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RESUMO

O constante desenvolvimento de veiculos aéreos nao tripulados (VANT) chama a atencao
de setores como forcas policiais, agricultura, servicos de resposta a emergéncias e defesa.
Esse interesse crescente pode ser atribuido a sua simplicidade e custo-beneficio. O fato de
que esses dispositivos podem ser facilmente usados para atividades ilegais torna-se uma
preocupacao, ja que poderia ser empregados para atividades como: terrorismo, vigilancia
nao-autorizada e multiplos tipos de cyber-ataques como eavesdropping, jamming, e spoofing.
Portanto, a capacidade de estimar a localizagao e a direcao de chegada de drones é necesséria
para assegurar a seguranca de infraestruturas criticas e para lancar contra-ataques. O
objetivo principal da tese é estimar a localizacao e a direction of arrival (DOA) do drone
por serem os parametros mais importantes para o lancamento de contra-medidas usando
acustica. As contribuigoes para a estimagao da DOA de sinais actsticos emitidos por
drones incluem: (1) o reconhecimento do potencial da condigao zero cyclic sum (ZCS)
para avaliar a consisténcia entre miltiplas estimativas de atraso temporal, explorando
as varias combinagoes de picos priméarios e secundarios da funcao de correlacao cruzada;
(2) a mitigagdo da complexidade computacional da busca exaustiva por meio de uma
abordagem heuristica baseada em algoritmos genéticos, mantendo a acuracia da estimativa;
(3) a proposigdo de uma etapa de refinamento baseada em minimos quadrados (LS), que
complementa a condi¢do ZCS e contribui para melhorar a robustez frente a picos espirios;
e (4) o desenvolvimento de um estimador de DOA passivo, de facil implementagao e
sem necessidade de treinamento prévio, adequado para ambientes ruidosos. Os métodos
propostos alcancaram taxas de acerto de até 94,0+3,1% na identificacao correta de DOA
em experimentos com drones reais em ambiente reverberante. As contribui¢es para a
localizagdo de drones a partir de medidas de TDOA entre microfones incluem: (1) a
formulacao de métodos de otimizacao para explorar os picos primarios e secundarios das
correlagoes cruzadas; (2) a validacao dos métodos de otimizagao através de experimentos
reais; (3) a comparacao dos métodos com uma abordagem baseada em rede neural que
demonstrou que validou a utilizacao dos estimadores propostos baseados em LS que
atingem erros inferiores a 1 metro; e (4) a demonstracao de que os métodos sao flexiveis e
podem ser utilizados tanto para estimacgao de DOA e quanto para localizagao. O menor
erro médio de localizagao obtido com o método que explorou o ZCS e o LS (ZCS-LS) foi de
0,55+0,35 m, enquanto o método baseado em rede neural atingiu 1,024+0,02 m na melhor
posicao, confirmando a efetividade das abordagens propostas.

Palavras-chave: VANT; Drone; DOA; Sistemas inteligentes.



ABSTRACT

The constant development of unmanned aerial vehicles (UAVs) has drawn attention
from sectors such as law enforcement, agriculture, emergency response services, and
defense. This growing interest can be attributed to their simplicity and cost-effectiveness.
However, the fact that these devices can be easily used for illegal activities becomes a
concern, as they could be employed in actions such as terrorism, unauthorized surveillance,
and multiple types of cyberattacks, including eavesdropping, jamming, and spoofing.
Therefore, the ability to estimate the location and direction of arrival (DOA) of drones is
necessary to ensure the security of critical infrastructure and to enable the deployment of
countermeasures. The main goal of this thesis is to estimate the drone’s location and DOA,
as these are the most important parameters for launching acoustic-based countermeasures.
The contributions to drone DOA estimation include: (1) the recognition of the potential
of the zero cyclic sum (ZCS) condition for evaluating the consistency of multiple time
delay estimates by exploring various combinations of primary and secondary peaks in the
cross-correlation function; (2) the mitigation of the computational complexity of exhaustive
search through a heuristic strategy based on genetic algorithms, while preserving estimation
accuracy; (3) the proposal of a refinement step based on a least squares (LS) solution,
which complements the ZCS condition and increases robustness against spurious peaks; and
(4) the development of a passive DOA estimator that is simple to configure and does not
require prior training, making it suitable for noisy environments. The proposed methods
achieved success rates of up to 94.0+3.1% in correctly identifying the DOA in experiments
with real drones in reverberant settings. The contributions to drone localization based on
TDOA measurements between microphones include: (1) the formulation of optimization
methods that exploit both primary and secondary peaks of the cross-correlation functions;
(2) the validation of these optimization methods through real-world experiments; (3) the
comparison of these methods with a neural network-based approach, which confirmed
the validity of the proposed LS-based estimators that achieved localization errors below
1 meter; and (4) the demonstration that the proposed methods are flexible and can be
used for both DOA estimation and localization tasks. The lowest mean localization error
obtained using the ZCS-LS method was 0.554-0.35 m, while the neural network approach
achieved 1.02+0.02 m at its best position, confirming the effectiveness of the proposed
techniques.

Keywords: UAV; Drone; DOA; Intelligent systems.
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1 INTRODUCTION

Unmanned aerial vehicles (UAVs) [1], also referred to as drones, have gained
immense popularity in civil [2], industrial, and military applications [3]. These devices can
perform a myriad of tasks, e.g., delivery [4], surveillance [5], mapping [6], photography [7],
and agriculture monitoring [8]. In recent years, small UAVs have undergone significant

improvements, including increased range, speed, and payload capacity [9].

Suojanen et al. [10] advocates that the dual-use capabilities of small UAVs enable
them to be utilized by various actors for different purposes. Defense forces can use small
UAVs to gain a strategic advantage over their enemies by conducting surveillance and
reconnaissance missions or launching strikes against them, according to the works proposed
by Watling & Waters; Kreps & Lushenko [11, 12]. On the other hand, terrorists can easily
adopt low-cost drones to carry out attacks on targets, as stated by Pledger; Watling &
Waters [9, 11]. Furthermore, individuals with malicious intent can use them to carry out
criminal acts. It is, therefore, important for both public and private sectors to develop and
implement effective countermeasures against the malicious use of small UAVs, as presented
by Kunertova [3]. Figure 1 denotes a weaponized drone shot down by Iraqi forces, which

was carrying a bomb as its additional payload, according to Watling & Waters [11].

Figure 1 — Drone shot down by Iraqi forces. Source: [11].

A counter-drone system comprises two stages, named threat evaluation and weapon
assignment [13]. A significant challenge is the drone threat evaluation step, i.e., drone
detection [14, 15, 16] and parameter estimation, such as DOA [17, 18, 19], localization |20,
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21], model [22], and additional payload weight [23].

A drone threat evaluation system can detect and estimate drone parameters using
different signals. For instance, radar [24], radio frequency [25], optical [26, 27, 28, 29], and
acoustic signals [22, 30, 31] can be used. Other works employ two or more sensors to detect
drones, e.g., optical and acoustic [32], acoustic and RF [33], video and acoustics collected
from a drone [34]. Extensive literature about the detection and the parameter estimation
of drones can be found in [35, 36, 37].

Drones can perform autonomous missions and, in this case, they will not emit RF
signals, but they continue to produce acoustic noises [38, 39, 40]. Camera-based drone
detection systems suffer from non-line-of-sight requirements, while radar-based counter-
drone systems suffer from detecting drones due to the diverse materials in which the drone
is built. Thus, it is possible to exploit their acoustic signature to detect and estimate
the parameters of both kinds of drones, i.e., remotely piloted or autonomous drones.
Conversely, acoustic signals are susceptible to attenuation and can be significantly affected
by background noise, making it necessary to employ sophisticated techniques to detect
drones and estimate their parameters, even in a noisy environment. These techniques
must extract important features related to drone noise to accurately detect the presence
of these possible threats. Acoustic techniques allow the estimation of drone parameters,
e.g., localization, DOA, payload weight, or drone model. Therefore, the acoustic signal
emitted by the drone is an important signature to accurately evaluate its parameters and
allow a correct weapon assignment. Among these parameters, DOA estimation is required

for the weapon assignment stage.

DOA estimation using acoustics has been extensively studied in the field of au-
dio signal processing, and various methods have been proposed for sound source DOA
estimation [41]. Several techniques have been proposed for DOA estimation of drones
using acoustics, including beamforming, time-difference-of-arrival (TDOA) estimation, or
machine learning-based approaches [22]. These techniques aim to accurately estimate the
DOA of drones by exploiting the spatial and temporal properties of the drone’s acoustic

signature.

For instance, there have been reports of drones being used in the ongoing conflict
between Russia and Ukraine [42]. These drones have been used by both sides for various
purposes, including surveillance, reconnaissance, and even as weapons. In particular,
quadcopter drones have been extensively used for surveillance, reconnaissance, and grenade
launch. This utilization has raised significant concerns, as drones can be difficult to
detect and cause significant damage to targets. Even a single drone from a swarm that
breaches defenses has the potential to damage critical assets, such as counter-battery radar
systems, thereby compromising defensive capabilities and exposing further vulnerabilities.

Furthermore, we are learning on the fly that, due to their affordability, commercial drones
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are becoming a preferred choice for replacing damaged drones, rather than investing in
larger and more expensive military drones with enhanced capabilities, especially in an

expensive and long-term war [43].

Therefore, the use of quadcopter drones in the conflict has highlighted the need
for effective detection and countermeasure systems to ensure the safety of civilians and
military personnel. The development of reliable DOA estimation techniques for drones using
acoustics can assist in detecting and localizing drones, while also being used in conjunction
with other detection systems, such as radar and cameras, to provide a comprehensive

detection and tracking solution.

1.1 Motivation

The increasing use of drones in a plethora of applications has raised concerns
regarding their potential to cause harm, especially in sensitive areas such as airports,
military organizations, and public events. Therefore, the need for accurate and reliable

counter-drone systems has become an important issue in ensuring public security [44].

It is possible to note the importance of counter-drone technologies in mitigating
threats posed by unauthorized or malicious drone activities [45]. These technologies play
an important role in detecting, identifying, and neutralizing drones that could otherwise
compromise safety, privacy, and even national security. With the rapid advancement
of drone capabilities, including enhanced flight range, payload capacity, and autonomy,
counter-drone systems must evolve to address increasingly sophisticated threats. The
motivation for developing robust counter-drone solutions is not only rooted in preventing
attacks but also in maintaining operational continuity in environments where the presence
of drones could impact air traffic, surveillance operations, or critical infrastructure. As
drones become more accessible and widespread, the urgency to innovate in this domain
becomes even more pressing, demanding reliable systems that can operate effectively in

complex, real-world scenarios. estimating

The utilization of acoustics is recent and promising in this scenario. The main
idea is to benefit from the unique acoustic features to estimate important parameters
such as drone localization, speed, and trajectory, which are required for effective counter-
drone measures. Acoustic-based systems offer an alternative when traditional detection
methods, such as radar or vision-based systems, face limitations in environments with

visual obstructions or radio frequency absence.

The majority of works in this field focus solely on the primary peak of the cross-
correlation in time delay estimation (TDE). However, they overlook the potential infor-
mation embedded in the secondary peaks, which can provide additional insights about

multipath reflections and environmental conditions. By considering these secondary peaks,
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it may be possible to improve the accuracy of DOA estimation and enhance system robust-
ness in complex acoustic environments. This approach opens new avenues for developing
more precise and reliable drone detection technologies, especially in environments where
reverberation and noise complicate traditional signal processing methods. The difficulties
of detecting and estimating drone parameters are discussed extensively in works such as
those by Yang et al.; Chang et al.; Sun et al.; Yang et al. [46, 47, 48, 49].

1.2 Problem statement

Traditional counter-drone systems have limitations such as line-of-sight require-
ments, parameter estimation (such as drone model and detection of additional payload),
and vulnerability to jamming [50]. Acoustic-based systems can operate in non-line-of-sight
conditions, making them a valuable complement to existing counter-drone systems by
providing a solution for drone detection and parameter estimation. Furthermore, using
acoustics to detect drones has the potential to be cost-effective and can be deployed in
various settings. Therefore, developing acoustic-based anti-drone systems is important for

enhancing drone detection capabilities and improving public safety.

In the age of drone warfare, the ability to detect and neutralize UAVs has become
an essential aspect of military operations. Traditional detection systems such as radar
and cameras may have limitations in detecting drones, particularly when they fly at
low altitudes or within urban environments. Acoustic-based drone detection systems can

provide an alternative solution to detect and track drones in such scenarios.

The problem addressed in this thesis focuses on the challenge of estimating drone
localization and DOA in highly noisy and reverberant environments, where traditional
acoustic-based estimation methods often fall short. These challenging environments, such
as urban areas and complex outdoor settings, present significant obstacles due to noise,

multipath propagation, and environmental clutter.

1.3 Objectives

The primary objective of this work is to propose a novel acoustic-based counter-
drone system capable of estimating both the localization and DOA of a quadcopter drone
by analyzing the acoustic signals produced by its propellers. To address the challenges
posed by periodic signals and multipath propagation, the proposed approach employs the
ZCS condition and the TDE to improve delay accuracy by incorporating both primary
and secondary peaks from cross-correlations. Furthermore, this work explores the use of
an exhaustive search strategy with a computationally efficient cost function to refine the

selection of time delays and enhance localization performance, as introduced by Fernandes,
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Apolinario Jr. & Seixas [51].

The specific objectives include the following:

o conceiving a simulation system for the initial assessment of the performance of
TDE-based DOA and TDOA-based localization estimators. This simulator is a first
step towards understanding the effects of the multiple peaks of the cross-correlations
on the DOA estimation and also to evaluate the TDE challenges that arise from the

incorrect position of the microphones and the lack of subsample delay estimation;

« exploring the capabilities of the use of microphones to estimate drone localization
and DOA; and

« proposing a method to identify a set of delays (including both primary and sec-
ondary peaks of the cross-correlation functions) that minimize localization and DOA

estimation errors.

1.4 Methodology

This study was conducted through a combination of simulation design, experimental
analysis, and algorithm development, aimed at evaluating and optimizing acoustic-based
techniques for drone localization and DOA estimation. First, to validate and obtain the
necessary knowledge for the chosen problem, a literature review was performed about the

subjects of the thesis:

» counter-drone systems;

e drone noise;

e cross-correlation;

o drone direction of arrival estimation using acoustics; and

o drone localization estimation using acoustics.

The research was conducted using both simulated and real-world signals to validate
the proposals that address the gaps identified in the literature. The performances of the
algorithms employed in this work were assessed quantitatively. The main goal was to
design methods that could be used in real-world scenarios. The simulated signals were
synthesized based on the analysis of actual drone noise signals collected by a microphone
array. For each specific objective solution, evaluation methods are proposed to demonstrate

that the problem can be solved or that the error can be minimized.
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1.5 Justification

The advancement of dual-use technologies is a central theme within the National
Defense Strategy [52], highlighting the need for reorganization and modernization of the
Defense Forces to respond to emerging security challenges effectively. Among the three
strategic sectors identified as critical to national defense (territorial surveillance and control,
defense of air and water spaces, and safeguarding maritime communication lines), one
pressing challenge is the growing threat posed by UAVs or drones. These threats require
innovative solutions, particularly for localization and DOA estimation in environments

where traditional radar or visual tracking methods may be ineffective.

The results of this work can benefit the surveillance of critical structures and
support the development of national technologies. In the Defense Forces, the application
of the knowledge acquired during this research can contribute to building a counter-drone
system to localize and destroy drones. The results presented in this work offer insights into
key questions, such as how to effectively employ acoustic signals to maximize the accuracy
of DOA estimation in counter-drone systems, and what strategies yield the most reliable
DOA estimates based on inter-microphone delays. Addressing these questions contributes
to a deeper understanding of the role of acoustics as a practical and viable sensing modality
in counter-drone applications, offering guidance for researchers and practitioners in the

development of robust acoustic-based localization systems.

1.6 Structure of the thesis

The thesis begins with Chapter 2 that introduces the proposed method, emphasizing
its novel contributions to acoustic-based localization and DOA estimation. Chapter 3
presents a literature review addressing counter-drone systems, localization strategies, and
DOA estimation techniques. This chapter also positions this thesis with state-of-the-art
methods. Chapter 4 presents the DOA estimation results obtained through both simulations
and real-world experiments. Chapter 5 follows with the experimental findings related to
localization performance. Lastly, Chapter 6 summarizes the main conclusions and outlines

directions for future research.
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2 LOCALIZATION AND DOA ESTIMATION METHODS

This chapter describes in detail the proposed methods to estimate localization and
DOA in highly noisy environments using acoustics. It also covers how to deal with the
challenges associated with estimating localization and DOA using the primary peak and
the secondary peaks of the cross-correlations. Section 2.1 presents the GCC method to
estimate DOA, providing a detailed description of the cross-correlation function due to
its importance for the subsequent sections. Section 2.2 discusses the cost functions ZCS
and LS. Section 2.3 presents optimization methods for DOA estimation, including an
exhaustive search method to reduce delay estimation errors and a heuristic search based
on genetic algorithms. Finally, Section 2.4 defines methods that solely rely on TDOA
measures to estimate the localization of a source. The methods described in Section 2.3
and Section 2.4 represent the core contributions of this work in advancing acoustic-based
drone localization and DOA estimation under adverse conditions. The implementations of
the methods can be found in [53].

2.1 Generalized Cross Correlation algorithm

To estimate the direction of arrival using the GCC function, it is necessary to
estimate the TDOA between pairs of microphones. The TDOA is obtained from the peak

of the cross-correlation 7,,,,(7), defined as follows [54]:

Toiay (T) = Blzi(k)z;(k — 7)), (2.1)

where E [-] denotes the expectation operator and 7 is the lag between two given sensors, x;
and x;. In practice, statistical knowledge of the signals is not available, and Equation (2.1)

is usually replaced by its time average estimate, given by:

[o.9]

Paa, (1) = 3 wi(k)aj(k —7) = 2i(7)  2;(=7), (2:2)

k=—o00
where x is the convolution operator.
By taking the discrete Fourier transform of 7., (7) and assuming real-valued

signals, the cross power spectrum density between z;(k) and z;(k) can be expressed as

follows:

Raay(¢7) = Flfua, (1)} = Flai(r) s 2;(—7)} = Xi(e™) X;(e77") = Xi(e™) X (),
(2.3)
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The cross-correlation can then be computed using Equation (2.4):

o, (T) = F‘l{inxj(ej“)}. (2.4)

Adding a frequency weighting function ¢ (w) in Equation (2.4), we have the GCC
as presented in Equation (2.5):

Poga; (T) = ‘F_l{w(c“))Efti»Tj ()}, (2.5)

where classical cross-correlation corresponds to )(w) = 1, ¥ w. A popular weighting scheme
employed by the GCC is the PHAT, known to have good performance in reverberating
scenarios [54]. PHAT also tends to have a sharper peak than classical GCC, increasing the
performance of the TDE. Its weighting function is given by:

PHAT _ 1
WS KX 20

Finally, the TDE is obtained as follows:

fi; = arg max |77 ()] (2.7)

|7—‘§7'max

where this function corresponds to Equation (2.5) with the weighting function described
in Equation (2.6) and 7.« is the maximum delay possible (in the number of samples)
between microphone i and j, which occurs when the DOA has the same direction as the

vector that connects sensors i and 7, expressed as follows:

IPi — Pjlfs
Vg ’

(2.8)

Tmax

where p; and p; are the position vectors of sensors ¢ and j, vs is the speed of sound,
and fs is the sampling frequency. The TDEs using inverse Fourier transform (iFFT)
provide delays as integer multiples of the sampling period; this leads to errors that are
particularly relevant in small arrays (small time delays between sensors) and with low
sampling frequency. To mitigate this source of errors, we can interpolate the GCC, allowing
more accurate estimations of the TDOA. In this work, cubic interpolation was applied
across all points within the range —7. and 7.y, ensuring that all possible delay values
are covered. In a 3-D scenario, d;; is expressed as ApgjaDoA, where the TDE (in samples)

is given by:

fs(Pi — Pj Ta OA fsApiT-aDOA _
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where Ap; ; = fsAp; ;/vs.

Based on the estimated delay, as given in Equation (2.7), and the delay based on

the unknown vector appa, Equation (2.9), the least squares cost function, is defined as:

£ => (%, — Ap; japoa)’, (2.10)
i,J

for all possible pairs, N = M (M — 1)/2 for the case of M microphones.

Minimizing the cost function with respect to apoa, the following is true:

apoa = R7'd, (2.11)
where d = Ap'r, 7 = [112 713 ... Tiw T23 - Tm—1m)t and R = ApTAp, Ap are
assembled as follows:

~ - - B B B T
Ap = [Apu Apiz ... Apim Ap2z ... Aprl,M} . (2.12)

The solution provided by Equation (2.11) may not have a unit norm, which must
be ensured through normalization. Only after normalization can the azimuth and zenith

angles be accurately computed using trigonometric functions.

Equation (2.11) provides all three coordinates only when using a spatial array. If a
planar array is used, ambiguity occurs, and matrix R is singular. When all sensors are in
a plane (zy-plane for instance), we must adapt the sensor positions (p;) to suppress the
coordinate associated with the perpendicular axis, which in this case is z. This way, R
is non-singular and Equation (2.11) provides Apsa™" = [a, a,])T. As the apoa must be
unitary and we assume that the source is located above or below the array, it is possible

to estimate the DOA.

2.2 ZCS and LS cost methods

The ZCS condition is derived from a configuration in which the selected microphones
form a closed loop. The theoretical time delays obtained by the spatial distance between
each pair of microphones that forms a closed loop are an Abelian group. The sum of all

elements of an Abelian group is known to be zero, regardless of the order in which they
are added [55].

This criterion finds practical application in digital signal processing within an array
of sensors [51]. The main reason is that the TDE process is often plagued by several factors
that introduce complexities and errors, impeding the attainment of accurate DOA [56]. Low

Signal-to-Noise Ratio (SNR) [57] constitutes one of the primary obstacles, as it weakens



Chapter 2. Localization and DOA estimation methods 24

the discernibility of the signal of interest amidst background noise, leading to challenges
in pinpointing the exact arrival time delay. Furthermore, multipath propagation [58], a
phenomenon where signals arrive at the microphones through multiple paths, exacerbates
the issue by causing time delay variations. This results in the reception of multiple, altered
versions of the same signal, complicating the accurate identification of the original signal’s
true arrival time. Additionally, errors in the measurement systems, including calibration
inconsistencies (attitude and geometry of the array) [59] or hardware imperfections, further
contribute to inaccuracies in time delay estimation, subsequently impacting the precision
of DOA calculations. The cumulative impact of these factors on the acoustic signals leads
to multiple peaks within the cross-correlation [51], resulting in misleading time delay
estimations when we only consider the peak of the cross-correlations with the highest
amplitude. Consequently, this multitude of peaks affects the accuracy of DOA estimation.
Thus, the ZCS condition may be explored to assess if sets of peaks of cross-correlations

are coherent.

The LS is an extra method that aims to enhance accuracy and efficiency in DOA
estimation, ensuring that the selected delays contribute significantly to the DOA estimation.
It consists of estimating DOA with a given time delay vector and analyzing the sum of
the squared error of the time delay calculated according to the DOA and each original

time delay, according to Equation (2.13):

1 X 5
fZN;(sz—Tij) . (2.13)

2.3 DOA estimation methods

This section describes two methods to optimize the DOA estimation using secondary
peaks of the cross-correlations between pairs of microphones and the cost functions

introduced in Section 2.2.

2.3.1 Exhaustive search using ZCS-LS

The ZCS-LS method unfolds in two distinctive stages. In the initial stage, we
perform an exhaustive search, calculating the ZCS cost function for all combinations of
TDE. From this computation, we identify a small set of candidate time delay vectors
characterized by the lowest ZCS cost function values. Transitioning to the second stage,
we select a small subset of vectors from this set, evaluated concerning the ZCS cost
function. This selection process is guided by the LS cost function, ensuring that the
chosen candidate time delay vector not only possesses one of the lowest ZCS cost functions
among all possible time delay vectors but also aligns optimally with the LS solution. By

systematically navigating through these stages, the ZCS-LS method reduces the complexity
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of an accurate DOA estimation that takes into account primary and secondary peaks of

the cross-correlations.

For an exhaustive search, careful consideration is given to the number of microphones
in the array. For instance, considering a 7-microphone configuration, selecting a subset of
four microphones may be preferred due to considerations of computational feasibility and
efficiency. The restriction to four microphones allows a manageable number of microphone
pairs, specifically (3) or six possible pairs. For each of these pairs, the recorded signals
are segmented into windows, and the cross-correlation function is applied to estimate
the time delay. Unlike conventional approaches that rely solely on the primary peak, this
method considers both primary and secondary peaks of the cross-correlation, resulting in

C' candidate time delays per microphone pair.

The method explores the entire solution space, denoted as .S, which is the set of all
possible time delay combinations (C°®) within a 4-microphone array, considering C' time
delay candidates for each of the six cross-correlations. This choice ensures a systematic
evaluation of feasible delay combinations, considering a low number C of time delay
candidates. For instance, if C' = 10, it is possible to perform an exhaustive search as the

total solution space is 10 = 1,000, 000 potential time delay combinations.

In contrast, the computational complexity grows exponentially with an increase in
the number of microphones [51]. For instance, in a 7-microphone array, where M = 7, the
size of the solution space, denoted as S with C' candidate delays, is determined by the
formula S = CV, where N = 21 for M = 7 microphones. If C' = 2, the solution space is
C?' =2,097,152. As C increases, the solution space expands rapidly. For instance, with
C' = 3, the number of possible solutions reaches over 10 billion (10,460, 353,203), and with
C =4, it exceeds 4 trillion (4,398,046, 511, 104) distinct combinations. This exponential
growth underscores the practical advantages of utilizing a microphone array with a reduced
number of microphones (M), ensuring computational efficiency in exploring the solution

space for optimal DOA estimation.

The solution space for a 4-microphone array poses constraints to the cost function
used in the exhaustive search process. This is where the reduced complexity cost functions
using ZCS excel. By applying a low complexity cost function, the exhaustive search can
efficiently explore these expansive solution spaces and navigate toward the global optimal

solution.

Each combination of time delays is evaluated based on the ZCS cost function that
quantifies their proximity to a zero-sum. The closer to a zero-sum, the more coherent
the time delays for a given DOA are. The Exhaustive Search-Zero Cyclic Sum (ES-ZCS)
method can efficiently identify the correct delays from a multitude of incorrect delays,
particularly in situations with low SNR. The C' candidate delays for each cross-correlation

function r,,,; are the elements of each row of data matrix V denoted as {Tij1 Tij2 -+ Tijo}
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ordered in descending order according to the amplitude. For M = 4, which implies in

N = 6, matrix Vyx¢ with all candidate delays, is defined as

T12,1 Ti22 T123 ... Ti12,C
T13,1 Ti132 T133 ... Ti13,C
V=| Ty T2 Tz --. Tuc |, (2.14)
| 734,1 7342 7343 ... T34,C |

such that it is possible to combine all delays and create the N x 1 vectors v, to perform
an exhaustive search, 1 < ¢ < C. The combination of all vectors v, forms the solution

space S.

The ZCS cost function [51] plays an important role in this method, assessing the
sum of delays in defined subsets forming closed loops to minimize instances of inaccurate
zero-sum outcomes. Through an examination of all potential subsets forming closed loops
and the summation of their results, this method diminishes the probability of encountering

a zero-sum outcome that lacks the correct delays.

To facilitate the computational calculation of the ZCS cost function, a method
that involves the identification and enumeration of closed loops based on the number of
delays was devised. More specifically, when employing a M = 4 microphone array, we
find that, with 3 delays, there are 4 closed loops, and with 4 delays, we observe 1 closed
loop. The total number of closed loops, denoted as L, is therefore L =4 +1 = 5. 1t is
important to note that the delay 731, which closes the loop, can be determined by taking
the negative value of 73. Similarly, 743 can be expressed as —734, and, in general, any delay
7;; that closes the loop can be written as 7;; = —;;. By utilizing this property, we can
compute all possible delays once and then manipulate them to identify the correct value of
7 that closes the loop. This approach saves computational resources by avoiding redundant
calculations and facilitates the determination of the correct delay for loop closure. The

complete listing of all possible closed loops for 3 and 4 delays can be found in Table 1.

Table 1 — All possible cyclic paths in a four-microphone array

# delays Closed loops

Ti2 T23 731
3 Ti2 T24 T41
T13 T34 T41
T23 T34 T42
4 Ti2 T23 T34 T4l

We can create a matrix Dy based on Table 1 that can sum all delays, expressed
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1 -1 0 1 0 0
1 0 =10 1 0
D=|0 1 -10 0 1]/; (2.15)
0 0 0 1 —11
1 0 1 0 1

where each element of the resulting vector f = Dv is the sum of all subsets (closed loops)
such that the ZCS cost function, denoted as f, is then calculated as

f=fTf = |[f|~ (2.16)

This ZCS cost function captures the squared norm of the resulting vector, encom-
passing the contributions from all subsets and providing a measure of coherence among
the time delays concerning an arbitrary DOA. The best Z vectors, determined by the
ascending order of ZCS scores, are stored and form a collection of potential solutions to
the problem, achieved with low computational effort. Each combination of time delays
serves as a plausible solution to the DOA estimation problem represented as a column

within matrix Py« z:

11 T12 713 ... Tiz
To1 T22 T23 ... T2z
P=| 7 7 73 ... T3z |, (2.17)
| 7N1 TN2 TN3 ... TNZ |

while matrix Pyyz presents a range of potential solutions, it is essential to note that
the time delay vector with the lowest ZCS score may not always constitute the optimal
combination for accurate DOA estimation. Consequently, we have introduced a second
phase to further refine the ultimate selection from the pool of Z candidate vectors. This
additional step aims to enhance the precision and reliability of the chosen solution, ensuring
that the DOA estimation is not solely dependent on the ZCS score but takes into account

an additional LS cost function for a more precise outcome.

The ZCS-LS method is detailed in Algorithm 1.

2.3.2 Heuristic search using genetic algorithms and zero cyclic sum

One of the key advantages of GAs is their ability to handle large solution spaces and
navigate through complex landscapes of possibilities. Unlike traditional search methods,
GAs do not rely on explicit problem domain knowledge or constraints. Instead, they explore
the solution space by iteratively generating and evaluating a population of candidate

solutions.
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Algorithm 1 Exhaustive search using ZCS and LS (M=4)
Compute all C' candidate delays for every 7,,,,;
for k=1: N do
Compute 74,4, = 12 to 34
Obtain C' candidate delays (larger peaks of 74, )

Vk7; <~ [’7’@'71 Tij2 - - Tij7C]
end for
Create a combination of time delays and compute ZCS;
for k=1:5do

P., < map 7;;; in V.
f = ZCS(P. ;) Equation (2.16)
Pyuar=1rf
end for
Compute LS cost function of the Z time delay vectors with lowest ZCS;
for k=1:7 do
¢ = LS(P1.v ) Equation (2.13)
Pyior =¢
end for
Choose the time delay vector with the lowest & (LS cost function).

The enormous solution spaces pose significant challenges for traditional search
methods, as exhaustively evaluating each possible solution becomes computationally
infeasible. This is where GAs excel, by employing a heuristic search approach, efficiently
exploring these expansive solution spaces while navigating toward local or global optimal

solutions without evaluating every possibility.

GAs employ the concept of individuals represented as chromosomes, where each
chromosome encodes a potential solution to the problem. These solutions are evaluated
based on the ZCS fitness function that quantifies their proximity to a zero-sum. Through
the use of selection, crossover, and mutation operators, GAs promote the exchange and
recombination of genetic material between individuals, mimicking the genetic diversity

and variation found in natural evolution.

The C' candidate delays for each cross-correlation function ry,,, are the elements
of each row of data matrix V denoted as {7;;1 72 ... Tjc}. For M =7, which implies

in N = 21, the matrix Vy«¢ with all candidate delays, is defined as

T12,1 Ti22 Ti123 ... Ti12,C
T13,1 Ti132 T133 ... Ti13,C
V= Tiu1 Tua2 Ti43 -.. Tiac |- (2.18)
| Teér,1 Ter2 Te73 --- T67,C |

The population, consisting of P individuals (or chromosomes), represents the

collection of potential solutions to the problem. Each chromosome consists of genes,
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denoted as g, which can take values from 1 to C, according to the number of candidate
delays C'. These genes allow for the exploration of all possible delay candidates in the

matrix Vyyc. The chromosome is represented as a column of the matrix Py p:

| g Gg12 G113 ... 4Gip ]
921 g22 g23 --- G2pP
P=1| 93 952 933 - gpr |, (2.19)
| N1 gn2 gN3 .- GNP |

the matrix Py« p is a set of possible solutions, thus we create a vector of delays using each
column of Py, p, for instance, if P,y = {1, 3, 2, ..., 9} the corresponding vector of

delays, v, corresponds to

T
V= [7'12,1 T13,3 T14,2 - - - 767,9] .

The fitness function is an important component within the method, with the ZCS
being employed for this purpose. This function evaluates the sum of delays within specific
subsets that form closed loops, aiming to minimize the occurrence of erroneous zero-sum
outcomes. By considering all possible subsets that create closed loops and summing their
results, we reduce the likelihood of encountering a zero-sum result without the correct

delays.

To better understand the contribution of the GA method, we analyze its estimations
using an array of M = 7 microphones. This configuration renders Exhaustive Search
computationally prohibitive. We find that, with 3 delays, there are 35 closed loops.
Similarly, with 4 delays, we observe 35 closed loops. Moving on to 5 delays, we encounter
21 closed loops, while 6 delays give rise to 7 closed loops. Finally, when utilizing 7 delays,
a single closed loop is formed. The total number of closed loops, denoted as L, corresponds
to 99 in this context; L = 35+ 35421 + 7+ 1 = 99. For instance, Table 2 denotes in the
first line one closed loop, it is important to note that the delay 731, which closes the loop,
can be determined by taking the negative value of 73, i.e., 715 + To3 — 73. By utilizing this
property, we can compute all possible delays once and then manipulate them to identify
the correct value of 7 that closes the loop. This approach saves computational resources
by avoiding redundant calculations and facilitates the determination of the correct delay
for loop closure. The complete listing of all possible closed loops for 3, 4, 5, 6, and 7 delays
can be found in Table 2.
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Table 2 — All possible cyclic paths in a 7-microphone array

# delays Closed loops
T2 T23 731
3
T56  Ter T75
Ti2 T23 T34 T41
4
Tas5  Tse  Ter  T74
Ti2 T23 T34 T45 T51
5
T34 Tas Ts56 Ter T73
Ti2 T23 T34 T45 Ts6 Tél
6
To3 T34 T45 Ts6  Ter T72
7 Ti2 T23 T34 Ta5 Ts6 Ter T71

We can, then, create a matrix Dy« based on Table 2 to sum all delays.

1 -1 0 0 0 0 10 00
1 0 -1 0 0 0 01 0 0

D=1 0 0 -10 0 00 00|; (2.20)
10 0 0 0 —-110..01]

where each element of the resulting vector f = Dv is the sum of all subsets such that the

fitness function, denoted as f, is then calculated as
f=1Tf=If|.

This fitness function captures the squared norm of the resulting vector, encompassing the
contributions from all subsets and providing a measure of the fitness or quality of the
estimation. The GA-ZCS method is detailed in Algorithm 2.

2.4 Localization methods

This section presents two distinct approaches for sound source localization: a
traditional method based on TDOA using LS optimization, and a data-driven approach
using an NN model. The first approach applies a TDOA-based LS solution, which estimates
the source position by using the TDOA between pairs of microphones. In addition, we
present optimized TDOA methods that rely on primary and secondary peaks and the
selection of subsets of TDOAs. The second approach uses an NN trained with features

extracted from reverberation fingerprints of the environment.
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Algorithm 2 Heuristic search using genetic algorithms with zero cyclic sum fitness
function (GA-ZCS)
for k=1: N do
Compute ry,,;,ij = 12 to 67
Obtain C' candidate delays (larger peaks of 4., )
Vk7; = [Tijvl Tij,2 - - - Tij,C]
end for
Create population Py p of random integers [1, C]
for k=1: N do
V; <= map T7;j, in V. according to P.
First evaluation of individuals Py« p
end for
while f > 1071 OR k < 2000 do
Vi <= map Ti;, in Vi according to P,
Crossover neighbor individuals
Mutate
f < Evaluate individuals Py« p
Pyy«p < Select the best P individuals
Increment k
end while

2.4.1 TDOA-based LS localization technique

The TDOA-based LS solution relies solely on the largest peak of the cross-
correlations to estimate the source position. The conventional LS solution estimates

the localization using Equation (2.21) [60]:

p=[I 0](ATA,) 'ATby, (2.21)

where A, is defined as
(Po—p1)"  Ady

(ps—p1)"  Adsy

A= , (2.22)
(Py —P1)" Adan
where p,, is the position of the m'* microphone and the vector by is
bi2
b
bo=| = |, (2.23)
bim
with by, given by
I 0 v 220
im 9 5 .
and Ad;; calculated as
Ady; = 20 (2.25)

fs
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where v, is the speed of sound and f, is the sampling frequency.

The extended LS solution, which is also a TDOA-based solution, uses all the
possible peaks of the cross-correlations. This solution can be achieved using the following

closed-form equation [61]:

D didy ... dy_1) = (ATA)'ATD, (2.26)
where A is defined, in this case, where distance measures from all cross-correlations are
used, as ) )

(Pp—p1)"  Ady 0 0 - 0

Py —p)" Adan 0 0 - 0
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and the vector b is
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The key element for estimating localization is the TDOA between microphones 4
and j, 7;. In ideal conditions, without noise, 7;; can be estimated accurately, leading to a

precise calculation of the source location.

However, in real-world scenarios, background noise can interfere with the correct
estimation of 7;;, resulting in a noisy estimate 7;;. Additionally, in environments with strong
reflections or reverberation, the true delay may not correspond to the maximum peak of
the cross-correlation function, further complicating the localization accuracy. Therefore,
there is a need for optimized methods to accurately estimate source localization based on

TDOA measurements.

2.4.2 The TDOA-based optimization methods

To address inaccuracies inherent in noisy and reverberant environments, this thesis
introduces and evaluates two algorithms that operate as TDOA selection and refinement
strategies: Greedy TDOA Selection (GTS) and Exhaustive Search (ES). The core of these
methods lies in selecting an enhanced subset of TDOA measurements that most likely
correspond to the true acoustic delays between microphone pairs. This selection is guided
by cost functions, introduced in Section 2.2, which compare the estimated TDOAs with

the theoretical delays derived from the estimated location. These functions assess the
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coherence of the time delays based on their consistency with possible solutions in the

localization space.

The objective here is to minimize the average squared error between observed and
theoretical TDOAS, or, in the case of ZCS, enforce geometric consistency via closed-loop
delay relationships. Given an initial set of TDOAs, extracted from both primary and
secondary peaks of the cross-correlation, the proposed algorithms apply distinct strategies
to filter out unreliable measurements. The resulting refined TDOA subset is expected to
better align with the actual drone position, thereby improving localization accuracy in

such complex acoustic environments.

2.4.2.1 Greedy TDOA Selection

The GTS algorithm iteratively evaluates the impact of removing individual TDOA
M) _ M(M-1)

2 2

TDOAs, denoted by T, the algorithm removes one TDOA at a time in a greedy fashion.

measurements on the localization accuracy. Starting with the full set of N = (

After each removal, it recalculates the average squared error between the estimated TDOAs,
747, and the theoretical delays, 7ij, using the cost function defined in Equation (2.13). A
TDOA is retained only if its removal does not lead to an improvement in the localization

estimate, thus refining the set to include only the most consistent and informative values.

If the removal of a TDOA leads to a reduction in the cost function, that TDOA
is discarded. This process continues iteratively and sequentially across all TDOAs until
no further improvement is achieved by discarding additional delays. Although the GTS
algorithm is computationally efficient, its heuristic nature may lead to suboptimal results.
The GTS algorithm is similar to ILS [62]; the latter removes the TDOA with the largest
LS cost function in every iteration, while the former removes a TDOA only if the LS cost
function decreases (a more conservative strategy). The complete procedure is detailed in
Algorithm 3.

A simplified variant of the GTS algorithm described in Algorithm 3 is the one-pass
GTS, which performs a single iteration over the N available time delays. In this approach,
each delay is individually evaluated and removed only if its exclusion results in a decrease in
the LS cost function. This variant offers the advantage of reduced computational complexity,
as it avoids the need to evaluate all delays in multiple iterations. Additionally, it explores a
different trajectory across the LS cost surface, potentially uncovering alternative solutions

that may not be reached by the standard iterative GTS procedure.

2.4.2.2 Exhaustive Subset Search

The Exhaustive Subset Search (ESS) algorithm systematically evaluates every
possible combination of n TDOAs, n < N. For each candidate subset, the average squared

error between the theoretical and observed delays is computed. The subset minimizing this
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Algorithm 3 GTS using LS cost
Input: Full set of N TDOA estimations, 7
Output: Reduced TDOA set 7*
Compute initial mean LS cost: &
while cost decreases do
cost_improved < false
best cost <= &
for each active TDOA index k£ where m;, = 1 do
Remove temporarily TDOA number k& from 7, forming a new subset 7’/
Compute LS cost function £’ using 7/
if ¢ < ¢ then
best_cost < &'
best index < k
cost__improved < true
end if
Revert m;, < 1
end for
if cost improved then
Remove TDOA number k from 7, updating the ¥ TDOA vector
& < best__cost
end if
end while
return 7*

cost function is selected as the optimal configuration. Although computationally intensive,
this brute-force approach serves as a benchmark to assess the performance of more efficient

algorithms. Algorithm 4 describes the ESS procedure.

Algorithm 4 ESS
Input: Full set of N TDOAs 7 and theoretical delays 7, subset size n
Output: Optimal TDOA subset 7* according to Equation (2.13) criterion
Generate all combinations C of n elements from {1,2,..., N}
Initialize minimum cost: &, < 00
for each combination 7, € C do
Compute cost €. using Equation (2.13) over 77,
if . < &nin then
fmin <~ gc
T <171
end if
end for
return 7*

2.4.2.3 Integration with Localization Pipeline

To validate the effectiveness of the ZCS method in selecting meaningful subsets
of TDOA measurements for the localization task, we integrated ZCS with two distinct
localization strategies: GTS and ES. The objective is to verify whether the TDOA subsets
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returned by ZCS contribute to more accurate localization results compared to using all
available TDOAs.

The localization pipeline is organized as follows:

o« Step 1 — TDOA Subset Selection using ZCS: ZCS was applied to the complete
set of pairwise TDOA measurements to identify a subset that satisfies a predefined
consistency criterion based on the ZCS condition. This step is designed to use the

secondary peaks to reduce the ZCS and LS cost functions.

« Step 2 — Position Estimation: Two combined localization techniques can be
independently applied to the selected TDOA subset:

— ZCS + GTS: The Greedy TDOA Selection algorithm computes the source

position with an enhanced vector obtained using ZCS.

— ZCS + ES: The Exhaustive Subset Search computes the LS cost function
from all subsets composed of n TDOAs.

2.4.3 Fingerprint-based NN localization technique

Building upon the strategy of using secondary peaks from the cross-correlation
function, we adopt an approach inspired by Sousa & Thomaé [63] on RF emitter local-
ization [63, 64]. This method incorporates not only the highest peak but also a selection
of additional prominent peaks. In our adaptation, for each microphone pair among the
M (M — 1)/2 possible combinations, we extract a set of the most significant peaks, specif-
ically, their amplitudes and corresponding delays, and build a feature vector for each
position based on this information. The drawback of this approach is that one needs to

make measurements and extract features from each point in the room.

Let x;(n) and x;(n) be the signals recorded by the i-th and j-th microphones,
respectively. The expression we used for estimating the GCC-PHAT is given as

Xi(e) X3 () |

- - 2.29
| Xi(e9) X ()| + o5/m (2.29)

Pij(r) =F {

where X;(e) = F {x;(n)} and X;(e) = F {z;(n)}. Equation (2.29) uses the discrete-
time Fourier transform (DTFT) for convenience, but our approach uses the fast Fourier
transform (FFT). Moreover, the regularization term o;;/n is used to avoid a division by
zero, with o;; being the standard deviation of | X;(k)X;(k)|, and k the FFT index with
0 < k < N — 1. The regularization parameter n plays an important role in practical
implementations and is set according to the amount of available data, i.e., the size of the
processing block. The larger the number of samples, the larger the value of 1, which helps

ensure less noisy and more reliable estimates.
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From the top, p, peaks of GCC-PHAT, we collect amplitudes and delays from all
possible N pairs of microphones among the M microphones available to form the input
feature vector

T
f - [T1,1-~~Tp71 M1,1"Mp1e++TIL,N""Tp,N mLNmmp,N]

=[f - fxlT, (2.30)

where 731y and mps_q a represent the delay and magnitude of the largest peak of
Par—1.m(7), the GCC-PHAT of the last pair of microphones (M — 1 and M). In this case,
the number of features is K = 2 x p x N. We discard peaks with delays corresponding to

distances larger than the distance of each pair of microphones.

Figure 2 illustrates the use of L sigmoid neurons in the hidden layer and three
linear output neurons. Assuming fy = zg = 1, we express the z-th output of the hidden

layer and the output vector (estimated position) as

1 K
- h
Z] :ﬁ,Zl = Z wlﬁf,ﬁ, and (231)
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Figure 2 — The two-layer feedforward NN employed in the initial experiments. Input
normalization is not indicated in this figure. Source: [65].

2.5 Partial Conclusions

This chapter presented the main methodologies employed and developed for drone

localization and DOA estimation using acoustic signals in highly noisy environments. It



Chapter 2. Localization and DOA estimation methods 37

began with a detailed description of the Generalized Cross-Correlation (GCC) method,
emphasizing its central role in TDOA estimation between microphone pairs, which is
fundamental for both localization and DOA tasks.

Following this, we introduced two cost functions, i.e., ZCS and LS. These cost
functions are designed to improve the reliability of TDOA estimation in scenarios where
multiple correlation peaks may obscure the correct delay. These functions were integrated
into both exhaustive and heuristic search frameworks, including a genetic algorithm

approach, to enhance robustness and efficiency.

In the final part of the chapter, TDOA-based localization techniques were described,
including both classical LS-based localization and learning-based models that leverage
reverberation fingerprints. These approaches were developed to address limitations of

traditional methods under real-world acoustic conditions.

The ZCS, LS, their integration into search strategies, and the neural network-
based localization constitute important contributions of this work. They provide effective
alternatives for accurate and robust acoustic-based localization and DOA estimation,
particularly in highly noisy environments marked by noise, multipath, reflections, and

reverberation.
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3 LITERATURE REVIEW

This chapter presents the literature review on counter-drone systems, which aims
to explain what drone parameters can be estimated using acoustics. This chapter is
divided into four sections. Section 3.1 defines the review planning. Section 3.2 reviews
the counter-drone systems. Section 3.3 reviews the specific tasks of localization and DOA
estimation. Finally, Section 3.4 presents related works that are closely associated with the
method developed herein. The main references used are presented by Khan et al.; Kadyrov
et al.; AN et al. [66, 67, 68].

3.1 Literature review planning

This section outlines the methodology for conducting the literature review proposed
by Faria et al. [69]. It details each step involved, including defining review objectives,
formulating research questions, identifying search terms, selecting scientific information
repositories, and establishing search constraints. Collectively, these steps form a framework

that guides the selection of relevant works for this study.

3.1.1 Review objectives

This review serves the following purposes: (a) to comprehend counter-drone systems
and drone parameter estimation; (b) to review techniques used to estimate the localization
and DOA in the literature; (c) to review works that are closely related to the methods
proposed in this thesis, i.e., to estimate the localization and DOA of drones using acoustics;
(d) to evaluate the strengths, weaknesses, and gaps of existing methods; and (e) to establish
a foundation for the proposed methods in this thesis by identifying opportunities for future

research.

3.1.2 Research questions

The following research questions were formulated to guide the review: (RQ1)
What are the primary methods and techniques used for acoustic-based drone localization
and DOA estimation? (RQ2) How have these methods been adapted to perform in
noisy and reverberant environments? (RQ3) What are the comparative advantages and
limitations of these methods? (RQ4) What opportunities exist for future research to

enhance performance in challenging environments?
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3.1.3 Search Terms

The search strategy was developed to address the review research questions by
identifying relevant works through a set of search terms. These terms focused on the
key areas of acoustic-based drone localization and DOA estimation with applications to
defense and law enforcement agencies. Table 3 presents the structured search terms used
for identifying relevant literature in the review process. Table 3 organizes the search terms
into five key dimensions: (1) target: which refers to the object of study, (2) signal: which
is the type of signals used, (3) sensor: which is related to the sensors used to collect
the acoustic signals, (4) task: which focuses on what activity is to be performed on the
target using the signal and sensors mentioned, and (5) measure: which refers to the drone

features extracted after signal processing.

Table 3 — Search terms

Dimensions ‘ Terms

Target “drone” OR “UAV” OR “unmanned aerial vehicle”
Signal “acoustics” OR “acoustic”

Sensor “microphone” OR “microphones”
Task “DOA” OR “localization”

Measure | “time difference of arrival” OR “time delay estimation”

The search terms used in Section 3.2 focus on counter-drone systems; thus, the
only dimensions used were “target” and “task” The search terms used in Section 3.3 focus
on localization and DOA estimation, so the dimensions used were signal, sensor, and task.
As a result of the findings in Section 3.2 and Section 3.3, Section 3.4 uses all dimensions
to perform a more restrictive search for works related to drone localization and DOA
estimation of drones using acoustics. The search terms combination used in Section 3.4 to
query academic repositories is: (“drone” OR “UAV” OR “unmanned aerial vehicle”) AND
(“acoustics” OR “acoustic”) AND (“microphone” OR “microphones”) AND (“DOA” OR

“localization”) AND (“time difference of arrival” OR “time delay estimation”).

3.1.4 Repositories of Scientific Information

Table 4 presents the academic repositories that gather relevant publications to the

research, along with a brief description of each.

3.1.5 Search Constraints

The scope of this review was limited to papers published between January 2015
and September 2024, written in English, and relevant to drone DOA estimation and
localization using acoustic signals. Only peer-reviewed journal articles and conference

papers were included in this review. The literature review covers about ten years of
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Table 4 — Scientific and Technical Repositories

Repository ‘ Description
IEEE Xplore Repository for articles on engineering research
ACM Digital Library | Focuses on computer science research
Elsevier Multidisciplinary database covering a range of fields
JASA Repository for articles on acoustics
Google Scholar Indexes a wide variety of academic publications across multiple
repositories

academic research and technical development. Papers selected to be examined from the
repositories of scientific information in Section 3.4 are required to satisfy the criteria
established in Table 5.

Table 5 — Inclusion criteria
ID ‘ Criteria
IC; | The paper proposes or employs methods for drone localization or DOA
estimation using the signals, sensors, and measures presented in Table 3
(aligned with RQ1)
ICs | The paper introduces or evaluates algorithms and techniques for estimat-
ing the DOA of drones in noisy or reverberant environments (aligned with
RQ2)
IC; | The paper compares the performance of acoustic-based drone detection
or DOA estimation methods, highlighting advantages and limitations
(aligned with RQ3)
IC4 | The paper discusses challenges, gaps, or trade-offs in using acoustic
signals for drone detection and localization, especially in complex or noisy
environments (aligned with RQ4)
ICs | The paper identifies opportunities for future research to improve acoustic-
based methods for drone localization and DOA estimation (aligned with

RQ4)

3.1.6 Identification and Selection of Studies

After conducting the searches and removing duplicate entries, 545 papers were
selected. Google Scholar serves as a comprehensive search engine that crawls and indexes
a vast range of academic repositories, journals, and conference proceedings. Its extensive
coverage ensures that the selected papers from the repositories listed in Table 4 are included
in its database. This coverage makes Google Scholar a reliable tool for academic research,
providing access to significant results without requiring individual searches across multiple
repositories. Thus, relying solely on Google Scholar is sufficient to gather relevant works
from all the listed sources. Next, the titles, abstracts, and keywords were subjected to
the inclusion criteria presented in Table 5. As a result, 490 papers were rejected and 55

accepted. Most of the rejected works focused on using drones to estimate the localization
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and DOA of other targets or relied on different signals for the estimations, which is not
aligned with the objectives of this thesis. The 55 papers that made it through the initial
screening were subsequently subjected to a more detailed full-text review. Each paper was
carefully evaluated based on the inclusion criteria outlined in Table 5. During this phase,
28 papers were further excluded due to not satisfying the inclusion criteria, leaving 27
papers that were considered highly relevant and selected for in-depth analysis. Of these,
15 papers were found to be highly relevant to the objectives and research questions of this
thesis. These papers formed the basis for the theoretical foundation and identification of

gaps in the literature.

The results of this review informed the proposed methodology, which aims to address

existing challenges in drone localization and DOA estimation in complex environments.

3.2 Acoustic-based counter-drone systems

This section reviews the main characteristics of counter-drone systems, comprising
the drone acoustic signal, drone detection and classification, distance estimation, and
payload estimation. By examining these aspects, the section highlights the challenges faced

and current advancements in counter-drone technologies.

3.2.1 Drone acoustic signal

Similarly to ships, drones emit noise mainly from their propellers, as well as from
internal components like motors. Wang & Cavallaro [38] presents a detailed analysis of
the acoustic emissions caused by the internal components of the drone. This was achieved
by recording the drone functioning with no propellers. The acoustic profile of a UAV
without propellers is rich in harmonic composition dominated by motor noise. The motor’s
fundamental frequency, or pitch, corresponds to the rising, stable, and dynamically varying
motor rotation speeds. With four motors operating at different speeds, the superimposition

of their pitches results in a nuanced and complex spectrum structure [38].

In the case of a normal UAV flight, i.e., with propellers, the noise signal exhibits two
primary components: harmonic noise, characterized by energy peaks at isolated frequency
bins, and broadband noise dispersing across the entire frequency band. Similar to a
propeller-less UAV, where the drone operates without propellers, the pitch of the harmonic
noise varies with motor rotation speed. The energy of the broadband noise is directly
proportional to the propeller rotation speed, signifying that a faster rotation generates a

more rapid airflow and, consequently, a more robust and distinct noise signature [38].

Wang & Cavallaro; Mukhutdinov et al. [39, 40] state that the acoustic signal emitted
by a drone is caused mainly by the propeller, and it exhibits a time-frequency spectrum

marked by distinct characteristics. The spectrum comprises narrowband harmonic noise
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from the rotating motors and broadband noise from the propellers cutting through the air.
Energy peaks at isolated frequency bins reveal a high correlation at harmonic frequencies,
offering the potential for designing a time-frequency spatial filter to enhance sound from a

specific direction.

3.2.2 Drone Detection and Classification

Rahman et al. [70] provides an in-depth exploration of various UAV detection
and classification technologies, focusing on advancements in RF-based, visual data-based
(images/video), acoustic/sound-based, and radar-based methods. Each method is examined,
elucidating key challenges, proposed solutions, and future research directions. This review
emphasizes the significance of RF-based UAV identification frameworks, highlighting
advancements in signal processing techniques, machine learning algorithms, and multisensor
fusion strategies to enhance detection accuracy and counter evasion tactics. Similarly,
the utilization of computer vision techniques for visual-based UAV detection is discussed,
emphasizing deep learning models, real-time processing capabilities, and robust algorithms
to differentiate UAVs from other objects. Additionally, the study explores acoustic-based
detection systems, focusing on sensor technologies, machine learning integration, and
distributed sensor networks for improved UAV localization. Moreover, radar-based detection
methods are explored, with an emphasis on radar system development, machine learning
algorithms, and radar waveform diversity for enhanced detection performance. The study
concludes with a discussion of the importance of data fusion techniques and highlights
the potential of spectral and multispectral remote sensing imagery for precision UAV

classification and detection.

Seidaliyeva et al. [71] reviews state-of-the-art techniques to detect and classify
drones. The review examines various detection modalities, including radar-based, acoustic-
based, RF-based, and visual-based approaches, while also addressing the inherent challenges
posed by drones’ dynamic behavior, diverse size and speed, and limited battery life.
Integrating multiple sensory modalities is highlighted as a key strategy to enhance detection
system robustness and accuracy. Early and late fusion techniques are discussed, alongside
emerging approaches using Wi-Fi fingerprinting and cellular networks for effective drone
detection. The main objective of this review is to guide future research endeavors and

inform policymakers and practitioners in the field of UAV detection and classification.

The investigation into acoustic drone detection presented by Tejera-Berengue et al.
[72] provides an understanding of the challenges and opportunities associated with detecting
drones in real-world scenarios. By examining the impact of distance on sound propagation
and its implications for drone detection, the study employs a range of machine learning
techniques, from linear discriminant analysis to deep neural networks like YAMNet [73].

The evaluation, conducted using a carefully curated database and considering array signal
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processing and ambient noise, demonstrates the efficacy of different training strategies in
achieving effective detection at varying distances. Notably, the study reveals the potential
for specialized detectors tailored to specific distance ranges, with advanced methods like
YAMNet enabling detection up to 500 meters. Their findings underscore the importance
of incorporating distance diversity into training datasets and highlight the suitability
of deep-learning approaches for long-range drone detection. Future research directions
include exploring advanced array processing techniques, enhancing data preprocessing
methods, and investigating strategies to augment dataset size for training deep neural
networks. Ultimately, the study suggests that acoustic drone detection holds promise for
real-world applications, especially when integrated with other sensor modalities to provide

comprehensive surveillance solutions.

Tejera-Berengue et al. [74] investigates the distance dependence of an acoustic signal-
based UAV detection system. The study evaluates five detection methods by employing
machine learning algorithms and a feature set encompassing Mel frequency cepstral
coefficients (MFCC), pitch, spectral flux, among others. Linear discriminant analysis,
multilayer perceptron, radial basis function network, support vector machine, and random
forest are assessed for performance at various distances, revealing effective UAV detection
with a performance decline as distance increases. The study concludes that acoustic
detection is feasible at distances below 200 meters and could extend further in scenarios

with more realistic interference conditions.

AN et al. [68] focuses on accurately estimating the total number of UAVs in
a scene. Through the development of a UAV acoustic dataset featuring ten randomly
flown combinations, acoustic information underwent preprocessing via time-frequency
transformations to generate spectrogram images. These images were then input into a
custom lightweight Convolutional Neural Network (CNN) model, achieving high test
accuracy in estimating UAV numbers. The model’s inference time performance on various
edge computing devices was also assessed. According to AN et al. [68], future works aim
to extend this approach to identify UAV models or types by incorporating information

from additional sensors.

A recent review on auditory perception for unmanned aerial vehicles by Martinez-
Carranza & Rascon [75] introduces a classification framework for UAV detection and
classification into three categories: air-to-land, land-to-air, and air-to-air. This review
highlights the dual roles of auditory perception in UAV systems—namely, detecting and
classifying acoustic events, and localizing their sources. Additionally, Martinez-Carranza
& Rascon [75] identifies the integration of microphones as a promising yet unresolved
challenge for enhancing autonomous UAV navigation. An illustrative example is presented
by Harvey & O’Young [76], who describe a non-cooperative collision-avoidance system

that uses two microphones to estimate the detection range between aircraft.
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Low signal-to-noise ratio (SNR) can be a problem in detecting and classifying
sound events recorded from a drone, mainly because of ego-noise (the noise produced
by the drone). This problem can be addressed using classical signal processing noise
reduction algorithms, including frequency-spatial filtering techniques, effective in blind
source separation problems proposed by Wang & Cavallaro [77]. More recently, methods
based on Deep Neural Networks (DNN) described by Wang & Cavallaro [78] are also being
used to enhance speech signals captured using drones. This work integrates single- and
multi-channel DNN-based approaches for the enhancement of speech signals captured from

drones.

3.2.3 Distance estimation

Kadyrov et al. [67] presents improvements in the acoustic drone distance estimation
with a seven-microphone system, applying Steered-Response Phase Transform (SRP-
PHAT) and narrowband frequencies for classification. Extensive tests, featuring drones
like DJI Inspire 2 and Intel Falcon 8, showcased improved detection distances compared
to the previous four-microphone system. The team recalibrated acoustic signatures to
one meter, enabling the development of a straightforward method for estimating acoustic
detection distances using the passive sonar equation. This advancement demonstrates the

efficacy of the improved seven-microphone system in the drone detection system.

Ding et al. [79] introduces MUTES, a Multimodal Unmanned Aerial Vehicle 3D
Trajectory Exposure System, responding to the rising demand for a comprehensive drone
surveillance system. MUTES integrates a 64-channel microphone array for wide-range, high
signal-to-noise ratio sound source estimation, coupled with long-range Light Detection and
Ranging (LiDAR) and a telephoto camera for precise target localization. Implementing
a coarse-to-fine, passive-to-active localization strategy, MUTES achieves semispherical
surveillance with a broad detection range and high-precision 3D tracking. A dedicated
environmental denoising model enhances fidelity by selectively isolating valid acoustic
features from drone targets, overcoming traditional sound source localization challenges
in noisy environments. Field experiments validate MUTES, demonstrating its farthest
detection range, highest 3D position accuracy, robust anti-interference capabilities, and

cost-effectiveness for identifying unverified drone intruders.

3.2.4 Payload estimation

Estimating drone payloads using acoustic signals has emerged as a significant
area of research, driven by its potential applications in threat evaluation. This section
synthesizes existing literature, focusing on techniques employing acoustic signals collected

by either a single microphone or an array of microphones for payload estimation.
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Ibrahim, Sciancalepore & Pietro [23] explores the novel concept of remotely de-
tecting the payload weight of commercial drones through an analysis of their acoustic
fingerprint. The research demonstrates that variations in motor speed and blade movement,
influenced by payload changes, create distinct acoustic signatures using actual signals of a
3DR Solo drone. A single microphone was placed at a distance of 7 m from the hovering
drone with 11 different payload weights. Utilizing MFCC components and Support Vector
Machine (SVM) classifiers, the study achieves a 98% classification accuracy for payload

detection in just 0.25 seconds.

Doster; Doster & Mullins [80, 81| pioneer the use of common cell phones for UAV
acoustic payload detection, expanding prior studies conducted at close range. Addressing
security concerns, it introduces the HurtzHunter prototype, demonstrating UAV payload
detection with cell phones at distances ranging from 7 to 100 m using a single microphone.
Using acoustic emissions, the system trains an SVM model with MFCC coefficients for
payload classification, achieving accuracy ranging from 82.81% to 99.93%. This research not
only extends the reach of UAV payload detection but also introduces an innovative approach

using widely accessible cell phones for enhanced security in contested environments.

3.3 Localization and DOA estimation

This section provides an overview of the current state-of-the-art techniques for

localization and DOA estimation.

3.3.1 Time-Delay Estimation approaches for localization and DOA

Borzino, Apolinario Jr. & Campos [56] discusses DOA estimation when the SNR is
low. Although focusing on gunshot signals, the techniques employed there are also valid
for other signals, since they combine the methods of generalized cross-correlation (GCC)
with phase transform/maximum likelihood (PHAT /ML) proposed by Knapp & Carter
[54], exhaustive search presented by Borzino, Apolindrio Jr. & Campos [82], and the search
for a fundamental loop proposed by Borzino, Apolinario Jr. & Campos [56]. This method
searches for the best set of microphone pairs and makes a partial scan across the primary
and secondary peaks of the cross-correlations, due to the computational efforts and the

number of microphones used.

Firoozabadi et al. [83] explores multiple simultaneous sound source localization
(SSL) in speech signal processing, a critical area of study. It navigates the balance between
low computational complexity and high accuracy in SSL algorithms by combining a
one-step-based method using generalized eigenvalue decomposition (GEVD) and a two-

step method employing adaptive GCC-PHAT filters. This innovative amalgamation,
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complemented by a unique T-shaped circular distributed microphone array (TCDMA),

aims to enhance 3D multiple simultaneous SSL.

Bu, Zhao & Zhao [84] addresses the challenge of noise and reverberation in TDOA
estimation. This research introduces two innovative methods aimed at effectively estimating
TDOA in environments affected by noise and reverberation. The proposed methods leverage
the linear phase structure observed across frequencies within a steering vector (SV) and
capitalize on the absolute phases of SVs to mitigate potential noise and mathematical
complications. By transforming the TDOA estimation into an optimization problem solvable
via Newton’s method, the study presents experimental evaluations in simulated acoustic
settings. In environments with moderate-to-high input SNR and low reverberation, their

fast-search method demonstrates superior TDOA accuracy and computational efficiency.

Wang, Zhang & Wang [85] explores deep learning-based time-frequency masking to
enhance TDOA estimation in challenging noisy and reverberant environments. Three novel
algorithms are introduced to fortify conventional methods used for speaker localization,
utilizing DNNs to identify cleaner time-frequency units for more accurate TDOA estimation.
These algorithms exhibit robustness in scenarios with low SNR, high reverberation, and a

low direction-to-reverberant energy ratio.

Liaquat et al. [86] reviews the use of microphone arrays for sound sensing, exploring
the importance and limitations of ad-hoc microphones compared to other types. To address
these limitations, the paper introduces specific approaches. Additionally, the study provides
a detailed examination of existing methods for sound localization using microphone arrays,
offering a comparative analysis and considering factors influencing the choice of one method
over another. The aim is to establish a foundation for selecting the most suitable method
for specific applications. A list of references on time delay estimation approaches can be

found in the work proposed by Liaquat et al. [86].

Since its introduction, the GCC method proposed by Knapp & Carter [54] has
captured significant attention in the academic community. Freire & Apolinério Jr.; Calderon
& Apolinério Jr. [87, 88] focus on sniper detection, utilizing audio signals from gunshot
recordings via a microphone array. Freire & Apolinario Jr. [87] employs the GCC-PHAT
algorithm for DOA estimation, revealing that time-lags between the two largest peaks in the
correlation functions align with muzzleblast and shockwave components. While the Phase
Transform method excels in peak separation, the study concludes that muzzleblast DOA
estimation based on the maximum correlation peak obtained by other GCC techniques is

generally more accurate.

Freire [62] focuses on refining the DOA estimation in sniper detection through an
exploration of TDE derived from cross-correlation functions. Employing an iterative least-
squares (ILS) algorithm, the research identifies “matched lags,” minimizing errors in TDEs.

In scenarios with low SNR, the ILS algorithm proves optimal, while the weighted least-
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squares (WLS) [89] algorithm excels in high SNR conditions. WLS employs angle-related
error propagation and the GCC-PHAT function quality, outperforming raw least-squares
as verified in statistical analysis. The study introduces a methodology for DOA algorithm
evaluation, recommending it for robust assessments. Particularly important for sniper
localization, the proposed ILS algorithm excels in addressing the low SNR inherent in

recorded gunshot audio, as supported by preliminary real-world data.

Borzino, Apolinario Jr. & Campos [82] addresses the critical task of gunshot DOA
estimation, crucial for enhancing public and troop safety. The proposed algorithm is
designed for scenarios with highly noisy signals, which commonly occur in sniper situations
where the firing position is distant from the sensor array. In such scenarios, signal-to-noise
ratio reduction poses a challenge to accurate DOA estimation. The paper introduces an
innovative approach that combines an exhaustive search for optimal microphone pairs in
the array, aiming for superior DOA estimation results and rapid response times across
various shooting scenarios. The focus is particularly on highly corrupted signals where
existing algorithms may falter. The proposed scheme’s performance is evaluated using

experimental data from both simulated and recorded gunshot signals.

Borzino, Apolinario Jr. & Campos [56] addresses the challenge of low SNR gunshot
signals. The proposed algorithm combines the methods of exhaustive search (ES) and
searching consistent fundamental loop (SCFL). The SCFL method utilizes the dominant
peaks and secondary peaks of cross-correlation functions, often found in low SNR conditions.
The ES-SCFL identifies the optimal set of microphone pairs and their correct cross-
correlation function peaks using the ZCS condition [90], thereby enhancing the reliability
of TDOA estimates and, consequently, DOA estimates. The algorithm’s effectiveness is
validated using real gunshot data recorded during a field experiment. The use of TDE
presented good results in estimating gunshot DOA even in the presence of strong noise
caused by drones [5, 91, 92, 93].

Fernandes, Apolindrio Jr. & Seixas [51] addresses the challenge of accurately
estimating the DOA of a drone in acoustically complex environments using a seven-
microphone array. The focus is on improving TDE from a set of time delay candidates,
particularly when dealing with strongly corrupted audio signals affected by noise and
multipath. The traditional approach faces difficulties in accurately estimating TDE without
relying on a line-of-sight assumption. The proposed solution utilizes genetic algorithms
to perform a heuristic search for correct delays among possible pairs of microphones. A
fitness function based on the concept of ZCS of closed loops is introduced, ensuring that
the sum of theoretical delays in a closed loop equals zero. Experimental results, both in
simulations and real-world trials, demonstrate the method’s effectiveness in identifying
correct delays, showcasing its potential for practical drone DOA estimation in challenging

acoustic environments.
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Shi et al. [18] implements a detection fusion algorithm and a TDOA estimation
algorithm grounded in Bayesian filtering principles. This study employs two acoustic arrays,
each comprising four microphones with a tetrahedron shape. The localization results are
achieved using a closed-form LS solution. This work eliminates false peaks caused by
multipath effects. The detection results are calculated every 0.5 s using an SVM model,

and the results are demonstrated as the false alarm rate.

Jensen et al. [94] proposes innovative methods to mitigate the detrimental effects
of reverberation on audio source localization. By incorporating models for both early
reflections and the audio source itself, the authors introduce two iterative approaches for
estimating the DOA of both the direct path and early reflections. The early reflections are
effectively subtracted from the signal observations before localizing the direct path compo-
nent, which reduces bias. Simulation results demonstrate the efficacy of these techniques,
showcasing more accurate DOA estimation compared to state-of-the-art methods in both

synthetic and real-world scenarios with reverberation.

Drémeau & Herzet [95] addresses the challenge of estimating the DOA of incident
plane waves in scenarios where phase noise corrupts the received data (besides other
additive noise). The proposed methodology adopts a Bayesian framework and employs a
variational mean-field approximation to account for phase noise. By integrating sparse-
enforcing distribution priors on DOA and Markov model priors on phase noise, the novel
algorithm demonstrates superior performance compared to conventional beamforming and
similar variational approaches with non-informative priors. Simulation results underscore
the efficacy of the proposed approach in accurately estimating DOA, even in the presence

of phase noise corruption.

Cui, Yu & Lu [96] introduces the constrained least squares (CLS) estimator, a
novel approach for estimating the azimuth and elevation of a sound emitter in three-
dimensional space using TDOA measurements obtained from an array of acoustic sensors.
Addressing scenarios where the source emits transient signals, necessitating reliance
solely on TDOA measurements for direction finding, the study highlights limitations of
conventional linear least squares estimators due to inherent information loss during the
linearization of nonlinear observation equations. To mitigate this issue, a constrained least
squares estimator that employs both Lagrange multiplier and quadratic constraints to
formulate the cost function is proposed. The resulting estimator offers an approximate
closed-form solution, significantly reducing computational complexity while maintaining
high accuracy. Theoretical analysis, supported by mathematical derivations, evaluates
the estimator’s performance in terms of mean square error. Through simulation and field
experimental validation, the proposed method demonstrates superiority over traditional
linear and nonlinear estimators, showcasing its potential for robust and efficient direction

finding in practical applications.
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Evers et al. [97] introduces a novel approach for distributed acoustic tracking by
incorporating the coherent-to-diffuse ratio (CDR) as a measure of DOA reliability. Utilizing
the CDR as the concentration parameter in the DOA-likelihood function, modeled by a
von Mises distribution [98], enables tracking source positions over time at individual nodes
using a von Mises filter. By evaluating the von Mises filter for a range of uninformative
range hypotheses, the method employs network fusion to exploit spatial diversity among
nodes, probabilistically triangulating the relevant source positions and range hypotheses.
Realistic simulation results demonstrate significant improvements over classical approaches,
enhancing accuracy by up to 39% compared to constant concentration parameter methods

and up to 74% compared to least-squares source triangulation techniques [92].

Sewtz, Bodenmiiller & Triebel [99] deals with the additive noise problem at varying
degrees but not so well with a reverberation that arises naturally in indoor applications.
Depending on the problem at hand, DOA [100, 101] and TDOA [102] can be estimated
using a set of microphones conveniently distributed in space. Nonetheless, cross-correlation
algorithms for TDOA estimation are sensitive to multipath propagation effects, resulting
in inaccurate time difference estimates and severe position estimation errors. Therefore,
most TDOA approaches aim to filter out multipath components to enhance performance.

Early reflections play an important role in characterizing the acoustics of a room [103].

Ashraf, Hur & Park; Sousa & Thomé; Ribeiro et al.; Yapar et al. [104, 63, 105, 106]
exploit the idea of generating multipath positioning fingerprint-based models to estimate
the source location rather than discarding them. The use of neural networks taking
advantage of reverberation fingerprint has been proposed by Yapar et al. [106] for urban
localization and radio maps. As noted by Ribeiro et al. [105], the use of room impulse
response to improve indoor localization does not provide good results, even under moderate
reverberation conditions, while proposing the use of room reverberation modeling to
improve indoor localization results under moderate reverberation conditions. However,
under strong reverberation conditions, which is the case addressed, earlier reverberations
can be stronger than direct path components, making the problem even harder to tackle

using existing methods.

3.3.2 Beamforming techniques

Licitra et al. [107] provides a focused analysis of common beamforming algorithms,
presenting both theoretical insights and recent applications in real cases. Rather than
a broad exploration, the emphasis is on harmonizing the sector through a combined
approach. The goal is to offer a resource for academics seeking theoretical understanding
and technicians selecting algorithms for varied measurement conditions. With a lack of
comparative studies in the literature, the authors address this gap, advocating for research

in algorithm performance in similar scenarios. While acknowledging the limitations of
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certain algorithms, the work generally recommends deconvolution algorithms (CLEAN-
SC [108], DAMAS [109]) or MUSIC [110] for acoustic camera users due to their accuracy,
even though they are slower and more complex. The authors propose a combination
of algorithms for research purposes, anticipating future implementations in commercial

acoustic camera software.

Ramos et al. [111] introduces the use of delay-and-sum to enhance sniper positioning
estimates. The delay-and-sum beamforming is used for improved detection of shockwave
and muzzle blast acoustic signatures. The approach not only enhances the signal-to-noise
ratio, doubling the detection range for a 4-microphone array, but also demonstrates
robustness in handling single- and multi-shot events and reflections, contributing to more
reliable sniper location estimation. Other contributions to DOA estimation using delay-and-
sum techniques can be found in the works proposed by Chiariotti, Martarelli & Castellini;
Yang et al. [112, 113]

Lee, Hudson & Yao [114] investigates DOA for multiple acoustic sources using
the approximate maximum likelihood (AML) algorithm. This algorithm facilitates the
estimation of a DOA through an iterative search process, demonstrating versatility in
both 2-D and 3-D scenarios. By employing blind beamforming techniques, the study
shows the capability of the AML algorithm to estimate azimuth angles for sources in
the far field of the array, as well as azimuth and elevation angles. The authors provide
comprehensive analyses, including the calculation of the Cramér—Rao bound (CRB) [115]
on DOA estimation, and introduce the concept of an isotropic array to enhance accuracy
across the spatial domain. Simulation and experimental results validate the performance
of the 3-D AML algorithm in scenarios involving multiple sources at varying azimuth and

elevation angles.

Huang, Chen & Benesty [116] proposes an innovative approach to address the
DOA estimation challenge within acoustic environments utilizing microphone arrays.
The method initially transforms the received noisy speech signals into the STFT domain.
Subsequently, a Householder transformation is constructed and applied to the multichannel
STFT coefficients, segregating them into components dominated by the signal of interest
and noise. By forming a cost function from the transformed coefficients, the method
facilitates the extraction of DOA information by searching for extremum values within
the angle range between 0 and 180 degrees. Simulation results presented in the paper

demonstrate the effectiveness of this approach in achieving accurate DOA estimation.

Wajid, Kumar & Bahl [117] advocates an in-depth exploration of various algorithms-
Bartlett Beamforming, Capons Beamforming, eigenvector, and Acoustic Intensity Vector
for DOA estimation of both single and multiple sources employing an L-shaped Acoustic
Vector Sensor (AVS). This specialized AVS configuration integrates three homogeneous

sensors, each comprising omnidirectional microphones with a 14.14 mm aperture. To



Chapter 3. Literature review 51

facilitate experimental signal recording within the L-shaped AVS environment, the authors
employ COMSOL Multiphysics, leveraging its Finite Element Method capabilities. Through
systematic investigation and comparative analysis, the study offers valuable insights into
the efficacy and performance nuances of different DOA estimation algorithms within the

context of the L-shaped AVS configuration.

Kotus & Szwoch [118] proposes a calibration procedure for custom 3D AVS tailored
for accurate DOA estimation. This calibration method addresses amplitude and phase
differences among sensor components, crucial for precise DOA computation. Through
experimental validation using low-cost MEMS microphones and DSP boards, the pro-
posed procedure matches the accuracy of high-cost, factory-calibrated sensors. The study
highlights the applicability of the calibration algorithm in practical scenarios such as
environmental and traffic monitoring, offering a cost-effective solution for reliable sound
source localization. Further research is suggested to expand the evaluation scope and refine

the calibration approach for broader deployment.

Hu, Lu & Qiu [119] introduces a novel approach for multiple source DOA estimation
using the maximum likelihood method in the spherical harmonic domain. By employing
an efficient sequential iterative search of maxima on the cost function, the proposed
method achieves superior performance compared to traditional beamformer-based and
subspace-based methods. Notably, the method avoids the computational burden associated
with high-dimensional grid search, making it suitable for both rigid-sphere and open-
sphere configurations. Simulation and experimental validations conducted in various
acoustic environments demonstrate the effectiveness and stability of the proposed method,
highlighting its potential for practical applications in room geometry inference, source

separation, and speech enhancement.

3.3.3 Al-oriented localization and DOA estimation

Genetic algorithms (GA) play an interesting role as a powerful heuristic search
technique in solving complex problems [120]. It is inspired by the principles of natural
selection and evolution, mimicking the process of survival of the fittest to find global or
local optimal solutions. For instance, this heuristic search can be applied to optimize DOA

estimation techniques according to Fernandes, Apolinario Jr. & Seixas [51].

Kassir et al. [121] reviews the cutting-edge applications of artificial intelligence
(AI) in the domain of beamforming. Through an exploration of Al-centric beamforming
studies, the work aims to elucidate and extract insights into the role of Al in enhancing
beamforming performance. Beginning with an overview of beamforming and its adaptive
algorithms, as well as DOA estimation methods, the analysis explores machine learning
(ML) classes, neural network (NN) topologies, and efficient deep learning (DL) schemes.
The paper further explores the optimal utilization of ML and NNs, both independently and
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in conjunction with other applications such as ultrasound imaging, massive multiple-input
multiple-output structures, and intelligent reflecting surfaces. Special emphasis is placed
on the realization of beamforming or DOA estimation setups through DL topologies.
Concluding with significant insights and a discussion on prospects and research challenges,

the survey provides an overview of the evolving landscape of Al in beamforming.

Xiao et al. [122] introduces a novel high-resolution beamforming method employ-
ing genetic algorithms. By considering the sparsity of acoustic sources, the approach
reconstructs the source vector through optimization within a sound propagation model.
To enhance efficiency, the algorithm narrows down the search domain through prior
correlation analysis. Numerical and experimental comparisons with conventional beam-
forming methods demonstrate the superior accuracy and robustness of the proposed genetic
algorithm beamforming. Breaking through resolution limits, it accurately recovers the
distribution of acoustic sources in two- and three-dimensional spaces. The work enriches
existing high-resolution beamforming techniques, promising advancements in acoustic

testing applications.

Kyritsis, Makri & Uzunoglu [17] presents a cost-effective small unmanned aerial
system (UAS) acoustic detection system utilizing a four-microphone array that estimates
DOA and UAS identification via machine learning techniques. Extensive outdoor experi-
ments validate its efficacy in reliably detecting UAS at distances exceeding 70 m, offering

enhanced situational awareness of the surrounding airspace.

Xiao et al. [123] advocates a learning-based approach for DOA from microphone
array input, addressing limitations inherent in traditional signal processing methods like
the classic least squares method. These conventional techniques are constrained by stringent
assumptions on signal models and require precise estimations of TDOA, making them
susceptible to noise and reverberation distortions. By contrast, the proposed learning-
based approach uses a multilayer perceptron NN to learn from extensive simulated noisy
and reverberant microphone array inputs, enabling robust DOA estimation. Extracting
features from GCC vectors, the model effectively captures the nonlinear mapping to the
DOA. Notably, the method’s accuracy improves with the availability of more training
data. Experimental evaluations on both simulated and real data demonstrate significant
performance gains over the state-of-the-art LS method, with reduced root-mean-square

error (RMSE) particularly evident in real-world scenarios such as meeting rooms.

Chakrabarty & Habets [124] advocates a novel CNN approach for broadband DOA
estimation, wherein the phase component of short-time Fourier transform coefficients
from microphone signals serves as direct input to the CNN. During training, the network
autonomously learns the requisite features for accurate DOA estimation, and considering
only the phase component of input facilitates training with synthesized noise signals,

simplifying the dataset preparation compared to utilizing speech signals. Experimental
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assessments validate the framework’s capability to generalize to speech sources and
its robustness to noise, minor microphone position perturbations, and diverse acoustic
conditions. Through both simulated and real data experiments, the study underscores the
CNN’s adaptability and resilience, signaling the promising potential for practical DOA

estimation applications.

3.4 Positioning Within the State of the Art

This section provides an overview of the works most closely related to the methods
proposed in this thesis. It aims to establish the context and highlight key contributions
from the literature that form the basis for the development of the approaches presented

herein.

The subsection 3.1.6 outlines the execution process of the literature review, where
a composite set of search terms was used to filter and select relevant papers from the
repositories. The aim was to identify and evaluate academic works that align with the
objectives and research questions set out for this thesis. subsection 3.4.1 presents a summary

of the works selected in the previous section.

Table 6 — Reasons for paper selection

Reference ‘ IC; 1IC, ICs; IC,s ICs

Blanchard, Thomas & Raoof [125] | v/ v v
Itare et al. [126]

Sun et al. [127]
Sedunov et al. [128]
Sun et al. [48]

Chang et al. [47]
Chervoniak et al. [129]
Wu et al. [130]

Wu et al. [21]

Lauzon et al. [131]
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3.4.1 Summary of the selected works and discussion

The subsequent section provides a summary of the fifteen papers selected. Table 6

identifies the reasons for the selection of each paper.

Blanchard, Thomas & Raoof [125] considers the harmonic structure of UAV noise,
employing a pitch detection algorithm and selective bandpass filtering to identify key
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harmonics. While filtering within the antenna bandwidth reduces position errors, experi-
mental results show that localization can still be accurate with only a few harmonics, with

Kalman filtering applied to refine estimates.

Itare et al. [126] uses a microphone array with time domain Delay and Sum
Beamforming, combined with a time-frequency representation of the beamformer’s output,
to focus on the UAV’s acoustic signature for improved signal-to-noise ratio. By selecting
specific frequency components, the method demonstrates robustness to noise and accuracy
in localizing UAVs, even with limited spectral content or in the presence of multiple sources.
The proposed method is highly effective, even in low-SNR environments (down to -16
dB), outperforming traditional delay and sum beamforming and other temporal filtering
techniques. Real-world experiments with moving drones confirm the simulation results,
with mean localization errors of less than 3° in azimuth and approximately 2° to 2.8° in

elevation.

Sun et al. [127] puts forward a novel approach to indoor drone localization, ad-
dressing the challenges faced in GPS-denied environments, particularly in NLoS scenarios.
Unlike existing methods that require significant hardware modifications or extensive
environment instrumentation, Acoustic Inertial Measurement (AIM) uses the acoustic
properties of drones for tracking and location estimation. The method uses a Kalman filter
and Interquartile Range rule to reduce errors, achieving a 46% lower localization error
compared to Ultra-WideBand-based (UWB-based) systems in complex indoor settings. In
a 10 m x 10 m scenario, it maintains sub-0.5 m accuracy when extended with distributed
arrays. Additionally, AIM presents scalability by supporting spaces of arbitrary sizes
through the deployment of distributed microphone arrays, offering accurate tracking in

environments where traditional infrared systems fail.

Sedunov et al. [128] describes that the Stevens Institute of Technology developed the
Drone Acoustic Detection System (DADS), an acoustic-based solution for UAV detection,
tracking, and classification. Utilizing multiple microphone nodes arranged in tetrahedral
configurations, DADS detects the DOA of UAVs based on propeller noise. The system has
demonstrated effective real-time detection and tracking of UAVs such as the DJI Phantom
4, with a detection range of up to 350 meters and an average precision of 4 degrees
(ranging from between 3.4° and 5.5°) depending on environmental conditions. Compared
to more complex arrays, DADS proved to be a cost-effective and scalable solution. Future
improvements aim to enhance classification capabilities, while a novel approach using

simulated UAV sounds offers a low-cost testing alternative for acoustic system evaluations.

Sun et al. [48] offers a novel approach to indoor drone localization and tracking,
particularly in GPS-denied and Non-Line of Sight (NLoS) environments. Unlike traditional
methods that require extensive instrumentation or hardware modifications, AIM considers

the acoustic signatures of drones, using a Kalman filter and the Interquartile Range rule
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to reduce localization errors. The system, implemented with a standard microphone array,
exhibits a 46% lower error rate compared to commercial UWB systems in complex indoor
settings. In evaluations, AIM achieved average localization errors of 1.43 m in LoS, 1.89
m in partial LoS, and 2.08 m in full NLoS conditions. AIM’s flexible design allows for
scalable deployment with distributed microphone arrays, offering robust performance even

in challenging environments.

Chang et al. [47] introduces a drone surveillance system using acoustic arrays for
effective localization and tracking of UAVs. The authors propose a novel TDOA estimation
algorithm, based on the Gauss a priori probability density function, to mitigate the
challenges of multipath effects and low SNR. The system further employs a Kalman filter
to track the drone’s movement, utilizing TDOA results for localization. Field experiments
validate the system’s performance, demonstrating its accuracy and effectiveness in drone
detection and tracking, even in challenging environments. The results demonstrated that

over 95% of the localization errors were below 6 meters, and 80% were within 2 meters.

Chervoniak et al. [129] introduces an alternative method for passive detection
and tracking of flying vehicles using specially developed hardware and software. The
key contribution is a novel algorithm for time and frequency shift estimation based on
resampling acoustic signals, which speeds up calculations compared to traditional methods.
The system estimates TDOA and Doppler shifts to determine the position and velocity of
flying vehicles. Experimental results show that the algorithm can detect small-sized vehicles
at distances of several hundred meters, although performance improves significantly with
larger aircraft. For small-sized drones, position estimation accuracy drops significantly
beyond 100 meters, due to weaker acoustic signals and increased influence of environmental
noise. The method offers a cost-effective solution for tracking flying vehicles and monitoring

aircraft noise.

Wu et al. [130] addresses the challenges of UAV localization in low SNR envi-
ronments by proposing a deep learning-based approach. Traditional acoustic methods
often struggle with poor localization accuracy in such conditions. To overcome this, the
authors present two key innovations: a MUSIC pseudo-spectral normalization technique to
enhance DOA performance, and a time delay estimation neural network to improve DOA
resolution in low SNR scenarios. Simulation results show that their approach achieves
average localization errors below 0.5 m at 0 dB SNR and maintains accuracy within 1 m
even at —10 dB SNR. Experimental results demonstrate that this method can localize
UAVs within 20 meters, even with SNRs as low as —8 dB, showing its potential for

real-world applications.

Wu et al. [21] addresses a novel drone localization system utilizing two tetrahedral
acoustic arrays for effective localization within a 100-meter range. The system introduces

a new TDOA estimation algorithm that combines GCC with probabilistic data association
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to overcome challenges like multi-path effects and low signal-to-noise ratios. Additionally,
a dynamic programming-based approach is proposed to optimize TDOA initialization.
Extensive real-world experiments validate the system’s performance, showing its effec-
tiveness in providing real-time drone coordinates and enhancing the accuracy of existing
TDOA estimation methods. Experimental results with a DJI Phantom 3 drone confirm
the system’s effectiveness: over 95% of both horizontal and vertical localization errors were

below 6 m, even when the drone flew more than 100 meters from the arrays.

Lauzon et al. [131] explores the use of particle filtering for 3D sound source
localization to detect and track rotary-wing unmanned aerial vehicles (RW-UAVs) using
distributed microphone arrays. The method assumes that the dominant sound source is
the RW-UAV, allowing for precise localization and tracking as long as its noise exceeds
background noise. The qualitative results demonstrate effective 3D localization performance,
although future work aims to enhance noise robustness by incorporating time-frequency
masks and multi-source tracking. The authors also suggest the development of a large
drone dataset for better motion state prediction and propose refining the system’s precision

and processing efficiency.

Baggenstoss et al. [132] addresses a phase-based acoustic detection and tracking
algorithm for drones, focusing on efficiently tracking the TDOA of incoming signals from
microphone pairs using DFT phase information. By forming solution curves corresponding
to each TDOA and clustering their intersections, the algorithm determines the DOA without
the need for computationally intensive grid searches, significantly enhancing efficiency
compared to traditional beamforming methods. Simulations show that while the proposed
algorithm is sub-optimal in terms of accuracy, it consistently loses no more than 2 degrees
in DOA estimation compared to the maximum likelihood (ML) beamformer and approaches
the Cramér-Rao lower bound (CRLB) at high SNR. In real-world scenarios, the phase-
based algorithm successfully tracked drones through challenging maneuvers, indicating
robustness against interference and the capability to generate phase-based spectrograms
for sound classification. Overall, this approach not only improves computational efficiency

but also maintains effective tracking performance in diverse conditions.

Chen, Yu & Yang [133]presents an innovative approach to accurately localize UAVs
in challenging environments where radar and visual tracking are impractical. The proposed
method employs an improved Empirical Mode Decomposition technique within an adaptive
frequency window, allowing for effective smoothing and filtering of the UAV flight signals.
Robust Empirical Mode Decomposition is used to decompose the signals into Intrinsic Mode
Function components, facilitating detailed spectrum analysis. A sliding frequency window,
optimized using a Grey Wolf Optimizer, is introduced to extract specific frequencies from
the Intrinsic Mode Function, enhancing the separation of signal components. Subsequently,

the Chan—Taylor localization algorithm, refined through weighted least squares, is applied
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to calculate the target’s position based on sensor time delay parameters. Validation through
simulations and real-world signal tests demonstrates that the localization error remains
below 5% within a 15 m x 15 m measurement area, marking this method as an efficient and
real-time solution for detecting small UAVs. Future work aims to address the challenges
posed by multipath interference, particularly in environments where UAV signals are

reflected and aliased.

Faraji et al. [41] addresses the challenging task of sound source localization, particu-
larly in tracking flying objects, by introducing a novel fuzzy fusion and beamforming-based
method using distributed sensor nodes. The proposed system comprises eight low-cost
sensor nodes, each equipped with an array of synchronous MEMS microphones, designed
to capture sound waves and record audio signals for offline evaluation. Each node estimates
the direction of the sound source, which is then calibrated to account for installation errors,
improving the accuracy of the location estimates. The calibrated directions are fuzzified
and combined using fuzzy logic to achieve sound source localization. To validate the
method, experiments were conducted with a quadcopter acting as a moving sound source
in a wide outdoor environment measuring 240 x 160 x 80 m?. The algorithm achieved
a mean distance error of 6.03 m compared to the quadcopter’s GPS-derived trajectory,
demonstrating effectiveness in real-time localization despite the challenges posed by the
environment. The results indicate that the proposed approach balances high precision,
robustness, and reasonable computational costs, making it a viable solution for practical

applications in sound source localization.

Fernandes, Apolinario Jr. & Seixas [51] advocates an approach that improves
the DOA estimation of drone noise using a microphone array, focusing on enhancing
TDE in the presence of strong noise and multipath effects. Traditional methods often
fail to accurately estimate TDE without a line of sight, particularly in complex acoustic
environments where cross-correlation peaks may not correspond to true delays. To address
this challenge, the authors employ genetic algorithms combined with a ZCS fitness function,
which evaluates potential delays based on the principle that the sum of theoretical delays
in a closed loop should equal zero. This method successfully identifies correct delays from
a pool of candidates, including both primary and secondary delays, thereby significantly
improving detection rates in experimental trials. The study provides compelling evidence
of the effectiveness of genetic algorithms in resolving the TDE problem for drone signals

by reducing the delay estimation error.

Fernandes, Apolinario Jr. & Seixas [134] addresses the challenge of accurate DOA
estimation in noisy environments, particularly for applications in surveillance, security,
and spatial audio processing. The authors propose a two-stage method that enhances DOA
estimation by using secondary peaks of the cross-correlation function, which are often

overlooked. In the first stage, a low-complexity cost function based on the ZCS condition
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is employed to perform an exhaustive search of time delays between microphone pairs,
encompassing both primary and secondary peaks. The second stage refines the estimation
by applying an LS solution to a selected subset of the time delay combinations with
the lowest ZCS cost. The method’s effectiveness is demonstrated in the context of drone
localization using a four-microphone array, achieving a notable accuracy of 94.0% + 3.1%
when combined with the LS approach, compared to 89.4% =+ 2.7% using the ZCS method
alone. Experimental results highlight the applicability of this refined DOA estimation
approach in real-world scenarios, particularly by filtering out erroneous estimations that

do not conform to the physical orientation of the microphone array.

3.5 Partial Conclusions

Based on the systematic literature review conducted in this chapter, two major re-
search gaps were identified. First, most existing works rely on traditional TDOA estimation
approaches that assume the main peak of the cross-correlation function corresponds to the
true delay. This is often not the case in highly reverberant or noisy environments, leading
to inaccurate DOA estimation. Second, although some studies attempt to incorporate
learning-based methods or feature engineering, very few propose practical frameworks that

combine signal processing with Al

Motivated by these gaps, this thesis investigates the use of alternative cost functions
capable of dealing with multiple candidate delays, which include primary and secondary
peaks. In addition, this work presents the integration of heuristic search algorithms and
neural networks to improve localization and DoA estimation accuracy in challenging

acoustic scenarios.

Table 7 summarizes key characteristics of related works and highlights how the
methods proposed in this thesis address the main limitations identified. The characteristics
are: (1) if multipath is considered, (2) if the secondary peaks (Sec. Peaks) of cross-
correlations are taken into account, (3) if optimization (Optim.) methods are employed,

and (4) if Al-oriented methods are employed to estimate localization or DOA.

As shown in Table 7, the methods proposed in this dissertation directly address the
shortcomings of traditional approaches by introducing innovative strategies that deal with
ambiguous delay measurements and noisy environments. These strategies position this
research as a novel and comprehensive contribution to the field of acoustic-based drone

localization and DoA estimation.

Table 8 presents a comparative summary of the quantitative results reported by
related works and the methods proposed in this thesis. The analysis highlights that the
studies report results only on DOA or localization aspects. For instance, Itare et al. [126]

achieves high DOA precision with azimuth errors under 3° and elevation errors between 2°
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Table 7 — Comparison of Related Works and Thesis Contributions

Reference \ Multipath \ Sec. Peaks \ Optim. \ Al

Itare et al. [126 v

Sun et al. [127

Sedunov et al. [128

Chang et al. [47

Wu et al. [130

Wu et al. [21

Lauzon et al. [131

Baggenstoss et al. [132

Chen, Yu & Yang [133

Faraji et al. [41

Fernandes, Apolinario Jr. & Seixas [51
Fernandes, Apolinario Jr. & Seixas [134
This thesis
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and 2.8°, while Wu et al. [130] demonstrates robust localization with errors below 0.5 meters
at 0 dB SNR. Some works, like Wu et al. [21] and Chang et al. [47], report localization
accuracies with 95% of errors under 6 meters. In contrast, this thesis not only addresses
both DOA and localization but also achieves state-of-the-art results in both metrics. The
proposed method reaches a DOA accuracy of 94.0% + 3.1%, and when integrated with
the ZCS-LS approach, yields a localization error as low as 0.55 4+ 0.35 meters. These
results underscore the effectiveness and robustness of the proposed methods, especially
under highly noisy and reverberant environments where many traditional approaches fail

to provide consistent performance.

Table 8 — Quantitative results of this thesis and related works

Reference \ DOA \ Localization
[126] | 6 < 2.9°, 0 < 4.7° N/A
[127] N/A < 0.5m (10x10 m area)
[128] [3.4°,5.5%] N/A
[47] N/A 95% < 6 m, 80% < 2 m
[130] N/A <1lm
21] N/A 95% < 6 m
[131] N/A Qualitative only
[132] <2 N/A
[133] N/A < 5% (15x15 m area)
[41] N/A Mean: 6.03 m
[51] | 83.5% accuracy N/A
[134] | 94.0% < 5° N/A
This thesis 94.0% < 5° 60% < 2.73 m, 40% < 1.07 m
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4 DOA ESTIMATION RESULTS

In this chapter, we present the outcomes achieved through the utilization of the
proposed drone DOA estimation methods in Section 2.3. We evaluated the method using
simulations and also actual data to reveal the key findings. Section 4.1 presents the results
related to the drone DOA estimation using a heuristic search scheme. Section 4.2 presents

the results of acoustic-based drone DOA estimation using the Exhaustive Search.

4.1 GA-ZCS

This section presents the results related to the drone DOA estimation using genetic

algorithms through experimentation with simulations and actual data.

4.1.1 Problem statement and assumptions

The signals emitted by the drone are characterized by a low SNR, indicating the
presence of intense background noise and potential multipath effects. To conduct our
simulations, we utilized the geometry of a compact acoustic array consisting of seven
microphones, specifically the MiniDSP UMA-8 model [135]. Using this array, we calculate
the theoretical delays of acoustic front waves emitted by the drone, considering both
zenith and azimuth angles denoted as 6 and ¢, respectively. These theoretical delays
represent the ideal estimates in the absence of background noise and multipath effects.
Additionally, we acknowledge that estimated delays might manifest as secondary peaks

within a cross-correlation analysis.

To simulate real-world conditions, we construct a data matrix denoted as V yy«¢,
according to Equation (2.18). Each row of the matrix contains a combination of theoretical

delay and other random delays that can occur due to factors such as additional noise.

Moving on to the experimental phase, we gather two sets of acoustic drone signals,
each lasting 20 seconds, employing the UMA-8 microphone array of M = 7 microphones.
From these signals, we estimate potential delays and construct the data matrix V yy«¢,

where each row of this matrix contains candidate delays, i.e., peaks of the cross-correlations.

Consequently, our primary challenge lies in identifying the correct delays among
various cross-correlation peaks arising from different microphone pairs. The simulations we
conduct serve as a proof of concept for the proposed method, while the experimental trials
provide evidence of the benefits this method offers in addressing the drone DOA estimation
problem. Notably, the actual drone signals employed in this study were obtained during

the hovering of a DJI Phantom 4 quadcopter.
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4.1.2 Drone acoustic signal

Figure 3 provides a visual representation of the drone hovering signal, showcasing
10,000 samples in the time domain. Additionally, a spectrogram computed with a sample
rate of 48 kHz is presented. It is worth noting that the drone noise is primarily concentrated
in the frequency range below 5 kHz. However, under favorable conditions and when the
drone is near the microphone array, it becomes possible to capture drone noise in higher

frequencies, reaching up to 13.5 kHz.

For a more complete exploration of the acoustic characteristics of drone noise,
readers may refer to the studies presented by Wang & Cavallaro; Wang & Cavallaro;
Mukhutdinov et al. [38, 39, 40]. These references show the intricacies of drone noise

analysis and provide insights into the subject matter.
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Figure 3 — Acoustic drone signal emitted by a DJI Phantom 4. (a) Time domain signal;
and (b) Time-frequency representation.

4.1.3 TDE problems with signals collected with UMA-8

One common source of error in cross-correlation-based time delay estimation is the
presence of noise. When the signals being correlated are contaminated by noise, it can
introduce spurious correlations and lead to incorrect time delay estimates. The noise can
distort the shape of the cross-correlation function, resulting in erroneous peak positions or

false peaks that do not correspond to the true time delay.

Another factor that can cause inaccurate time delay estimation is the presence of
reverberation or multipath in the signals. Reverberation can significantly affect the shape
and amplitude of the cross-correlation function, making it difficult to accurately identify

the true peak representing the time delay. The reflections and multiple paths of sound
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propagation can create additional peaks or distort the main peak, leading to incorrect

estimates.

Figure 4 illustrates several pertinent problems associated with TDE. In Figure 4
(a), we observe an accurate TDE both with and without interpolation, even in the presence
of low levels of background noise. Figure 4 (b) showcases the benefits of interpolation,
where a cross-correlation with fractional delays in samples yields a precise estimation.
Figure 4 (c) presents a distorted function with a false main peak. Finally, Figure 4 (d)

highlights a scenario with significant noise, wherein a secondary true peak emerges.

The abundance of different peaks of the cross-correlations involving drone noise
instigates intriguing possibilities in the context of experimental trials. These possibilities
include exploring secondary peaks using ES; employing the peaks of interpolation, utilizing
classical cross-correlation peaks, and considering samples before and after the main peak.
By considering these aspects, it is possible to enhance our understanding and refine the

TDE methodology in practical scenarios.

4.1.4 Simulation results

The initial evaluation of the proposed approach for drone DOA estimation involved
simulated delays, which approximate the potential delays based on the array geometry
utilized herein. Figure 5 illustrates the evolution of the fitness function and the number
of matching delays with the theoretical 21 delays. The ZCS fitness function serves as
a guiding measure for the algorithm, leading to the enhancement of individuals within
the genetic algorithm. By using this fitness function, the algorithm is directed towards
improving the accuracy of delay estimates by identifying the correct peaks among the 10
possible delays for each cross-correlation function. This facilitates the overall improvement
of the algorithm’s performance in estimating the delays more effectively. However, it is
important to note that GA may converge to a local minimum, and also that reaching the

global minimum can be time-consuming.

Furthermore, the simulation results provide insights into the behavior and practical
effectiveness of the GA when applied to the TDE problem under complex acoustic
conditions. The nature of GA enables a broad exploration of the solution space, allowing
it to find delay combinations that satisfy the ZCS condition, even when multiple cross-
correlation peaks complicate the estimation process. As observed in Figure 5, the GA is
capable of gradually improving the number of correctly identified delays over generations,
guided by the fitness function. While convergence to a global minimum is the ideal scenario,
in practice, even convergence to a local minimum can be sufficient. This is particularly
true if the GA is combined with a second-stage optimization step that discards delays
inconsistent with the geometric constraints of the array. In this hybrid approach, the

GA identifies a promising subset of delays, from which the least consistent can then be
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Figure 4 — Different time delay estimation problems. (a) Accurate time delay estimation
with and without interpolation (b) More accurate time delay estimation with
interpolation (c) Distorted function with a false peak and (d) Secondary true
peak.

removed based on an LS cost or similar criterion. Once a few accurate TDEs are identified,
they can anchor the solution and enable robust DOA estimation, even if the remaining

delays include errors.

4.1.5 Experimental results

After conducting simulation tests, we proceeded to test the proposed method with
actual drone noise signals. The signals evaluated were captured while the drone was
hovering at a distance of 30 and 280 meters from the microphone array. We divided each
signal into 100 segments of 200 ms, allowing the estimation of the delays between sensor

pairs. We collected 6 candidate delays for each r,,,, forming a matrix V ye.

In contrast to simulations, where we had theoretical delays among other delays,
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Figure 5 — GA search progress with fitness function and number of correct delays evolution.
(a) 1600 iterations, and the search stopped according to the fitness function
criteria (b) GA and the convergence to a local minimum.

it is highly unlikely for the peaks of an actual cross-correlation to correspond perfectly
with the theoretical delay. Therefore, we monitored the progress of the GA by assessing
the delay error (in samples), which is calculated as >V | [¥; — v4|, where ¥ represents the

vector of estimated delays mapped by the GA, and v consists of the theoretical delays.

Figure 6 illustrates the delay error for each analyzed window. The simulation was
conducted using a total of 2,000 iterations, starting from a randomly initialized population.
Specifically, Figure 6 (a) showcases the delay error progression for each 200 ms window,
and Figure 6 (b) highlights the benefits of utilizing the GA algorithm in mitigating large

delay errors.

The results depicted in Figure 6 denote the minimum delay error, i.e., the minimum
possible error if we choose the element of matrix V that minimizes the error of the TDE.
The simulation results show that GA-ZCS has the potential to find all theoretical delays,
so one challenge is to develop a method that finds an accurate delay for each pair of

microphones.

Introducing a signal enhancement technique as a step in this method may enhance
the signal of interest, specifically the drone signal, in each channel. By applying signal
enhancement techniques, it is possible to improve the detectability and accuracy of the
drone signal, thereby enhancing the performance of the time delay estimation method.
Exploring such signal enhancement techniques holds promise for further improving the

robustness and effectiveness of the overall approach.
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Figure 6 — Progress of GA search with fitness function, minimum delay error in samples,
and the error reduction highlighting the benefits of the heuristic search. (a)
Analysis of 100 windows using GA search progress while the drone hovers close
to the microphone array (30 m); and (b) Analysis of 100 windows with the
drone hovering at a distance of 280 m from the microphone array.

4.2 Exhaustive search with ZCS-LS

Here we present the results of acoustic-based drone DOA estimation using a 4-
microphone array. This experiment with a reduced number of microphones allows a better

comprehension of the effectiveness of the ZCS cost function using the ES approach.

To illustrate the versatility and robustness of our approach, we apply it to a
challenging scenario utilizing a 4-microphone array setup. Through experimentation using
both simulated and real-world data, our research underscores the potential of our novel
DOA estimation methodology, showcasing its efficacy across diverse applications. We
believe that these experiments prove the applicability of the ZCS-LS to near-real-time

applications.

4.2.1 Data acquisition

In Figure 7, the Phantom 4 drone, an array of Behringer ECM8000 [136, 137]
microphones, and the Zoom F8 recorder are illustrated, the latter serving to convert analog
signals into digital format and store them in the wave format. The data acquisition process
involves capturing acoustic signals emitted by the drone, along with the background noise.
Following this real-time acquisition, the dataset undergoes a complete offline analysis to

extract valuable insights and draw informed conclusions.
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Figure 7 — Drone data acquisition set-up.

4.2.2 Drone noise collected with spherical array

Figure 8 offers a graphical depiction of both the background noise and the signals
emitted by the hovering Phantom 4 drone, illustrating a duration of 500 ms. The figure
also includes a spectrogram computed with a sample rate of 48 kHz. Notably, in optimal
conditions and when the drone is close to the microphone array, it becomes feasible to
capture drone noises in higher frequency ranges, extending up to 13.5 kHz. As the drone
moves farther from the microphone, the noise becomes increasingly concentrated, primarily

within the frequency range below 5 kHz.

4.2.3 Effects of signal window length

Before conducting simulations, a full evaluation of the actual signals was undertaken
to achieve a more faithful emulation of real-world conditions. This experimental assessment
is imperative to understand the frequency with which primary and secondary peaks
accurately indicate the true time delay. Figure 9 illustrates the histogram detailing
the position of the true time delay. Specifically, it shows the number of peaks sorted
in amplitude descending order, highlighting instances where the correct time delay is
successfully retrieved (with a permissible error of &+ 1 sample). This scrutiny serves as an

important step in ensuring the potential to explore the secondary peaks to estimate DOA.

424 DOA estimation with simulated data

To run simulations, we generated synthetic V matrices according to 7,,,, between

each pair of microphones. Figure 10 describes the cost function computed with simulated
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Figure 8 — Spectrogram of drone noise collected from different distances. (a) Background
noise time domain (b) Spectrogram background noise (c¢) Drone noise time
domain (30 m away from the microphone array) (d) Drone noise spectrogram
(30 m away from the microphone array).

data.

The ZCS cost function facilitates the computation of all S potential combinations
of time delays presented in the V matrix. Figure 11 illustrates 1,000 runs with simulated
data, displaying the position at which the correct time delay vector is situated according
to the ZCS. Although the ZCS itself does not determine the optimal combination of time
delays, Figure 11 illustrates that this cost function effectively places the correct time
delay vector among the Z = 100 vectors, thereby reducing the solution space S = C¥ to
0.01%. With a streamlined solution space, we can calculate all Z vectors using the LS cost

function, a more computationally complex method to further refine the estimation.

Figure 12 depicts the DOA estimation results for 1,000 trials. The accuracy obtained
in this experiment with simulated data for the classic estimations (LS solution with no
optimization technique) is 0%, ZCS-LS = 74%, and ZCS = 34%.
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(b) First Z = 100 ZCS and LS cost function.

4.2.5 DOA estimation with experimental data

The acoustic signals emitted by the drone often reach the microphone array
accompanied by various distortions and challenges. A frequent error encountered in time

delay estimation based on cross-correlation arises from the existence of noise. When the
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correlated signals are affected by noise, it has the potential to introduce false correlations,
causing inaccurate time delay estimations. This noise can distort the cross-correlation
function, thereby causing misleading peak positions or the appearance of false peaks with

high amplitudes that do not align with the actual time delay of the signal of interest.

Inaccurate time delay estimation can also originate from the existence of reverbera-
tion or multipath within the signals. The presence of reverberation markedly impacts the
form and strength of the cross-correlation function, complicating the precise identification
of the genuine peak denoting the direct path time delay. The reflections and diverse
pathways of sound propagation may generate extra peaks or alter the primary peak,

resulting in erroneous estimations.

Figure 13 illustrates pertinent issues associated with TDE when SNR is low. In

Figure 13 (a), we observe the accurate TDE in the 5th peak, sorted by descending amplitude
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order. Figure 13 (b) showcases a worst case in which only the 9th peak corresponds to
the correct time delay. In conclusion, the cross-correlations encapsulate the requisite

information for accurate DOA estimation; however, the efficacy of these estimations is

compromised by the low SNR of the target signal.
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Figure 13 — Cross-correlations of the acoustic signals collected from a Phantom 4 drone
hovering in an outdoor environment. (a) 5th peak corresponds to the correct
time delay (b) 9th peak corresponds to the correct time delay

Figure 14 depicts the relationship between DOA error and TDE error, providing
valuable insights into the accuracy of the localization process. The graph illustrates that
as TDE estimation error increases, there is a corresponding rise in DOA error, indicating
a direct correlation between the two parameters. Notably, the analysis reveals that TDE
errors within a maximum range of three samples remain acceptable, as they correspond
to DOA errors of less than 5 degrees for both zenith and azimuth angle estimations.
This observation underscores the robustness of the localization system, suggesting that
minor deviations in TDE estimation do not significantly compromise the accuracy of DOA

predictions within a reasonable margin.

Figure 15 illustrates the drone DOA estimation results using different window sizes.
The classic LS estimation approach (GCC-PHAT using only the primary peaks) yielded
0% accuracy, indicating poor performance in handling the complexities of the acoustic
environment. In contrast, the ZCS and ZCS-LS methods pointed toward the correct
direction, achieving an accuracy of ZCS = 83.5% =+ 3.6% and ZCS-LS = 90.2% =+ 4.4%.
Using ZCS and ZCS-LS results in a high-density area of estimations around the actual
angles, § = 10 and ¢ = —25. It should be noted that the ZCS facilitates exhaustive
computations of all possible delay combinations, and the additional computation of the
LS cost function enhances estimations by approximately 7%. The experimental outcomes
surpassed the simulation ones, primarily attributable to the variable number of delay

candidates (C') encountered. While the simulation phase maintained a fixed value of
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C = 10, the experimental phase yielded a fluctuating range of peaks, ranging from 1
to 8 for each cross-correlation. This variability in delay candidates in the experimental
setting contributed to the enhanced performance observed, demonstrating the method’s

adaptability in real-world scenarios.

The results presented in this Chapter demonstrate the effectiveness of the proposed
approaches for DOA estimation in highly noisy and reverberant environments. Through
both simulated and real-world experiments, it was shown that the ZCS cost function,
particularly when combined with the LS cost function, significantly enhances the accuracy
of delay estimations (even in scenarios where multiple peaks appear in the cross-correlation
function). Additionally, both the exhaustive search and heuristic optimization using genetic
algorithms proved capable of improving performance while managing computational
complexity. These findings confirm the practicality of the proposed methods, validating

their potential for real-time application in acoustic-based counter-drone systems.
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Figure 15 — Experimental results: drone DOA estimates 100 m away from the microphone.
(a) 209 estimations with 100 ms windows (ZCS-LS accuracy of 88.0%) and (e)
100 ms windows (ZCS-LS accuracy of 92.9% discarding estimations pointing
to the floor); (b) 104 estimations with 200 ms windows (ZCS-LS accuracy
of 89.4%) and (f) 200 ms windows (ZCS-LS accuracy of 93.0% discarding
estimations pointing to the floor); (c) 104 estimations with 800 ms windows
(ZCS-LS accuracy of 96.1%) and (g) 800 ms windows (ZCS-LS accuracy of
96.1% discarding estimations pointing to the floor); (d) Accuracy of DOA
estimators with different signal window sizes; and (h) Accuracy of DOA
estimators with different signal window sizes, considering only estimated
DOAs within the valid zenith angular range from 0° to 90°.
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5 LOCALIZATION RESULTS

This chapter presents the results of drone localization estimation using both NN
and TDOA-based approaches. The primary objective of this investigation is to evaluate the
impact of acoustic reflections on localization accuracy. Section 5.1 analyzes the effects of
reverberation on the cross-correlation functions. Section 5.2 reports the performance of NN-
and TDOA-based localization techniques under reflective conditions. Finally, Section 5.3

discusses the key findings and insights derived from these experiments.

5.1 The Reverberation Effect

In acoustics, TDOA techniques use cross-correlation to estimate the delay between
two signals, z;(k) and z;(k), from any pair of sensors (4, 7). Given M sensors, we can
estimate the position based on C7 measurements [138, 60, 139], i.e., employ all M (M —1)/2
available pairs [61]. However, strong reverberation, usually present in indoor environment
scenarios, causes wrong TDOA estimates. In such cases, the room impulse response (RIR)
shows other components besides the line of sight (LOS) component, which may or may

not be present depending on whether the environment presents obstacles to propagation.

Figure 16 illustrates the effect of reverberation in the RIR and the cross-correlation.
In a non-reverberating room, where the clean signal is denoted as s(k), the impulse response
hi(k) shows only the LOS component, whereas, in a reverberating room, several other
peaks are present in the RIR hs(k), with a peak being larger than the LOS component.

Assuming a noiseless scenario, the signals from two microphones can be modeled as

z1(k) = s(k)=hy(k), and
zo(k) = s(k)x* ha(k), (5.1)

where “x” denotes the convolution operator.

The largest peak of the cross-correlation function ris(7) = E[z1(k)z2(k — 7)]
provides the TDOA, which can be estimated using any of the GCC algorithms [140],
e.g., the GCC-PHAT. For instance, assuming additive white noise, an estimate of the

conventional cross-correlation algorithm yields ri5(7) = hy(7) * ho(—7).

As illustrated on the bottom left of Figure 16, GCC renders a clear peak with the
correct TDOA of —2000 samples in the case of a non-reverberating room. Conversely, in
the case of a strong reverberating room (right side of Figure 16), RIRs, h3(k) and hy(k)
may exhibit other more prominence peaks than the LOS peak, thereby resulting in a

cross-correlation r34(7) with multiple strong peaks, including eventually outliers. Therefore,
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Figure 16 — Correct estimation of TDOA in a non-reverberating room (left) versus the
effect of reverberation (right) on the RIR and the cross-correlation of the
received signals. Source: [65].

in a practical indoor source localization problem, even a data-selection approach [141]

would not be able to discriminate outliers, making the solution unreliable.

5.2 Localization Experiments

We conducted two experiments, each targeting distinct signals of interest (Sol)
in different environments. The first experiment took place in a room using a speaker
in a fixed position emitting a frequency-shift keying (FSK) modulated sequence, while
the second one was carried out in a larger indoor space using the noise generated by a
drone. The motivation behind these experiments is to first investigate the localization of a
stationary acoustic emitter, establishing a performance baseline. Following this analysis,
the focus shifts to estimating the position of a drone in motion (drone hovering with
noisy positions due to its movement during recordings), allowing for the evaluation of
localization methods under dynamic conditions. Detailed descriptions of these setups can

be found in subsection 5.2.1 and subsection 5.2.2.

5.2.1 Fixed synthetic acoustic emitter experiment

We performed several experiments using an audio signal comprising two seconds of
white Gaussian noise, followed by a 60-second-long Sol, a 100 bps binary FSK modulated

sequence centered at 15 kHz. However, the experiment described here focuses only on the
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Sol. Figure 17 shows time and frequency-domain representations of the complete audio
signal, featuring a magnified segment of the Sol (top right) transmitted from distinct

speaker positions and captured by eight microphones close to the room walls.
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Figure 17 — Spectrogram of the audio signal employed in the practical experiments.
Source: [65]

We used a substantially reverberating classroom, with zyz-dimensions of 8.32m
x5.29m x3.94m for the recordings; assuming room walls with an absorption coefficient
of 0.1, we estimated a reverberation time Tgo, the time it takes for the sound level to
drop 60 dB after sound cessation [142], as 1.43. Figure 18 illustrates the positions of the
target speakers and the microphones. The recorded signals also contain an ambient noise
component; however, given the inherent ability of the proposed method to cope with

background noise, we shall focus our attention on the reverberation effect, which is more

critical in introducing outliers.
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Figure 18 — Classroom with eight microphones (MIC 1 to MIC 8) and three distinct
speakers (SPKR 1, SPKR 2, and SPKR 3).
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We tried different hold-out setups when training the NN to achieve good results.
Table 9 shows the results of the first experiment. Here, the mean squared error (MSE) is
calculated based on the difference between the estimated and the actual position, varying
the block time and resolution parameter (RP). We consider the results excellent, given
the strong reverberation in the room, especially for window sizes of 500 ms or larger.
Comparatively, classical TDOA-based methods, known to perform poorly under such

conditions, were unable to achieve comparable levels of accuracy.

Table 9 — Neural network regression results

Block MSE RP
(time) | Training | Validation | Testing | 7
1s 1.95e—15 2.64e—9 4.98e—10 | 100
500 ms | 2.46e—15 3.49e—-9 2.16e—8 50
250 ms | 2.61le—15 1.49e—2 1.68e—4 5

The 1-minute size of the transmitted signal, in the case of 1-second blocks, leads to
180 observations, 60 for each of the three positions, of K = 560 features (ten peaks for each
N=28 TDOAs and respective amplitudes). We estimated 28 TDOAs for each observation,
a total of 5,040, from which we found 4,409 outliers. In other words, only 631 estimates
were considered correct within £50 samples due to possible sensor and emitter positioning
errors. That is equivalent to a maximum range difference error of 40 cm. The reverberation
effect is so strong that, only in 23.3% of the cases (1,176 out of 5,040), the correct TDOA is
within the ten most prominent peaks. For the case of 500 ms blocks, owing to the smaller
block size, we had a dataset of 360 observations with K = 560 features. In this case, the
number of outliers was 8,994 out of 10,080 estimated TDOAs, with 1,086 correct estimates,
out of which 20.9% of correct TDOAs were within the dominant peaks. Finally, for the
case of 250 ms blocks, a dataset of 720 observations, we found 19,451 outliers out of 20,160
TDOA estimates, with 709 correct estimates and 8.6% of correct TDOA estimates within
the ten dominant peaks. We refrain from displaying the performances of the classical,
extended, and data-selective LS algorithms, for they are unreliable, even in the case of
the largest block of 1 s. Further details on these limitations can be found in the work of
Apolinario Jr. et al. [141].

From this experiment, we realized that a network trained with a given block size
behaves better when testing features estimated using the same block size. Furthermore,
although a network trained with 1-second blocks performed well when testing features
from 500-ms blocks, the converse did not hold.

We could not use the setup from the first experiment to generalize a regression
and needed to train more positions. Hence, we extended the dataset to a rectangular
grid of 104 positions, covering the classroom with loudspeakers equally separated by

60 cm, thereby increasing the number of classes. However, the performance of a NN
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degrades with an increasing number of classes; consequently, the fitting problem for 500
ms blocks, even with a few adjustments, e.g., increasing the number of hidden neurons to
10, was disappointing. With a smaller dataset size, tested with ten positions, the Bayes
regularization algorithm worked well, but was too slow for a 104-point grid. Changing
the application from regression to classification did not favor the performance of the
localization scheme as much as expected. The NN-based classification usually yielded

better results, but even a few outliers would cause significant positioning errors.

After many approaches focusing on the NN, we decided to change the features
for a more practical setup with a 104-point grid. We finally achieved better results after
realizing that the ten most prominent peaks in the audio application failed to act as a
fingerprint. In the event of bad results, we observed that the peaks were all clustered
together in the principal elevation of the cross-correlation, failing to adequately describe
the whole sequence due to the absence of samples from secondary hills. Nonetheless, we

used the peak of the main elevations of the cross-correlation as the input for the neural

network.
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Figure 19 — Results for the position estimation.

To improve the results even further, we decided to change the structure of the NN
of Figure 2. Thus, we exhaustively searched for the hyperparameters that minimize the
MSE for this more complex problem. The updated NN is a Multi-Layer Perceptron (MLP)

regressor, and the parameters that contributed the most to enhancing the performance are
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Figure 20 — Histogram of the estimation errors.

L (number of neurons) and the number of hidden layers. The best configuration achieved
is a four-layer NN with three activation layers with an increased number of neurons
L ={900, 600,300}, and one output layer. Figure 19 and Figure 20 depict the result of
the estimated positions and the histogram of the estimation errors, respectively, for all 104
positions in the test dataset. Note that the majority of the estimations (53.5%) presented
errors below 0.4472 m (black bins of the histogram), i.e., the squared error (SE) below 0.2.

5.2.2 Drone localization Experiment

As noted in the previous experiment, the small room exhibited significant reverber-
ation, resulting in the cross-correlation function showing numerous false peaks, mainly due
to reverberation effects rather than the line-of-sight acoustic component. To address this,
the trials described in the following were conducted in a larger indoor environment with
walls and ceiling much farther from the microphones, but with a similar geometry of the
microphones distributed along the terrain. This setup is intended to yield cross-correlations
with primary and/or secondary peaks that correspond to the main acoustic component of
the Sol (drone noise). Figure 21 describes the new setup used for drone noise recordings,

which employs eight microphones.

The dataset created using this setup comprises five acoustic signals, each recorded
using eight Behringer 800 microphones positioned around the Sol emitter in five different
positions. In this case, the Sol is the acoustic signal generated by the propellers of a DJI
Phantom 4 drone, captured at a sampling frequency of f, = 44.1 kHz. Figure 22 depicts

time-frequency representations of the drone noise caused by propellers and the background
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Figure 21 — Set-up for the drone noise recording.

noise recorded in this setup. It is possible to note that the drone noise is a broadband

signal, covering the frequency region ranging from 20 Hz to 22,050 Hz.
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Figure 22 — Phantom IV drone spectrogram. (a) spectrogram with drone noise (b) back-
ground noise, i.e., all noises surrounding microphones except the drone noise.

Figure 23 depicts the geometry of the TDOA-based localization estimation methods.
Ad;s is an example of one measure between pairs of microphones that can be explored

to localize acoustic sources. This distance is estimated using the cross-correlation func-
tion [134].
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Figure 23 — Geometry of TDOA-based localization methods. Source: [141]

©
w
©

€ T £
c 25 E o5 i E 25
= £ A =
c 2 2 L4 c 2
o c 5
= ] BiRey ]
®© 15 “'“‘ 1.5 ‘E 1.5
2 N N
8 ® ® 1
8 g g
= o5 — 05 -1 05
5 5 1<
£ o 2 o N g o oise
w w —F— Noise and outlier w —F— Noise and outlier
-0.5 -0.5 -0.5
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Delay error (standard deviation) Delay error (standard deviation) Delay error (standard deviation)

(a) (b) ()

Figure 24 — Results obtained using simulated delays (in number of samples) with additive
noise, based on the dataset’s geometry and assuming the drone is hovering at
position five. (a) Localization error as a function of the standard deviation
of the additive noise. (b) Localization error when introducing a single out-
lier, while varying the noise standard deviation. (¢) Localization error when
introducing two outliers, while varying the noise standard deviation.

Figure 24 depicts the behavior of localization error under TDOAs with additive
noise and introducing one and two outliers using all TDOAs. The simulated TDOA values
were derived from the actual microphone geometry and assuming the drone is hovering
at position five. Figure 24 (a) shows the effect as the additive Gaussian noise increases,
the localization error grows gradually, reflecting a predictable degradation in estimation
accuracy due to uncertainty in the TDOAs. Figure 24 (b) denotes that introducing one
outlier slightly increases the estimation error, i.e., this demonstrates that this system of
equations has sufficient redundancy, and this one outlier is diluted among the many correct
delays. Figure 24 (c) depicts the error rising sharply with low additive TDOA error due to
the presence of two outliers. These results highlight the critical need for TDOA selection
mechanisms that are not only noise-aware but also resilient to outliers, as few outliers
can have a disproportionately large effect on the localization accuracy. The mean TDOA
estimation error over 10 samples is approximately 0.5 m; however, the presence of two

outliers increases the average error to 1.4 m, as illustrated in Figure 24 (c).

Overall, the results underline two key insights. First, while additive noise alone
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Figure 25 — Number of peaks used. (a) one pass GTS approach, and (b) GTS.

gradually degrades localization accuracy, it is manageable up to a certain threshold. Second,
even a small number of outliers can severely increase the localization error. These findings
reinforce the importance of incorporating strategies like the proposed ZCS-based cost
function and delay selection algorithms to mitigate the influence of erroneous TDOA

values and ensure more reliable localization performance under real-world conditions.

Figure 25 (a) depicts the relative frequency of TDOAs used to estimate the
localization of the drone using the GTS technique. It should be noted that 15 is the largest
number of TDOAs used. The minimum number of TDOAs is 10 up to 21, which means
that the TDOA selection mechanism improves the results, but there is a minimum number
of TDOAs that minimize the localization error. Figure 25 (b) depicts the relative frequency
of TDOAs when GTS is used, iterating all TDOAs and choosing the one that has the

highest contribution.

Figure 26 illustrates the cross-correlation issues that can arise in multipath envi-
ronments. The cross-correlations shown pertain to the seventh and eighth microphones,
with a maximum delay of 649 samples around the center (zero delay). Analyzing these
cross-correlations can help researchers create new strategies to identify the most relevant
peaks among numerous possibilities. Initially, a peak can be defined as a sample with a
higher amplitude than its adjacent samples. However, this method may not effectively cap-
ture samples that span significant portions of the cross-correlations, potentially resulting
in the selection of many too-close peaks. Thus, another processing is needed, i.e., identify

the peak with a higher amplitude than its adjacent peaks.

Initially, we ran simulations to grasp the possible behavior of the localization
estimation techniques with noisy TDOA, i.e., TDOA with additional error. Figure 27
shows the results of this first simulated experiment. Delay error is the mean number

of samples added to the theoretical delay for each cross-correlation. These simulations
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Figure 26 — Peak extraction process. (a) cross-correlation from microphones 7 and 8 with
the drone hovering in position 5, (b) the same cross-correlation with the
peaks detected, i.e., a peak is the sample that has a higher amplitude than the
two nearest neighbors, (c) simple peak extraction method (sample amplitude
greater than the other two closest peaks), the true peak estimation is the 4th
highest peak, (d) theoretical delay is the peak with the highest amplitude, (e)
theoretical delay is closer to the 7th peak, and (f) theoretical delay is closer

to the 9th peak.
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were designed to analyze the performance of localization techniques when the TDOA
measurements are corrupted by noise, introducing additional errors into the system. By
systematically adding varying noise levels to the TDOA values, we could observe how these
errors propagate through both conventional and extended LS localization methods. This
experiment allowed us to evaluate the sensitivity of each approach to TDOA inaccuracies
and provided insights into the robustness of both techniques, particularly in environments
where precise TDOA estimation is challenging.
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Figure 27 — Comparison of TDOA-based LS solutions using simulations.

Figure 28 (a) and Figure 28 (b) depict results obtained by using the main peak
of the cross-correlation function between pairs of microphones. The delay error follows a
Gaussian distribution with g = 0 and standard deviation o, ranging from 0 to 40 (samples).
The best results were obtained using the LS solution, considering the TDOA within the
distance between each pair of microphones. The five 20-second recordings lead to 200
observations for each signal with a window of 100 ms. We estimated 28 TDOAs for each

observation, a total of 5,600.

Figure 29 (a) and (b) depict results obtained by using the peak of the entire cross-
correlation function between pairs of microphones (no restriction related to the known
distance between microphones). However, this approach leads to localization estimates
with significant errors, primarily due to inaccuracies in TDOA estimation. These errors
become more likely when pairs of microphones capture uncorrelated signals, which tends
to occur as the distance between microphones increases. The best results were obtained

using the extended LS solution.

In this simulation, Figure 29 (c¢) and (d). the peak of the cross-correlation is
restricted to the interval (—7,4z, +Tmaz). This approach recognizes that the main peak
may sometimes correspond to uncorrelated signals. By limiting the interval, TDOA errors

are minimized, as correlated signals only produce peaks within the maximum possible time
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Figure 28 — Simulations for the drone localization problem. (a) conventional LS [60, 138,
139] (b) Extended LS [61].

delay. Any correlated acoustic signal between microphone pairs should generate a peak
corresponding to the maximum Euclidean distance between the microphones. Again, the
best results were obtained using the Extended LS solution [61] and the TDOA considering

the distance between each pair of microphones.

5.2.3 Comparison of the localization techniques

In this section, we provide a comparative analysis of the TDOA-based LS solu-
tion and the NN approach for sound source localization. It is noteworthy that in the
experiment with the synthetic acoustic emitter (Subsection 5.2.1), the results from the
TDOA-based LS solutions were insufficient to establish a meaningful comparison. However,
the experiment using drone noise in a larger environment (Subsection 5.2.2) enabled the
TDOA-based approach to produce reliable results, making it possible to compare the two
techniques. With this, we aim to highlight the strengths and limitations of each method
in terms of accuracy and practical applicability for the drone experiment. The LS method,
which estimates the source position based on TDOA measures between microphones, is
straightforward and does not require a training phase. In contrast, the NN approach uses
features from the environment’s reverberation fingerprint, allowing it to adapt and perform
better in challenging scenarios with complex reverberation patterns. By evaluating both
methods under the same conditions, we provided a better understanding of their respective

performance and the trade-offs involved in choosing one technique over the other.

Table 10 presents the localization errors for the drone position estimation using
three different methods: the conventional LS solution, the extended LS solution, LS-ES, LS-
GTS, ZCS-LS, ZCS-LS-ES, ZCS-LS-GTS, and the NN approach. The results are reported
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Figure 29 — Drone localization estimates. (a) conventional LS solution without taking into
consideration 7,4, (b) extended LS solution without taking into consideration
Tmaz (€) conventional LS solution with TDOA within 7,4, (d) extended LS
solution with TDOA within 7,4,

for the five different drone positions, with the error expressed as the mean localization

error and the standard deviation. The best results are highlighted.

The conventional LS method exhibits relatively high localization errors, ranging
from 2.25 to 3.43 units, with position 4 showing the largest error of 3.43 £ 1.10. The
extended LS solution shows a slight improvement, with errors generally lower than the
conventional LS method, especially at position 4, where the error drops to 1.89 + 0.60
meters. The most significant reduction in localization error is achieved using the NN
approach. This method yields the smallest errors across all positions, with values as low
as 1.02 £ 0.02 for position 2. This highlights the superior accuracy and stability of the
NN method compared to both LS-based solutions. However, this superior accuracy comes
at a cost, i.e., the NN approach requires a dataset for the training phase, which adds

complexity in real-world applications where such data may not always be available. It
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is also important to note that in the drone experiment, the drone lacked GPS, causing
its position to vary slightly during recordings. This variability partially explains the less
accurate results compared to the first experiment, where a speaker was carefully placed in

fixed positions and remained stationary throughout the recordings.

Table 10 — Drone localization error and standard deviation

Drone Position 1 2 3 4 5
Conventional LS | 2.36£0.64 2.254+0.84 2.781+0.94 3.434+1.10 | 2.86+0.87
Extended LS 2.2240.35 2.40+0.67 3.30£0.75 1.8940.60 | 1.984+0.25
LS-ES 2.04+0.32 2.2240.37 2.83+0.37 | 0.684+0.39 | 1.214+0.33
LS-GTS 1.874+0.37 | 2.084+0.45 | 2.73+0.43 | 0.84+0.40 | 1.38+0.37
ZCS-LS 2.61£0.38 3.05+0.57 3.971+0.61 1.17+£0.37 | 1.9240.15
ZCS-LS-ES 2.114+0.35 2.274+0.37 2.85+£0.38 | 0.554+0.35 | 1.074+0.36
ZCS-LS-GTS 2.00+0.39 2.201+0.43 2.79+0.44 | 0.664+0.40 | 1.21+0.41

Neural Network \ 1.284+0.01 \ 1.024+0.02 \ 1.56+0.02 \ 1.69+0.02 \ 1.504+0.02

The results shown in Figure 30 highlight how the number of selected TDOAs
affects the accuracy and consistency of source localization. Each figure has 28 estimates
that are the estimates with the lowest LS cost values. Figure 30 (a) and Figure 30 (b)
show the results using only 5 and 6 delays (ES(5) and ES(6)). These configurations lead
to low precision, with multiple scattered estimates due to the large number of possible
combinations of delays that are mapped to a large number of different solutions. In contrast,
Figure 30 (c) with 25 delays (ES(25)) shows a significant improvement, producing three
dense and close clusters and reducing the spread of estimations. It should be noted that
the estimate that minimizes the LS cost function does not correspond to the true location,
indicating that a higher number of delays alone does not guarantee accuracy. Finally,
Figure 30 (d) using 27 delays (ES(27)) results in a single dominant cluster with only
two estimates away from the cluster. Here, the most accurate localization estimate also
minimizes the LS cost function, demonstrating that when nearly all relevant delays are

included, the LS criterion becomes a reliable indicator of the true source position.

5.3 Partial conclusions

This chapter presented and evaluated the results of the proposed localization
methods, based on TDOA measurements. The experiments demonstrated the viability
of using acoustic signals for drone localization in noisy environments, validating both
the TDOA-based LS approach and the NN method. It is worth mentioning that these
cost functions were already validated during the DOA estimation experiments. While
the LS-based techniques offer a lightweight and training-free solution, the NN approach
outperformed them in terms of accuracy and robustness, particularly in reverberant

conditions. The integration of reverberation fingerprints as input features in the NN model
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proved effective in overcoming signal degradation caused by environmental noise and

multipath effects. Overall, the results confirmed the capability of the proposed methods

to estimate drone positions accurately and highlighted the trade-offs between complexity,

adaptability, and performance in different operational contexts.
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6 CONCLUSIONS

The proliferation of drones has introduced a pressing challenge for national defense
and public safety, especially in scenarios where traditional detection technologies fall
short due to environmental constraints such as noise, multipath propagation, and lack of
line-of-sight. This thesis was developed under the pressing need to address this problem
through the lens of acoustic signal processing, proposing methods capable of estimating the
localization and DOA of drones operating in highly noisy and reverberant environments.
With the growing interest in dual-use technologies, the work presented here aligns with
the interests of defense and law enforcement, providing insights into how passive acoustic

sensing can serve as a viable and effective counter-drone measure.

The general objective of this dissertation was to develop an acoustic-based method-
ology for estimating drone localization and DOA by analyzing the noise produced by their
propellers. This objective was successfully achieved by proposing a novel framework that
integrates ZCS and LS cost functions to identify accurate time delays even in the presence

of multiple cross-correlation peaks.

Throughout this research, we have successfully implemented various algorithms
to estimate the parameters of drones using acoustic signals, as detailed in Chapter 2.
This comprehensive exploration has significantly advanced our understanding of drone
parameter estimation and culminated in the development of some localization and DOA

estimation algorithms that rival state-of-the-art methods.

Specific goals were also fulfilled, including creating a simulation framework to
evaluate the impact of multiple correlation peaks, the experimental validation of acoustic
TDOA measurements, and the proposal of methods that enhance estimation accuracy
through exhaustive and heuristic searches. These goals were supported by detailed results,
as discussed in Section 4.1 and Section 5.2, which confirm the effectiveness of the proposed

methods in achieving accurate DOA and localization even under adverse conditions.

The findings presented in Chapter 4 underscore the potential of acoustics in the
TDOA-based DOA estimation domain. Precise DOA estimation is paramount for the
effective deployment of counter-drone measures. To address this, our research delved into
the ZCS cost function alongside an additional LS cost function to augment the accuracy of
our results. The insights gleaned from Chapter 4 shed light on the efficacy of our approach

in estimating DOA accurately.

In addition to fulfilling its objectives, the thesis provided contributions beyond the
originally stated goals. Among them, we highlight the results presented in Section 4.2,
which prove: the capability of a low-complexity ZCS-based cost function to handle multiple
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TDE candidates, the recognition of sub-optimality in ZCS, and the complementary role
of LS for result refinement. The implementation of these techniques demonstrated the
potential of combining classical signal processing with intelligent search strategies, offering

a new perspective for real-time DOA estimation systems.

One of the key contributions of this thesis to the drone localization task lies in the
evaluation of localization techniques using TDOA-based and learning-based methods. In
particular, a detailed analysis demonstrated the performance differences between TDOA-
based approaches and an NN model under realistic conditions. While traditional LS and its
enhanced variants, including ZCS-LS, offered a baseline for localization based on acoustic
time delays, the NN approach outperformed them in terms of accuracy in reverberant
and noisy environments. This superior performance, achieved without relying solely on
the primary cross-correlation peak, validates the integration of learned environmental
features such as reverberation fingerprints. Despite the added complexity of requiring a
training dataset, the NN model achieved lower localization errors and more consistent
results. However, the NN requires a training dataset with fingerprints (many peaks at each
possible position), and for a real-world application, this data may not always be available

or may not be possible to collect samples due to a dangerous environment.

Looking ahead, several opportunities arise from the work developed in this thesis.
One promising direction is the incorporation of distributed and synchronized microphone
arrays for three-dimensional drone localization in wider and more complex scenarios by
the application of Bearings-Only Target Motion Analysis [92, 143]. The implementation
of robust time synchronization and data sharing protocols between sensor nodes will
be essential for the real implementation of the localization algorithms without wired
microphones. Future work may also explore the integration of other sensors to collect more

features of the drones to enhance performance under variable conditions.

The utilization of distributed and synchronized devices will allow the estimation
of drone localization in complex 3-D environments. These devices would collect drone
acoustic signals and could initially employ low-cost hardware for feasibility testing. The
main challenge lies in synchronizing these devices to facilitate accurate measurements of
TDOA between pairs of microphones. This synchronization is important for ensuring the
fidelity of the localization process. Concurrently, other endeavors will focus on recording
the acoustic drone signals and sharing all signals to a processor unit to estimate the TDOA

between pairs of signals and use them to locate the drones.

Ultimately, the culmination of this process will entail transmitting the derived
localization data to a dedicated unit tasked with overseeing the situational awareness of
the environment. This unit will serve as the nexus for interpreting and responding to the

spatial dynamics of drone activity within the monitored airspace.
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List of the conference and journal papers produced during the doctoral course:
Conference Paper:

1. FERNANDES, R. P.; APOLINARIO JR., J. A. Underwater target classifi-
cation with optimized feature selection based on genetic algorithms. In: SBRT.

Simposio Brasileiro de Telecomunicagoes e Processamento de Sinais, 2020.
Abstract:

This paper presents an approach to target classification optimization based on
acoustic signals collected using a hydrophone, an underwater electroacoustic transducer.
This study has applications to sonars or any sound-classification application. We divide
the problem into three parts, namely feature extraction, feature selection, and target
classification with an optimization step. Experiments were conducted using ShipsEar,
a public database of raw ship noises collected using a single hydrophone located in a
harbor. This dataset comprises five classes and is used to verify the performance of the
approach described in this work. From raw signals, we extracted the following features:
Mel-Frequency Cepstral Coefficients, Linear Predictive Coding, and Gammatone Cepstral
Coeflicients. All these features were evaluated using the Neighborhood Component Analysis
to reduce dimensionality. We used K-Nearest Neighbors as the classifier. We adopted the
leave-one-out crossvalidation strategy to evaluate the classifier. Finally, we used Genetic
Algorithms to optimize the features selected. We set the classifier performance as the
genetic algorithm cost function and used the features selected as one individual of the
first generation. This scheme optimized the performance of the classifier by 13 percentage
points. In our case, the optimized feature selection algorithms reduced the dimensionality
and improved classifier accuracy when compared with the same scheme using all features
or a subset of features selected by Neighborhood Component Analysis. These techniques

can select the most useful information from features of different ship classes.
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Conference Paper:

2. FERNANDES, R. P.; APOLINARIO JR., J. A.; RAMOS, A. L. L.; SEIXAS, J.
M. de. Applying the majority voting rule in acoustic detection and classification

of drones. In:. Sociedade Brasileira de Telecomunicacoes, 2021.
Abstract:

This paper discusses an approach to target detection and classification based
on acoustic signals collected using one single microphone. We divide the problem into
two parts, namely feature extraction and target detection and classification. We use an
optimization step based on human auditory uncertainty. We employ a majority voting
rule for every set of feature vectors, i.e., an estimate is only performed if the majority
agrees. We conducted experiments using a single channel of the AIRA-UAS dataset, a
public database of raw drone noises collected with an array of microphones mounted on
a drone. This dataset comprises many different kinematics, with different spectra. The
features we used are based on the Mel-Frequency Cepstral Coefficients (MFCC) and the
Short-Time Fourier Transform of raw signals. We used the k-Nearest Neighbors algorithm
for classification and adopted the cross-validation strategy to evaluate the method. We
observed that the use of MFCC results in less biased estimations, which favors the voting
strategy. The detection in the proposed method reached a probability of false positive near
0%, even with a small set of votes, and a classification accuracy of 99.1%. These metrics

satisfy the requirements of most civilian and military applications.
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Conference Paper:

3. FERNANDES, R. P.; APOLINARIO JR., J. A.; SEIXAS, J. M. de. Enhancing
TDE-based Drone DOA Estimation with Genetic Algorithms and Zero Cyclic

Sum. In:. Congresso Brasileiro de Inteligéncia Computacional, 2023.
Abstract:

This paper discusses a way to enhance an acoustic-based approach to obtaining the
direction of arrival (DOA) of a drone’s ego noise using a microphone array. We focus on
obtaining better time delay estimations (TDE) from a set of possible candidates. Recently,
a large number of works have been put forward to detect and classify drones with different
techniques. However, more investigation is required to tackle the drone DOA estimation
problem using the time difference of arrival between pairs of microphones for the case
of strongly corrupted audio signals, possibly by noise and multipath. The main problem
in a complex acoustic environment is accurately estimating the time difference of arrival.
With a traditional approach, this task becomes nearly impossible without the line of sight
assumption, that is, whenever the highest cross-correlation peak between signals does not
correspond to the delay between them. This paper uses genetic algorithms to search for
the correct delays between pairs of microphones among a set of possible delays (primary
and secondary delays). We define a fitness function based on the concept of zero cyclic sum
of closed loops, i.e., when forming a closed loop, the sum of all theoretical delays should
equal zero. A drawback of closed loops is that incorrect delays may result in a zero-sum; we
thus created a fitness function that considers all possible closed loops of a given array. We
exploited different approaches to estimate the direction of arrival using the combination of
genetic algorithms and zero cyclic sum. In our experiments, the method successfully found
all correct delays in simulations, providing strong evidence of its effectiveness when a
correct delay exists among multiple possible delays. Furthermore, in experimental trials, it
significantly enhanced the number of correct delays detected, further validating its utility

and potential in practical scenarios.
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Conference Paper:

4. APOLINARIO JR., J. A.; RAMOS, A. L. L.; FERNANDES, R. P.; DUARTE, J.
C.; SOUSA, M. N. de. Exploiting reverberation fingerprint for a neural network
based acoustic emitter localization. In:. International Conference on Control, Decision

and Information Technologies 2024.
Abstract:

This paper addresses the problem of localizing a sound source in strong reverberating
and eventually noisy environments, including relevant potential applications, e.g., target
location in interior room acoustic environments, in- and outdoor navigation, and robotics.
Currently, available audio emitter location techniques, especially those based exclusively on
Time Difference of Arrival, do not perform entirely well in unfriendly environments. Recent
works propose using neural networks to solve the emitter location problem but have not
yet adequately addressed the issue of severe reverberation. The solution proposed herein
uses a two-layer feedforward neural network supported by signal processing techniques to
extract the features employed in the neural network. Training the network with a select
set of features, encompassing information from the reverberation fingerprint, results in
efficient system featuring reduced training time and relatively low mean squared error

values.



APPENDIX A. Published works 106

Journal Paper:

1. SERRENHO, F. G.; APOLINARIO JR., J. A;; RAMOS, A. L. L.; FERNAN-
DES, R. P. Gunshot airborne surveillance with rotary wing UAV-embedded
microphone array. Journal on the Science and Technology of Sensors, Sensors, v. 19(19),
October 2019.

Abstract:

Unmanned aerial vehicles (UAV) are growing in popularity, and recent technological
advances are fostering the development of new applications for these devices. This paper
discusses the use of aerial drones as a platform for deploying a gunshot surveillance
system based on an array of microphones. Notwithstanding the difficulties associated
with the inherent additive noise from the rotating propellers, this application brings an
important advantage: the possibility of estimating the shooter position solely based on the
muzzle blast sound, with the support of a digital map of the terrain. This work focuses on
direction-of-arrival (DOA) estimation methods applied to audio signals obtained from a
microphone array aboard a flying drone. We investigate preprocessing and different DOA
estimation techniques in order to obtain the setup that performs better for the application
at hand. We use a combination of simulated and actual gunshot signals recorded using
a microphone array mounted on a UAV. One of the key insights resulting from the field
recordings is the importance of drone positioning, whereby all gunshots recorded in a
region outside a cone open from the gun muzzle presented a hit rate close to 96%. Based
on experimental results, we claim that reliable bearing estimates can be achieved using a

microphone array mounted on a drone.
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Journal Paper:

2. SOUSA, M. N. de; SANT’ANA, R.; FERNANDES, R. P.; DUARTE, J. C;
APOLINARIO JR., J. A.; THOMA, R. Improving the performance of a radio-
frequency localization system in adverse outdoor applications. Journal on Wireless
Communications and Networking, EURASIP, v. 1, p. 123, May 2021.

Abstract:

In outdoor RF localization systems, particularly where line of sight can not be
guaranteed or where multipath effects are severe, information about the terrain may
improve the position estimate’s performance. Given the difficulties in obtaining real data, a
ray-tracing fingerprint is a viable option. Nevertheless, although presenting good simulation
results, the performance of systems trained with simulated features only suffer degradation
when employed to process real-life data. This work intends to improve the localization
accuracy when using ray-tracing fingerprints and a few field data obtained from an adverse
environment where a large number of measurements is not an option. We employ a machine
learning (ML) algorithm to explore the multipath information. We selected algorithms
random forest and gradient boosting; both considered efficient tools in the literature. In a
strict simulation scenario (simulated data for training, validating, and testing), we obtained
the same good results found in the literature (error around 2 m). In a real-world system
(simulated data for training, real data for validating and testing), both ML algorithms
resulted in a mean positioning error around 100 ;m. We have also obtained experimental
results for noisy (artificially added Gaussian noise) and mismatched (with a null subset of)
features. From the simulations carried out in this work, our study revealed that enhancing
the ML model with a few real-world data improves localization’s overall performance.
From the machine ML algorithms employed herein, we also observed that, under noisy
conditions, the random forest algorithm achieved a slightly better result than the gradient
boosting algorithm. However, they achieved similar results in a mismatch experiment. This
work’s practical implication is that multipath information, once rejected in old localization
techniques, now represents a significant source of information whenever we have prior

knowledge to train the ML algorithm.
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Journal Paper:

3. FERNANDES, R. P.; APOLINARIO JR., J. A.; SEIXAS, J. M. de. A reduced
complexity acoustic-based 3D DOA estimation with Zero Cyclic Sum. Journal

on the Science and Technology of Sensors, Sensors, 2024.
Abstract:

Accurate Direction of Arrival (DOA) estimation is paramount in various fields, from
surveillance and security to spatial audio processing. This work introduces an innovative
approach that refines the DOA estimation process and demonstrates its applicability
in diverse and critical domains. We propose a two-stage method that capitalizes on the
often-overlooked secondary peaks of the cross-correlation function by introducing a reduced
complexity DOA estimation method. In the first stage, we use a low complexity cost
function based on zero cyclic sum (ZCS) condition that allows for an exhaustive search
of all combinations of time delays between pairs of microphones, including primary peak
and secondary peaks of each cross-correlation. For the second stage, we only test a subset
of the time delay combinations with the lowest ZCS cost function using a least-squares
(LS) solution, which requires more computational effort. To showcase the versatility and
effectiveness of our method, we apply it to the challenging acoustic-based drone DOA
estimation scenario using an array of four microphones. Through rigorous experimentation
with simulated and actual data, our research underscores the potential of our proposed
DOA estimation method as an alternative for handling complex acoustic scenarios. The
ZCS method demonstrated an accuracy of 89.4% =+ 2.7%, whereas the ZCS with LS method
exhibited a notably higher accuracy of 94.0% + 3.1%, showcasing the superior performance
of the latter.
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Journal Paper:

4. FERNANDES, R. P.; DUARTE, J. C.; APOLINARIO JR., J. A.; SEIXAS, J. M.
de. Optimized TDOA-based drone localization with distributed microphones.

Journal of Communication and Information Systems (to be submitted).
Abstract:

Accurately localizing drones in acoustically complex environments remains a signifi-
cant challenge, with important implications for defense, law enforcement, and autonomous
systems. This study addresses the problem of estimating drone localization using acoustics
in environments characterized by strong reflections and noise. We employ Time Difference
of Arrival (TDOA) techniques for localization estimation and compare them with a spe-
cialized machine learning regression model. While previous works have considered neural
networks for localization, they often suffer from limited generalization across different
environments. To address this, we propose a novel method that enhances the TDOA vector
by incorporating both primary and secondary peaks of the cross-correlation, guided by
the Zero Cyclic Sum condition. Additionally, we introduce optimization strategies that
selectively reduce the number of TDOA inputs based on a least-squares cost function. We
present a comparative analysis of TDOA-based optimization techniques with a machine
learning method that utilizes the environment’s reverberation fingerprint as input features
for training. Experimental results demonstrate that the proposed TDOA-based method
achieves a localization accuracy of 0.55 £+ 0.35 meters, showcasing its effectiveness and

practical applicability in challenging acoustic environments.
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