “the probability of the observed result, plus
more extreme results if the null hypothesis were true” (p.66). This means that the p-value
serves as a critical piece of information in hypothesis testing, quantifying the strength of
evidence against the null hypothesis. Then, a p-value smaller than 𝛼 (the test’s significance
level chosen by the analyst) suggests strong evidence against 𝐻0, while a p-value greater
than 𝛼 suggests weaker evidence and the inability to reject 𝐻0.

To illustrate this concept, Figure 2.1 shows a standard normal distribution’s Probability
Density Function (PDF) with p-value and 𝛼 representing areas under the curve. For this
example, the observed data 𝑥 is used to decide whether 𝐻0 should be rejected.
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Then, since the p-value is less than 𝛼, we reject 𝐻0.

Figure 2.1. Probability of every possible outcome under the null hypothesis
𝐻0 = 0 and the alternative 𝐻0 > 0. Since p-value ≤ 𝛼, 𝐻0 is rejected.
Source: Goodman (1999).

Mathematically, Pr is the probability distribution of the observed data 𝑥 under 𝐻0, for any
value of 𝛼 between 0 and 1. Efron (2010) defined a rejection region 𝑅𝛼 as

Pr{𝑥 ∈ 𝑅𝛼} = 𝛼. (2.1)

Moreover, the p-value 𝑝(𝑥) is also defined as the smallest 𝛼 such that 𝑥 ∈ 𝑅𝛼 :

𝑝(𝑥) = inf
𝛼
{𝑥 ∈ 𝑅𝛼}. (2.2)

Since the area under the curve for any PDF always equals 1, 𝑝(𝑥) conforms to a uniform
distribution across the interval (0, 1):

𝑝(𝑥) ∼ 𝑈 (0, 1). (2.3)

10



In this context, Austil et al. (2014) characterized the two potential mistakes that can be
made: type I and type II errors. A type I error, also known as a false positive, happens when
we reject the null hypothesis even though it is true. On the other hand, a type II error, or false
negative, occurs when we fail to reject the null hypothesis when the alternative hypothesis
is true. Table 2.1 summarizes the potential results.

Table 2.1. Possible outcomes for single hypothesis testing.

Stated as True Stated as False
True null hypothesis Correct (1 - 𝛼) Type I error (𝛼)
False null hypothesis Type II error (𝛽) Correct (1 - 𝛽)

Moreover, the authors emphasized that the test’s significance level 𝛼 is typically chosen to
limit the probability of a type I error to a predetermined level, and the main objective is to
maximize power (i.e., 1 − 𝛽), while ensuring the probability of a type I error remains at the
intended level.

2.2 Multiple Hypothesis Testing
In various fields where statistics are employed, military applications included, decisions are
made by assessing many hypotheses. In these scenarios, as outlined by Austil et al. (2014),
single hypothesis testing procedures are ineffective because the probability of committing
at least one type I error significantly exceeds the nominal significance level employed for
each test. The authors demonstrated that for 𝑁 number of independent tests, with 𝛼 as the
threshold for each p-value, the probability of not committing any type I errors is (1 − 𝛼)𝑁 .
Given that 𝛼 falls between 0 and 1:

(1 − 𝛼)𝑁 < (1 − 𝛼). (2.4)

Hence, they deduced that when conducting multiple tests, the likelihood of avoiding any
type I errors becomes significantly reduced compared to when only one test is performed.
As a result, the chances of committing at least one type I error increase with the number of
tests conducted. This situation highlights the increased complexity of controlling the rate of
false positives while effectively managing the type I error rate in multiple testing scenarios.
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In the literature, the most relevant type I error rates are the Family-Wise Error Rate (FWER)
and the FDR. They will be described in the following subsections.

2.2.1 Family-Wise Error Rate
Austil et al. (2014) explained that the initial strategies developed to adjust for multiple
hypotheses primarily focused on managing the FWER, defined as “the probability of com-
mitting at least one false rejection when all null hypotheses are true” (p.3). These early
methods did not aim to keep the probability of a Type I error constant for each individual
test; instead, they focused on maintaining the resultant FWER across all tests. Therefore,
for 𝑉 as the number of false rejections:

FWER = Prob (𝑉 ≥ 1) . (2.5)

Nevertheless, they highlighted a significant drawback: controlling the FWER often results
in overly conservative approaches, leading to tests with low power.

Bonferroni Inequality
Given the set of 𝑁 multiple independent null hypotheses 𝐻1, . . . , 𝐻𝑁 , the corresponding
p-value 𝑝𝑖 of each hypothesis, and the desired test significance level 𝛼, Austil et al. (2014)
stated that the probability of at least one rejection is less than or equal to the sum of their
marginal probabilities, and the suitable form of the inequality for 0 ≤ 𝛼 ≤ 1 is:

Prob

(
𝑁⋃
𝑖=1

{
𝑝𝑖 ≤

𝛼

𝑁

})
≤ 𝛼. (2.6)

Bonferroni (1930) proposed the primary method based on this inequality and developed a
straightforward correction to control the FWER. Menyhart et al. (2021) explained the two
approaches to compute the adjusted p-values introduced by Bonferroni. The first approach
divides 𝛼 by the number of hypotheses to be tested 𝑁 , and only p-values smaller than the
adjusted 𝛼 are considered statistically significant:

𝐻𝑖 is rejected if 𝑝𝑖 ≤
𝛼

𝑁
. (2.7)

12



As an alternative, in the second approach, the p-value of each test is multiplied by 𝑁

(𝑝𝑖 = 𝑝𝑖𝑁). As a result, if the adjusted p-value is less than 𝛼, the null hypothesis is rejected:

𝐻𝑖 is rejected if 𝑝𝑖 ≤ 𝛼. (2.8)

Menyhart et al. (2021) argued that, though the Bonferroni adjustment is the most widely
used procedure, it effectively controls the FWER at the desired level only when the quantity
of statistical tests remains within several dozen to a few hundred.

Other researchers applied the concept proposed by Bonferroni. The Sidak procedure, in-
troduced by Sidak (1971), controls the FWER more conservatively than the Bonferroni
process does but still relies on the assumption of independence among individual tests. For
independent hypotheses 𝐻𝑖:

𝐻𝑖 is rejected if 𝑝𝑖 ≤ (1 − 𝛼) 1
𝑁 . (2.9)

In addition, the equivalent adjusted p-value is defined as

𝑝𝑖 = 1 − (1 − 𝑝𝑖)𝑁 . (2.10)

Because 𝛼
𝑁
< 1− (1− 𝛼) 1

𝑁 , this method exhibits slightly higher statistical power compared
to Bonferroni’s. However, as Abdi (2007) observed, the latter is more commonly used due
to its simpler calculation method.

Furthermore, Holm (1979) developed an early instance of a step-down procedure, leading
to a more potent and advanced strategy than Bonferroni’s. Given the ordered p-values
𝑝 (1) ≤ . . . ≤ 𝑝 (𝑁 ):

𝐻(𝑖) is rejected if 𝑝 ( 𝑗 ) ≤
𝛼

𝑁 − 𝑗 + 1
for 𝑗 = 1, . . . , 𝑖. (2.11)
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Simes Inequality
Simes (1986) proposed another method to control FWER. Given the ordered independent
p-values 𝑝 (1) , . . . , 𝑝 (𝑁 ) , such as 𝑝 (1) ≤ . . . ≤ 𝑝 (𝑁 ) , for corresponding null hypotheses
testing 𝐻(1) , . . . , 𝐻(𝑁 ):

Prob
(
𝑝 (𝑖) ≥

𝑖𝛼

𝑁

)
= 1 − 𝛼. (2.12)

Employing this inequality, Simes devised a straightforward rule for multiple testing:

𝐻(𝑖) is rejected if 𝑝 (𝑖) ≤
𝑖𝛼

𝑁
. (2.13)

Notably, as per Sarkar and Chang (1997), in the case of multivariate distributions displaying
a type of positive dependence—a common occurrence in various multiple hypothesis testing
situations—the Simes method adeptly manages and controls the probability of a type I error.

Two frequently used methods that also use the Simes inequality were developed by Hochberg
(1988) and Hommel (1988). Hochberg’s approach closely resembles Holm’s proposed
method, with the key distinction being its formulation as a step-up procedure. Moreover,
as demonstrated in Hochberg’s research, it has greater statistical power than Holm’s. Once
more, this analysis involves the use of ordered p-values :

Let 𝑘 be the largest 𝑖 for which 𝑝 (𝑖) ≤
𝑖𝛼

𝑁 + 1 − 𝛼
.

Reject all 𝐻(𝑖) = 1, . . . , 𝑘 .
(2.14)

Hommel, in his exploration, introduced an alternative algorithm that offers enhanced statisti-
cal power while necessitating only a marginally increased complexity in its implementation.
Hommel’s procedure is a variation, albeit a less widely adopted one:

Compute 𝑗 : max{𝑖 ∈ {1, . . . , 𝑁}} : 𝑝 (𝑁+𝑘−1) ≤
𝑘𝛼

𝑖
for 𝑘 = 1, . . . , 𝑖}.

If no maximum exists, reject all null hypotheses. Else, reject {𝐻𝑖 : 𝑝𝑖 ≤
𝛼

𝑗
}.

(2.15)
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2.2.2 False Discovery Rate
Since it was introduced by Benjamini and Hochberg (1995), the concept of FDR has
become a prominent focus in statistical research and remains the prevailing method applied,
apparently attaining the “accepted methodology” status in scientific subject-matter journals
(Efron 2010).

Following the explanation provided by Austin et al. (2014), the FDR is defined as “the
expected proportion of rejected hypotheses that have been wrongly rejected” (p.5). The
authors explained that if all hypotheses come from the null, the FDR and the FWER are
equal. However, in a mixed model, with alternative hypotheses among the overall hypotheses
to be tested, the FDR is smaller than or equal to the FWER. Moreover, they concluded,
techniques that regulate the FWER will inherently regulate the FDR, and, since managing
the FDR is less rigorous contrasted to controlling the FWER, FDR procedures have more
statistical power.

In comparison, FWER methods focus on avoiding any type I errors, displaying caution even
when some false positives might be acceptable, tending to be overly conservative as the
number of tests increases. On the other hand, FDR methods, by considering the proportion
of false positives among all rejected hypotheses, take a more permissive approach, with
tolerance for some false positives, and are often more adaptable to large-scale studies.

Robertson et al. (2022) defined the False Discovery Proportion (FDP) up to time 𝑡, con-
sidering 𝑅(𝑡) as the number of rejected tests, and 𝑉 (𝑡) as the number of falsely rejected
hypotheses:

FDP(𝑡) = 𝑉 (𝑡)
𝑅(𝑡) ∨ 1

, (2.16)

where 𝑅(𝑡) ∨ 1 = max(𝑅(𝑡), 1).

The FDR is the expectation of the FDP:

FDR(𝑡) = E{FDP(𝑡)}. (2.17)

Benjamini and Hochberg (BH) developed a method to maintain the FDR under a prede-
termined threshold, and, in line with Benjamini and Yekutieli (2001), the BH procedure is
effective not just with independent tests but also with positive regression dependence on
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those test statistics associated with the true null hypotheses. For Javanmard and Montanari
(2018), this approach is advantageous in situations with a high number of true discoveries,
particularly when numerous non-null hypotheses exist. The algorithm, instead of controlling
the probability of a type I error at a set level for each test, controls the overall FDR at level
𝛼 in (0,1):

𝑖max is the greatest index for which 𝑝 (𝑖) ≤
𝑖

𝑁
𝛼.

Reject all 𝐻(𝑖) where: 𝑖 ≤ 𝑖max .

(2.18)

The BH procedure, enhanced with certain improvements, continues to be the leading ap-
proach in the field of multiple hypothesis testing (Javanmard and Montanari 2018).

2.3 Online Multiple Hypothesis Testing
Javanmard and Montanari (2018) asserted that standard FDR control methods, like the BH
procedure, require the presence of all p-values under consideration before any discoveries
are made. For them, this implies that decisions are made only after all the necessary data has
been gathered. However, they argued that this approach is unfeasible in several applications
better suited to an online hypothesis testing framework. The study defined online hypothesis
testing as follows: “Hypotheses arrive sequentially in a stream. At each step, the analyst must
decide whether to reject the current null hypothesis without having access to the number
of hypotheses (potentially infinite) or the future p-values but solely based on the previous
decisions” (Javanmard and Montanari 2018, p. 527)

More formally, the authors considered a sequence of hypotheses 𝐻1, . . . , 𝐻𝑁 arriving se-
quentially in a stream, as depicted in Figure 2.2, with p-values 𝑝1, . . . , 𝑝𝑁 . The primary
objective remains to keep the FDR under a predefined threshold 𝛼. A desired testing proce-
dure offers, they proclaimed, a series of significance levels 𝛼𝑖 with the following decision
rule:

𝑅𝑖 =


1, if 𝑝𝑖 ≤ 𝛼𝑖 (reject 𝐻𝑖),

0, otherwise (accept 𝐻𝑖).
(2.19)

Furthermore, each 𝛼𝑖 depends on prior outcomes:

𝛼𝑖 = 𝛼𝑖 (𝑅1, 𝑅2, . . . , 𝑅𝑖−1). (2.20)
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Figure 2.2. Offline and online FDR control. Decisions are made after all
hypotheses have been available versus conclusions made sequentially for each
incoming hypothesis online. Source: Jordan (2019).

The alpha-investing algorithm, first presented by Foster and Stine (2008), marked the
beginning of online rate management techniques. According to Aharoni and Rosset (2014),
the alpha-investing method focuses on controlling the marginal false discovery rate mFDR𝜂

at level 𝛼 for any given choice of 𝜂 and 𝛼, a variant of the FDR. The mFDR𝜂 is defined as

mFDR𝜂 =
E{V(𝑡)}
E{R(𝑡)} + 𝜂

. (2.21)

Based on this study, the approach diverges from the alpha-spending concept employed in
Bonferroni-type corrections, where we start with an allowance for type I error, or the initial
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𝛼-wealth for a series of tests. At each time point 𝑡, a test is conducted at level 𝛼𝑡 , reducing the
𝛼-wealth 𝑊 (𝑡) by 𝛼𝑡 , which means 𝑊 (𝑡) = 𝑊 (𝑡 − 1) − 𝛼𝑡 . Setting 𝑊 (0) = 𝛼 and ensuring
∀ 𝑗 : 𝑊 ( 𝑗) ≥ 0 guarantee that

∑
𝑗 𝛼 𝑗 ≤ 𝛼. This approach ensures the control of the FWER at

level 𝛼. However, as the authors pointed out, despite controlling the FWER, alpha-spending
methods are often critiqued for their limited power and conservatism in multiple hypothesis
testing. As an alternative to overcome this drawback, the alpha-investing rule earns a reward
for each rejected null hypothesis. Aharoni and Rosset (2014) defined the wealth at any time
point 𝑡 as

𝑊 (𝑡) = 𝑊 (𝑡 − 1) − (1 − 𝑅𝑡)
𝛼𝑡

1 − 𝛼𝑡

+ 𝑅𝑡𝜔, (2.22)

where 𝑊 (0) = 𝛼𝜂.

If 𝐻𝑡 is true, then 𝛼𝑡

1−𝛼𝑡
is reduced from the wealth. If 𝐻𝑡 is rejected, a reward 𝜔 is gained.

By convention, 𝜔 is usually set to the maximal allowed value 𝜔 = 𝛼.

The research also extended the alpha-investing method to Generalized Alpha-Investing
(GAI) algorithms. The potential function, previously known as alpha-wealth, operates as
follows:

𝑊 (𝑡) = 𝑊 (𝑡 − 1) − 𝜙𝑡 + 𝑅𝑡𝜓𝑡 , (2.23)

where 𝑊 (0) = 𝛼𝜂.

Moreover, Aharoni and Rosset (2014) emphasized an important distinction: in the original
alpha-investing, the quantity 𝛼𝑡

1−𝛼𝑡
is deducted from the wealth only if the hypothesis 𝐻𝑡 is

not rejected. In contrast, in the GAI approach, 𝜙𝑡 is subtracted regardless of the test outcome.

Figure 2.3 summarizes this alpha-investing concept: when setting the initial FDR level, the
algorithm is allocated a certain “initial wealth” 𝑊0. At each time point 𝑡, the alpha-wealth
𝑊 (𝑡) decreases by 𝜙𝑡 . If the hypothesis 𝐻𝑡 is rejected (𝑅𝑡 = 1), then𝑊 (𝑡) is increased by 𝜓𝑡 .
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Figure 2.3. GAI representation showing how the wealth 𝑊 (𝑡) changes de-
pending on whether the hypothesis 𝐻𝑡 is rejected. Source: Robertson et al.
(2023).

Suppose that 𝜃𝑡 is the actual parameter value for test 𝑡, and H0 is the null hypothesis space,
which includes all parameter values that would lead to the null hypothesis not being rejected.
If 𝜃𝑡 ∉ H0, then it is in the alternative hypothesis space, and, according to Aharoni and
Rosset (2014), the best power of the t-th test is defined as

𝜌𝑡 = sup Prob𝜃𝑡 (𝑅𝑡 = 1). (2.24)

In simpler terms, this function finds the maximum probability that a test can achieve when
it correctly rejects a null hypothesis across all possible alternative parameter values.

For the GAI method, as explained by the academics, any choice for the parameters 𝛼𝑡 , 𝜙𝑡 ,
𝜓𝑡 is valid, as long as 𝑊 (𝑡) does not become negative, meaning 𝜙𝑡 ≤ 𝑊 (𝑡 − 1), and

∀𝑡 : 0 ≤ 𝜓𝑡 ≤ min
(
𝜙𝑡

𝜌𝑡
+ 𝛼,

𝜙𝑡

𝛼𝑡

+ 𝛼 − 1
)

(2.25)

where 𝜌𝑡 is the best power of the t-th test.

Javanmard and Montanari (2017) presented alternative versions of the GAI algorithms,
which are designed to control the FDR, in contrast to the mFDR proposed by Foster and
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Stine (2008). As described in Ramdas et al. (2017), the parameter 𝐵0 and proved for
monotone GAI rules and under independence, with 𝐵0 = 𝛼 −𝑊0, the FDR is controlled.
Now, for some user-defined 𝐵0

𝜓𝑡 ≤ min
{
𝜙𝑡 + 𝐵0,

𝜙𝑡

𝛼𝑡

+ 𝐵0 − 1
}
. (2.26)

Ramdas et al. (2017) also defined a class of improved GAI algorithms called GAI ++: the ini-
tial wealth𝑊0 is set to be 0 ≤ 𝑤0 ≤ 𝛼 and the payout satisfies𝜓𝑡 ≤ min

{
𝜙𝑡 + 𝑏𝑡 ,

𝜙𝑡
𝛼𝑡

+ 𝑏𝑡 − 1
}
,

a modified version of Equation 2.26, where 𝑏𝑡 = 𝛼 − 𝑤01{𝑅(𝑡 − 1) = 0}. As they demon-
strated, any monotone GAI++ rule comes with the following guarantee:

Theorem 1 If the null p-values (i.e., the p-values corresponding to the true null hypothe-
ses) are independent of all other p-values, any monotone GAI++ rule satisfies the bound
E

[
𝑉 (𝑡)+𝑊 (𝑡)
𝑅(𝑡)∨1

]
≤ 𝛼 for all 𝑡 ≥ 1. Since 𝑊 (𝑡) ≥ 0, the FDR is controlled at level 𝛼.

Finally, Javanmard and Montanari (2017) conceptualized the Levels Based On Recent
Discovery (LORD) algorithm, an instance of GAI algorithms. Later enhanced by Ramdas
et al. (2017), the so-called LORD++ (henceforth LORD) is widely considered one of the
most advanced techniques in online multiple hypothesis testing.

This chapter highlighted the significance of managing error rates as the number of hypothe-
ses tested grows. Initially, it explored the key strategies for handling the FWER and the
FDR, with the latter being widely used. Finally, it presented the fundamental principles of
online hypothesis testing, the focus of this thesis. A detailed discussion of the main online
algorithms will follow in the next chapter.
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CHAPTER 3:
Online Multiple Hypothesis Testing Algorithms

This chapter is dedicated to an in-depth explanation of the principal algorithms used in
online hypothesis testing. It is our intent to meticulously delineate essential definitions and
foundational concepts, thereby constructing a robust framework for comprehending these
algorithms and the overarching methodology employed throughout this thesis.

3.1 LORD
We follow Ramdas et al. (2017) to explain the LORD algorithm. Given a sequence of p-
values, the decisions (rejections or non-rejections) 𝑅1, . . . , 𝑅𝑡 , where each 𝑅𝑖 is an indicator
of whether the 𝑖-th hypothesis is rejected. The decision at time 𝑡 is adapted to the sequence
of decisions until 𝑡 − 1 (meaning that it can depend on them); we store this information
via F 𝑡 = 𝜎(𝑅1, . . . , 𝑅𝑡−1). The same applies to the rejection thresholds 𝛼𝑡 ∈ [0, 1]; they
are adapted to the history up to 𝑡 − 1, which means 𝛼𝑡 = 𝑓𝑡 (𝑅1, . . . , 𝑅𝑡−1), where 𝑓𝑡 is an
arbitrary [0,1]-valued function of the first 𝑡 − 1 decisions.

If the hypothesis 𝐻𝑖 is truly null, its corresponding p-value has a 𝑈 (0, 1) distribution,
so the p-value is unlikely to take on very small values. By definition, these p-values are
super-uniformly distributed, meaning that

Prob
{
𝑝𝑡 ≤ 𝛼𝑡 | F 𝑡−1} ≤ 𝛼𝑡 , or equivalently, E

[
1{𝑝𝑡 ≤ 𝛼𝑡}

𝛼𝑡

�����F 𝑡−1

]
≤ 1. (3.1)
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The interpretation is that the probability of the t-th null p-value 𝑝𝑡 being less than or equal
to its corresponding threshold 𝛼𝑡 is at most 𝛼𝑡 , given the past information F 𝑡−1.

Ramdas et al. (2017) also defined, given any non-negative predictable sequence {𝛼𝑡}, the
oracle FDP:

FDP∗(𝑡) =
∑

𝑗≤𝑡, 𝑗∈H0 𝛼 𝑗

𝑅(𝑡) . (3.2)

The interpretation is that the expected number of null (i.e., false) rejections up to time 𝑡 is
approximately the sum of all 𝛼 𝑗 , for 𝑗 ≤ 𝑡 and 𝐻 𝑗 be a null hypothesis.

Since FDP∗(𝑡) cannot be calculated because the contents ofH0 are unknown, a conservative
estimate of the oracle FDP is

F̂DPLORD(𝑡) =
∑𝑡

𝑗=1 𝛼 𝑗

𝑅(𝑡) . (3.3)

The implication is that F̂DPLORD(𝑡) overestimates the unknown FDP(t):

F̂DPLORD(𝑡) ≥
∑

𝑗≤𝑡, 𝑗∈H0 𝛼 𝑗

𝑅(𝑡) ≈
∑

𝑗≤𝑡, 𝑗∈H0 1{𝑝 𝑗 ≤ 𝛼 𝑗 }
𝑅(𝑡) = FDP(𝑡). (3.4)

The authors declared that a more straightforward approach to developing online FDR
methods is to guarantee that sup𝑡∈N F̂DPLORD(𝑡) ≤ 𝛼, eliminating the need for wealth,
penalties, and rewards, as seen in the GAI procedure.

Based on these definitions, the following theorem is proved:

Theorem 2 (a) If the null p-values are conditionally super-uniform, then the condition�𝐹𝐷𝑃LORD(𝑡) ≤ 𝛼, ∀𝑡 ∈ N, implies that 𝑚𝐹𝐷𝑅(𝑡) ≤ 𝛼, ∀𝑡 ∈ N. (b) If the null p-
values are independent of each other and of the p-values corresponding to the non-null
hypotheses, and {𝛼𝑡} is chosen to be a monotone function of past rejections, then the
condition �𝐹𝐷𝑃LORD(𝑡) ≤ 𝛼, ∀𝑡 ∈ N, implies that 𝐹𝐷𝑅(𝑡) ≤ 𝛼, ∀𝑡 ∈ N.
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Leveraging this theorem, Ramdas et al. (2017) presented the LORD algorithm: given an
infinite, non-increasing sequence of positive constants {𝛾𝑡}∞𝑡=1 that sums to one, and 𝜏𝑗 as
the time of j-th rejection, the test level 𝛼𝑡 is

𝛼𝑡 = 𝑤0𝛾𝑡 + (𝛼 − 𝑤0)𝛾𝑡−𝜏11{𝜏1 < 𝑡} + 𝛼
∑︁

𝑗 :𝜏𝑗<𝑡,𝜏𝑗≠𝜏1

𝛾𝑡−𝜏𝑗 . (3.5)

As explained by Robertson et al. (2022), the initial term 𝑤0𝛾𝑡 represents the portion of the
starting wealth 𝑤0 allocated to the t-th test, while the subsequent terms are the gains from
previous rejections before 𝑡 that are used in round 𝑡: the reward for the first rejection is
(𝛼 − 𝑤0), and for subsequent rejections is 𝛼. Once these earnings are received, they are
allocated to future rounds according to the same constants {𝛾𝑡}, shifted to start at the next
instant. Ramdas et al. (2017) showed this rule ensures LORD always operates within its
earned resources and maintains F̂DPLORD(𝑡) ≤ 𝛼. For them, default values are 𝑤0 = 𝛼

10 and
𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
, the former calculated in a Gaussian setting to maximize power.

3.2 SAFFRON
Ramdas et al. (2018) argued that the main limitation of F̂DPLORD arises when the (unknown)
ground truth involves a substantial proportion of non-nulls. In such cases, F̂DPLORD becomes
very conservative overestimation of FDP∗, and consequently, of the true unknown FDP.

Bearing this limitation in mind and considering that non-nulls have a larger-than-uniform
probability of smaller p-values, Ramdas et al. (2018) suggested a new estimator:

F̂DPSAFFRON (𝜆) (𝑡) ≡ F̂DP𝜆 (𝑡) =
∑

𝑗≤𝑡 𝛼 𝑗
1{𝑝 𝑗>𝜆 𝑗 }

1−𝜆 𝑗

𝑅(𝑡) . (3.6)

As the authors explained, {𝜆 𝑗 }∞𝑗=1 is a sequence of values in [0,1], adapted to the available
information up to time 𝑗 − 1. To facilitate the analysis, 𝜆 𝑗 is made constant for all 𝑗 . The
SAFFRON algorithm relies on the concept that the numerator of Equation 3.6 is a less
conservative estimator for

∑
𝑗≤𝑡, 𝑗∈H0 𝛼 𝑗 than

∑𝑡
𝑗=1 𝛼 𝑗 used in LORD.

Ramdas et al. (2018) introduced a new indicator for candidacy 𝐶 𝑗 = 1{𝑝 𝑗 ≤ 𝜆 𝑗 }, where p-
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values with𝐶 𝑗 = 1 are called candidates, and𝛼𝑡 is updated to𝛼𝑡 = 𝑓𝑡 (𝑅1, . . . , 𝑅𝑡−1, 𝐶1, . . . , 𝐶𝑡−1).
Furthermore, Equation 3.1 has a modified form:

Prob
{
𝑝𝑡 ≤ 𝛼𝑡 | F 𝑡−1} ≤ 𝛼𝑡 , or equivalently,

E

[
1{𝑝𝑡 > 𝛼𝑡}

1 − 𝛼𝑡

�����F 𝑡−1

]
≥ 1 ≥ E

[
1{𝑝𝑡 ≤ 𝛼𝑡}

𝛼𝑡

�����F 𝑡−1

]
.

(3.7)

The main result is somewhat different compared to LORD’s Theorem 2:

Theorem 3 (a) If the null p-values are conditionally super-uniform, then the condition�𝐹𝐷𝑃𝜆 (𝑡) ≤ 𝛼, ∀𝑡 ∈ N, implies that 𝑚𝐹𝐷𝑅(𝑡) ≤ 𝛼, ∀𝑡 ∈ N. (b) If the null p-values are
independent of each other and of the p-values corresponding to the non-null hypotheses,
and {𝛼𝑡} is chosen to be a monotone function of the vector 𝑅1, . . . , 𝑅𝑡−1, 𝐶1, . . . , 𝐶𝑡−1, then
the condition �𝐹𝐷𝑃𝜆 (𝑡) ≤ 𝛼, ∀𝑡 ∈ N, implies that 𝐹𝐷𝑅(𝑡) ≤ 𝛼, ∀𝑡 ∈ N.

Utilizing this theorem, they introduced the SAFFRON algorithm: given a desired FDR level
𝛼, the user should set a constant 𝜆 ∈ (0, 1), an initial wealth 𝑤0 < (1 − 𝜆)𝛼, and a positive
non-increasing sequence {𝛾𝑡}∞𝑡=1 that sums to one. Considering the candidates after the j-th
rejection 𝐶 𝑗+ as 𝐶 𝑗+(𝑡) =

∑𝑡−1
𝑖=𝜏𝑗+1 𝐶𝑖, where 𝜏𝑗 is the time of the j-th rejection, the test level

𝛼𝑡 , ∀𝑡 ≥ 2, is
𝛼𝑡 = min{𝜆, 𝛼̃𝑡}, (3.8)

where 𝛼̃𝑡 = 𝑊0𝛾𝑡−𝐶0+ + ((1 − 𝜆)𝛼 −𝑊0)𝛾𝑡−𝜏1−𝐶1+ +
∑

𝑗≥2(1 − 𝜆)𝛼𝛾𝑡−𝜏𝑗−𝐶 𝑗+ .

For 𝑡 = 1, 𝛼1 = min{𝜆1𝑊0, 𝜆}.

SAFFRON begins with an alpha-wealth of (1− 𝜆)𝑤0, preserves wealth when testing candi-
date p-values, and increases wealth by (1 − 𝜆)𝛼 for every rejection after the first. Ramdas
et al. (2018) advised as acceptable default option 𝜆 = 0.5 and 𝛾𝑡 ∝ 𝑡−1.6.

Lastly, the study remarked that with a significant presence of non-nulls and strong signals,
SAFFRON has more power than LORD does.
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3.3 ADDIS
Tian and Ramdas (2019) established that SAFFRON’s increased power is evident only if
the p-values are uniformly distributed under the null hypothesis. However, as these authors
argued, in real-world scenarios where conservative null hypotheses are often encountered,
SAFFRON may exhibit less power than LORD. They developed ADDIS to compensate for
this power loss.

In hypothesis testing, it is always assumed that the p-value 𝑝 is valid. In other words,
if the null hypothesis is true, Prob{𝑝 ≤ 𝑥} ≤ 𝑥 for all 𝑥 ∈ (0, 1). Ideally, one expects
Prob{𝑝 ≤ 𝑥} = 𝑥, indicating a uniform distribution, but, in practice, we often encounter a
stricter inequality. The p-value is called conservative, meaning that small p-values are less
likely to occur under the null hypothesis than they would under a uniform distribution.

Formally, the authors present the definition of uniformly conservative null hypotheses:

Prob
{ 𝑝
𝑐
≤ 𝑥 | 𝑝 ≤ 𝑐

}
≤ 𝑥 for all 𝑥, 𝑐 ∈ (0, 1). (3.9)

For instance, Zhao et al. (2019) showed that in a one-dimensional exponential family with
parameter 𝜃, if the actual parameter 𝜃 is strictly less than 𝜃0, the uniformly most powerful
test for testing 𝐻0 : 𝜃 ≤ 𝜃0 against 𝐻𝑎 : 𝜃 > 𝜃0 results in uniformly conservative nulls.

Adding complexity in comparison to the SAFFRON algorithm, besides indicators for
candidacy 𝐶 𝑗 = 1{𝑝 𝑗 ≤ 𝜆 𝑗 } and for rejection 𝑅 𝑗 = 1{𝑝 𝑗 ≤ 𝛼 𝑗 }, ADDIS introduces
a new indicator 𝑆 𝑗 = 1{𝑝 𝑗 ≤ 𝜂 𝑗 }, where 𝑆 𝑗 = 1 indicates p-value 𝑝 𝑗 was selected
(not discarded) for testing. The authors argue that 𝛼𝑡 , 𝜆𝑡 and 𝜂𝑡 are some function 𝑓𝑡 of
{𝑅1:𝑡−1, 𝐶1:𝑡−1, 𝑆1:𝑡−1} → [0, 1].

Tian and Ramdas (2019) proposed a new estimator:

F̂DPADDIS(𝑡) =
∑

𝑗≤𝑡 𝛼 𝑗
1{𝜆 𝑗<𝑝 𝑗≤𝜂 𝑗 }

𝜂 𝑗−𝜆 𝑗

𝑅(𝑡) ≡
∑

𝑗≤𝑡 𝛼 𝑗
1{𝑝 𝑗≤𝜂 𝑗 }1{𝑝 𝑗/𝜂 𝑗>𝜃 𝑗 }

𝜂 𝑗 (1−𝜃 𝑗 )

𝑅(𝑡) , (3.10)

where 𝜃 𝑗 =
𝜆 𝑗

𝜂 𝑗
.

As these researchers made clear, given the users’ defined sequences {𝛾 𝑗 }∞𝑗=1 and {𝜂 𝑗 }∞𝑗=1,
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such that 𝛾 𝑗 < 𝜂 𝑗 for all 𝑗 , the numerator of Equation 3.10 is a preferable estimator for∑
𝑗≤𝑡, 𝑗∈H0 𝛼 𝑗 to what F̂DPSAFFRON(𝑡) uses. Moreover, theorems 2 and 3 are customized to

reflect ADDIS:

Theorem 4 If the null p-values are uniformly conservative, and suppose we choose 𝛼 𝑗 , 𝜆 𝑗

and 𝜂 𝑗 such that 𝜂 𝑗 > 𝜆 𝑗 ≥ 𝛼 𝑗 for each 𝑗 ∈ N, then: (a) the condition �𝐹𝐷𝑃ADDIS(𝑡) ≤ 𝛼,
∀𝑡 ∈ N, implies that 𝑚𝐹𝐷𝑅(𝑡) ≤ 𝛼, ∀𝑡 ∈ N. (b) If the null p-values are independent of each
other and of the p-values corresponding to the non-null hypotheses, and 𝛼𝑡 , 𝛾𝑡 and 1−𝜂𝑡 are
chosen to be monotonic functions of the past for all t, then the condition �𝐹𝐷𝑃ADDIS(𝑡) ≤ 𝛼,
∀𝑡 ∈ N, implies that 𝐹𝐷𝑅(𝑡) ≤ 𝛼, ∀𝑡 ∈ N.

In light of this, and for simplicity, with 𝜆 and 𝜂 constants for all 𝑡, Tian and Ramdas
(2019) introduced the ADDIS algorithm: given a desired FDR level 𝛼, the user should set a
discarding threshold 𝜂 ∈ (0, 1), a candidate threshold 𝜆 ∈ (0, 𝜂), an initial wealth 𝑤0 ≤ 𝛼,
and a positive non-increasing sequence {𝛾𝑡}∞𝑡=1 that sums to one.

Considering:
𝑆𝑡 =

∑︁
𝑖<𝑡

1{𝑝𝑖 ≤ 𝜂},

𝐶 𝑗+ =

𝑡−1∑︁
𝑖=𝑘 𝑗+1

1{𝑝𝑖 ≤ 𝜆},

𝑘 𝑗 = min{𝑖 ∈ [𝑡 − 1] :
∑︁
𝑘≤𝑖

1{𝑝𝑘 ≤ 𝛼𝑘 } ≥ 𝑗},

𝑘∗𝑗 =
∑︁
𝑖≤𝑘 𝑗

1{𝑝𝑖 ≤ 𝜂}.

(3.11)

The test level 𝛼𝑡 is
𝛼𝑡 = min{𝜆, 𝛼̃𝑡}, (3.12)

where 𝛼̃𝑡 = (𝜂 − 𝜆)
(
𝑊0𝛾𝑆𝑡−𝐶0+ + (𝛼 −𝑊0)𝛾𝑆𝑡−𝑘∗1−𝐶1+ + 𝛼

∑
𝑗≥2 𝛾𝑆𝑡−𝑘∗𝑗−𝐶 𝑗+

)
.

Selecting 𝜆 = 0.25, 𝜂 = 0.5 and 𝛾𝑡 ∝ (𝑡 + 1)−1.6as a practical default, the authors demon-
strated numerically that ADDIS exhibits considerably more power in scenarios with nu-
merous conservative nulls and seldom experiences a loss of power in settings devoid of
conservative nulls.
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3.4 Methodology
This thesis employs the open-source R package “online FDR,” encompassing implementa-
tions of the LORD, SAFFRON, and ADDIS algorithms and nearly all subsequent advance-
ments in online error rate control methods. Additionally, modifications to the source code
of the LORD algorithm enabled further analysis under various data corruption scenarios.

Our study implements a straightforward experimental framework that tests Gaussian means
across 𝑁 hypotheses to evaluate the comparative efficacy among the algorithms, utilizing
the default configurations recommended in the existing literature.

For all simulations conducted, null hypotheses 𝐻𝑡 : 𝜇𝑡 = 0 are tested against the alternative:
𝜇𝑡 > 0, for t = 1, . . . , 𝑁 . Consequently, we observe independent 𝑍𝑡 ∼ N(𝜇𝑡 , 1) transformed
into one-sided p-values 𝑝𝑡 = Φ(−𝑍𝑡), where Φ denotes the standard Gaussian Cumulative
Density Function (CDF). The values of 𝜇𝑡 are determined based on the mixture distribution:

𝜇𝑡 =


N(0, 1) with probability 𝜋0 = 1 − 𝜋1

N(3, 1) with probability 𝜋1.
(3.13)

In the composite model designated as𝐺, the null hypothesis𝐻𝑡 stipulates that 𝑝𝑡 is uniformly
distributed within the interval [0,1]. Contrarily, the alternative hypothesis posits that p-values
are derived from a distribution with the CDF represented by 𝐹. Consequently, the marginal
distribution of these simulated p-values is expressed as 𝐺 (𝑥) = 𝜋0𝑥 + 𝜋1𝐹 (𝑥). As depicted
in Figure 3.1, the histogram illustrates why online methodologies have more likelihood of
rejecting non-null hypotheses, as they are characterized by lower p-values.
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Figure 3.1. Histogram of the mixed model 𝐺. Results are based on 𝑁 =

100, 000.

3.5 Performance Comparison
Figure 3.2 compares the statistical power of LORD, SAFFRON, and ADDIS for the pro-
portion of non-nulls 𝜋1varying from 0.1 to 0.9, 𝑁 = 1, 000, and 𝛼 = 0.05. For this matter,
power is defined as (Robertson et al. 2023)

Power (𝑁) = E


∑
𝑡∈H1 𝑅𝑡(∑𝑁

𝑡=1 1{𝑡 ∈ H1}
)
∨ 1

 , (3.14)

whereH1 denotes the set of indices corresponding to alternative hypotheses. Put into words,
power is the expected value of the true discoveries divided by the total number of alternative
hypotheses.
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Figure 3.2. Power of LORD, SAFFRON, and ADDIS as the proportion of
non-nulls varies. Results are based on 103 replications.

As anticipated, the power of LORD is lower than the power of both SAFFRON and ADDIS
for all proportions of non-nulls 𝜋1. Since this simulation deals with conditionally super-
uniform null p-values, there is no clear advantage for ADDIS over SAFFRON. In fact,
SAFFRON surpasses ADDIS in terms of power as the proportion of non-nulls increases
(𝜋1 > 0.40).

Figure 3.3 shows the corresponding FDR against power for all the algorithms considered.
As expected, all algorithms control the FDR below the nominal 0.05 level setting.
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Figure 3.3. FDR and power of LORD, SAFFRON, and ADDIS as the pro-
portion of non-nulls varies. Results are based on 103 replications.

As 𝜋1 increases from 0.01 to 0.9, there is a noticeable increase in power alongside a
reduction in the FDR. It becomes clear that the enhanced power exhibited by SAFFRON
and ADDIS is accompanied by an elevated FDR. Furthermore, when comparing scenarios
with identical 𝜋1 and power levels, SAFFRON consistently exhibits a higher FDR than
ADDIS does, except for very low values of 𝜋1, but all FDR are lower than the threshold 𝛼

specified by the user.

This simulation elucidates the distinctions among leading algorithms controlling the FDR
under the presumption of valid and reliable p-values. Now, we will delve into an unexplored
yet crucial area: the influence of data corruption on online hypothesis testing. The impact
of such data on both power and FDR is uncharted territory in the existing literature, so
this thesis seeks to bridge this gap by providing comprehensive answers to these pressing
questions, thereby marking a novel and significant contribution to online hypothesis testing
theory.
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CHAPTER 4:
Online Multiple Hypothesis Testing with Corrupted

Data

This chapter explores different data corruption scenarios and proposes an alternative pro-
cedure to complement the standard LORD algorithm, making it more robust to adversarial
attacks.

4.1 Assumptions
The principal conclusion drawn from the preceding chapter is that LORD, ADDIS, and
SAFFRON maintain the FDR beneath the threshold 𝛼 for all periods. To simplify the
analysis, in this chapter, we primarily focus on the LORD algorithm due to its clarity and
methodological simplicity.

To rigorously evaluate data corruption in online multiple hypothesis testing, we propose a
controlled adversarial setup featuring two entities: Blue, representing the side that performs
the tests attempting to make true discoveries, and Red, who acts as the offensive agent by
stealing discoveries. The model operates as follows:

1. In period 𝑡, Blue receives a single p-value, 𝑝𝑡 , and must decide whether to
accept or reject the hypothesis 𝐻𝑡 , using only the information collected in rounds
1, . . . , 𝑡 − 1.

2. Red knows if 𝐻𝑡 is true but does not know the p-values past 𝑝𝑡 .
3. In case 𝑝𝑡 is stolen, it is removed from the data stream without Blue noticing.

This way, we simplify potentially more complicated scenarios, such as setting a
new (corrupted) value of 𝑝𝑡 .

4.2 Problem Formulation
The primary objective of Blue is to maximize power, ensuring that the FDR does not exceed
the chosen threshold 𝛼 over a time horizon of interest. Conversely, Red aims to min-max
Blue’s power, subject to an effort constraint.
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In this setting, there are 𝑇 periods. In periods 𝑡 = 1, . . . , 𝑇 , Blue receives a single p-value
and has to reject or fail to reject the hypothesis associated with 𝑝𝑡 . This is done by comparing
𝑝𝑡 with 𝛼𝑡 , where 𝛼𝑡 is determined by the LORD algorithm. If the p-value associated with
the hypothesis 𝐻𝑡 is greater than 𝛼𝑡 , the hypothesis will not be rejected, but if 𝑝𝑡 ≤ 𝛼𝑡 it
will be rejected in favor of the alternative, and we get a so-called discovery (which could be
a true or false one).

Before examining the impact of Red’s attack, it is pertinent to revisit the LORD 𝛼𝑡 equation,
as delineated in Equation 3.5:

𝛼𝑡 = 𝑤0𝛾𝑡 + (𝛼 − 𝑤0)𝛾𝑡−𝜏11{𝜏1 < 𝑡} + 𝛼
∑︁

𝑗 :𝜏𝑗<𝑡,𝜏𝑗≠𝜏1

𝛾𝑡−𝜏𝑗 .

Suppose the p-values are generated as those in section 3.4,𝑤0 = 𝛼
10 and 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
:

1. For time 𝑡 = 1, 𝛼1 = 𝑤0𝛾1. If 𝑝1 > 𝛼1, there is no discovery, and no wealth is
added to the initial budget.

2. For time 𝑡 = 2, 𝛼2 = 𝑤0𝛾2. However, if 𝑝2 ≤ 𝛼2, a discovery is made and
(𝛼 − 𝑤0)𝛾1 is added to the budget. Thus, 𝜏1 = 2.

3. For time 𝑡 = 3, 𝛼3 = 𝑤0𝛾3 + (𝛼 − 𝑤0)𝛾1. If 𝑝3 ≤ 𝛼3, then 𝛼𝛾1 is added to the
budget.

4. For time 𝑡 = 4, 𝛼4 = 𝑤0𝛾4 + (𝛼 − 𝑤0)𝛾2 + 𝛼𝛾1. If 𝑝4 ≤ 𝛼4, then 𝛼𝛾2 is added to
the budget.

5. For time 𝑡 = 5, 𝛼5 = 𝑤0𝛾5 + (𝛼 − 𝑤0)𝛾3 + 𝛼(𝛾1 + 𝛾2). If 𝑝5 ≤ 𝛼5, then 𝛼𝛾3 is
added to the budget.

6. This process continues until the last unit of time.

In this case, let us consider that the p-value 𝑝4 at time 𝑡 = 4 came from the alternative
hypothesis and is stolen by Red. This results in a wealth amount equal to 𝛼𝛾1 being removed
from 𝛼5, 𝛼𝛾2 removed from 𝛼6, and so on, for a total 𝛼 removed from the subsequence 𝛼5+𝑡 ,
for 𝑡 ≥ 0. This may induce a “cascade effect” in future values of 𝛼𝑡 .

This “cascade effect” is significant because it influences the likelihood of future discoveries.
Normally, if the conditions for discovery (𝑝𝑡 ≤ 𝛼𝑡) were met, additional wealth would be
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added to the budget. However, due to Red’s manipulation at 𝑡 = 4, the subsequent 𝛼𝑡 values
are impacted. This means that potential discoveries that might have occurred under normal
circumstances may no longer happen, as the altered 𝛼𝑡 levels are now lower, making it
harder to meet the discovery criteria. This illustrates how a single attack at a point in time
can have lasting effects on the entire process, altering the trajectory outcomes.

4.3 Cascade Effect Formulation
This section estimates the expected number of lost discoveries until the next discovery,
which is a lower bound for the expected number of discoveries lost.

Let 𝑝 (1)
𝑘

be a random p-value from H1 at time 𝑘 . As an example, in case the alternative
distribution is 𝑁 (𝜇1, 1), we know that 𝑝 (1)

𝑘
∼ 1 − Φ(𝜇1 + 𝑍), for 𝑍 ∼ 𝑁 (0, 1). Likewise,

𝑝
(1)
𝑘

∼ 𝑈 (0, 1), if the alternative and null distributions coincide.

The starting wealth at time 𝑡, 𝛼𝑡 , depends on rejections up to 𝑡 − 1. We consider an attack
taking place at time 𝑡. That is, 𝑝𝑡 ≤ 𝛼𝑡 , but the attacker prevents a rejection from taking
place—it does not matter how this is done, whether by stealing the p-value or by corrupting
it, the end effect is that there is no rejection in period 𝑡 when there should have been one.
Importantly, the decision-maker is unaware of this fact.

Let 𝛼̃𝑡 = 𝛼𝑡 and 𝛼̃𝑡+𝑘 as the value of 𝛼𝑡+𝑘 if there were no rejections at 𝑡, 𝑡 +1, . . . , 𝑡 + 𝑘 . That
is, the sequence of thresholds 𝛼̃𝑡 is deterministic, conditional on the discoveries until 𝑡 − 1.

Hence, the expected number of lost discoveries until the next discovery is

𝜋1𝑃(𝑝 (1)𝑡+1 ∈ (𝛼̃𝑡+1, 𝛼̃𝑡+1 + 𝛼𝛾1))︸                                   ︷︷                                   ︸
P(missing an H1 rejection in period 𝑡 + 1 due to stolen discovery at 𝑡)

+
∞∑︁
𝑘=2

©­«
𝑘−1∏
𝑗=1

(
𝜋1𝑃(𝑝 (1)𝑡+ 𝑗 > 𝛼̃𝑡+ 𝑗 ) + 𝜋0𝑃(𝑝 (0)𝑡+ 𝑗 > 𝛼̃𝑡+ 𝑗 )

)ª®¬︸                                                       ︷︷                                                       ︸
prob of no rejections up to period 𝑡+𝑘−1

𝜋1𝑃(𝑝 (1)𝑡+𝑘 ∈ (𝛼̃𝑡+𝑘 , 𝛼̃𝑡+𝑘 + 𝛼𝛾𝑘 )).︸                                    ︷︷                                    ︸
P(missing an H1 rejection in period 𝑡 + 𝑘 due to stolen discovery at 𝑡)

(4.1)

The reasoning of Expression 4.1 is that the expected number of true discoveries lost in
period 𝑡 + 𝑘 is the sum of (i) the probability of the p-value in 𝑡 +1 being from H1 and falling
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in the range of values that would have triggered a rejection had an attack in period 𝑡 not taken
place, with the product of two terms, (ii) the probability of the p-values in 𝑡 +2, . . . , 𝑡 + 𝑘 −1
being below the rejection threshold, and (iii) a 𝑝𝑡+𝑘 being from H1 and falling in the range
of values that would have triggered a rejection had an attack in period 𝑡 not taken place.

Since 𝛼𝑘 is decreasing as long as there are no discoveries, and the PDF of 𝑝
(1)
𝑡 is non-

increasing, the above expression can be lower bounded by

∞∑︁
𝑘=1

(𝜋1𝑃(𝑝 (1) > 𝛼̃𝑡+1) + 𝜋0𝑃(𝑝 (0) > 𝛼̃𝑡+1))𝑘−1𝜋1𝑃(𝑝 (1)𝑡+𝑘 ∈ (𝛼̃𝑡+𝑘 , 𝛼̃𝑡+𝑘 + 𝛼𝛾𝑘 )). (4.2)

An even weaker lower bound is obtained by replacing 𝛼̃𝑡+𝑘 with 𝛼̃𝑡+1 in Expression 4.2,

∞∑︁
𝑘=1

(𝜋1𝑃(𝑝 (1) > 𝛼̃𝑡+1) + 𝜋0𝑃(𝑝 (0) > 𝛼̃𝑡+1))𝑘−1𝜋1𝑃(𝑝 (1)𝑡+𝑘 ∈ (𝛼̃𝑡+1, 𝛼̃𝑡+1 + 𝛼𝛾𝑘 )). (4.3)

In case the alternative distribution is 𝑁 (𝜇1, 1), we get

𝑃(𝑝 (1) > 𝛼̃𝑡+1) = 𝑃(1 −Φ(𝜇1 + 𝑍) > 𝛼̃𝑡+1) = 𝑃(Φ(𝜇1 + 𝑍) < 1 − 𝛼̃𝑡+1)

= 𝑃(𝜇1 + 𝑍 < Φ−1(1 − 𝛼̃𝑡+1)) = Φ(−𝜇1 +Φ−1(1 − 𝛼̃𝑡+1)).

Likewise,

𝑃(𝑝 (1)
𝑡+𝑘 ∈ (𝛼̃𝑡+1, 𝛼̃𝑡+1 + 𝛼𝛾𝑘 )) = Φ(𝜇1 −Φ−1(1 − 𝛼̃𝑡+1 − 𝛼𝛾𝑘 )) −Φ(𝜇1 −Φ−1(1 − 𝛼̃𝑡+1)).

From here, we can compute Expression 4.2 numerically.

In contrast, when 𝑝 (1) ∼ 𝑈 (0, 1) (meaning that the null and alternative distributions coin-
cide), we get in Expression (4.2),

𝛼𝜋1

∞∑︁
𝑘=1

(1 − 𝛼̃𝑡+1)𝑘−1𝛾𝑘 . (4.4)
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It follows that the expected number of true discoveries lost approaches 𝛼𝜋1 in (4.4), as
𝛼̃𝑡+1 → 0.

Thusly motivated, we investigate two distinct scenarios of online hypothesis testing with
corrupted data:

1. Single attack: Red’s capacity to attack is limited by a single attack.
2. Stochastic attacks: Red attacks each alternative p-value with probability 𝜁 .

The simulation of each scenario uses altered forms of the LORD algorithm, derived from
the “onlineFDR” R package, to effectively incorporate Red’s and Blue’s strategies. The
generation of p-values adhered to the process detailed in Section 3.4.

4.4 Single Attack
As previously discussed in this chapter, the corruption of a single alternative p-value may
initiate a “cascade effect,” where the stolen wealth imposes future reduced 𝛼𝑡 values, leading
consequently to fewer discoveries.

From the attacker’s perspective, the earlier Red intervenes in the data stream directed towards
Blue, the more promptly 𝛼𝑡 will decrease, thereby suppressing a greater number of potential
discoveries. Accordingly, this scenario examines the dynamics of power and FDR when
Red attacks the first alternative p-value.

Red procedure for attacking the first alternative p-value

1. Blue initializes the LORD algorithm with 𝑤0 = 𝛼
10 , 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
, and sets

𝜏0 = 0.
2. At each step 𝑡, Blue computes 𝛼𝑡 according to Equation 3.5.
3. If 𝐻𝑡 ∈ H1 and 𝑝𝑡 ≤ 𝛼𝑡 , Red steals 𝑝𝑡 and the discovery is not allowed.
4. Go back to step 2 if 𝑡 < 𝑁 or the attack has not taken place.
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Figure 4.1 compares the statistical power of LORD without attacks (in black) and of LORD
when only the first alternative p-value is attacked (in blue) for the proportion of non-nulls
𝜋1 varying from 0.1 to 0.9, 𝑁 = 1, 000, and 𝛼 = 0.05.

Figure 4.1. Power of LORD without attacks and of LORD with a single attack
as the proportion of non-nulls varies. Results are based on 103 replications.

A single attack imposes an overall power decrease for different 𝜋1. Notably, this decrement
is more pronounced at lower 𝜋1 values, while a single attack is largely inconsequential as
𝜋1 gets bigger since there are many discoveries that remain to be made by Blue after Red’s
attack. Given the negative relationship between FDR and power, it is prudent to focus our
investigation on lower 𝜋1 values to ascertain the subsequent behavior of the FDR.
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Figure 4.2 shows the corresponding FDR and power for 𝜋1 = 0.1.

Figure 4.2. FDR and power of LORD without attacks and of LORD with a
single attack for 𝜋1 = 0.1. Results are based on 103 replications.

Stealing the first alternative p-value resulted in the average power dropping from around
0.28 to 0.20, marking a 28% decrease, while the FDR remained largely unaffected. The
cascading effect resulted in missing seven extra alternative hypotheses with just a single
steal, highlighting the effectiveness of this approach in undermining statistical power.

While Blue is certain of an imminent attack, the exact moment of its occurrence is un-
determined. As a strategy, we propose reviewing the infinite, non-increasing sequence of
positive constants {𝛾𝑡}∞𝑡=1 that sums to one, as the LORD algorithm does not impose any
fixed formula for it.

The threshold 𝛼𝑡 for each hypothesis 𝐻𝑡 is a monotone decreasing function of past rejections,
represented by the convolved sum of previous 𝛾. This design implies that, as more hypotheses
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are tested and potentially rejected over time, the threshold for deeming subsequent tests
significant becomes progressively more restrictive. Consequently, as the testing process
advances and the criterion for each test becomes more rigorous, the likelihood of achieving
further discoveries diminishes. When Red prevents a discovery, the effect on the testing
procedure is twofold. Firstly, the immediate outcome of such an attack is the failure to
add a wealth 𝛼𝛾1. Secondly, the 𝛼𝑡 value assigned to the ensuing tests becomes even more
restrictive than without corruption.

Therefore, we propose as Blue’s strategy to modify the original formula for the sequence
{𝛾𝑡}∞𝑡=1 to reduce the rate of decay of each𝛼𝑡 until the first discovery, consequently increasing
the probability of discoveries and after that go back to the default equation. Any function
with a lower rate of decrease than 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
can be applied.

Figure 4.3 displays the plot of the function 𝛾𝑡 = 𝐶
log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
for 𝑡 = 1, . . . , 1000, when 𝐶

has its default value of 0.0722 (black) and 𝐶 = 2 (blue). As expected, for small values of
𝑡, the new function provides larger values, but as 𝑡 increases, it converges toward the black
curve. This behavior implies that the new 𝛼𝑡 levels will be higher than using the default
value of 𝐶, and they tend to take longer to decrease, leading to greater “wealth” until Red’s
attack.
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Figure 4.3. 𝛾𝑡 = 𝐶
log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
for 𝑡 = 1, . . . , 1000, when 𝐶 = 0.0722 and

𝐶 = 2.

Blue procedure for defending against Red’s attack at the first alternative p-value

1. Blue initializes the LORD algorithm with 𝑤0 = 𝛼
10 , 𝛾𝑡 = 𝐶

log(𝑡
√

2)
𝑡 exp(

√
log 𝑡)

, and sets 𝜏0 = 0,
and 𝐶 = 2.

2. At each step 𝑡, Blue computes 𝛼𝑡 according to Equation 3.5.
3. If 𝐻𝑡 ∈ H1 and 𝑝𝑡 ≤ 𝛼𝑡 , Red steals 𝑝𝑡 and the discovery is not allowed.
4. Blue sets 𝐶 = 0.0722.
5. Execute step 2 till 𝑡 = 𝑁 .

Figure 4.4 illustrates the statistical power of LORD without attacks, of LORD attacking
only the first alternative p-value, and of LORD with the defender policy implemented for
the proportion of non-nulls 𝜋1 varying from 0.1 to 0.9, 𝑁 = 1, 000, and 𝛼 = 0.05.
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Figure 4.4. Power of LORD without attacks, of LORD with a single attack,
and of LORD with the defender policy implemented for 𝜋1 = 0.1. Results
are based on 103 replications.

Implementing the previously mentioned defensive policy by Blue results in a less pro-
nounced reduction in power compared to scenarios lacking data corruption for every value
of 𝜋1. Specifically at 𝜋1 = 0.1, as illustrated in Figure 4.5, the average power diminishes
from approximately 0.28 to 0.26 with the deployment of the defensive strategy, as opposed
to 0.20 in the absence of any countermeasures, while the FDR remains virtually unaffected.
This robustness is further exemplified by Blue’s ability to recover six true discoveries out
of eight lost (seven due to cascading). Without any defensive strategy, a single offensive
maneuver by Red imposed seven additional discoveries, while the strategy actively limited
the outcome to just one additional true discovery not being made.
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Figure 4.5. FDR and power of LORD without attacks, of LORD with a single
attack, and of LORD with the defender policy implemented for 𝜋1 = 0.1.
Results are based on 103 replications.

In conclusion, by increasing the sequence {𝛾𝑡}∞𝑡=1 by a constant factor up to the first discovery,
Blue can protect a large fraction of the discoveries that would otherwise be lost due to
cascading from a single stolen discovery, with minimal increase in FDR.

4.5 Stochastic Attacks
In this scenario, we consider a setting where Red attacks only alternative p-values that
would otherwise be rejected, with probability 𝜁 . This setting may arise when Red has a
great intelligence capability, allowing it to steal more than just one true discovery.
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Red procedure for attacking alternative p-values with probability 𝜁

1. Blue initializes the LORD algorithm with 𝑤0 = 𝛼
10 , 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
and sets

𝜏0 = 0.
2. At each step 𝑡, Blue computes 𝛼𝑡 according to Equation 3.5.
3. If 𝐻𝑡 ∈ H1 and 𝑝𝑡 ≤ 𝛼𝑡 , then Red steals the p-value with probability 𝜁 .
4. Go back to step 2 till 𝑡 = 𝑁 .

Figure 4.6 compares the statistical power of LORD without attacks (in black) and of LORD
with a probability 𝜁 = 0.1 of attacks (in blue) for the proportion of non-nulls 𝜋1 varying
from 0.1 to 0.9, 𝑁 = 1, 000, and 𝛼 = 0.05.

Figure 4.6. Power of LORD without attacks and of LORD with 10% of
attack probability as the proportion of non-nulls varies. Results are based on
103 replications.
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For a 𝜁 = 0.1 attack probability, the LORD algorithm shows a decreased power compared
to its operation without any attacks for every level of non-null proportion 𝜋1. The effect
of a 10% attack is more pronounced as 𝜋1 increases since there are more true discoveries
to steal. Likewise, increasing the attack probability 𝜁 leads to an even greater decrease in
LORD’s power.

The joint effect of FDR and power of increasing 𝜋1 is shown in Figure 4.7.

Figure 4.7. FDR and power of LORD without attacks and of LORD with
10% of attack probability as the proportion of non-nulls varies. Results are
based on 103 replications.

Larger values of 𝜋1 correspond to increased power for attack and no-attack cases, alongside
a reduction in the FDR. The curve associated with an attack probability of 𝜁 = 0.1 lies below
and to the left of the no-attack curve. Importantly, the FDR remains below the predefined
𝛼 = 0.05. In the particular instance of 𝜋1 = 0.1, as depicted in Figure 4.8, there is a 21%
reduction in the average power, from 0.29 to 0.23, exceeding 10%. This outcome merits
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emphasis: even when subjected to an attack with a 𝜁 probability, the power reduction exceeds
the scale of 𝜁 itself, as expected due to the cascade effect described in the last section.

Figure 4.8. FDR and power of LORD without attacks and of LORD with
10% of attack probability for 𝜋1 = 0.1. Results are based on 103 replications.

To counteract Red “usurping” discoveries from Blue, it becomes imperative to formulate
mitigating strategies to prevent the cascade effect. In this context, we introduce the concept
of “milestones.” Blue strategically creates fathom discoveries at predetermined intervals
𝑡 = 𝑚 for a certain attack probability, namely “milestones.” This approach is designed to
augment the overall count of discoveries, irrespective of their veracity, thus increasing the
wealth function in the LORD algorithm, which instead results in a higher power.

44



Blue procedure for defending against Red attacking alternative p-values with proba-
bility 𝜁

1. Blue initializes the LORD algorithm with 𝑤0 = 𝛼
10 , 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
, and sets

𝜏0 = 0 and milestone = 𝑚.
2. At each step 𝑡, Blue computes 𝛼𝑡 according to Equation 3.5.
3. If 𝐻𝑡 ∈ H1 and 𝑝𝑡 ≤ 𝛼𝑡 , then Red steals the p-value with probability 𝜁 .
4. If 𝑡 mod 𝑚 = 0, a fathom discovery is created.
5. Go back to step 2 till 𝑡 = 𝑁 .

This defender policy can be mathematically expressed as:

𝛼𝑡 =

©­­­«𝑤0𝛾𝑡 + (𝛼 − 𝑤0)𝛾𝑡−𝜏11{𝜏1 < 𝑡} + 𝛼
∑︁
𝑗 :𝜏𝑗<𝑡,
𝜏𝑗≠𝜏1

𝛾𝑡−𝜏𝑗

ª®®®¬1{𝑡 mod 𝑚 ≠ 0} +𝛼1{𝑡 mod 𝑚 = 0}

(4.5)

With the revised formulation of Equation 3.5, the condition when 𝑡 mod 𝑚 = 0 results in
𝛼𝑡 = 𝛼. Hence, if 𝑝𝑡 ≤ 𝛼, it leads to a discovery irrespective of the value initially determined
by the original LORD algorithm. However, the challenge is to tune the𝑚 parameter to regain
power and remain below the threshold 𝛼.

Figure 4.9 shows the corresponding FDR against power. The milestone 𝑚 (in blue) values
considered in this analysis include 1000, 500, 250, 200, 125, 100, 50, 40, 25, 20, 10, 5, 4,
2, 1.
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Figure 4.9. FDR and power as 𝑚 decreases from 1,000 to 1 for 𝜋1 = 0.1.
Results are based on 103 replications.

Consider the extreme rightmost point where 𝑚 = 1. In this case, 𝛼𝑡 = 𝛼 for all 𝑡’s, which
results in an average power of 0.9 and a FDR of 0.34. At the other extreme, for 𝑚 = 1000
the power drops to 0.26 with a FDR of 0.013. As evidenced by the plot, if the frequency of
enforced discoveries is increased or 𝑚 is decreased, both FDR and power show an upward
trend. For example, when 𝑚 = 100, all power can be recovered when we compare its value
with the black dot representing the original LORD’s power.
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Figure 4.10 illustrates how the milestone should be adjusted according to 𝜁 .

Figure 4.10. FDR and power with its corresponding confidence intervals for
different 𝜁 values as the milestone decreases. 𝜁 values include 0.1, 0.15,
0.20, 0.25. Results are based on 2, 000 replications.

As the value of 𝜁 increases, the milestone should decrease to encourage more discoveries,
which leads to a higher FDR, allowing the recovery of all lost power. By comparing the
power confidence intervals for Blue using the milestone (in blue) with LORD without any
attacks (in black), it becomes clear that the power could be recovered.

A critical inference from this is that fully restoring power without breaching the established
𝛼 = 0.05 threshold is feasible using this milestone procedure but relies on the information
about the probability of attacks 𝜁 , which is impossible to know in real life, so a more robust
procedure is needed.
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4.6 Online BH Algorithm
Recall the setting where Red steals each discovery with probability 𝜁 .

Red procedures for attacking any p-values with probability 𝜁

1. Blue initializes the LORD algorithm with 𝑤0 = 𝛼
10 , 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
, and sets

𝜏0 = 0.
2. At each step 𝑡, Blue computes 𝛼𝑡 according to Equation 3.5.
3. If 𝑝𝑡 ≤ 𝛼𝑡 (meaning that the 𝑡 term would be rejected), then with probability 𝜁 ,

Red eliminates the p-value, and the discovery is not allowed. The next p-value in the
sequence is fed to Blue.

4. Go back to step 2 till 𝑡 = 𝑁 .

Note that in Step 3, Red attacks regardless of whether the p-value is in 𝐻0 or 𝐻1. This would
be the case of a blind attacker, who steals p-values smaller than 𝛼𝑡 without considering the
ground truth. In practice, only for alternative distributions without a strong signal (e.g., 𝜇1

close to zero) this type of blind attack would be impactful in relation to a not-blind attack
(where only null p-values are stolen). When the signals are strong, most of the rejections
are from the alternative distribution, so it does not matter whether the adversary—thanks to
its intelligence capability—an discriminate between true and false discoveries.

As depicted in Figure 4.11, the impact of Red’s attacks on power reduction remains con-
sistent, irrespective of whether the attack is directed solely at p-values associated with
alternative hypotheses or at all p-values, with the FDR consistently below 𝛼 for all 𝑡’s. This
phenomenon is explicable because the probability of a p-value being from the alternative
hypothesis conditional on the p-value being small is very close to 1.

48



Figure 4.11. FDR and power of LORD without attacks, of LORD with 10%
of attack probability at alternative p-values, and any p-values for 𝜋1 = 0.1.
Results are based on 103 replications.

To ameliorate the “cascade effect,” we tested rejecting all p-values below some small
threshold. Numerical testing indicated that the power was greatly increased while the FDR
was kept below the guaranteed 𝛼. Thusly motivated, we devised a so-called online BH
algorithm, which applies the BH procedure—traditionally employed in offline settings—in
online fashion as the p-values roll in.
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Following Section 3.4, consider the mixed model with the null mean 𝜇0 = 0 and the
alternative mean 𝜇1 > 𝜇0 as depicted in Figure 3.1, and the BH algorithm presented in
Equation 2.18:

𝑖max is the greatest index for which 𝑝 (𝑖) ≤
𝑖

𝑁
𝛼.

Reject all 𝐻(𝑖) where: 𝑖 ≤ 𝑖max .

The idea is to perform the BH procedure at each period 𝑡. Therefore, Blue orders all p-values
received till time 𝑡 and calculates the corresponding position 𝑖max of the current p-value 𝑝𝑡 .
Hence, a conservative dynamic threshold is:

𝛼𝑡 =
𝑖𝑡

𝑡
𝛼, (4.6)

where 𝑖𝑡 is the position of 𝑝𝑡 in the sorted vector 𝑝 (1) , 𝑝 (2) , . . . , 𝑝 (𝑡) .

If we consider a stream of p-values of length 𝑁 , employing the LORD algorithm till
time 𝑡 = 𝑁/2 and the Online BH for the remaining sequence has demonstrated, through
simulation, an enhanced power while adhering to the FDR control.

Blue procedures in a scenario with attacking probability of 𝜁

1. Blue initializes the LORD algorithm with 𝑤0 = 𝛼
10 , 𝛾𝑡 = 0.0722 log(𝑡

√
2)

𝑡 exp(
√

log 𝑡)
, and sets

𝜏0 = 0.
2. At each step 𝑡 ≤ 𝑁/2, Blue computes 𝛼𝑡 according to the LORD algorithm.
3. For 𝑡 ≥ 𝑁/2, Blue computes 𝛼𝑡 according to the BH algorithm.
4. If 𝑝𝑡 ≤ 𝛼𝑡 (meaning that the 𝑡 term would be rejected), then with probability 𝜁 ,

Red eliminates the p-value, and the discovery is not allowed. The next p-value in the
sequence is fed to Blue.

5. Go back to step 2 until 𝑡 = 𝑁 .
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Figure 4.12 shows the results when we compare LORD’s power with the aforementioned
mixed procedure using the online BH algorithm for 𝑁 = 1, 000 and 𝜋1 = 0.1.

Figure 4.12. Power for 𝜇1 = 1, . . . , 5. Results are based on 2,000 replications.

It is apparent that augmenting the value of 𝜇1, so that the alternative signal is stronger,
improves the power of the hypotheses tests. Indeed, both LORD and online BH procedures
exhibit a monotonic increase in power. This trend underscores the intuitive principle that
as the alternative hypothesis becomes more distinct from the null, the ability of these
algorithms to identify true discoveries is enhanced, improving overall statistical power.
Nevertheless, a comparative analysis between LORD (in black) and online BH (in red)
reveals a substantial increase in power when Blue adopts online BH as a defender policy.
Furthermore, when there is some probability of attacks 𝜁 = 0.1, the online BH (in green)
shows more robustness compared to the LORD algorithm (in blue). This is evidenced by a
less pronounced decrease in power, maintaining a stronger performance in the face of such
adversarial conditions.
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Even when we compare LORD (in black) absent of attacks with online BH (in green) with
10% of attack probability, it is clear that the latter has a better power performance for the
tested values of 𝜇1.

Figure 4.13 illustrates the FDR behavior for this simulation:

Figure 4.13. FDR for 𝜇1 = 1, . . . , 5. Results are based on 2,000 replications.

As 𝜇1 gets larger, the FDR marginally increases with the LORD algorithm with and without
10% attack probability; this is due to more rejections inducing more wealth, resulting in
more false rejections. On the other hand, the simulation indicates that the FDR trajectory
experiences an ascent only up to 𝜇1 = 2 and a decrease beyond this point when using the
online BH algorithm. Importantly, the FDR remains below 0.05 even with attacks for both
algorithms.
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Next, we investigate how the LORD and the online BH algorithms behave with greater
probabilities of attacks 𝜁 . Figure 4.14 depicts the power for 𝑁 = 1, 000, 𝜋1 = 0.1, and
different values of 𝜁 .

Figure 4.14. Power for 𝜁 = 0.1, . . . , 0.5. Results are based on 2,000 replica-
tions.

As 𝜁 increases, the power of both algorithms diminishes, as expected. Specifically, when
𝜁 is set to 0.5, the power of the LORD algorithm (in black) falls below 0.1, indicating a
reduced capacity for making true discoveries. In contrast, the online BH algorithm (in blue)
demonstrates superior performance across all simulated 𝜁 values, maintaining a noteworthy
statistical power even at 𝜁 = 0.5. Within this context, the power of the online BH approximates
that of the LORD algorithm when 𝜁 = 0, showcasing its robustness in highly contested
environments.
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Figure 4.15 proves that the FDR is always below 0.05 in this simulation, which is the FDR
guarantee in our case.

Figure 4.15. FDR for 𝜁 = 0.1, . . . , 0.5. Results are based on 2,000 replica-
tions.

In summary, implementing the online BH algorithm, especially when integrated with the
LORD algorithm, enables Blue to protect discoveries that the cascading effect might oth-
erwise compromise, resulting in increased statistical power with only a slight rise in the
FDR. That is, online BH, together with LORD, is more robust against corrupted data.
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CHAPTER 5:
Conclusion

In this chapter, we present our concluding remarks by summarizing the findings of our study
and providing recommendations for future research.

This thesis has successfully demonstrated the limitations of prevalent algorithms in main-
taining the FDR when subjected to adversarial data manipulation, a common challenge in
real-time data environments. Our evaluation reveals that while these algorithms perform
adequately in trustworthy data scenarios, their efficacy diminishes significantly if subject to
corruption. This finding underscores a crucial vulnerability in statistical testing, particularly
in applications where data integrity is critical for accurate decision-making.

We have concentrated our efforts on enhancing the robustness of the LORD algorithm
against adversarial conditions. Our research demonstrated that, when suitable for multiple
attacks, the integrity and effectiveness of the algorithm could be preserved by inducing
“phantom” rejections and integrating the LORD algorithm with the online BH algorithm.
Furthermore, when only a single attack is allowed at the first true discovery, adjusting the
algorithmic parameters to reduce the decay rate of each test level until this attack happens
proved to mitigate the cascade effect effectively.

The practical implications of our research extend beyond the academic realm. In high-stakes
environments like the Brazilian Navy’s SisGAAz, where real-time data analysis is crucial
for maritime surveillance and security, our adapted algorithm may ensure that the system
can rely on the accuracy of its analyses.

In conclusion, our investigation highlights statistical algorithms’ vulnerabilities to data cor-
ruption and introduces methodological advancements for safeguarding their reliability and
effectiveness. These findings contribute to the ongoing discourse on algorithmic robustness,
offering pathways for future research and application in uncertain adversarial environments.
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5.1 Future Work
Despite the successes of recovering power and still being below the FDR threshold using
the LORD algorithm as a baseline, there are opportunities for improvements.

Firstly, the same approach could be used to understand how ADDIS and SAFFRON algo-
rithms handle corrupted data.

Secondly, the suggestion to increase the system’s robustness against random attacks was
to combine both LORD and online BH algorithms. However, the optimal approach would
be to implement a “pure” algorithm that can handle data of varying lengths and mean
values without using any other algorithm. Moreover, this thesis presented all findings
through simulation rather than formal mathematical proof, an area that could also be further
explored.

Lastly, additional simulations should be conducted to further enhance and verify the lower
bound formulation for the expected number of lost discoveries until the next discovery, as
discussed in the Cascade Formulation Effect section.
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