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ABSTRACT
The stable isotopes δ13C and δ15N are widely recognized and utilized as biomarkers for analysing trophic links, paleoenviron-
mental reconstruction, biogeography and nutrient sources. However, it is essential to further develop their applications, as their 
use in marine environmental monitoring is not as prominent. 13C and 15N have distinct signatures in organic compounds, which 
can be utilized to identify potential carbon and nitrogen sources. Marine bivalves are often employed in environmental studies 
as efficient bioindicators because sessile filter feeders tend to bioaccumulate pollutants. The present study analysed δ13C and 
δ15N in seston and oysters inhabiting two areas with different environmental conditions in a marine extractive reserve. The 
isotopic values were compared for two trophic levels and three oyster tissues, resulting in a broad view of local dynamics. Seston 
samples from Forno Beach (FB) exhibited depleted δ13C values, possibly reflecting a terrigenous carbon contribution in this area. 
Considering oyster tissues, δ13C and δ15N values in the hepatopancreas were similar to seston, possibly due to oysters' role as filter 
feeders, supporting the use of digestive tissues for assessing short-term changes of environmental conditions. Moreover, isotope 
values for oyster gills and muscles suggest long-term homogeneous conditions for Anjos Beach (AB) and FB, with a predomi-
nance of marine carbon and nitrogen sources. Our results underline the relevance of analysing bivalve tissues separately because 
they display different turnover rates and depict variable time frames of environmental conditions. This article provides valuable 
information on the variables that must be considered when applying stable isotope analysis in coastal environmental monitoring, 
highlights knowledge gaps and recommends best practices for future work in this area.

1   |   Introduction

The uncontrolled population growth along the coast represents 
a constant challenge to environmental management (Zhai 

et  al.  2020; Pena et  al.  2020). Marine pollution monitoring 
usually relies on indicator organisms, which experience physi-
ological, biochemical or molecular changes in response to sea-
water contamination (Ferreira, Coutinho, and de Oliveira 2023). 
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Bivalve molluscs are often selected as bioindicators because 
they are sessile filter feeders that absorb and accumulate sea-
water pollutants (Fiori et al. 2018; Phan et al. 2019). These mo-
tivated the continuous search for pollution biochemical markers 
in bivalve tissues (Sardi et al. 2017; López-Landavery et al. 2019; 
Araújo et al. 2021).

Recently, several studies have applied stable isotopes 13C and 
15N as pollution biomarkers due to their particular signa-
ture in a variety of organic compounds, which can be used 
to identify the type and potential feeding sources in marine 
organisms (Wang et  al.  2020; Vezzone et  al.  2021; Felizardo 
et al. 2021; Srinivas, Sukumaran, and Babu 2022). Besides, the 
δ13C isotopic signatures in pollutants are expected to be trans-
ferred from producers to higher trophic levels (Zanden and 
Rasmussen 2001; Post 2002). Graham et al.  (2010) employed 
the δ13C signature as a marker of oil pollution and observed 
that the lighter δ13C of petrogenic sources led to the depletion 
of values in planktonic communities. Regarding the 15N sig-
nature, several studies reported that a high input of urban ef-
fluents in coastal environments resulted in the change of δ15N 
values in suspended particulate organic material and marine 
organisms (Gaston and Suthers  2004; Rožič et  al.  2015; Ke 
et  al.  2020; González-De Zayas et  al.  2020). One challenge 
in interpreting the results of these studies is the variety of 
sources contributing to these effluents, which can result in 
either an increase or a decrease in isotopic signatures (Betti 
et al. 2011; Rožič et al. 2015; Ke et al. 2020).

Moreover, stable isotope analyses are broadly used to infer po-
tential sources of dissolved organic matter and particulate or-
ganic matter (DOM/POM) in coastal environments. Indeed, 
multiple origins were associated with organic matter in coastal 
waters, including local primary production and microbial de-
composition of algal biomass; terrestrial sources by decompo-
sition of soil and plant matter; and anthropogenic sources, such 
as industrial and domestic sewage (Lee, Kim, and Kim 2020). 
Another important factor to consider is that the isotopic com-
position in a consumer's tissue reflects their current diet and 
consumption in the preceding weeks and months, allowing for 
medium-term evaluations (Buchheister and Latour 2010). δ13C 
and δ15N fractioning also provide valuable information for the 
study of ecological niches and animal interactions in wild com-
munities. In that sense, Shipley and Matich (2020) reviewed the 
important factors that interfere with data interpretation, such as 
physiological conditions, sampling and storage procedures and 
statistical analysis. In this context, the physiology of bioindica-
tors can complicate the interpretation of the obtained data, as 
it may vary according to environmental characteristics and, in 
turn, influence them (Bearham et al. 2023).

The understanding of the dynamics of stable isotopes in marine 
organisms is expanding. A series of studies utilized these isotopes 
intensively for paleoenvironmental reconstruction (Milano, 
Schöne, and Gutiérrez-Zugasti  2020; Das et  al.  2021; Schöne 
and Huang 2021; Peharda et al. 2022; Wichern et al. 2023), food 
web analysis (Zhao, Yang, and Shan 2022; Amiraux et al. 2023; 
Whippo et al. 2024), investigation of the diets of various species 
(Schoo et  al.  2018; Srinivas, Sukumaran, and Babu  2022; Jiao 
et  al.  2024) and marine biogeography (Andrades et  al.  2019; 
Raoult et al. 2020; Ainis et al. 2021; Tatsch et al. 2024). However, 

studies directly employing this tool for marine environmental 
monitoring are less frequent (Kanduč et al. 2018; González-De 
Zayas et al. 2020; Liénart et al. 2022). The present study applies 
δ13C and δ15N stable isotope analysis of seston and bivalve tis-
sues with varying turnover rates (muscle, gill and hepatopan-
creas) to assess the environmental conditions of the coastal 
region in Arraial do Cabo, a tourist destination situated within a 
marine extractive reserve (RESEXmar-AC).

2   |   Methodology

2.1   |   Study Area

Samples were collected from two sites with varying anthro-
pogenic interference in Arraial do Cabo, a marine extractive 
reserve characterized by multiple uses of the sea, including 
boat traffic, diving, swimming and artisanal fishery (de Melo 
et al. 2009; Sarmento et al. 2020; ICMBIO 2020). Site 1 is located 
at the Anjos Beach (AB) pier (Figure 1), the primary nautical sup-
port point for Arraial do Cabo, housing the Fisher's Marina, the 
floating pier of AB and a commercial harbour (ICMBIO 2020). 
The frequent transit and docking of hundreds of boats could be 
a source of chronic release of oil at this location (Warnken and 
Byrnes  2004; Lin, Lin, and Jong  2007). This area also experi-
ences occasional sewage discharge events triggered by heavy 
rainfall (ICMBIO 2020). Site 2 is located on the rocky shore of 
Forno Beach (FB), which is subject to a low degree of anthro-
pogenic disturbance, restricted to the presence of tourists and a 
small bivalve mollusc farm (Galvao et al. 2012; ICMBIO 2020). 
This site is situated within Forno Inlet (Figure 1), with oceano-
graphic characteristics similar to Site 1. Despite the proximity 
of the selected sample sites, which could promote occasional 
water mixing, the most frequent circulation is characterized 
by strong currents from the northeast border with the trend of 
water from inside the enclosed areas (Forno and Anjos bays) to 
flow outwards (Batista et  al.  2017). During our sampling, we 
observed higher values at the AB site for nitrate (AB = 0.44 μM; 
FB = 0.09 μM), nitrite (AB = 0.21 μM; FB = 0.09 μM) and phos-
phate (AB = 0.29 μM; FB = 0.10 μM). Furthermore, Coelho-
Souza et  al.  (2013) demonstrated that heterotrophic bacterial 
production is significantly higher at AB compared with FB 
and attributed this difference to anthropogenic pressures at 
AB, particularly due to harbour activities and sporadic sewage 
discharges.

2.2   |   Sample Collection and Preparation

Nitrite, nitrate and phosphorus concentrations were measured 
in the seawater using a multi-parameter sonde (U-50 Series; 
Horiba®).  Seawater was collected in 4 L triplicate samples at 
each site to analyse stable isotopes in the seston. Samples were 
pre-filtered using a 200 μm mesh to exclude large organisms and 
limit the size of the seston to be analysed and then vacuum fil-
tered using 0.7 μm GF/F filters (Schoo et  al.  2018). The filters 
were previously dried and decontaminated in a muffle furnace 
(8 h at 450°C) and individually weighed on a precision scale 
(Mettler Toledo; 1 μg resolution). After filtration, the filters were 
dried at 60°C until they reached a constant weight and then 
stored for isotopic analysis. Six individuals from the Ostreidae 
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family were collected at each sampling point and identified as 
Saccostrea cucullata and Crassostrea brasiliana. The specimens 
were transported in a refrigerated container to the laboratory 
and then frozen for later dissection. Each specimen's gills, hepa-
topancreas and muscle tissues were separated, weighed, placed 
in 2 mL Eppendorf tubes and individually frozen at −20°C. The 
tissues were then freeze-dried and macerated in an agate mortar 
and pestle. All samples were collected during the low spring tide 
in December 2021.

2.3   |   Stable Isotope Analysis

The quantification of stable isotopes (δ13C and δ15N), total car-
bon (TC) and total nitrogen (TN) was performed on aliquots of 
dry filters (12 mg) and of each freeze-dried oyster tissue (0.7 mg), 
weighed using tin capsules and a precision scale. A blank analy-
sis accounted for the percentage of inorganic carbon and nitrogen 
in the filters. TC, TN, δ13C and δ15N levels were quantified using 
an elemental analyser coupled to an isotope ratio mass spec-
trometer (EA Flash 2000 coupled to an IRMS Delta Advantage; 
Thermo Electron Corp., Bremen, Germany), as described by 
Vezzone et al. (2021). To calculate the analysis error, reference 
materials were used, along with empty tin capsules: B2155 
PROTEIN (δ13C = −26.98 ± 0.13, δ15N = 5.94 ± 0.08), USGS65 
GLYCINE (δ13C = −20.29 ± 0.04, δ15N = −20.68 ± 0.06) and 

IVA33802174 UREA (δ13C = −41.3 ± 0.04, δ15N = −0.32 ± 0.02). 
The measured analytical errors were ± 0.4‰ for δ13C, ± 0.4‰ 
for δ15N, ± 0.5% for TC and ± 0.6% for TN.

2.4   |   Statistical Analysis

The data were determined to be normally distributed through 
Kolmogorov–Smirnov and Shapiro–Wilk tests and compared 
through analysis of variance (ANOVA), followed by Tukey mul-
tiple comparison tests (Zar 1996). Significant differences were 
identified by a coefficient p ≤ 0.05. The results were represented 
in boxplot graphics depicting the mean ± standard deviation. All 
statistical analyses were performed with the software Excel and 
Statistica 7.0.

3   |   Results

Stable isotope analyses in seston samples revealed a significant 
depletion of δ13C at FB compared with the AB pier (Figure 2a, 
p = 0.048). δ13C in oyster tissues showed the same trend observed 
for seston (Figure 2b, p > 0.05). When comparing oyster tissues, 
the hepatopancreas exhibits δ13C values significantly lower than 
gills and muscle and closer to the values observed for seston 
(Figure 2b). The values related to the discrepancies observed for 

FIGURE 1    |    Location of sampling sites at Arraial do Cabo, RJ, Brazil (AB = Anjos Beach; FB = Forno Beach).
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δ13C between the tissue types in AB and FB were quite similar 
(Table S1). The difference between muscle and hepatopancreas 
was 2.88‰ for AB and 2.56‰ for FB; the difference between 
muscle and gill was 0.98‰ for AB and 0.79‰ for FB; and the 
difference between gill and hepatopancreas was 1.9‰ for AB 
and 1.71‰ for FB.

The δ15N mean values were similar between AB and FB, consid-
ering both seston and oyster samples (Figure 3). When compar-
ing different oyster tissues, the hepatopancreas had the lowest 
δ15N values (Figure 3b), closely resembling those observed in the 
seston, whereas the values for muscles and gills exceed the ses-
ton by more than 2‰.

The mean TC percentages were significantly higher for seston in 
AB than in FB (Figure 4a, p = 0.025). Oyster tissues did not ex-
hibit significant variations in TC values between sampling sites 
(Figure 4b).

A significant difference was also observed between sampling 
sites for seston TN levels, with higher values in AB than in FB 
(Figure 5a, p = 0.047). TN levels for oyster tissues were similar 
between sampling sites and among tissue types (Figure 5b).

In general, when compared with previous studies (Tables  S2 
and S3), the isotopic signatures obtained for seston and oysters 
were similar to the values found in coastal regions (Figure 6). 

Moreover, seston samples from FB showed variable δ15N lev-
els, compatible with coastal and estuary signatures (Figure 6a). 
In contrast, δ13C values for oyster muscle tissues are out of the 
range observed for inner estuary samples and similar to the ob-
served for coastal and outer estuary samples (Figure 6b).

4   |   Discussion

δ13C and TC values for seston suggest different environmen-
tal conditions between the AB and FB stations during collec-
tion (Roth et  al.  2016; Srinivas, Sukumaran, and Babu  2022). 
However, the enrichment of δ13C at station AB is contrary to the 
trend of δ13C depletion observed in areas with a significant input 
of urban effluents (Rogers  2003; Gaston and Suthers  2004) or 
subjected to oil spill incidents (Graham et al. 2010). Indeed, local 
dynamics may favour the influence of enriched carbon sources 
of marine origin at AB, supplanting the effects of occasional oil 
or sewage pollution (Bardhan et al. 2015; Kopprio et al. 2018).

Moreover, the depletion of δ13C at FB could be attributed to 
greater terrigenous carbon input because this station is located 
next to rocky shores in a cove surrounded by terrestrial vegeta-
tion. A similar trend in 13C signature was observed by Bearham 
et al. (2023) and Bardhan et al. (2015), which demonstrated that 
depleted δ13C values in POM are characteristics of environments 
where terrestrial carbon sources predominate. In contrast, the 

FIGURE 3    |    δ15N levels in (a) seston (n = 3) and (b) oyster tissues (n = 6) at sampling sites in Arraial do Cabo. Mean ± standard deviation; boxes 
indicate standard errors. AB = Anjos Beach pier; FB = Forno Beach. Different symbols (*, ", #) indicate statistically significant differences.

FIGURE 2    |    δ13C levels in (a) seston (n = 3) and (b) oyster tissues (n = 6) at sampling sites in Arraial do Cabo. Mean ± standard deviation; boxes 
indicate standard errors. AB = Anjos Beach pier; FB = Forno Beach. Equal symbols (*, ", #) indicate no significant differences.
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δ13C values in oyster tissues were similar between sampling 
sites, potentially reflecting long-term environmental conditions. 
The δ13C values for oysters are directly linked to their dietary 
intake and indicate feeding patterns over weeks or months 
(Zanden and Rasmussen  2001; Post  2002). These results sug-
gest the contribution of terrigenous carbon sources at FB during 
sampling and the trend to long-term homogenization of carbon 
sources between FB and AB.

The nitrogen isotopic ratio observed in both seston and oyster 
tissues was similar across the sampling stations, indicating 
similar nitrogen sources, at least on a scale of days to months 
preceding the collections, despite the occasional discharge of 
sewage at AB.

Studies using δ15N values to assess the effects of anthropogenic 
effluents in coastal areas show contrasting results, mainly due 
to the variable composition of these effluents. Ke et al. (2020), for 
example, attributed a depletion of recorded nitrogen isotopic sig-
natures (below 2‰) to the impact of urban sewage, while Rožič 
et al. (2015) observed the opposite result (enriched δ15N signa-
tures above 5‰). These contrasting results reinforce the need to 
standardize methods in studies that apply δ15N analysis for envi-
ronmental monitoring. Moreover, the higher standard deviation 

observed for seston δ15N values in FB suggests a greater variabil-
ity of nitrogen sources in this location when compared with AB. 
Indeed, δ15N values for seston at FB are compatible with marine 
and terrestrial sources (Table S2).

The δ15N values for oyster muscles and gills are more than 2‰ 
higher than those of seston, reflecting the higher trophic posi-
tion of oysters in the food chain in relation to seston (Zanden 
and Rasmussen 2001; Post 2002; Layman et al. 2012). Similarly, 
previous studies demonstrated that consumers have isotopic sig-
natures higher than those of their diets, with an average value 
of about 3.0 ± 1.0‰ per trophic level, considering only the feed-
ing factor (Post  2002; McCutchan et  al.  2003). Recent studies 
emphasize that each environment must be carefully evaluated 
because trophic structures are unique and intrinsically linked to 
environmental conditions (Shipley and Matich 2020; Kjeldgaard, 
Hewlett, and Eubanks 2021).

The comparison between oyster tissues showed that the values 
of δ13C and δ15N were lower in the hepatopancreas than in the 
other tissues and closer to those recorded for seston. This dif-
ference in isotopic signatures for digestive tissues is attributed 
in part to their higher recycling rate, which reflects feeding 
behaviour (Raikow and Hamilton  2001; Deudero et  al.  2009; 

FIGURE 4    |    Total carbon percentage (TC%) in (a) seston (n = 3) and (b) oyster tissues (n = 6) at sampling sites in Arraial do Cabo. Mean ± stan-
dard deviation; boxes indicate standard errors. AB = Anjos Beach pier; FB = Forno Beach. Different symbols (*, ", #) indicate statistically significant 
differences.

FIGURE 5    |    Total nitrogen percentage (TN%) in (a) seston (n = 3) and (b) oyster tissues (n = 6) at sampling sites in Arraial do Cabo. Mean ± stan-
dard deviation; boxes indicate standard errors. AB = Anjos Beach pier; FB = Forno Beach. Different symbols (*, ", #) indicate statistically significant 
differences.
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Özdilek, Demir, and Gürkan 2019). On the other hand, gill and 
muscle tissues exhibit a more intricate isotopic fractionation, 
leading to higher values for the studied isotopes (Yokohama, 
Ishihi, and Yamamoto  2008; de Barros Ferraz et  al.  2009). 
Similarly, previous isotopic studies have demonstrated the im-
portance of using different bivalve tissues to enhance the robust-
ness of the analyses and integrate multiple time scales, taking 
into account the metabolic properties of each tissue (Paulet 
et al. 2006; Malet et al. 2007; Deudero et al. 2009; Fertig et al. 
2010; Emmery et  al.  2017; Özdilek, Demir, and Gürkan  2019; 
Bearham et al. 2023).

Considering the variations of isotope fractioning among differ-
ent ecological niches and consumer tissues, the decrease in δ13C 
in the seston and hepatopancreas at FB reflects the short-term 
environmental conditions, which might indicate the influence 
of low δ13C sources at the sampling moment, such as terrigenous 
material (Riera and Richard 1996; Bardhan et al. 2015; Bearham 
et al. 2023). In contrast, δ13C values for oyster muscle tissue are 
higher than the hepatopancreas and out of the range observed 
for inner estuary samples (Table S3 and Figure 3), which could 
indicate the long-term predominance of marine sources. The 
difference in isotopic signature between fast and slow turnover 
tissues was considered by Bearham et al. (2023) as an important 
tool to evaluate environmental variability. In their analysis of 
the diets of oysters and mussels across a gradient of environmen-
tal conditions, the authors inferred that the discrepancy in δ13C 

values between tissues with short and long turnover rates would 
indicate variations in carbon assimilation. They further argue 
that discrepancies in assimilation may complicate comparisons 
between locations if they are not consistent across all studied 
environments. In the present study, data analysed at both sam-
pling points revealed minor differences between hepatopan-
creas tissues compared with muscles and gills, indicating that 
carbon assimilation by oysters did not present a problem in the 
analysis conducted.

Indeed, the interpretation of environmental isotopic data is 
complex and challenging because of the myriad of biotic and 
abiotic factors influencing isotopic turnover (Liu et  al.  2018; 
Bauer et  al.  2021; Yang et  al.  2021). The isotopic signature 
in indicator organisms is influenced not only by the current 
environmental conditions but also by their diet and the re-
cycling rate for carbon and nitrogen in the analysed tissues. 
The recycling speed is influenced by life stage, metabolism 
(Herzka and Holt 2000) and abiotic factors, such as tempera-
ture (Dattagupta et  al.  2004). The present study enhances 
the current understanding of stable isotope fractionation and 
turnover in natural marine environments, as well as in bivalve 
tissues. Further research is necessary to evaluate the effects 
of physicochemical and biological factors on isotope signature 
and to expand the application of this tool for environmental 
monitoring.

5   |   Conclusion

The δ13C signature was successfully applied to differentiate 
two areas with particular environmental characteristics in the 
RESEXmar-AC and to identify a possible influence of terrig-
enous carbon sources at FB. The values obtained for δ13C and 
δ15N from seston and oyster hepatopancreas reflect this short-
term difference. Still, the isotopic signature of oyster gills and 
muscles depicts a long-term scenario of homogeneous environ-
mental conditions for AB and FB. The present results reinforce 
the importance of analysing bivalve tissues separately because 
the different turnover rates could lead to misinterpretation of 
isotopic values.
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