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ABSTRACT 

 The lack of integration between computer-aided engineering (CAE) and model-

based systems engineering (MBSE) tools hinders the assessment of how design changes 

affect system requirements. To address this challenge, this thesis proposes a model 

breakdown structure methodology implemented using MathWorks’ System Composer to 

integrate MBSE and CAE models. The Brazilian Multipurpose Reactor is used as a case 

study to demonstrate the effectiveness of the proposed methodology. An enhanced, 

automated verification process is achieved by linking system requirements to a finite 

element analysis that calculates fuel and cladding temperature distributions in a slow loss 

of flow accident scenario. First, a Latin hypercube design is employed to evaluate how 

variations in design factors influence cladding temperature. Second, the Wilks’ theorem 

is applied to calculate the maximum response with a 95% confidence level and 95% 

probability. The results indicate that the 95/95 upper limit of the peak cladding 

temperature remains below the onset of nucleate boiling. Furthermore, the integrated 

model is expected to significantly reduce the effort required for uncertainty 

quantification. 

v 



 

 

 
 

THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



vii 

TABLE OF CONTENTS 

I. INTRODUCTION................................................................................................. 1 

A. OBJECTIVE ............................................................................................. 5 
B. BENEFITS FOR STAKEHOLDERS ..................................................... 5 
C. THESIS ORGANIZATION ..................................................................... 6 

II. LITERATURE REVIEW .................................................................................... 7 

A. THE SYSTEM MODEL AS AN INTEGRATED 
FRAMEWORK ......................................................................................... 7 

B. VERIFICATION PROCESS USING INTEGRATED 
COMPUTER-AIDED ENGINEERING METHODS .......................... 14 

C. VERIFICATION OF REGULATORY REQUIREMENTS FOR 
NUCLEAR SYSTEMS ........................................................................... 21 

III. METHODOLOGY ............................................................................................. 29 

A. THE MODEL BREAKDOWN STRUCTURE .................................... 29 
B. METHODS FOR DESIGN OF EXPERIMENTS AND 

UNCERTAINTY QUANTIFICATION ................................................ 35 

IV. MODELING AND SIMULATION ................................................................... 37 

A. SYSTEM DESCRIPTION ..................................................................... 37 
B. FUNCTIONAL ANALYSIS .................................................................. 40 
C. REQUIREMENT SPECIFICATION ................................................... 42 
D. SYSTEM ANALYSIS ............................................................................. 44 
E. INTEGRATION OF MODELS ............................................................. 47 

V. RESULTS AND DISCUSSION ......................................................................... 51 

A. FINITE ELEMENT ANALYSIS .......................................................... 51 
B. REQUIREMENT VERIFICATION USING SIMULATION-

BASED TESTS ........................................................................................ 55 
C. BENEFITS, INSIGHTS, AND TRADE-OFF BETWEEN 

COMPUTATIONAL TIME AND ACCURACY ................................. 63 

VI. CONCLUSION AND FUTURE WORK .......................................................... 69 

APPENDIX A.  MATLAB MODEL ............................................................................. 71 



viii 

APPENDIX B.  EXPERIMENTAL DESIGN .............................................................. 75 

APPENDIX C.  ANALYSIS OF VARIANCE .............................................................. 77 

LIST OF REFERENCES ............................................................................................... 79 

INITIAL DISTRIBUTION LIST .................................................................................. 87 

 

  



ix 

LIST OF FIGURES 

Figure 1. Lack of integration between MBSE and CAE domains. ............................ 2 

Figure 2. Multi-domain simulations in engineering projects. .................................... 3 

Figure 3. The system model described as a framework. Source: Friedenthal, 
Moore, and Steiner (2015). ....................................................................... 10 

Figure 4. Assessment of MBSE tools and costumer needs, highlighting the 
simulations need. Adapted from Khandoker et al. (2022). ....................... 12 

Figure 5. System design and verification framework based on X-SEM. Source: 
Gu et al. (2024). ........................................................................................ 13 

Figure 6. Process simulation spectrum of length and time scales. Source: de 
Hemptinne et al. (2022). ........................................................................... 15 

Figure 7. STK and MATLAB co-simulations inside Innoslate action diagram 
(a) showing APIs (b) used to transfer data from MATLAB. Source: 
Dam (2020). .............................................................................................. 17 

Figure 8. Example of System Composer architecture model (a) naturally 
integrating with the Simulink design model (b). Source: MathWorks 
(2024). ....................................................................................................... 18 

Figure 9. Two ways to conduct MBSE: traditional approach (a) and integrated 
approach (b). Adapted from Tsadimas (2018). ......................................... 20 

Figure 10. Average time for licensing an NPP before construction and 
commissioning by country. Adapted from Nuclear Energy Agency 
(2021). ....................................................................................................... 22 

Figure 11. Nuclear power in the world throughout the years. Adapted from 
International Atomic Energy Agency (2023). .......................................... 22 

Figure 12. Nuclear safety concepts and the evolution of IAEA standards. 
Source: Král and Krhounková (2024). ...................................................... 23 

Figure 13. Levels of functions for nuclear systems. Source: International 
Atomic Energy Agency (2022). ................................................................ 24 

Figure 14. The verification and validation process in relation to the BEPU 
methodology. Source: Zhang (2019). ....................................................... 25 



x 

Figure 15. Apparent margin vs. licensing margin. Adapted from Zhang and 
Schneidesch (2023). .................................................................................. 26 

Figure 16. The MBS methodology concept. .............................................................. 30 

Figure 17. Integrating MBSE tools and CAE methods into the MBS. ...................... 31 

Figure 18. The requirements rainfall from MBSE into system development 
environments. ............................................................................................ 32 

Figure 19. MBS methodology applied to enhance the verification process. .............. 33 

Figure 20. Traceability matrix between requirements and models’ outputs. ............. 34 

Figure 21. Relationships between processes and models. Adapted from 
Friedenthal, Moore, and Steiner (2015). ................................................... 36 

Figure 22. Schematic view of the RMB heavy water reflector tank and reactor 
core. Source: Ribeiro et al. (2020). ........................................................... 39 

Figure 23. Technique used to manufacture fuel plates. Adapted from Durazzo et 
al. (2024). .................................................................................................. 40 

Figure 24. High-level safety functions of the RMB. .................................................. 42 

Figure 25. A schematic view of the cross section of the RMB fuel assembly (a), 
fuel plate domain and interfaces (b), and FEA mesh (c). Adapted 
from Ribeiro et al. (2020). ........................................................................ 45 

Figure 26. Integrated models (a) for the PCT requirement verification (b) in a 
SLOFA scenario........................................................................................ 49 

Figure 27. Links to the PCT requirement. .................................................................. 50 

Figure 28. Steady state temperature distribution. ....................................................... 52 

Figure 29. Relative power and mass flow profiles. .................................................... 53 

Figure 30. Temperature distribution when the PCT reaches its maximum value 
(t = 54 s). ................................................................................................... 54 

Figure 31. Time histories of fuel and cladding temperatures during the SLOFA 
scenario against the ONB threshold. ......................................................... 56 

Figure 32. PCT progression for the second order Wilks’ theorem LHD. .................. 57 

Figure 33. Parallel plot and ANOVA results from the 59-cases LHD. ...................... 59 



xi 

Figure 34. Parallel plot and ANOVA results from the 93-cases LHD. ...................... 60 

Figure 35. PCT histogram after the propagation of power probability 
distribution considering the first order statistics. ...................................... 62 

Figure 36. PCT histogram after the propagation of power probability 
distribution considering the second order statistics. ................................. 63 

Figure 37. The proposed MBS methodology applied to integrate models (a) and 
to enhance the verification process with both conservative and 
uncertainty analysis (b). Adapted from Freixa et al. (2021). .................... 68 

 

  



xii 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xiii 

LIST OF TABLES 

Table 1. Tools’ capabilities to perform MBSE and CAE methods. ........................ 19 

Table 2. Studies that applied MBSE, CAE, and BEPU approaches to the 
design of nuclear systems. ........................................................................ 27 

Table 3. RMB core design data. Source: Ribeiro et al. (2020). .............................. 38 

Table 4. Example of a technical measure profile. ................................................... 43 

Table 5. Code-to-code comparison against NTHC1 for slow loss of flow 
accident of RMB. ...................................................................................... 54 

Table 6. Factors and their respective ranges for experimental designs. ................. 57 

Table 7. Comparison of the 95/95 PCT upper limit using LHD and Wilks’ 
theorem. .................................................................................................... 61 

Table 8. Role of each MBS layer. ........................................................................... 67 

 

  



xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

ANOVA analysis of variance 

API application programming interface 

BDBA beyond design-basis accident 

BEPU best estimate plus uncertainty 

CAD computer-aided design 

CAE computer-aided engineering 

CFD computational fluid dynamics 

CNEN Brazilian Nuclear Energy Commission 

COI critical operational issue 

CONOPS concept of operations 

DBA design-basis accident 

DEC design extension conditions 

DEE digital engineering ecosystem 

DLL dynamic-link library 

DoD Department of Defense 

DOE design of experiments 

DT digital twins 

FEA finite element analysis 

FMI functional mock-up interfaces 

HLA high-level architecture 

IAEA International Atomic Energy Agency 

IEEE Institute of Electrical and Electronics Engineers 

INCOSE International Council on Systems Engineering 

IPEN Nuclear and Energy Research Institute 

KPP key performance parameter 

LHD Latin hypercube design 

LOCA loss of coolant accident 



xvi 

LOFA loss of flow accident 

M&S modeling and simulation 

M2M model-to-model 

M2T model-to-text 

MATLAB  matrix laboratory 

MBS model breakdown structure 

MBSE model-based systems engineering 

MOE measure of effectiveness 

MOP measure of performance 

MTR material testing reactor 

NEA Nuclear Energy Agency 

NPP nuclear power plant 

NTHC1 Neutronics and Thermal Hydraulics Code 

ONB onset of nucleate boiling 

PCT peak cladding temperature 

PDE Partial Differential Equation Toolbox 

PFT peak fuel temperature 

PPF power peaking factor 

RIA reactivity-initiated accident 

RMB Brazilian Multipurpose Reactor 

SCRAM reactor trip 

SE systems engineering 

SLOFA slow loss of flow accident 

STK Systems Tool Kit 

SysML Systems Modeling Language 

U.S. NRC U.S. Nuclear Regulatory Commission  

V&V verification and validation 

  



xvii 

EXECUTIVE SUMMARY 

Digital engineering strategy aims to shift communication from documents to 

digital models. In this context, model-based systems engineering (MBSE) is intended to 

improve communication among stakeholders (International Council on Systems 

Engineering 2023). However, high-fidelity modeling and simulation (M&S) are typically 

conducted using domain-specific tools, such as computer-aided engineering (CAE), 

rather than MBSE. Consequently, these tools do not inform MBSE whether the system 

meets the requirements (Nigischer et al. 2021). 

To address this gap, this thesis proposes a model breakdown structure (MBS) 

methodology to integrate MBSE and CAE models. This integrated approach allows 

system developers to evaluate the impact of design factors on system requirements by 

applying design of experiments and uncertainty quantification. In the MBS methodology, 

both techniques should be applied sequentially. First, the design of experiments helps 

identify which design factors are relevant for each system measure of effectiveness. 

Second, uncertainty quantification is performed based on the factors identified as 

significant. The objective of this research is to develop a unified, enhanced verification 

approach using MBSE and simulation to evaluate uncertainty in the system measures of 

effectiveness. 

Additionally, this research seeks to support the licensing process of nuclear 

systems. Given that the licensing process is crucial for the development of new reactors, 

applying an integrated MBSE–CAE methodology enables the use of the best estimate 

plus uncertainty (BEPU) approach for verifying regulatory requirements. This may help 

reduce the cycle time from data gathering to decision-making in the licensing process 

(Zhang and Schneidesch 2023). 

A. BACKGROUND 

In the traditional document‐based approach to systems engineering (SE), most of 

the technical information generated about the system is contained in documents, 

specifications, and reports. On the other hand, in a model-based approach, a system 
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model captures a significant amount of information. Thus, leveraging MBSE should 

improve communications among system developers and decision-makers (International 

Council on Systems Engineering 2023). 

Notwithstanding, for formal analysis and evaluation activities, such as design 

space exploration and verification, domain engineers typically create additional models 

using specific CAE tools. Although CAE tools can satisfy the extended calculation needs 

regarding simulation and computation, they have limited or no interconnectivity with 

MBSE modeling editors. This lack of integration hinders the existence of a common 

system model for all stakeholders. Conversely, MBSE and CAE models are often created 

and executed separately by different experts, leading to inconsistencies and redundant 

work (Nigischer et al. 2021). 

Lastly, an integrated approach in the licensing process of nuclear installations can 

help inform regulatory authorities whether safety requirements were met. First, because 

the lessons learned from the Fukushima Daiichi accident in 2011 reinforced some safety 

requirements (International Atomic Energy Agency 2016). Second, because in the BEPU 

approach, uncertainty analysis is applied to determine safety margins in the verification 

process of regulatory requirements (Zhang and Schneidesch 2023). Therefore, a 

structured model-based implementation of uncertainty analysis may enhance the 

verification of regulatory requirements. 

B. PROPOSED SOLUTION 

The proposed methodology involves a set of interconnected models constituting a 

digital engineering ecosystem (DEE) in which requirements are linked to both simulation 

and test models. This approach aims to enable automatic data exchange between the 

MBSE modeling editor and CAE methods. Ideally, the uncertainty quantified in the 

simulation results is applied to enhance the verification process. In this context, the MBS 

provides evidence that the system meets the specified requirements and helps determine 

the safety margin. 

The DEE is organized within MATLAB and Simulink environments. System 

Composer, which is an add-on to MATLAB and Simulink, is utilized as an MBSE 
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requirements editor. The Partial Differential Equation (PDE) Toolbox is applied to 

solve a transient finite element analysis (FEA), where the core heat transfer of the 

Brazilian Multipurpose Reactor (RMB) is analyzed in a slow loss of flow accident 

(SLOFA). A requirement to verify the possibility of the onset of nucleate boiling (ONB) 

is implemented by the FEA thermal model. 

Verification is conducted using Latin hypercube designs (LHD). This allows us to 

identify the relationship between design factors and peak cladding temperature (PCT) 

(Chen et al. 2023). Additionally, Wilks’ theorem is applied for uncertainty quantification, 

analyzing the PCT with 95% probability and 95% confidence (95/95) (Zhang and 

Schneidesch 2023). 

C. KEY FINDINGS 

The integrated model created using System Composer provides an effective way 

to interconnect MBSE with high-fidelity simulations. The results obtained by the FEA 

were collected, analyzed, and applied to verify a safety-related functional requirement. 

First, code-to-code comparison is performed against the Neutronics and Thermal 

Hydraulics Code (NTHC1) results (Ribeiro et al. 2020). The results showed good 

agreement for PCT. Second, the experimental design showed that the thermal power 

before the reactor trip (SCRAM) is the most important factor for PCT. 

The analysis indicates that the 95/95 uncertainty band of the PCT remains below 

the ONB requirement. This means that the 95th quantile of the cladding temperature will 

be less than the ONB, with 95% confidence. Furthermore, the application of LHD and 

Wilks’ theorem can effectively reduce the amount of computational effort compared to 

full factorial designs and Monte Carlo simulations. However, the order of the Wilks’ 

theorem ought to be selected based on the number of factors that are being analyzed. 

D. CONCLUSION AND FUTURE WORK 

In conclusion, the developed methodology successfully addressed a commonly 

observed lack of integration between MBSE and CAE. A set of interconnected models 

performed requirement verification, design space exploration, and uncertainty analysis 
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using the results obtained in a transient FEA. Harnessing a BEPU approach can leverage 

MBSE to enhance the verification of regulatory requirements of nuclear systems, thereby 

supporting the licensing process. Moreover, future challenges should focus on enhancing 

the effectiveness of the methodology in assessing various CAE methods across distinct 

domains, such as computational fluid dynamics, computational electromagnetics, 

computational chemistry, and multi-physics simulations. 
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I. INTRODUCTION 

Model-based systems engineering (MBSE) has become an essential methodology 

for managing the development of complex systems. This digital representation of the 

traditional document-based systems engineering (SE) process increases the ability to 

manage the development of complex systems by enabling a system model to be viewed 

from various levels of abstraction (International Council on Systems Engineering 2023; 

Khandoker et al. 2022). The Systems Modeling Language (SysML) is the main modelling 

language for MBSE, which is intended to support all phases of a system life cycle, 

including tasks such as verification and validation (V&V) (Nigischer et al. 2021; X. 

Zhang et al. 2023; Mengyan et al. 2024). 

Computer-aided engineering (CAE) methods are useful tools for design 

verification. Currently, most of these tools, typically multi-physics simulations, are 

installed in isolated, discipline-specific data repositories (Mengyan et al. 2024; Romero, 

Pinquié, and Noël 2022; Khandoker et al. 2022). In fact, according to Gu et al. (2024), 

existing MBSE methodologies are not integrated with the modeling and simulation 

(M&S) of complex systems’ physical characteristics, limiting its application. Therefore, 

MBSE leverages SE but faces a lack of coordination of its models with the engineering 

domain, which constrains the ability to analyze the impact of changes across design 

platforms on system requirements (Gu et al. 2024; Khandoker et al. 2022; Nigischer et al. 

2021; L. Zhang et al. 2022). Figure 1 illustrates this gap. This undesired situation is 

caused by the diversity of tools, absence of an integrated MBSE–M&S framework, and 

the lack of automated feedback to the SysML tool. 
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Figure 1. Lack of integration between MBSE and CAE domains. 

The main cause of this gap is that complex engineering projects deal with 

different computer codes (e.g., Ansys, PDMS, and HYSYS), as shown in Figure 2. In the 

1990s, the U.S. Department of Defense (DoD) conducted some effort to mitigate this 

issue, which culminated in high-level architecture (HLA) (Dahmann 1997; Gorecki et al. 

2018). HLA is a standard that provides an architectural basis for simulation 

interoperability (Dahmann 1997; Gorecki et al. 2018; Petty and Morse 2004). To the best 

of the author’s knowledge, HLA was a failure because the owners of established software 

tools did not want to restructure their software to meet the rules. Nonetheless, the 

Institute of Electrical and Electronics Engineers (IEEE) still provides recommended 

practices for HLA in IEEE 1730 (2022). Moreover, cross-domain issues due to the 

significant number of disciplines involved may lead to Abilene paradox situations with 

poor group decision-making (Halbesleben, Wheeler, and Buckley 2007). This occurs 

because there is no clear connection between the proposed design changes and originally 

established system requirements and stakeholder needs (Beery 2016). 
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Figure 2. Multi-domain simulations in engineering projects. 

A second cause is the absence of an integrated MBSE–M&S framework. As 

SysML was maturing, an MBSE initiative was organized by the International Council on 

Systems Engineering (INCOSE) in 2007 (Dickerson and Mavris 2013). This initiative 

had M&S interoperability as one of its main themes and established research focus on the 

interaction of models throughout system development. Although the level of maturity in 

MBSE evolved throughout the years, in a model-driven approach, the emphasis is shifted 

towards achieving concurrency in design and verification. Noticeably, the use of 

integrated approaches that aid decision-makers in the analysis of a system performance is 

an MBSE application (Bickford et al. 2020). Thus, current efforts position MBSE as an 

enabler of a coordinated, consistent set of models across different domains of engineering 

(Bickford et al. 2020; International Council on Systems Engineering 2021). In the near 

future, CAE methods might replace manual engineering calculations, and SE will be 

predominantly model-based (International Council on Systems Engineering 2021). In this 

context, the SysML software will provide a framework for on-demand assessment 

(Bickford et al. 2020). Systems engineers are going to use ontologically connected 

models, which will be updated in real time (International Council on Systems 
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Engineering 2021). Hence, MBSE evolution is aligned with the vision for digital twins 

(Bickford et al. 2020; Mengyan et al. 2024). According to INCOSE (2021), by 2035, a 

family of integrated MBSE–M&S frameworks may exist. 

Lastly, the lack of automated feedback regarding simulation results to the SysML 

tool hinders the assessment of design changes on system requirements (Nigischer et al. 

2021). Indeed, simulations do not inform MBSE tools and, consequently, system 

developers and decision makers on whether the system meets the requirements. Thus, this 

step is often a manual activity. In recent years, several authors conducted work to narrow 

this gap (Gu et al. 2024; Khandoker et al. 2022; Nigischer et al. 2021; L. Zhang et al. 

2022). According to Nigischer et al. (2021), two approaches were applied to transfer 

parameters between SysML and simulation environments: model-to-model (M2M) and 

model-to-text (M2T) transformations. However, both fail to provide automated feedback 

regarding the simulation results to the SysML tool. One of the few approaches providing 

automated results feedback is the use of plugins (Nigischer et al. 2021). Export files (e.g., 

XML and CSV) provide tighter integration by using specific plugins for SysML editors, 

which either access the simulation environment or export files with code scripts. 

Although plugins create linkages, the degree of automation increases significantly when 

the MBSE editor has direct access to the simulation environment. 

Simulation-based tests are employed to verify regulatory requirements during the 

licensing process of nuclear systems, using either a best estimate plus uncertainty 

(BEPU) approach or a conservative approach (International Atomic Energy Agency 

2016). The conservative approach uses conservative models, conservative boundary 

conditions, and penalizing rules to ensure that uncertainties in the modeling of the system 

response are bounded, providing a high level of assurance to the stakeholders. In contrast, 

the BEPU approach uses both deterministic and probabilistic insights to assess safety 

margins. It is a time-consuming process that requires engineering judgment. In this 

context, MBSE can help to overcome difficulties caused by the incompleteness of 

established BEPU approaches to make it more feasible (X. Zhang et al. 2023).  

Therefore, the coordination of system-level and domain-level tools plays a key 

role in assessing the impact of design changes across platforms from various disciplines 
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on system requirements. Noticeably, the key factor for an automated process is the 

simulation result feedback to the SysML tool. Furthermore, MBSE can support the 

utilization of the BEPU approach in the safety analysis of nuclear systems.  

A. OBJECTIVE 

This thesis focuses on integrating MBSE and CAE methods to assess the effect of 

design changes on system requirements. Additionally, it aims to support the utilization of 

the BEPU approach to enhance the verification of regulatory requirements for nuclear 

systems.  

Ultimately, this thesis seeks to answer the following research questions: 

How can the integration of models facilitate the analysis of design changes? 

How can the integration of models improve the verification process? 

How can the integration of models be applied to support decision-making in the 

licensing process of nuclear systems? 

B. BENEFITS FOR STAKEHOLDERS 

The potential benefits of this research are the following: 

• A novel integrated methodology in which system requirements can be 

implemented and verified using the results obtained from finite element 

analysis (FEA). 

• An enhanced verification process through a structured BEPU analysis, 

involving both the design of experiments (DOE) and Wilks’ theorem. 

Several stakeholders can benefit from this study, as follows: 

• MBSE software developers 

• Military and civilian organizations that develop nuclear systems 

• Universities that conduct research related to nuclear systems 
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• Regulatory authorities 

• Laboratories that develop nuclear safety codes 

C. THESIS ORGANIZATION 

The remaining chapters of this thesis are organized as follows: Chapter II reviews 

the literature to outline the motivation for this thesis and position this research in relation 

to existing studies. Chapter III proposes a novel methodology entitled model breakdown 

structure (MBS). Chapter IV provides a detailed description of the multi-physics model 

of the Brazilian Multipurpose Reactor (RMB), which is used as a case study. Chapter V 

provides the results of the simulations and analyzes the effectiveness of the methodology. 

Chapter VI concludes the thesis and suggests future challenges. 
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II. LITERATURE REVIEW 

The literature review is organized into three sections. The first section discusses 

the motivation for integrating model-based systems engineering (MBSE) and systems 

development environments, such as computer-aided engineering (CAE) methods. The 

second section emphasizes the importance of CAE methods in the verification process, as 

well as the current limitations of commercial MBSE tools. Lastly, the third section 

reviews the progress of the best estimate plus uncertainty (BEPU) approach in the 

licensing process of nuclear systems and examines the application of MBSE in the 

nuclear energy sector. 

The discussions on systems engineering (SE) processes are outside the scope of 

this literature review, as this research inherently follows a similar approach. Therefore, 

revisiting the classical goals of the SE process is unnecessary. Additionally, this review 

does not focus on descriptive architectural products of MBSE methodologies that use the 

Systems Modeling Language (SysML). Instead, this review examines studies that have 

extended MBSE methodologies, primarily to enhance the verification process of complex 

systems, such as nuclear power plants (NPPs). 

A. THE SYSTEM MODEL AS AN INTEGRATED FRAMEWORK 

SE is the nexus between stakeholder needs and domain engineers, facilitating 

integration and collaboration to develop and maintain systems that meet requirements. 

Although this holistic approach has gained more value throughout the years, its potential 

benefits concerning decision-making are still an important area of research. In 2018, the 

U.S. Department of Defense (DoD) established a digital engineering strategy whose main 

goal is to change the means of communication from documents to digital models 

(Department of Defense 2018). One of its focus areas is the SE transformation initiative, 

which aims to modernize how systems engineers use model-based approaches to specify, 

develop, and verify systems. Current efforts include improving capabilities in different 

areas such as integration of modeling environments, including those applied to MBSE. 
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MBSE is defined by the International Council on Systems Engineering (INCOSE) 

as “the formalized application of modeling to support system requirements, design, 

analysis, verification, and validation activities beginning in the conceptual design phase 

and continuing throughout development and later life cycle phases” (International 

Council on Systems Engineering 2023, 189). Dickerson and Mavris (2013) studied the 

history of MBSE and traced the historical contributions of software to support SE over 

the last 50 years. They concluded that model-based approaches to SE have evolved to a 

level of maturity that is now commercially supported. Typical benefits of MBSE include 

an increased ability to manage system complexity and improved communications among 

the stakeholders.  

The MBSE approach aims to make models more intuitive to improve SE 

effectiveness throughout the entire life cycle. For instance, SysML is “a general-purpose 

graphical modeling language for specifying, analyzing, designing, and verifying systems” 

(Dickerson and Mavris 2013, 2). SysML is used to capture the system model while 

supporting various abstraction techniques and providing the ability to view the system 

from different perspectives and levels of abstraction, such as a black-box view and white-

box view (Raphael and Smith 2013). MBSE practitioners use SysML to construct models 

of a system’s architecture, functions, and requirements. Additionally, model-based 

reasoning is useful for diagnosis of complex systems where there are a significant 

number of reasons for malfunctioning (Raphael and Smith 2013). Therefore, successful 

MBSE implementation not only requires the translation of stakeholder needs into 

requirements but also the utilization of system behavior modeling to support design, 

analysis, and verification activities.  

Modeling languages for systems are widely used in MBSE to design complex 

systems that integrate various disciplines, such as mechanical, electrical, and control 

engineering. However, they are often not fully integrated into a unified system 

development environment. Currently, the emergence of SysML offers the ability of 

practicable behavioral models to support system analysis, design, and development 

(Wolny et al. 2020). Nevertheless, while SysML is gaining broad acceptance across the 

industry, a more holistic framework describes how the system model relates to other 
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kinds of modeling and simulation (M&S) (Friedenthal, Moore, and Steiner 2015). Thus, 

for the purpose of this study, a model is a relationship between variables that represent 

causes and variables that represent effects, and a simulation is a representation of the 

system behavior as a function of time and space (Raphael and Smith 2013; Friedenthal, 

Moore, and Steiner 2015). 

The creation of a system model is a primary goal of MBSE. This model can be 

understood as an integral part of the system’s technical baseline (Friedenthal, Moore, and 

Steiner 2015). Notwithstanding, in a broader development context, the system model is a 

set of interconnected models that exist as an integrated framework, as shown in Figure 3. 

In this approach, changes to the system requirements or design are propagated across all 

related models. Notably, frameworks that integrate models to assist decision-makers in 

evaluating system performance represent an application of MBSE (Bickford et al. 2020; 

Mengyan et al. 2024). Therefore, the rise of MBSE introduces a structured approach 

through interconnected models to attain this objective. 

To be effective, efforts to integrate MBSE and engineering models through 

frameworks must address the challenging connections between different software. For 

instance, Beery (2016) presented a framework that investigated the relationship between 

system architecture and analysis using external simulations. The research combined 

SysML and simulation models to assess system requirements. Nevertheless, no feedback 

regarding the results was provided to the SysML tool. Although the proposed framework 

conducted detailed analysis of system performance using external models, the last step 

was the presentation of the simulation results instead of their feedback to the SysML tool. 

Previous work conducted by Kande (2011) also proposed a framework for integrating the 

models developed using SysML to create an executable platform for detailed design. 

Virtual engineering models were represented using SysML blocks. Information was 

converted from SysML to C++ to be executed, and dynamic-link library (DLL) files were 

plugged into engineering software to run the simulation cases. This approach kept 

consistency across the process, as models in both environments remained synchronized. 

Although comprehensive frameworks have narrowed the gap between SysML and 



10 

simulations to reduce the extent of rework required to evaluate the system using different 

parameters, they require cross-platform adaptations to be fully integrated. 

 
Figure 3. The system model described as a framework. Source: Friedenthal, 

Moore, and Steiner (2015). 

Several authors also highlighted that a comprehensive approach involving MBSE 

and multi-domain simulation is limited by current SysML capabilities. For instance, 

Nigischer et al. (2021) investigated the state of the art and future perspectives for multi-

domain simulation using SysML. The research explored the available model extensions 

and plugins to transfer parameters to different simulation environments. They concluded 

that tool-specific plugins may either generate scripts as export files or directly access 

simulation environments. Considering a more holistic approach, Khandoker et al. (2022) 

investigated the selection of an MBSE tool based on discipline specific requirements. 

They created guidelines to find the ideal tool for specific industrial applications by 
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highlighting the key criteria each type of industry might consider. Furthermore, they 

proposed a filtration method to select an ideal MBSE tool for interdisciplinary 

application. Nonetheless, the authors found that there is no SysML tool that satisfies all 

user needs from various engineering disciplines. For example, Figure 4 shows the 

weakness of MBSE tools regarding simulation needs (i.e., connection of architecture 

models with simulations to calculate system performance), as most tools share a 

reasonable grade (3 out of 5). In fact, integration standards (e.g., functional mock-up 

interfaces (FMI) and high-level architecture (HLA)) were considered successful for 

model exchange and co-simulation in specific domains (Gorecki et al. 2018). Therefore, 

the performance of commercial SysML tools in terms of simulations is insufficient, 

particularly for complex systems. 

Recent studies adopted a clean slate approach and established a novel, integrated 

methodology. Nonetheless, the functionalities of the new tools limit their effectiveness. 

For instance, Gu et al. (2024) proposed a system engineering methodology focused on 

M&S to overcome the limitations of SysML regarding its integration into system 

development environments. This new methodology relies on an integrated modeling 

language, which is based on SysML, Modelica, and discrete event system specification 

(L. Zhang et al. 2022). The main goal is to achieve “seamless integration of requirement 

analysis, function analysis, the design synthesis of system logic and physical aspects, and 

system verification and validation through a unified modeling language” (Gu et al. 2024, 

202). As shown in Figure 5, there is a closed loop process connecting requirements with 

verification and validation (V&V), which allows early verification of requirements, 

mitigating the number of future corrections. Although this methodology has bridged the 

gap between MBSE and M&S, it lacks capabilities that are exclusive to CAE tools, such 

as the discretization of space and time to solve partial differential equations using the 

finite difference method. 



12 

 
Figure 4. Assessment of MBSE tools and costumer needs, highlighting the 

simulations need. Adapted from Khandoker et al. (2022). 
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Figure 5. System design and verification framework based on X-SEM. 

Source: Gu et al. (2024). 

Digital engineering is defined as “an integrated digital approach that uses 

authoritative sources of system data and models as a continuum across disciplines to 

support life cycle activities from concept through disposal” (Department of Defense 

2018, 3). Digital engineering may address challenges associated with complexity and 

uncertainty by providing an agile and interactive development environment. Regarding 
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complex systems, a significant barrier for digital engineering is the lack of integration 

between MBSE and simulation environments. Different approaches attempted to bridge 

this gap. However, they either demand cross-platform adaptations or face significant 

limitations in terms of problem-solving capabilities, which constrains the ability to 

analyze how changes across design platforms impact system requirements (Nigischer et 

al. 2021; Gu et al. 2024). Furthermore, system developers lack an integrated framework 

that supports decision-making and provides feedback on simulation results to determine 

whether the system meets the requirements (Beery 2016; Rangel 2021). 

B. VERIFICATION PROCESS USING INTEGRATED COMPUTER-AIDED 
ENGINEERING METHODS 

SE is an interdisciplinary approach that considers both the business and the 

technical stakeholder needs. For technical assessments, model-based reasoning can 

support decision-making if models respect important relationships based on physical and 

chemical principles (Raphael and Smith 2013). Computational models are commonly 

applied in engineering tasks (e.g., simulation, diagnosis, synthesis, and behavior analysis 

of complex systems) (X. Zhang et al. 2023; Rangel 2021). Their length scales may range 

from nanometers to several thousand kilometers. For instance, Figure 6 shows that the 

modeling of a chemical process spans from quantum mechanics and molecular simulation 

to plant optimization and enterprise analysis. In practice, many engineering disciplines, 

business analysts, and project managers contribute to the design of an enterprise 

(Giachetti 2016). In this context, different computer-aided design (CAD) tools and CAE 

methods (e.g., finite element analysis (FEA) and computational fluid dynamics (CFD)) 

should be integrated to ensure that concomitant projects will converge into the desired 

vision of the enterprise. 
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Figure 6. Process simulation spectrum of length and time scales. Source: de 

Hemptinne et al. (2022). 

MBSE approaches look forward to supporting SE throughout the entire system 

life cycle. Regarding the verification process, the main challenge is to couple descriptive 

and physics-based models to use simulation-based tests (Gu et al. 2024). This study 

considers that in a verification process, “evidence is provided that the system, the system 

elements, and the work products in the life cycle meet the specified requirements” 

(International Council on Systems Engineering 2023, 49). On the other hand, a validation 

process means that “evidence is provided that the system, the system elements, and the 

work products in the life cycle will achieve their intended use in the intended operational 

environment” (International Council on Systems Engineering 2023, 49). Consequently, 

model-based reasoning derived from simulations facilitates the verification process, 

whereas tests and experiments serve to provide validation. MBSE ought to support both 

processes. Therefore, in this thesis, simulation results are considered as evidence for 

verification purposes and experimental data that uses operational environment conditions 

are evidence for validation purposes. 
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Modern MBSE approaches face significant barriers as they look forward to 

providing a holistic system model that facilitates the use of external solvers (e.g., CAE 

methods) for complex simulations. For instance, Rangel (2021) boosted the use of Cameo 

Systems Modeler to execute models of combat systems that run in a Simulink 

environment. The author found that the integration posed a considerable challenge, as it 

necessitated extensive modifications to both models to generate an executable MBSE 

model. Similarly, Dam (2020) presented the lessons learned in the creation of a digital 

engineering ecosystem (DEE), where the integration of Innoslate with other tools such as 

MATLAB/Simulink and Ansys Systems Tool Kit (STK) was applied to perform system 

verification through co-simulation using application programming interfaces (APIs). For 

instance, Figure 7 (a) shows an Innoslate action diagram that interconnects both STK and 

MATLAB co-simulations. APIs were designed to get to the critical parameters in STK 

model output and insert them into MATLAB. Figure 7 (b) presents the script that is 

executed as the MATLAB block from the action diagram is activated, which has two 

Innoslate APIs (matlab.post and matlab.get). The streamlined use of MATLAB to 

interface with STK models allowed the analysis of complex multi-physics models. 

Nevertheless, many software tools do not have APIs for integration as they are still 

essentially desktop tools, which makes it difficult to integrate them with cloud computing 

tools. To date, the integration of MBSE and complex simulations (i.e., CAE tools) 

requires additional APIs or is constrained by tools that are not compatible with cloud 

computing. 
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Figure 7. STK and MATLAB co-simulations inside Innoslate action diagram 

(a) showing APIs (b) used to transfer data from MATLAB. Source: Dam 
(2020). 

Even though APIs create linkages, the degree of automation increases 

significantly when the MBSE editor has direct access to the simulation environment, 

thereby eliminating the need for additional procedures. Recently, MathWorks (2024) 

released the System Composer, which connects the architecture to design models in 

MATLAB and Simulink. Thus, engineers can populate the architecture with multi-

physics models. System Composer is built as the architecture layer of Simulink, enabling 

models to be directly referenced from the architecture components. Figure 8 (a) illustrates 

this concept where both architecture and domain models belong to the same tool. The 

architecture model is then simulated as a Simulink model to generate results for analysis, 

as shown in Figure 8 (b). Moreover, requirements are linked to architecture components, 
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ports, interfaces, or variables. Using the linking mechanism, it is possible to identify how 

requirements are met in the architecture model. Therefore, a native connection arises 

when the MBSE tool emerges directly from powerful engineering tools such as 

MATLAB.  

 
Figure 8. Example of System Composer architecture model (a) naturally 

integrating with the Simulink design model (b). Source: MathWorks 
(2024). 
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The selection of an MBSE tool should consider its native capabilities when trying 

to replace the use of multiple software applications. Regarding M&S capabilities, the 

possibility of having powerful CAE methods (e.g., FEA) directly connected to the MBSE 

tool mitigates the gap between various levels of abstraction. Table 1 presents a 

comparison of modern MBSE tools available in the market and highlights the fact that 

only MATLAB provides both capabilities. This native connection establishes a singular 

condition that enhances the application of simulation-based tests for requirements 

verification. Henceforth, CAE methods can be integrated into a comprehensive MBSE 

environment. 

Table 1. Tools’ capabilities to perform MBSE and CAE methods. 

Tool MBSE CAE Single 
platform 

Magic Systems of Systems Architect (No Magic, n.d.) Yes No No 
Innoslate (SPEC Innovations, n.d.) Yes No No 
ModelCenter (Ansys, n.d.-a) No Yes No 
STK (Ansys, n.d.-b) No Yes Yes 
MATLAB (MathWorks 2024) Yes Yes Yes 

 

As the systems engineer must have a broad understanding of different disciplines, 

MBSE must be able to communicate across different models. Basically, there are two 

distinct approaches. In the traditional approach, illustrated in Figure 9 (a), MBSE aims to 

support SE throughout the entire system life cycle. On the other hand, in the desired 

approach shown in Figure 9 (b), it can also seamlessly integrate requirements and 

engineering disciplines. 
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Figure 9. Two ways to conduct MBSE: traditional approach (a) and 
integrated approach (b). Adapted from Tsadimas (2018). 
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C. VERIFICATION OF REGULATORY REQUIREMENTS FOR NUCLEAR 
SYSTEMS  

CAE are powerful tools that can simulate nuclear systems to support the 

verification of regulatory requirements. They contribute to a deeper understanding of the 

system behavior and complement system codes by analyzing relevant phenomena on a 

detailed scale (Rivera et al. 2024). Additionally, these tools can be applied in the 

licensing process of nuclear systems to assess safety margins and support the verification 

of regulatory requirements. This process is a significant barrier to the development of 

new reactors (Mignacca, Locatelli, and Sainati 2020). Figure 10 presents the average time 

(in years) for licensing an NPP in different countries. It shows that it takes, on average, 

11 years to license an NPP in the United Sates (Nuclear Energy Agency 2021). 

Additionally, Figure 11 shows that in the last twenty years no significant growth has been 

observed in terms of power generation from NPPs worldwide (International Atomic 

Energy Agency 2023). Conversely, several licenses were renewed for operating lifespan 

extensions. Therefore, regulatory requirements may hinder reactor construction. 
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Figure 10. Average time for licensing an NPP before construction and 
commissioning by country. Adapted from Nuclear Energy Agency (2021). 

 
Figure 11. Nuclear power in the world throughout the years. Adapted from 

International Atomic Energy Agency (2023). 
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Throughout the licensing process, regulatory requirements are verified using 

safety analysis reports, which allows the assessment of the NPP behavior and the 

consequences of accidents. According to the United States Nuclear Regulatory 

Commission (U.S. NRC) (2021b; 2021a), a design-basis accident (DBA) is “a postulated 

accident that a nuclear facility must be designed and built to withstand without loss to the 

systems, structures, and components necessary to ensure public health and safety.” On 

the other hand, a beyond design-basis accident (BDBA) means an accident sequence 

considered to be too unlikely to be part of the design scope of the nuclear facility. After 

the Fukushima accident in 2011, the design extension conditions (DEC) concept became 

an important aspect of the regulatory framework of NPPs (Král and Krhounková 2024). 

The concept of DEC replaced the classical safety approach for NPPs, as shown in Figure 

12. Therefore, lessons learned from the Fukushima accident expanded the design 

envelope of NPPs. 

  
Figure 12. Nuclear safety concepts and the evolution of IAEA standards. 

Source: Král and Krhounková (2024). 

The main functions of nuclear systems are related to safety. Examples of safety 

functions include cooling the fuel, controlling reactivity, and containing radioactive 

release, as shown in Figure 13. Safety-related systems, structures, and components must 
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remain functional during and following DBA. The analysis of DBA can be either based 

on conservative or best estimate (realistic) models (International Atomic Energy Agency 

2016). According D’Auria (2019), the BEPU is an approach of particular interest to the 

licensing process of NPPs, as it combines both deterministic and probabilistic safety 

analysis. The BEPU history remounts the U.S. NRC pioneering efforts for V&V of 

thermal-hydraulic codes (Appendix K to 10 C.F.R. § 50.46). Figure 14 illustrates how 

BEPU is related to modeling, simulation, verification, and validation. In this approach, 

both experimental results and multi-physics models are considered in the simulation to 

provide the best estimate along with an uncertainty band, enhancing the licensing 

process. 

 
Figure 13. Levels of functions for nuclear systems. Source: International 

Atomic Energy Agency (2022). 
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Figure 14. The verification and validation process in relation to the BEPU 

methodology. Source: Zhang (2019). 

The analysis of DEC can use either the BEPU approach or another 

methodological procedure that addresses a significant level of uncertainty, as fuel 

degradation and core melting might occur. For instance, Matias Avelar et al. (2023) 

applied BEPU analysis to study a critical safety phenomenon of water-cooled nuclear 

reactors. They concluded that oxidation kinetics is a key factor, particularly when the 

analysis aims to be conservative. Therefore, in the context of nuclear safety analysis, 

either BEPU or conservative approaches can be applied to verify regulatory requirements 

across various categories of accident conditions.  

The BEPU approach is particularly relevant in the context of licensing margin 

calculations. The licensing margin is defined as “the difference between the design limit 

and the upper bound design or safety analysis result (e.g., maximum peak cladding 

temperature) for the related physical parameter during the analyzed transient” (Jinzhao 

Zhang and Schneidesch 2023, 2). It differs from the apparent margin, as shown in Figure 

15. The probability that the system will meet its requirements can be increased by 

revisiting the design to add more margin, thereby widening the gap between the two 

curves. Freixa et al. (2021) compared the results obtained by BEPU methodologies 

against experimental data from tests. The authors observed that 95% of analyzed output 
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parameters were inside of the BEPU spectrum, which strengthens confidence in its 

application in the licensing process. Therefore, the development of the BEPU approach 

for margin quantification based on multi-physics simulations and uncertainty analysis 

supports the reactor core design. 

 
Figure 15. Apparent margin vs. licensing margin. Adapted from Zhang and 

Schneidesch (2023). 

Even though a few studies have applied SE methodologies using an NPP as a case 

study, no work has linked MBSE to the simulations involved in the design and safety 

analysis of these systems. For instance, Navas et al. (2018) used MBSE to define the 

architecture of a nuclear island. They found that this methodology provides benefits for 

the designer by increasing the level of comprehensiveness. Similarly, Gaignebet et al. 

(2021) proposed a methodology to help improve communication between stakeholders 

during commissioning phases of nuclear facilities. Although only the commissioning 

phase was analyzed, their results corroborate the fact that MBSE can improve decision-

making and communication between stakeholders. In a broader context, Ibrahim et al. 

(2023) conducted a literature review of MBSE applications in the nuclear industry and 

found qualitative benefits, such as unambiguous system description, consistent mental 

models of a system, and clear component definitions. Previously, Ibrahim et al. (2022) 
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had used MBSE to allocate safety-related requirements among subsystems and 

components to assess whether one or more options adequately address system mission 

and objectives. They concluded that this approach provides risk-informed insights into 

the design process. Conversely, Linnosmaa et al. (2019) mentioned that the use of MBSE 

languages requires significant expertise to extract information from design documents. 

Notwithstanding, they also agreed that SysML supports classical safety analysis methods. 

Hence, research related to MBSE in the nuclear energy sector is applied to support early-

stage and risk-informed design development using SysML models.  

This thesis aims to expand the reach of MBSE by integrating SysML products 

with CAE methods. Furthermore, it supports the utilization of the BEPU approach in the 

licensing process of nuclear systems. Recent studies corroborate that the MBSE concept 

can provide a streamlined method for BEPU analysis (X. Zhang et al. 2023; Mengyan et 

al. 2024). Table 2 compares the methodology proposed by this study against published 

works that address MBSE and nuclear systems. Therefore, this work proposes a novel 

methodology that applies the BEPU approach in a natively integrated MBSE–CAE 

environment to enhance the verification process of regulatory requirements. This 

integrated methodology aims to shorten the cycle time from data gathering to decisions in 

the licensing process of NPPs. 

Table 2. Studies that applied MBSE, CAE, and BEPU approaches to the 
design of nuclear systems. 

Reference  MBSE  CAE  BEPU  
Freixa et al. (2021)  Yes  No  No  
Ibrahim et al. (2023) Yes  No  No  
Gaignebet et al. (2021) Yes  No  No  
Linnosmaa et al. (2019) Yes  No  No  
Ibrahim et al. (2022) Yes  No  No  
De Florio et al. (2024)  Yes  No  No  
Zhang et al. (2023) No  Yes  Yes  
This study  Yes  Yes  Yes  
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The focus of this thesis is to use the digital engineering approach to support 

decision-making in the licensing process of nuclear systems. One of the main goals of 

digital engineering is to use digital artifacts as a technical means of communication 

between stakeholders. Therefore, this holistic set of digital representation of nuclear 

systems may facilitate collaboration across disciplines and communication with 

regulatory authorities.   
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III. METHODOLOGY 

This chapter is divided into two sections, each addressing a different aspect of the 

research process. The first section describes the conceptualization of a novel 

methodology, entitled model breakdown structure (MBS), which integrates model-based 

systems engineering (MBSE) and computer-aided engineering (CAE). The other section 

focuses on methods to enhance the verification process, such as the design of experiments 

(DOE) and uncertainty quantification. 

A. THE MODEL BREAKDOWN STRUCTURE 

MBSE is used by systems engineers to support requirements management 

throughout the system life cycle. The primary objectives of MBSE are to analyze system 

performance, support the verification and validation (V&V) processes, and improve 

communication among the stakeholders. Additionally, the integration of MBSE with 

other computational models, such as CAE methods, leverages the systems engineering 

ability to orchestrate various multi-physics models to perform in-depth analysis of system 

behavior and enhance its support for decision-making. 

This thesis proposes a novel methodology entitled model breakdown structure 

(MBS), which supports systems engineers and decision-makers by providing on-demand 

assessments of design changes and trade space analysis. By integrating MBSE into a 

systems development environment, multi-physics models may offer automated feedback 

on whether design changes meet system requirements. Figure 16 illustrates the MBS 

concept, which comprises not only typical systems engineering deliverables but also 

domain-specific models such as CAE methods, experimental databases, and simulations 

to provide feedback for test cases (V&V models). 
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Figure 16. The MBS methodology concept. 

The main goal of MBS is to enhance the verification process through the 

integration of MBSE and CAE. As illustrated in Figure 17, the MBS consists of six initial 

steps: (1) selecting the MBSE tool; (2) developing a system model; (3) defining a set of 

requirements; (4) developing and validating a simulation model; (5) verifying 

requirements using simulation-based tests; and (6) creating an experimental design to 

provide an initial assessment of which factors have a significant effect on system 

requirements. For high-risk factors, three additional steps are proposed: (7) building 

MBS, (8) propagating uncertainties to quantify the uncertainty on the system measures of 

performance (MOPs) and measures of effectiveness (MOEs), and (9) using their 

uncertainty bands, which are denominated as BEPU MOP/MOE, to enhance the 

verification process, by providing automated feedback to the MBSE tool. 
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Figure 17. Integrating MBSE tools and CAE methods into the MBS. 

The effectiveness of MBS relies on not only integrating MBSE into a system 

development environment but also its ability to explore the design space and enhance the 

verification process through the application of both the DOE and BEPU approaches. The 

former is applied to assess which factors significantly impact the MOPs and MOEs. The 

latter is applied to conduct uncertainty analysis up to the MOE level and improve the 

verification process. 

The MBS methodology is divided into three parts. The first part of the MBS is 

conducted in a typical MBSE environment. The system requirements are distributed 

across computational models from various disciplines. The requirements implementation 

ensures that requirements can be both verified through simulations and validated through 

experimental tests, as shown in Figure 18. It is worth mentioning that simulations are 

applied to verify requirements. On the other hand, when experimental data is available, 

requirements can be validated. Conversely, the second part of MBS is conducted in a 

system development environment (e.g., CAE methods) to verify or validate a specific 
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requirement. Additionally, by applying the DOE, it is possible to systematically assess 

the relationship between factors and their effects on MOPs and MOEs and to determine 

the factors with the largest effect on system behavior (high-risk factors). The third part 

integrates both models to enhance the verification process, as shown in Figure 19. The 

automated BEPU MOE feedback to the MBSE tool is the main benefit of the MBS 

methodology. Henceforth, the verification process is conducted using the best estimate of 

the MOE along with its uncertainty band.  

 
Figure 18. The requirements rainfall from MBSE into system development 

environments. 
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Figure 19. MBS methodology applied to enhance the verification process. 

Additionally, as shown in Figure 20, a traceability matrix between requirements 

and output variables is proposed as a support tool. This comprehensive approach links 
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requirements to computational models, enabling MBSE to oversee engineering models 

across multiple disciplines. 

 
Figure 20. Traceability matrix between requirements and models’ outputs. 

This comprehensive methodology aims to support systems engineers in gaining a 

deeper understanding of distinct configurations of the system’s behavior under various 

conditions. It emphasizes which factors the design team should focus on to improve 

design margins. Moreover, given a particular MOE and the key factors’ probability 

distribution functions, it shows the range of responses the stakeholders should expect 

from the system’s behavior. Once DOE and uncertainty quantification methods are 

systematically integrated into the MBS methodology, the BEPU analysis can be 

conducted through a streamlined approach to enhance the verification of safety 

requirements. Therefore, the novelty of this work resides in providing a holistic 

understanding of the system’s behavior to shorten cycle time from data gathering to 

decision-making.  

The first step in the MBS methodology is the selection of the MBSE tool. To 

effectively integrate MBSE into a CAE tool, this thesis proposes the use of MathWorks’ 

System Composer. This tool is an MBSE extension to the MATLAB and Simulink 

environments, enabling the creation, implementation, and verification of system 

requirements within the same simulation continuum. Notably, this selection allows not 
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only seamless integration but also the utilization of a broad variety of computational tools 

developed by MathWorks and widely used by engineers, including partial differential 

equation solvers, FEA, and DOE. This thesis does not endorse one specific tool or 

modeling language, because MBSE practitioners might select other tools that meet their 

specific needs. However, the author selected MATLAB for this study because of its 

broad applicability to diverse engineering applications. 

B. METHODS FOR DESIGN OF EXPERIMENTS AND UNCERTAINTY 
QUANTIFICATION 

To enhance the verification process, the MBS methodology employs both DOE 

and uncertainty quantification methods. The goal is to effectively explore the design 

space and assess the effect of high-risk factors (e.g., environmental conditions, material 

properties, and human factors). Even with powerful computers, the analysis using CAE 

methods can be extremely time-consuming due to their high complexity. Consequently, 

the selection of both DOE and uncertainty quantification methods is based on their ability 

to reduce the number of test cases while delivering significant outcomes.  

First, Latin hypercube design (LHD) is a statistical method used to generate a 

near-random sample of parameter values from a multidimensional distribution. LHD has 

already proven to be a valuable method for DOE, especially when exploring high-

dimensional computational models (Hernandez, Lucas, and Carlyle 2012; Ye 1998; Chen 

et al. 2023). Although LHD reduces the number of experiments compared to a full 

factorial design, it ensures comprehensive coverage of the entire design space of the 

factors. Therefore, LHD enables efficient parameter sampling. 

Second, the MBS methodology supports Wilks’ theorem for uncertainty 

quantification. This method is widely used in BEPU analysis as it enables an effective 

uncertainty quantification using a limited number of simulation cases, reducing the 

required computational effort (D’Auria 2019; Jinzhao Zhang and Schneidesch 2023; Lee 

et al. 2014; Matias Avelar et al. 2023). A frequent practice is to use a 95% confidence 

level and 95% probability (Shockling 2015; Jyrkama and Pandey 2017). According to the 

first order Wilks’ theorem, the 95/95 unilateral tolerance limit is the highest value within 
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59 sample data, provided that the boundaries for all factors are truncated within their 95% 

confidence interval. Even when considering the second order, the number of cases 

increases to 93, which is still significantly fewer than the number of simulations for the 

Monte Carlo method (Lee et al. 2014). In this thesis, both first and second orders of 

Wilks’ theorem were applied. 

This ensemble of techniques enables the creation of an uncertainty quantification 

model for each MOP and MOE. This innovative approach supports the V&V of 

requirements by collecting the results from a set of systematic analysis and delivering 

detailed feedback for the requirements management, as illustrated in Figure 21. Ideally, 

in the MBS, all models are interconnected so that, if necessary, uncertainties can be 

seamlessly propagated from one model to another. 

 
Figure 21. Relationships between processes and models. Adapted from 

Friedenthal, Moore, and Steiner (2015). 
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IV. MODELING AND SIMULATION 

This chapter describes modeling and simulation (M&S) using both model-based 

systems engineering (MBSE) and finite element analysis (FEA). To illustrate the 

effectiveness of the proposed methodology, a case study is presented using the Brazilian 

Multipurpose Reactor (RMB) as the system of interest. First, the RMB core is described 

to provide technical background. Second, an MBSE approach is used to define a safety-

related requirement based on the functional analysis of the RMB. The following section 

describes the FEA approach for modeling the RMB core behavior in a slow loss of flow 

accident (SLOFA). Lastly, the model breakdown structure (MBS) is applied to integrate 

the models. 

A. SYSTEM DESCRIPTION 

The Brazilian Nuclear Energy Commission (CNEN) through the Nuclear and 

Energy Research Institute (IPEN) is leading the project of the RMB, whose main goal is 

to mitigate the Brazilian dependence on foreign sources of Mo-99 used in nuclear 

medicine (Durazzo et al. 2024). In addition to radioisotope production, two other 

requirements were established: provide neutron beams to test fuels and materials and 

provide the necessary infrastructure to “allow the interim storage, for at least 100 years, 

of all spent nuclear fuel used in the reactor” (Perrota and Soares 2014, 398).  

This new pool-type material testing reactor (MTR) will generate 30 MWth 

(Ribeiro et al. 2020). Table 3 presents the technical specifications of the RMB core. The 

RMB core contains 23 fuel elements; each fuel element has 21 plates, with a meat made 

of enriched (19.75%) Uranium Silicide-Aluminum dispersion (U3Si2-Al) clad with 

Aluminum (Perrota and Soares 2014; Soares et al. 2014). The RMB core is placed inside 

a chimney surrounded by a heavy water tank, which enables the positioning of materials 

for irradiation (Soares et al. 2014). Figure 22 presents a schematic view of the reactor 

core and the reflector tank.  
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Table 3. RMB core design data. Source: Ribeiro et al. (2020). 

Parameter Data 
Reactor type MTR 
Fuel meat U3Si2-Al enriched at 19.75% 
Coolant/ Moderator Light water 
Reflectors Heavy water & Beryllium 
Flow direction Upwards 
Number of control rods/ material 6/ Hafnium 
Number of fuel assemblies 23 
Number of fuel plates per fuel assembly 21 
Core (cm) 44.35 × 41.70 
Internal chimney (cm) 46.35 × 71.75 
Chimney thickness (cm) 0.4 
Central control rod support (cm) 9 × 10.8 
Peripheric control rod support (cm) 9 × 13.27 
Control rod support thickness (cm) 0.5 
Fuel plate (mm) 1.35 × 75 × 655 
Lateral support plate (mm) 5.0 × 80.5 × 890 
Plate meat (mm) 0.61 × 65 × 615 
Channel (mm) 70.5 × 2.45 × 655 
Cadmium wire diameter (cm) 0.1016 
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Figure 22. Schematic view of the RMB heavy water reflector tank and reactor 

core. Source: Ribeiro et al. (2020). 

IPEN successfully produced fuel plates using high-uranium-loaded U10Mo-Al 

and U3Si2-Al dispersions, which represents an important milestone to the project. The 

applied technique shown in Figure 23 was identical to that used for low-uranium-loaded 

fuel plates. Fuel assembly (or fuel element) is “a structured group of fuel rods (or plates) 

containing pellets of fissionable material, which provide fuel for nuclear reactors” (U.S. 

Nuclear Regulatory Commission 2023). For this particular reactor, instead of fuel rods, 

the fuel assembly is composed of fuel plates, and instead of pellets, the fissionable 

material is denominated fuel meats, which are produced employing powder metallurgy 

methods (Durazzo et al. 2024).  
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Figure 23. Technique used to manufacture fuel plates. Adapted from Durazzo 

et al. (2024). 

Like other nuclear reactors, during their licensing process, a substantial number of 

studies must be conducted using M&S to ensure compliance with safety requirements 

under different accident scenarios. For instance, design-basis accidents (DBA) include 

loss of flow accidents (LOFA), loss of coolant accidents (LOCA), and the reactivity-

initiated accidents (RIA) (Soares et al. 2014; Ribeiro et al. 2020; Akhal, Sidi-Ali, and 

Benmamar 2023; Housiadas 2000). 

B. FUNCTIONAL ANALYSIS 

The RMB is a research reactor whose principal aims are to irradiate fuel elements 

and structural materials of nuclear power plants (NPPs) under a high neutron flux and to 

produce radioisotopes. Research reactors are also called non-power reactors, and they are 

largely used for research, training, and development of other sorts of nuclear technology. 

These reactors contribute to different fields such as nuclear medicine and scientific 

research in different disciplines, including physics, chemistry, and biology. Despite being 

a research facility, like any other nuclear reactor, its safety functions need to be 

categorized following their safety significance. According to the International Atomic 
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Energy Agency (2022), the identification of all safety-related functions should be done as 

early as possible in the design of nuclear facilities. 

In the MBS, the scope of the functional analysis is to identify and define all 

system functions and their safety categorization. For instance, this case study considered 

the first level of safety functions (e.g., reactivity control, cooling, and confinement of 

radioactive products) as a decomposition of the RMB main use case, as illustrated in 

Figure 24. Other process-related functions and control-related functions may not be 

identified at an early phase of the design process. However, it is possible to repeat both 

identification and categorization processes of safety-related functions throughout the 

design phases. Conversely, it is advisable to structure functional requirements 

specification in stages, so that systems engineers can deliver important inputs to the 

domain engineers. 
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Figure 24. High-level safety functions of the RMB. 

C. REQUIREMENT SPECIFICATION 

Safety-related functional requirements are assessed by regulatory authorities in 

safety analysis reports throughout the licensing process of nuclear systems. The accidents 

list for the RMB considers typical postulated initiating events of research reactors, which 

have the potential to challenge the safety limits of the reactor. The design-basis accidents 

(DBA) of the RMB include, among others, the following scenarios: “loss of electric 

power supplies; insertion of excess reactivity; loss of flow; loss of heat sink; and loss of 

coolant in the primary cooling system” (Soares et al. 2014, 2). It is worth mentioning that 

design extension scenarios (DEC) (e.g., station blackout for 10 days) are also part of the 



43 

safety analysis report. Therefore, in the MBS context, models that enable the assessment 

of safety-related functional requirements are associated with the safety functions. 

The RMB concept of operations (CONOPS) states that safety-related systems, 

structures, and components shall remain functional during and following DBA scenarios. 

Their functionality ensures that it is possible to shut down the reactor and maintain it in a 

safe shutdown condition. To exemplify the application of the MBS methodology, the 

SLOFA scenario was considered due to the availability of simulation results, which are 

presented in the next chapter, for code-to-code comparison (Ribeiro et al. 2020). Based 

on this scenario, Table 4 presents a critical operational issue (COI) related to the safe 

shutdown function, which is properly evaluated by a specific measure of effectiveness 

(MOE). Additionally, a key performance parameter (KPP), or measure of performance 

(MOP), is derived to provide the necessary assessment into meeting the MOE. 

Ultimately, the MOP needs data from a specific technical parameter and a decision 

criterion (safety-related functional requirement). 

Table 4. Example of a technical measure profile. 

Technical parameter Description 
Safety function Provide safe shutdown 
Critical operational issue (COI) Can the RMB provide safe shutdown considering 

a SLOFA scenario? 
Measure of effectiveness (MOE) The ability to remove heat from the reactor core 

during and after the SLOFA. 
Measure of performance (MOP) or 
key performance parameter (KPP) 

The core temperature shall be conducted to and 
maintained at an acceptably low value for an 
extended period, avoiding the occurrence of onset 
of nucleate boiling (ONB). 

Technical performance parameter Cladding temperature 
Criterion Peak cladding temperature (PCT) < 391.15 K 

 

The design process follows the same structure and sequence. For instance, cooling 

is one of the most important functions in terms of nuclear safety, especially in the 

scenario of a loss of flow accident. Although the critical operational issue is stated in an 

interrogative form to doubt if the RMB can provide safe shutdown during and, following 
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this type of accident, provide cooling is one of the aspects of the safe shutdown process. 

As the decay heat must be removed, a direct engineering measure of cooling (i.e., the 

basis for describing the cooling performance) is the heat transferred from the fuel system 

to the primary circuit. Nonetheless, a usual MOP is the temperature at the interface 

between the fuel-cladding outer surface and the coolant. The temperature at this interface 

is critical due to the possibility of relevant thermal-hydraulic phenomena, such as onset of 

nucleate boiling (ONB), departure from nucleate boiling (DNB), and metal-water 

reaction in more severe scenarios (Matias Avelar et al. 2023). Therefore, it is 

fundamental to verify the peak cladding temperature (PCT) throughout the accident 

scenario to evaluate the effectiveness of cooling as a safety function. 

Up to this point, there has not been a noticeable difference compared to other 

systems engineering processes. It started with the CONOPS and functional analysis, 

which derived a COI, a MOE, a MOP, and a specific requirement (acceptance criterion). 

However, the main advantage of the MBS compared to other systems engineering 

methodologies is that MBSE is integrated into the system development environment. 

Thus, in the MBS, requirements are linked to variables, implemented by multi-physics 

models, and tested by verification and validation (V&V) models. Hence, cooling 

effectiveness can be evaluated using a FEA that determines the PCT progression during 

the accident.  

D. SYSTEM ANALYSIS 

To study the core behavior during a SLOFA scenario, FEA was employed using 

the Partial Differential Equation (PDE) Toolbox in MATLAB. The fuel and cladding 

were considered as the main components in this scenario. Three phases were 

investigated: steady state, SLOFA transient, and cold shutdown. Figure 25 (a) shows the 

cross section of the RMB fuel assembly. The dashed-line box represents the boundaries 

of the physical domain for the hottest subchannel. The heat transport equation is applied 

at both fuel (F1) and cladding (F2) domains, shown in Figure 25 (b), considering two 

directions, axial (z) and longitudinal (x), along the length and width of the fuel plate, 

respectively. Figure 25 (c) shows the FEA mesh in both domains. 
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Figure 25. A schematic view of the cross section of the RMB fuel assembly 

(a), fuel plate domain and interfaces (b), and FEA mesh (c). Adapted from 
Ribeiro et al. (2020). 



46 

The temperature distribution in both domains is obtained by solving the heat 

Equation (1):  

 𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕(𝑡𝑡,𝑥𝑥,𝑧𝑧)

𝜕𝜕𝜕𝜕
= 𝑘𝑘∇2𝑇𝑇(𝑡𝑡, 𝑥𝑥, 𝑧𝑧) + 𝑄𝑄(𝑡𝑡, 𝑧𝑧), (1) 

where ρ is density, cp is specific heat, T is temperature, t is time, k is thermal 

conductivity, and Q is the volumetric heat generation rate in the fuel, which is directly 

proportional to the reactor power and assumes a chopped cosine function in the axial 

direction of the fuel plate. 

This equation is solved for each finite element using the PDE Toolbox in 

MATLAB. A mesh sensitivity test was performed using code-to-code comparison against 

the Neutronics and Thermal Hydraulics Code (NTHC1) results published by Ribeiro et 

al. (2020). To provide code capability to perform efficient and reliable calculations, 

solver options were set to a relative tolerance of 10–5. Additionally, to solve the SLOFA 

transient, the following boundary conditions were applied: 

 𝜕𝜕𝑇𝑇𝑓𝑓
𝜕𝜕𝜕𝜕

= 0, 𝑎𝑎𝑎𝑎 𝑥𝑥 = 0, (2) 

 −𝑘𝑘𝑐𝑐
𝜕𝜕𝑇𝑇𝑐𝑐
𝜕𝜕𝜕𝜕

= ℎ(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑤𝑤), 𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑥𝑥𝑐𝑐𝑐𝑐, (3) 

 𝑘𝑘𝑐𝑐
𝜕𝜕𝑇𝑇𝑐𝑐
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑓𝑓
𝜕𝜕𝑇𝑇𝑓𝑓
𝜕𝜕𝜕𝜕

, 𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑥𝑥𝑓𝑓, (4) 

 𝜕𝜕𝑇𝑇𝑓𝑓
𝜕𝜕𝜕𝜕

= 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕𝑇𝑇𝑐𝑐
𝜕𝜕𝜕𝜕

= 0, 𝑎𝑎𝑎𝑎 𝑧𝑧 = ±𝐿𝐿/2. (5) 

In Equations (2)–(5), subscripts f and c refer to fuel and cladding, respectively. 

Boundaries are addressed in the x coordinate as xf and xco for the fuel-cladding and 

cladding-coolant interfaces, respectively. Additionally, h is the convective heat transfer 

coefficient of the coolant, which was calculated using the Dittus-Boelter correlation for 

turbulent flow given by Equation (6): 

 ℎ = 0.023𝑅𝑅𝑒𝑒0.8𝑃𝑃𝑃𝑃0.4𝑘𝑘𝑤𝑤/𝐷𝐷ℎ , (6) 
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where Re is the Reynolds number, Pr is the Prandtl number, kw is the water thermal 

conductivity, and Dh is the hydraulic diameter (Ribeiro et al. 2020). 

 The volumetric heat generation rate in the fuel domain Q is given by Equation (7): 

 𝑄𝑄 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃(𝑡𝑡)
𝑉𝑉

cos �𝜋𝜋𝜋𝜋
𝐿𝐿𝑒𝑒
� , (7) 

where PPF is the power peaking factor, P(t) is the decay heat power, V is the volume of 

the core, and Le is the extrapolated height of the fuel plate.  

The decay heat generated in the fuel after shutdown was calculated using the 

Wigner-Way formula seen in Equation (8): 

 𝑃𝑃(𝑡𝑡) = 0.0622 𝑃𝑃0(𝑡𝑡−0.2 − (𝑡𝑡0 + 𝑡𝑡)−0.2) , (8) 

where P0 is the thermal power before the reactor shutdown, t is the time elapsed since the 

reactor shutdown, and t0 is the operating time before the shutdown. 

 The coolant flow rate m(t) decreases exponentially, with a time constant of 25 s, 

according to Equation (9): 

 𝑚𝑚(𝑡𝑡) = 849.92 𝑒𝑒�−
1
25� . (9) 

No delay is considered for the reactor trip (i.e., once the shutdown reactivity 

insertion occurs and the decay heat function is applied to determine the volumetric heat 

generation throughout the fuel).  

E. INTEGRATION OF MODELS 

The development of the digital engineering environment (DEE) comprises three 

distinct models. The system model, built using System Composer, presents the RMB use 

cases, high-level safety functions, requirements, and Simulink models for each scenario 

(e.g., SLOFA). Additionally, Simulink models are connected to variables in the 

MATLAB workspace that are either created or imported into MATLAB from different 

types of models (e.g., FEA or experimental database). Ultimately, the V&V models run 

tests to verify or validate the requirements. 
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The main advantage of the MBS using MATLAB is the integration between the 

FEA results and the verification process. First, the safety-related functional requirement 

associated with the PCT was modeled as a constraint using a data dictionary. Second, a 

Simulink model was created to execute the simulation. Lastly, a test case was executed to 

compare the simulation result against the requirement. The entire process using 

interconnect models is illustrated in Figure 26 (a). The requirement is related to the 

constraint criterion, implemented in a simulation, and verified by the test case, as shown 

in Figure 26 (b). 

The requirements were linked to other models using the requirements editor. For 

instance, Figure 27 shows both implementation and verification status of the 

requirements editor in Simulink, which links the PCT requirement to the SLOFA model 

that captures the data from the SLOFA simulation and extracts the maximum result 

throughout the entire simulation time. Equally, the PCT requirement was also linked to a 

specific test case, which allows tracking the verification progress and that the 

implementation of the requirement behaves as expected. The possibility of connecting 

requirements to complex simulations, including statical analysis, contributes significantly 

to the systems engineering process. 
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Figure 26. Integrated models (a) for the PCT requirement verification (b) in a 

SLOFA scenario. 
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Figure 27. Links to the PCT requirement. 
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V. RESULTS AND DISCUSSION 

This chapter provides a detailed assessment of the model breakdown structure 

(MBS) outcomes, using the Brazilian Multipurpose Reactor (RMB) as a case study. First, 

it describes the finite element analysis (FEA) results for the slow loss of flow accident 

(SLOFA) scenario. Additionally, the RMB core is systematically evaluated using the 

design of experiments (DOE) and uncertainty quantification, offering insights for system 

analysis, design, and development. The data collected from the FEA is applied to verify 

the peak cladding temperature (PCT) requirement. Lastly, insights on various aspects are 

provided, including the tool selection, the accuracy of the uncertainty quantification 

process, and how to implement the MBS. 

A. FINITE ELEMENT ANALYSIS 

The results from the FEA were collected and analyzed. The simulation was set to 

start (at t = 0 s) with all nodes from cladding and core at 300 K. The reactor’s thermal 

power was set at its nominal value (30 MW). The simulation results showed that the 

steady state was rapidly achieved, and the system was kept with constant attributes up t = 

50 s, when the loss of flow started to occur. Figure 28 shows the steady state temperature 

distribution. Noticeably, the PCT is less than the ONB threshold (391.15 K).  
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Figure 28. Steady state temperature distribution. 

The SLOFA scenario sequence occurs as follows: the reactor is operating at its 

nominal power when the loss of flow occurs, next the reactor SCRAM (or reactor trip) 

occurs at approximately 4 s after the start of the loss of flow, and finally the decay heat is 

removed with the remaining flow rate. The solution of the partial differential equation 

and boundary conditions enables the assessment of the temperature distribution 

throughout the entire fuel and cladding domains. During the SLOFA transient, both 

domains’ temperatures are shifted up due to the lack of effective cooling. A typical 

criterion that defines the acceptable level of performance of the reactor coolant system is 

based on the PCT, which in this case shall be less than 391.15 K to avoid the possibility 

of ONB (Akhal, Sidi-Ali, and Benmamar 2023). Likewise, it is possible to establish 

additional models for evaluating various aspects of the system, including its behavior 

throughout other postulated accidents. 

Code-to-code comparison was applied to assist model verification, as 

experimental data was not available. The same accident scenario was studied by Ribeiro 
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et al. (2020) using the Neutronics and Thermal Hydraulics Code (NTHC1). The authors 

found that the volumetric heat generation rate in the fuel can be modeled using a chopped 

cosine shape function in the axial direction of the fuel plate, which provided good results 

compared to the SERPENT code simulation. Therefore, the same simplification was 

considered in this study. Conversely, the overall decay heat of the core was estimated 

using the Wigner-Way formula (8) to simplify the need to couple heat transfer partial 

differential equations with a system of seven ordinary differential equations responsible 

for the neutron point kinetics. A third important simplification was a constant average 

coolant temperature (i.e., axially averaged value) applied as a boundary condition for the 

cladding domain. Figure 29 shows RMB power and coolant flow rate during the SLOFA 

scenario. The coolant mass flow result is applied to determine the heat transfer coefficient 

using the Dittus-Boelter correlation for turbulent flow (6). On the other hand, the power 

results determine the heat that must be transferred to the primary circuit. 

 
Figure 29. Relative power and mass flow profiles. 

The maximum temperature observed for the cladding in the hot subchannel 

obtained from NTHC1 considering nominal conditions was 369.5 K (Ribeiro et al. 2020). 

The temperature distribution obtained using MATLAB (at t = 54 s) when the PCT is at its 

maximum value (368.1 K) is shown in Figure 30. For a conservative calculation, it was 

assumed that the reactor was operating at its maximum overpower level (15%) when the 
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accident occurred. The RMB model on NTHC1 was revisited and the same calculations 

were performed using MATLAB. As shown in Table 5, the results showed excellent 

agreement with the values published by Ribeiro et al. (2020). The MATLAB code for the 

SLOFA scenario is presented in Appendix A. 

 
Figure 30. Temperature distribution when the PCT reaches its maximum 

value (t = 54 s). 

Table 5. Code-to-code comparison against NTHC1 for slow loss of flow 
accident of RMB.  

Result The current study NTHC1 (Ribeiro et al. 2020) 
PCT, K (nominal) 368.1 369.5 
PCT, K (conservative) 375.3 375.7 
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B. REQUIREMENT VERIFICATION USING SIMULATION-BASED TESTS 

The integration of model-based systems engineering (MBSE) and simulation-

based tests was applied to enhance the verification process. The PCT requirement was 

verified with results from the FEA using two distinct approaches: best estimate plus 

uncertainty (BEPU) and conservative (D’Auria 2019). The BEPU approach was based on 

the nominal calculation (i.e., PCT calculated using variables at their nominal values) 

along with an uncertainty band that takes the design factors’ probability distribution 

functions into account. On the other hand, the conservative approach used a combination 

of maximum deviation of the input variables from their design-specified values and 

conservative boundary and initial conditions (Todreas and Kazimi 2011). 

The results verified that there is no possibility of nucleate boiling. The cladding 

hot spot, which refers to the physical location where the maximum temperature value 

occurs, was investigated throughout the transient. The cladding temperatures computed 

for this transient remained below the ONB threshold (391.15 K). Therefore, during the 

transient after the failure of both pump motors, the coolant did not reach the saturation 

temperature. Figure 31 shows that there is a significant margin (23 K) between the 

cladding temperature and the ONB criterion. Both fuel and cladding temperatures 

increase due to the loss of flow. Nevertheless, after the reactor shutdown, power 

significantly decreases, and the core temperature drops rapidly. 
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Figure 31. Time histories of fuel and cladding temperatures during the 

SLOFA scenario against the ONB threshold. 

The DOE enabled design space exploration and identification of relevant design 

factors. First, it allowed the assessment of the effect of fuel and cladding material 

properties on the PCT. Three material properties were considered: thermal conductivity, 

specific heat, and density for both fuel and cladding. Accounting for the reactor power, 

an additional factor was created. Due to the significant computational time required for 

the simulation in both NTHC1 and MATLAB models, two Latin hypercube designs 

(LHDs) were built using MATLAB, both with a total of seven factors. Considering the 

first and second orders of Wilks’ theorem for 95% probability and 95% confidence level 

(95/95), 59 and 93 computational cases were generated, respectively. It is worth 

mentioning that running a full factorial design with two levels per factor would create 27  

= 128 computational cases. Table 6 shows the factors’ range, which are based on typical 

nuclear material properties. Figure 32 presents the simulation results for PCT considering 
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the experimental design with 93 cases and shows that all simulations met the PCT 

requirement and did not reach the ONB threshold. The code for the LHD design is 

presented in Appendix B. 

Table 6. Factors and their respective ranges for experimental designs.  

Factor Units Minimum Maximum 
Fuel density kg m-3 4700 10970 
Fuel specific heat J kg-1K-1 237 330 
Fuel thermal conductivity W m-1K-1 8 40 
Cladding density kg m-3 2700 7930 
Cladding specific heat J kg-1K-1 490 892 
Cladding thermal conductivity W m-1K-1 15 165 
Thermal power MW 25.5 34.5 

 

 
Figure 32. PCT progression for the second order Wilks’ theorem LHD. 
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The analysis of variance (ANOVA) indicated the key factors for PCT. Figures 33 

and 34 show the exploration of the design space through parallel coordinates plots and 

the ANOVA results considering the experimental designs with 59 and 93 cases, 

respectively. Each line in these plots represents an experiment, and each axis in the plot 

corresponds to a factor. Considering a p-value threshold of 0.01, the ANOVA results 

identified three statistically significant factors: fuel specific heat, cladding specific heat, 

and power. Notably, employing a full factorial design would have been a more effective 

approach for evaluating interactions between factors. However, the main benefit of LHDs 

is to reduce computational effort when dealing with high-dimensional experiments or 

complex systems. The code for the ANOVA using MATLAB is presented in 

Appendix C. 

The Wilks’ theorem enabled uncertainty quantification of PCT based on the 

probability distribution functions of key factors. According to the first order of Wilks’ 

theorem, the highest value within the 59-sample data represents the 95/95 unilateral 

tolerance limit for PCT. Considering the second order, the second highest value within 

the 93-sample data represents the same limit. Moreover, the variability of the results is 

reduced as the order of Wilks’ theorem increases. Therefore, the higher the order of 

statistics, the greater the accuracy. However, increasing the order of the Wilks’ theorem 

does not necessarily allow a more conservative estimate of the PCT, as shown in Table 7. 

These findings were also observed in previous studies (Kang 2021; Lee et al. 2014). 

Notwithstanding, both 95/95 upper limit for PCT are significantly close to the 

conservative calculation (375.7 K).  
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Figure 33. Parallel plot and ANOVA results from the 59-cases LHD. 
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Figure 34. Parallel plot and ANOVA results from the 93-cases LHD. 
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Table 7. Comparison of the 95/95 PCT upper limit using LHD and Wilks’ 
theorem. 

Order of the Wilks’ theorem Number of runs 95/95 PCT upper limit, K 
1 59 375.2 
2 93 375.0 

 

Although three factors were considered statistically significant, power was the 

only significant factor for PCT prediction. First, the p-value of less than 10–17 indicated 

that power is statistically significant in predicting PCT. Additionally, the linear 

regression indicated that power explains 99.999% of the PCT variation. Therefore, power 

was considered as a high-risk factor for uncertainty quantification. 

The sequence LHD, ANOVA, and Wilks’ theorem enabled accurate uncertainty 

quantification with reduced computational effort by propagating only the high-risk 

factors. Compared to Monte Carlo methods, the Wilks’ theorem was selected as it 

requires fewer computational cases. The reactor operational profile was described by a 

normal distribution with 30 MW mean and 2.29 MW standard deviation (i.e., the 95% 

confidence interval lies within 25.5 and 34.5 MW). To assess the 95/95 uncertainty band, 

the power probability distribution function was limited (i.e., truncated) to the ± 1.96 σ 

(standard deviation) range. The number of runs followed the order statistics, as shown in 

Table 7. Figure 35 shows the PCT results for the first order of Wilks’ theorem. 

Conversely, Figure 36 shows the PCT results for the second order of Wilks’ theorem. 

Both orders resulted in 375.3 K as the 95/95 PCT upper limit. This result is the same as 

predicted by the conservative analysis (cf. Table 5). Noticeably, as a single factor was 

considered relevant, there is less motivation to consider higher order statistics. 

Notwithstanding, analogously to the DOE context, for a higher number of factors, the use 

of higher order statistics (e.g., second or third order statistics) is recommended. Even 

though it involves an increase of the sample size, it also increases the accuracy of the 

tolerance limit found (Martorell et al. 2017; Trivedi and Novog 2023). Therefore, the 

completion of the LHD is highly recommended prior to the uncertainty propagation to 

reduce the number of factors, and consequently, reduce the necessity of higher order 

statistics to increase accuracy.  
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Figure 35. PCT histogram after the propagation of power probability 

distribution considering the first order statistics. 
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Figure 36. PCT histogram after the propagation of power probability 

distribution considering the second order statistics. 

C. BENEFITS, INSIGHTS, AND TRADE-OFF BETWEEN 
COMPUTATIONAL TIME AND ACCURACY 

Integrating MBSE and CAE enabled studying the physical behavior of a complex 

system via mathematical modeling and data analysis, leveraging computer-aided 

systematic decision-making. This integration provided the nexus within systems 

engineering and domain sciences, while offering a scientific basis for holistic system 

development. For instance, using a simulation-based test, it is possible to analyze the 

impact of design changes on the system effectiveness. 

The implementation of MBS using RMB as the system of interest was conducted 

using MATLAB and Simulink. In fact, system developers have a significant number of 

tools at their disposal. However, in this study, system analysis needed the capabilities of 

solving partial differential equations and a finite differences method. Currently, there are 

not many options available regarding these specific engineering domain analysis 
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capabilities, while connecting with MBSE tools. Some recent developments include 

advanced MBSE software that features the built-in simulation tools based on the X 

language (Gu et al. 2024). As usual, MBSE enables various early design activities (e.g., 

functional analysis and architecture). However, it can be challenging to perform 

verification of multidisciplinary requirements. Consequently, it is difficult to ensure 

consistency between system-level and detailed design, which usually results in a limited 

verification ability of MBSE tools. For instance, although the system V&V using the X 

language does not rely on external simulation tools, due to the current limitations, it only 

supports modeling of ordinary differential equations (Gu et al. 2024). On the other hand, 

MATLAB offers the Partial Differential Equations (PDE) Toolbox, which allows 

solving transient engineering problems in two or three physical dimensions. This ensures 

that complex mathematical models can be solved and requirements that depend on this 

type of simulation can be promptly verified, effectively avoiding design errors. This 

approach enhances the likelihood of success with multidisciplinary teams by enabling 

trade-off analysis through MBSE. 

Once the integration of MBSE and CAE is achieved, it opens the opportunity to 

apply a DOE to explore the design space systematically. A DOE provides a structured 

approach to determine the relationship between various input factors and the resulting 

outputs, which is essential for identifying optimal designs, performing trade-off analysis, 

and understanding system behavior under varying conditions. Traditional DOE methods, 

such as a full factorial design, can provide a comprehensive exploration of the design 

space. However, they can become time-consuming and computationally expensive, 

especially when more factors are introduced. To mitigate this, the use of an LHD is 

considered as a more efficient approach. LHD allows for a more representative sampling 

of the design space with fewer computational cases, leading to significant reductions in 

computational time without compromising the quality of the results (Chen et al. 2023; 

Hernandez, Lucas, and Carlyle 2012). By sampling the entire space more evenly, LHD 

makes it possible to explore the design space more efficiently while enabling effective 

ANOVA results and achieving high accuracy in the uncertainty analysis. 
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To further streamline the BEPU quantification process, Wilks’ theorem is applied 

for the prediction of the 95% probability and 95% confidence (95/95) uncertainty band. 

This statistical approach offers a way to quantify uncertainty to enhance the verification 

process by offering reliable estimates of potential system performance under uncertain 

conditions. The number of computational cases required for uncertainty quantification 

using Wilks’ theorem is dependent on the order of the theorem (Lee et al. 2014; 

Shockling 2015; Wilks 1941). For the first and second orders, sets of 59 and 93 cases, 

respectively, were generated. This reduction in the number of cases compared to a Monte 

Carlo simulation is a key benefit, as it allows for efficient yet accurate estimation of 

uncertainties. However, it is important to carefully select the order of Wilks’ theorem 

based on the number of factors being analyzed to ensure that important factors are 

properly identified and that the results are accurate for uncertainty analysis. This careful 

balancing of computational effort and statistical reliability is crucial in achieving both 

efficiency and trustworthiness in the licensing process. 

Most regulatory-approved BEPU approaches for nuclear systems for verifying 

safety criteria rely on propagating input uncertainties through models implemented in 

computational codes using Wilks’ theorem to determine how many calculations are 

needed to meet standard tolerance levels (typically 95/95). These approaches often focus 

on upper or lower tolerance limits based on first order statistics, which can be calculated 

with a small sample size, usually requiring 59 runs (X. Zhang et al. 2023; Shockling 

2015; Jyrkama and Pandey 2017). This method is advantageous because it yields 

conservative results with fewer simulations, reducing the high computational costs 

associated with running complex models for nuclear power plants. However, with 59 

samples, the ability to achieve an accurate 95/95 estimate will depend on the complexity 

of the model (i.e., the number of factors). Therefore, a high-dimensional space (i.e., a 

significant number of factors) generally requires more samples to get robust estimates. In 

practice, achieving a precise 95/95 estimate might be challenging with high-dimensional 

spaces. Thus, for high-dimensional models, it is recommended to increase the order of the 

Wilks’ theorem to generate more samples and ensure a more accurate and reliable 

estimation. Conversely, this thesis suggested that the utilization of a DOE associated with 
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ANOVA can help reduce the number of factors, and consequently, increase the accuracy 

of uncertainty analysis. 

The MBS concept is illustrated in Figure 37(a) using a similar idea as a work 

breakdown structure. The main difference is that it presents which models are 

interconnected. By applying the probabilistic distribution for relevant factors on a BEPU 

analysis, the MBS allows system developers to calculate the licensing margin and 

quantify the effect of factors’ uncertainties on the system measures, as illustrated in 

Figure 37(b). The BEPU analysis creates a statistical layer that fills the gap between 

MBSE and CAE and determines how many runs and which input decks should be used 

for each behavioral CAE method execution. Moreover, it executes statistical analysis to 

provide the verification model with an uncertainty band that allows the assessment of 

licensing margins. This intermediate layer controls the execution of multi-physics models 

and concatenates the simulation results for test cases. The overall layered concept of the 

MBS layers is shown in Table 8. Ideally, statistical analysis of experimental results can 

also be applied to validate requirements in the MBS. Therefore, it establishes a 

systematic methodology for the statistical analysis of probabilistic measures of 

effectiveness, providing an assessment of design margins on V&V results.  

The MBS breaks the paradigm by connecting system development models with 

MBSE. In this new approach, MBSE can be viewed as a maestro leading various 

engineering disciplines. Each engineer plays a specific role within their discipline, 

whether in design, analysis, or testing. In this analogy, MBSE ensures that all parts come 

together harmoniously, guiding the V&V, and the integration of the entire system. In a 

digital engineering context, the MBS connects MBSE with CAE, and other 

computational models, facilitating a seamless, synchronized approach to complex system 

development. This methodology ensures that the digital representation of the system and 

in-depth analysis of its components are interconnected to meet all the requirements. 
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Table 8. Role of each MBS layer. 

MBS layer Role 
Functional model Describe the hierarchy of system functions. 
Requirements model Establish the system requirements. 
Statistical models Conduct statistical analysis to provide uncertainty bands, which 

enable the assessment of margins. 
Multi-physics models Simulate system behaviors. 
V&V models Use statistical models’ output and experimental results to verify 

and validate requirements. 

 

In this study, the RMB system model was designed using the System Composer 

module from Simulink as an MBSE tool. Additionally, a multi-physics model was 

developed in MATLAB using FEA to simulate the core behavior during a SLOFA 

scenario. Finally, the third part of MBS enhanced this automated analysis capability, into 

system effectiveness knowledge and performance information by revealing the main 

factors through a DOE, and by propagating probability distributions of these factors. To 

the best of the author’s knowledge, previous studies have demonstrated that the various 

stages of MBSE usage can significantly help the system development process, but 

specifically to this methodology, stakeholders see high value on the automated simulation 

feedback because it allows the analysis of complex systems, such as nuclear power plants 

(NPPs) (Beery 2016; Nigischer et al. 2021; X. Zhang et al. 2023). Furthermore, the 

exploration of design space and the presentation of uncertainty bands allows a deeper 

understanding of the system behavior and an improved requirement verification process. 
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Figure 37. The proposed MBS methodology applied to integrate models (a) 

and to enhance the verification process with both conservative and 
uncertainty analysis (b). Adapted from Freixa et al. (2021). 
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VI. CONCLUSION AND FUTURE WORK 

This thesis proposed a straightforward methodology, entitled model breakdown 

structure (MBS), which integrates model-based systems engineering (MBSE) and 

computer-aided engineering (CAE) to enhance the verification process of nuclear 

systems. The Brazilian Multipurpose Reactor (RMB) is used as a case study to 

demonstrate the effectiveness of the proposed methodology in analyzing complex 

systems.  

This thesis demonstrated how to use MathWorks’ System Composer to address 

the gap between MBSE and CAE. A slow loss of flow accident scenario of the RMB core 

was studied using finite element analysis (FEA). The safety-related functional 

requirement associated with the peak cladding temperature (PCT) was modeled as a 

constraint using a data dictionary and verified by a Simulink model that analyzed the 

FEA results.  

This interconnected structure enabled the integration of the entire spectrum of 

models, from the enterprise vision up to a detailed FEA. The core heat transfer was 

solved using the Partial Differential Equation (PDE) Toolbox. The results enabled a 

detailed assessment of the temperature behavior throughout the transient. Additionally, 

code-to-code comparison showed strong agreement between the results obtained using 

the MATLAB toolbox and the Neutronics and Thermal Hydraulics Code.  

The MBS supported an enhanced verification process using statistical methods. 

Uncertainty quantification of key factors was obtained through the application of Latin 

hypercube designs and Wilks’ theorem. These methods can effectively reduce the amount 

of computational effort compared to full factorial designs and Monte Carlo simulations. 

The results indicated that the 95/95 uncertainty band of the PCT is below the onset of 

nucleate boiling threshold. Furthermore, the completion of the design of experiments 

(DOE) prior to the uncertainty quantification reduced the number of factors and, 

consequently, reduced the necessity of higher order statistics to increase accuracy. 
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The integrated model was able to significantly reduce the effort required for 

uncertainty quantification. Therefore, the integration of MBSE and CAE facilitated the 

analysis of design changes and improved the verification process of nuclear systems by 

providing a streamlined approach for DOE and the best estimate plus uncertainty (BEPU) 

analysis. This novel methodology can be applied to reduce the cycle time from data 

gathering to decision-making in the licensing process of nuclear systems. 

Based on the findings of this thesis, recommended future work includes 

leveraging MBSE to support the BEPU approach for the verification of regulatory 

requirements during the licensing process of nuclear systems, applying the MBS to 

various types of CAE methods (e.g., computational fluid dynamics, computational 

electromagnetics, computational chemistry and multi-physics simulations), performing 

statistical analysis of experimental results to enhance the validation process, and 

extending the MBS methodology to enhance the verification process of other types of 

systems. 
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APPENDIX A.  MATLAB MODEL 

The following MATLAB code was created and used to conduct the finite element 

analysis (FEA) of the slow loss of flow accident (SLOFA) scenario of the Brazilian 

Multipurpose Reactor: 
%% RMB SLOFA PFT PCT function 
% Adapted from https://doi.org/10.1016/j.anucene.2020.107449 
% Alan Matias Avelar 
function [PFT, PCT, Tfmax, Tcmax] = 
PSLOFAQ(ro_f,cp_f,k_f,ro_c,cp_c,k_c,power) 
% Fluid properties 
ro_w = 987; % kg/m^3 
cp_w = 4182; % J/(kg*K) 
k_w = 0.65; % W/(m*K) 
% Geometry 
xfo = 0.61E-3 / 2; % m 
xci = xfo; % m 
xco = 6.75E-4; % m 
C1 = 65E-3; % active core length m 
Nplates = 23*21; % 23 fuel assemblies with 21 plates each 
L = 0.615; % active height m 
Le = 0.775; % extrapolated height m 
Lp = 0.655; % plate height m 
% Thermal-Hydraulics 
m0 = 849.92; % kg/s 
ph = C1; % heated perimeter m 
az = 70.5E-3*2.45E-3/2; % m2 
xw=az/70.5E-3+xco; % m 
dh = 2.41E-3; % hydraulic diameter 
ni_w = 523.45E-6; % Pa*s 
Pr = ni_w * cp_w / k_w; % Prandtl number 
Re = dh*m0/23/42/az/ni_w;  % Reynolds 
% Calculate Nusselt  using Dittus-Boelter correlation 
if Re < 2300 
   Nu = 4.36; 
else 
   Nu = 0.023 * Re^0.8 * Pr^0.4; 
end 
% Convection coefficient, W/(m^2-K) 
h = Nu * k_w / dh; 
hmax=39857.33; 
% create 2D model and mesh 
thermalmodel = createpde(“thermal”,”transient”); 
f = [3, 4, 0, xfo, xfo, 0, L/2, L/2, -L/2, -L/2]’; 
c = [3, 4, xci, xco, xco, xci, L/2, L/2, -L/2, -L/2]’; 
gd = [f, c]; 
ns = char(‘fuel’,’cladding’); ns=ns’; 
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sf = ‘fuel+cladding’; 
g = decsg(gd,sf,ns); 
geometryFromEdges(thermalmodel,g); 
% Generate mesh for visualization 
generateMesh(thermalmodel,”Hmax”,xfo/2); 
% Assign thermal properties to domains 
thermalProperties(thermalmodel,”Face”,1,”ThermalConductivity”,k_f,... 
                              “MassDensity”,ro_f,... 
                              “SpecificHeat”,cp_f); 
thermalProperties(thermalmodel,”Face”,2,”ThermalConductivity”,k_c,... 
                              “MassDensity”,ro_c,... 
                              “SpecificHeat”,cp_c); 
% Heat source 
thermalVal = ... 
@(location,state) myfunWithAdditionalArgs(location,state,power); 
internalHeatSource(thermalmodel,thermalVal,”Face”,1); 
% Boundary conditions 
thermalBC(thermalmodel,”Edge”,2,... 
                      “ConvectionCoefficient”,@heatTransferC,... 
                      “AmbientTemperature”,320); 
thermalBC(thermalmodel,”Edge”,[1 3 4 5 6],... 
                      “ConvectionCoefficient”,0,... 
                      “AmbientTemperature”,320); 
thermalIC(thermalmodel,300); % Initial condition 
tfinal = 100; % final time 
tss=50; % time to show steady state  
ttrip=54; % time to trip 
tlist = linspace(1,tfinal); 
%thermalmodel.SolverOptions.RelativeTolerance=1E-5; 
thermalresults = solve(thermalmodel,tlist); 
% Plot results at steady state 
T = thermalresults.Temperature; 
msh = thermalresults.Mesh; 
% Plot fuel and cladding T profiles 
Y=linspace(-L/2,L/2); 
X=zeros(size(Y)); 
Tf = interpolateTemperature(thermalresults,X,Y,tss); 
X=ones(size(Y))*xco; 
Tc = interpolateTemperature(thermalresults,X,Y,tss); 
% Plot fuel and cladding T profiles 
Y=linspace(-L/2,L/2); 
X=zeros(size(Y)); 
Tf = interpolateTemperature(thermalresults,X,Y,ttrip); 
X=ones(size(Y))*xco; 
Tc = interpolateTemperature(thermalresults,X,Y,ttrip); 
% results at final state 
% fuel and cladding T profiles 
Y=linspace(-L/2,L/2); 
X=zeros(size(Y)); 
Tf = interpolateTemperature(thermalresults,X,Y,tfinal); 
X=ones(size(Y))*xco; 
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Tc = interpolateTemperature(thermalresults,X,Y,tfinal); 
Tfmax=interpolateTemperature(thermalresults,0,0,tlist); 
Tcmax=interpolateTemperature(thermalresults,xco,0,tlist); 
PFT=max(Tfmax); PCT=max(Tcmax); 
fprintf(“Peak Cladding Temperature is %g K \n”,PCT); 
fprintf(“Peak Fuel Temperature is %g K \n”,PFT); 
end 
% heat transfer coefficient  
function HTC = heatTransferC(location, state) 
HTC = zeros(1,numel(location.y)); 
if(isnan(state.time)) 
% Returning a NaN when time=NaN tells 
% the solver that the boundary is a function of time. 
 HTC(1,:) = NaN; 
 return 
end 
tSLOFA=50; % time Loss of all cooling pumps at reactor full power 
m0 = 849.92; % kg/s 
m = m0*exp(-(state.time-tSLOFA)/25); 
if state.time <= tSLOFA % cooling pumps are operating 
   m=m0; 
end 
if m>m0 
  m=m0; 
end 
C1 = 65E-3; % active core length m 
ph = C1; % heated perimeter m 
az = 70.5E-3*2.45E-3/2; % m2 
dh = 2.41E-3; % hydraulic diameter 
ni_w = 523.45E-6; % Pa*s 
cp_w = 4182; % J/(kg*K) 
k_w = 0.65; % W/(m*K) 
Pr = ni_w * cp_w / k_w; % Prandtl number 
Re = dh*m/23/42/az/ni_w;  % Reynolds 
% Calculate Nusselt  using Dittus-Boelter correlation 
if Re < 2300 
   Nu = 4.36; 
else 
   Nu = 0.023 * Re^0.8 * Pr^0.4; 
end 
% Convection coefficient, W/(m^2-K) 
HTC(1,:) = Nu * k_w / dh; 
end 
function Q = myfunWithAdditionalArgs(location,state,power) 
Q = zeros(1,numel(location.y)); 
if(isnan(state.time)) 
% Returning a NaN when time=NaN tells 
% the solver that the heat source is a function of time. 
 Q(1,:) = NaN; 
 return 
end 
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ttrip=54; % time to trip 
PPF = 3; % power peaking factor 
P0=power; % reactor power P is provided by the neutronics model 
xfo = 0.61E-3 / 2; % m 
C1 = 65E-3; % active core length m 
Nplates = 23*21; % 23 fuel assemblies with 21 plates each 
L = 0.615; % active height m 
Le = 0.775; % extrapolated height m 
V=Nplates*(L*2*xfo*C1);% volume of fuel in the core 
P=P0*6.22E-2*((state.time-ttrip)^(-0.2)-(ttrip+(state.time-ttrip))^(-
0.2)); 
if state.time <= ttrip % reactor operating at full power 
   P=P0; 
end 
if P>P0 
  P=P0; 
end 
Q(1,:)=PPF*P/V*cos(pi*location.y/Le); % W/m^3 
end 



75 

APPENDIX B.  EXPERIMENTAL DESIGN 

The following MATLAB code was created and used for the design of experiments 

(DOE) using Latin hypercube design (LHD): 
%% DOE – LHD 
% Alan Matias Avelar 
clc 
clear all 
min= [4700 237 8 2700 490 15 30e6*0.85]; 
max=[10970 330 40 7930 892 165 30e6*1.15]; 
X = lhsdesign_modified(93,min,max); 
y = corr(X); %(sum(y(:).^2) – length(min))/2;  
for i=1:height(X) 
% Fuel properties 
ro_f = X(i,1); % kg/m^3 
cp_f = X(i,2); % J/(kg*K) 
k_f = X(i,3); % W/(m*K) 
% Cladding properties 
ro_c = X(i,4); % kg/m^3 
cp_c = X(i,5); % J/(kg*K) 
k_c = X(i,6); % W/(m*K) 
% Power 
power = X(i,7); % W 
[PFT, PCT, Tfmax, Tcmax] = PSLOFAQ(ro_f,cp_f,k_f,ro_c,cp_c,k_c,power); 
D(i,:)=[Tfmax, Tcmax, PFT, PCT]; 
end 
figure(1); % PFT 
for i=1:height(X) 
plot(linspace(0,100),D(i,1:100)); hold on; 
xlabel(‘t, s’);ylabel(‘PFT, K’); 
end 
savefig(‘PFT_LHw2.fig’); saveas(gcf,’PFT_LHw2.png’); 
hold off; close all 
figure(2); % PCT 
for i=1:height(X) 
plot(linspace(0,100),D(i,101:200)); hold on; 
xlabel(‘t, s’);ylabel(‘PCT, K’); 
end 
savefig(‘PCT_LHw2.fig’); saveas(gcf,’PCT_LHw2.png’); 
hold off; close all 
figure (3); X=[X, D(:,201:202)]; 
labels = {‘Fuel density, kg/m^3’,’Fuel specific heat, J/kg/K’,’Fuel 
thermal conductivity, W/m/K’,... 
   ‘Cladding density, kg/m^3’,’Cladding specific heat, J/kg/K’,’Cladding 
thermal conductivity, W/m/K’,... 
   ‘Power, Wth’,’PFT’,’PCT’}; 
p=parallelplot(X); p.Jitter = 0; 
p.CoordinateTickLabels = labels; 
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savefig(‘Parallel_LHw2.fig’); saveas(gcf,’Parallel_LHw2.png’); close all 
xlswrite(‘x_LHw2.xlsx’,X); 
function 
[X_scaled,X_normalized]=lhsdesign_modified(n,min_ranges_p,max_ranges_p) 
%lhsdesign_modified is a modification of the Matlab Statistics function 
lhsdesign. 
p=length(min_ranges_p); 
[M,N]=size(min_ranges_p); 
if M<N 
   min_ranges_p=min_ranges_p’; 
end 
    
[M,N]=size(max_ranges_p); 
if M<N 
   max_ranges_p=max_ranges_p’; 
end 
slope=max_ranges_p-min_ranges_p; 
offset=min_ranges_p; 
SLOPE=ones(n,p); 
OFFSET=ones(n,p); 
for i=1:p 
   SLOPE(:,i)=ones(n,1).*slope(i); 
   OFFSET(:,i)=ones(n,1).*offset(i); 
end 
X_normalized = lhsdesign(n,p,’Criterion’,’correlation’); 
X_scaled=SLOPE.*X_normalized+OFFSET; 
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APPENDIX C.  ANALYSIS OF VARIANCE 

The following MATLAB code was created and used for analysis of variance 

(ANOVA): 
%% ANOVA 
% Alan Matias Avelar 
clc 
clear all 
factors=[“Fuel density” “Fuel specific heat” “Fuel thermal 
conductivity”... 
    “Cladding density” “Cladding specific heat”... 
    “Cladding thermal conductivity” “Power”]; 
[data] = csvread(“x_LH.csv”); 
data = single(data); 
y= data (:,9); 
data(:,7) = data(:,7)./1e6; 
data (:,8:9)=[];  
aovLHw1 = anova(data,y,FactorNames=factors,... 
   CategoricalFactors = [],ResponseName=“PCT”) 
mdlLHw1 = fitlm([data(:,2) data(:,5), data(:,7)],y) 
mdlLHw1.Rsquared.Adjusted 
[data] = csvread(“x_LHw2.csv”); 
data = single(data); 
y= data (:,9); 
data(:,7) = data(:,7)./1e6; 
data (:,8:9)=[];  
aovLHw2 = anova(data,y,FactorNames=factors,... 
   CategoricalFactors = [],ResponseName=“PCT”) 
mdlLHw2 = fitlm([data(:,2) data(:,5), data(:,7)],y) 
mdlLHw2.Rsquared.Adjusted 
mdlP = fitlm([data(:,7)],y) 
mdlP.Rsquared.Ordinary 
g1=data(:,1); g2=data(:,2); g3=data(:,3); 
g4=data(:,4); g5=data(:,5); g6=data(:,6); 
g7=data(:,7); 
p = anovan(y,{g1 g2 g3 g4 g5 g6 g7},’model’,’interaction’,... 
   ‘varnames’,{‘Fuel density’ ‘Fuel specific heat’ ‘Fuel thermal 
conductivity’... 
    ‘Cladding density’ ‘Cladding specific heat’... 
    ‘Cladding thermal conductivity’ ‘Power’}) 
  



78 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



79 

LIST OF REFERENCES 

Akhal, N., K. Sidi-Ali, and S. Benmamar. 2023. “Loss of Flow Accident (LOFA) with 
Protection in NUR Nuclear Research Reactor; Three Dimensional Analysis of a 
Fast LOFA and a Slow LOFA.” Progress in Nuclear Energy 162 (August): 
104779. https://doi.org/10.1016/j.pnucene.2023.104779. 

Ansys. n.d.-a. “Ansys ModelCenter | MBSE Software.” Accessed April 25, 2024. 
https://www.ansys.com/products/connect/ansys-modelcenter. 

———. n.d.-b. “Ansys STK | Digital Mission Engineering Software.” Accessed April 27, 
2024. https://www.ansys.com/products/missions/ansys-stk. 

Beery, Paul T. 2016. “A Model-Based Systems Engineering Methodology for Employing 
Architecture in System Analysis: Developing Simulation Models Using Systems 
Modeling Language Products to Link Architecture and Analysis.” PhD diss., 
Naval Postgraduate School. https://hdl.handle.net/10945/49363. 

Bickford, Jason, Douglas L. Van Bossuyt, Paul Beery, and Anthony Pollman. 2020. 
“Operationalizing Digital Twins through Model-Based Systems Engineering 
Methods.” Systems Engineering 23 (6): 724–50. https://doi.org/10.1002/
sys.21559. 

Chen, Lekang, Chuqi Chen, Linna Wang, Wenjie Zeng, and Zhifeng Li. 2023. 
“Uncertainty Quantification of Once-through Steam Generator for Nuclear Steam 
Supply System Using Latin Hypercube Sampling Method.” Nuclear Engineering 
and Technology 55 (7): 2395–406. https://doi.org/10.1016/j.net.2023.03.033. 

Dahmann, J. S. 1997. “High Level Architecture for Simulation.” In Proceedings First 
International Workshop on Distributed Interactive Simulation and Real Time 
Applications 9–14. https://doi.org/10.1109/IDSRTA.1997.568652. 

Dam, Steven H. 2020. “Lessons Learned in the Creation of a Digital Thread.” 
Presentation at the 2020 Virtual Systems & Mission Engineering Conference, 
November 10, 2020. 

D’Auria, F. 2019. “Best Estimate Plus Uncertainty (BEPU): Status and Perspectives.” 
Nuclear Engineering and Design 352 (October): 110190. https://doi.org/10.1016/
j.nucengdes.2019.110190. 

De Florio, Vincenzo, Matteo Greco, Graham Kennedy, Flavio Brighenti, Marinus 
Potgieter, Michael Källberg, Kirill Makhov et al. 2024. “Towards Early Detection 
of Model Conflicts in the Design of the MYRRHA Reactor in a Systems 
Engineering Approach.” Annals of Nuclear Energy 209 (December): 110836. 
https://doi.org/10.1016/j.anucene.2024.110836. 



80 

Department of Defense. 2018. Digital Engineering Strategy. Washington, DC: Office of 
the Deputy Assistant Secretary of Defense for Systems Engineering. 
https://apps.dtic.mil/sti/pdfs/AD1068564.pdf. 

Dickerson, Charles E., and Dimitri Mavris. 2013. “A Brief History of Models and Model 
Based Systems Engineering and the Case for Relational Orientation.” IEEE 
Systems Journal 7 (4): 581–92. https://doi.org/10.1109/JSYST.2013.2253034. 

Durazzo, Michelangelo, Jose Antonio Batista Souza, Elita Fontenele Urano de Carvalho, 
Thomaz Augusto Guisard Restivo, Frederico Antonio Genezini, and Ricardo 
Mendes Leal Neto. 2024. “Manufacturing High-Uranium-Loaded Dispersion Fuel 
Plates in Brazil.” Annals of Nuclear Energy 200 (June): 110408. https://doi.org/
10.1016/j.anucene.2024.110408. 

Freixa, J., V. Martínez-Quiroga, M. Casamor, F. Reventós, R. Mendizábal, and M. 
Sánchez-Perea. 2021. “On the Validation of BEPU Methodologies through the 
Simulation of Integral Experiments: Application to the PKL Test Facility.” 
Nuclear Engineering and Design 379 (August): 111238. https://doi.org/10.1016/
j.nucengdes.2021.111238. 

Friedenthal, Sanford, Alan Moore, and Rick Steiner. 2015. “Integrating SysML into a 
Systems Development Environment.” In A Practical Guide to SysML (Third 
Edition), edited by Sanford Friedenthal, Alan Moore, and Rick Steiner, 507–41. 
The MK/OMG Press. Boston: Morgan Kaufmann. https://doi.org/10.1016/B978-
0-12-800202-5.00018-7. 

Gaignebet, Alan, Vincent Chapurlat, Gregory Zacharewicz, Victor Richet, and Robert 
Plana. 2021. “A Model Based System Commissioning Approach for Nuclear 
Facilities.” Sustainability 13 (19): 10520. https://doi.org/10.3390/su131910520. 

Giachetti, Ronald. 2016. Design of Enterprise Systems: Theory, Architecture, and 
Methods. Boca Raton, FL: CRC Press. 

Gorecki, Simon, Youssef Bouanan, Gregory Zacharewicz, Judicael Ribault, and Nicolas 
Perry. 2018. “Integrating HLA-Based Distributed Simulation for Management 
Science and BPMN.” IFAC-PapersOnLine, 16th IFAC Symposium on 
Information Control Problems in Manufacturing INCOM 2018, 51 (11): 655–60. 
https://doi.org/10.1016/j.ifacol.2018.08.393. 

Gu, Pengfei, Zhen Chen, Lin Zhang, Yuteng Zhang, Kunyu Xie, Chun Zhao, Fei Ye, and 
Yiran Tao. 2024. “X-SEM: A Modeling and Simulation-Based System 
Engineering Methodology.” Journal of Manufacturing Systems 74 (June): 198–
221. https://doi.org/10.1016/j.jmsy.2024.01.013. 



81 

Halbesleben, Jonathon R.B., Anthony R. Wheeler, and M. Ronald Buckley. 2007. 
“Understanding Pluralistic Ignorance in Organizations: Application and Theory.” 
Journal of Managerial Psychology 22 (1): 65–83. https://doi.org/10.1108/
02683940710721947. 

Hemptinne, Jean-Charles de, Georgios M. Kontogeorgis, Ralf Dohrn, Ioannis G. 
Economou, Antoon ten Kate, Susanna Kuitunen, Ljudmila Fele Žilnik, Maria 
Grazia De Angelis, and Velisa Vesovic. 2022. “A View on the Future of Applied 
Thermodynamics.” Industrial & Engineering Chemistry Research 61 (39): 
14664–80. https://doi.org/10.1021/acs.iecr.2c01906. 

Hernandez, Alejandro S., Thomas W. Lucas, and Matthew Carlyle. 2012. “Constructing 
Nearly Orthogonal Latin Hypercubes for Any Nonsaturated Run-Variable 
Combination.” ACM Transactions on Modeling and Computer Simulation 22 (4): 
1–17. https://doi.org/10.1145/2379810.2379813. 

Housiadas, Christos. 2000. “Simulation of Loss-of-Flow Transients in Research 
Reactors.” Annals of Nuclear Energy 27 (18): 1683–93. https://doi.org/10.1016/
S0306-4549(00)00053-0. 

Ibrahim, Irfan, Steven Krahn, and Kevin Adams. 2022. “Development of a PWR 
Feedwater System Model Using MBSE and SysML.” In 2022 ANS Winter 
Meeting and Technology Expo. Phoenix, AZ: ANS. https://www.ans.org/
meetings/wm2022/session/view-1459/. 

Ibrahim, Irfan, Steven Krahn, Kevin Adams, and Caleb Tomlin. 2023. “Insights from 
Model-Based Systems Engineering Applications in the Nuclear Industry.” In 2023 
ANS Winter Conference and Expo. Washington, DC: ANS. https://www.ans.org/
pubs/transactions/article-54807/. 

Institute of Electrical and Electronics Engineers. 2022. IEEE Recommended Practice for 
Distributed Simulation Engineering and Execution Process (DSEEP). 
https://ieeexplore.ieee.org/document/9919118. 

International Atomic Energy Agency. 2016. Considerations on the Application of the 
IAEA Safety Requirements for the Design of Nuclear Power Plants. Report No. 
TECDOC-1791. https://www-pub.iaea.org/MTCD/Publications/PDF/TE-
1791_web.pdf. 

———. 2022. Introduction to Systems Engineering for the Instrumentation and Control 
of Nuclear Facilities. Report No. NR-T-2.14. https://www-pub.iaea.org/MTCD/
Publications/PDF/PUB2018_web.pdf. 

———. 2023. Nuclear Power Reactors in the World. Report No. RDS-2/43. 
https://www-pub.iaea.org/MTCD/Publications/PDF/RDS-2-43_web.pdf. 



82 

International Council on Systems Engineering. 2021. Systems Engineering Vision 2035. 
San Diego, CA: International Council on Systems Engineering. 
https://www.incose.org/docs/default-source/se-vision/incose-se-vision-
2035.pdf?sfvrsn=e32063c7_10. 

———. 2023. INCOSE Systems Engineering Handbook. 5th ed. John Wiley & Sons. 

Jyrkama, M. I., and M. D. Pandey. 2017. “Uncertainty, Sample Size and the 95/95 
Tolerance Limit.” In Our Nuclear Future: Renewal and Responsibility 37th 
Annual CNS Conference and 41st CNS/CNA Student Conference. Niagara Falls, 
Canada: Canadian Nuclear Society. https://inis.iaea.org/records/5nkgs-x0r22. 

Kande, Akshay. 2011. “Integration of Model-Based Systems Engineering and Virtual 
Engineering Tools for Detailed Design.” Master’s thesis, Missouri University of 
Science and Technology. https://scholarsmine.mst.edu/masters_theses/5155/. 

Kang, Dong Gu. 2021. “Uncertainty Quantification Analysis and Statistical Estimation 
for LBLOCA in a PWR Using Monte-Carlo and Alternative Methods.” Annals of 
Nuclear Energy 150 (January): 107868. https://doi.org/10.1016/
j.anucene.2020.107868. 

Khandoker, Azad, Sabine Sint, Guido Gessl, Klaus Zeman, Franz Jungreitmayr, Helmut 
Wahl, Andreas Wenigwieser, and Roland Kretschmer. 2022. “Towards a Logical 
Framework for Ideal MBSE Tool Selection Based on Discipline Specific 
Requirements.” Journal of Systems and Software 189 (July): 111306. 
https://doi.org/10.1016/J.JSS.2022.111306. 

Král, Pavel, and Jelena Krhounková. 2024. “Implementation of the Design Extension 
Conditions Concept in the Czech Republic Regulatory Framework and NPPs.” 
Nuclear Engineering and Design 418 (March): 112835. https://doi.org/10.1016/
j.nucengdes.2023.112835. 

Lee, Seung Wook, Bub Dong Chung, Young-Seok Bang, and Sung Won Bae. 2014. 
“Analysis of Uncertainty Quantification Method by Comparing Monte-Carlo 
Method and Wilks’ Formula.” Nuclear Engineering and Technology 46 (4): 481–
88. https://doi.org/10.5516/NET.02.2013.047. 

Linnosmaa, Joonas, Janne Valkonen, Peter Karpati, Andre Hauge, Fabien Sechi, and 
Bjørn Axel Gran. 2019. “Towards Model-Based Specification and Safety 
Assurance of Nuclear I&C Systems: Applicability of SYSML and AADL.” In 
11th Nuclear Plant Instrumentation, Control, and Human-Machine Interface 
Technologies. Orlando, FL: ANS. https://www.ans.org/pubs/proceedings/article-
45793/. 



83 

Martorell, S., F. Sánchez-Sáez, J. F. Villanueva, and S. Carlos. 2017. “An Extended 
BEPU Approach Integrating Probabilistic Assumptions on the Availability of 
Safety Systems in Deterministic Safety Analyses.” Reliability Engineering & 
System Safety, Special Section: Applications of Probabilistic Graphical Models in 
Dependability, Diagnosis and Prognosis, 167 (November): 474–83. 
https://doi.org/10.1016/j.ress.2017.06.020. 

MathWorks. 2024. System Composer User’s Guide. Natick, MA: The MathWorks Inc. 
https://www.mathworks.com/help/pdf_doc/systemcomposer/
systemcomposer_ug.pdf. 

Matias Avelar, Alan, Camila Diniz, Fábio de Camargo, Claudia Giovedi, Alfredo Abe, 
Marco Cherubini, Alessandro Petruzzi, and Marcelo Breda Mourão. 2023. “Best 
Estimate Plus Uncertainty Analysis of Metal-Water Reaction Transient 
Experiment.” Nuclear Engineering and Design 411 (September): 112414. 
https://doi.org/10.1016/J.NUCENGDES.2023.112414. 

Mengyan, Hu, Zhang Xueyan, Peng Cuiting, Zhang Yixuan, and Yang Jun. 2024. 
“Current Status of Digital Twin Architecture and Application in Nuclear Energy 
Field.” Annals of Nuclear Energy 202 (July): 110491. https://doi.org/10.1016/
j.anucene.2024.110491. 

Mignacca, Benito, Giorgio Locatelli, and Tristano Sainati. 2020. “Deeds Not Words: 
Barriers and Remedies for Small Modular Nuclear Reactors.” Energy 206 
(September): 118137. https://doi.org/10.1016/j.energy.2020.118137. 

Navas, Juan, Philippe Tannery, Stephane Bonnet, and Jean-Luc Voirin. 2018. “Bridging 
the Gap Between Model-Based Systems Engineering Methodologies and Their 
Effective Practice – a Case Study on Nuclear Power Plants Systems Engineering.” 
INSIGHT 21 (1): 17–20. https://doi.org/10.1002/inst.12185. 

Nigischer, Christian, Sébastien Bougain, Rainer Riegler, Heinz Peter Stanek, and 
Manfred Grafinger. 2021. “Multi-Domain Simulation Utilizing SysML: State of 
the Art and Future Perspectives.” Procedia CIRP 100 (January): 319–24. 
https://doi.org/10.1016/J.PROCIR.2021.05.073. 

No Magic. n.d. “Magic Systems of Systems Architect Home Page – Magic Systems of 
Systems Architect 19.0 SP3 – CATIA Magic Documentation.” Accessed April 
25, 2024. https://docs.nomagic.com/display/MSOSA190SP3/
Magic+Systems+of+Systems+Architect+Home+Page. 

Nuclear Energy Agency. 2021. Summary Report on the Licensing Process of New 
Reactor Applications. Report No. NEA/CNRA/R(2020)1. https://www.oecd-
nea.org/nsd/docs/2020/cnra-r2020-1.pdf. 



84 

Perrota, J. A., and A. J. Soares. 2014. “RMB: The New Brazilian Multipurpose Research 
Reactor.” In International Topical Meeting on Research Reactor Fuel 
Management RRFM 2014. Ljubljana, Slovenia: European Nuclear Society. 
https://www.euronuclear.org/download/proceedings-rrfm-2014/. 

Petty, Mikel D., and Katherine L. Morse. 2004. “The Computational Complexity of the 
High Level Architecture Data Distribution Management Matching and 
Connecting Processes.” Simulation Modelling Practice and Theory, Modeling and 
Simulation of Distributed Systems and Networks 12 (3): 217–37. https://doi.org/
10.1016/j.simpat.2003.10.004. 

Rangel, Diego C. 2021. “Executable MBSE Approach with Illustration of a Satellite 
Engagement Mission Design.” Master’s thesis, Naval Postgraduate School. 
https://hdl.handle.net/10945/67798. 

Raphael, Benny, and Ian F. C. Smith. 2013. Engineering Informatics: Fundamentals of 
Computer-Aided Engineering. John Wiley & Sons. 
https://ebookcentral.proquest.com/lib/ebook-nps/detail.action?pq-origsite=
primo&docID=7103783. 

Ribeiro, Eneida R. G. D., Daniel A. P. Palma, Edson Henrice Jr., and Jian Su. 2020. 
“Transient Analysis of the Brazilian Multipurpose Reactor by the Coupled 
Neutronics and Thermal Hydraulics Code NTHC1.” Annals of Nuclear Energy 
143 (August): 107449. https://doi.org/10.1016/j.anucene.2020.107449. 

Rivera, Y., A. Escrivá, C. Berna, E. Vela, J. M. Martín-Valdepeñas, G. Jiménez, C. 
Vázquez-Rodríguez et al. 2024. “From Past to Future: The Role of Computational 
Fluid Dynamics in Advancing Nuclear Safety in Spain and Portugal.” Nuclear 
Engineering and Design 421 (May): 113083. https://doi.org/10.1016/
j.nucengdes.2024.113083. 

Romero, Victor, Romain Pinquié, and Frédéric Noël. 2022. “A User-Centric Computer-
Aided Verification Process in a Virtuality-Reality Continuum.” Computers in 
Industry 140 (September): 103678. https://doi.org/10.1016/
j.compind.2022.103678. 

Shockling, M A. 2015. “Non-Parametric Order Statistics.” In 16th International Topical 
Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16). Chicago, IL. 

Soares, Humberto V., Ivan D. Aronne, Antonella L. Costa, Claubia Pereira, and Maria 
Auxiliadora F. Veloso. 2014. “Analysis of Loss of Flow Events on Brazilian 
Multipurpose Reactor Using the Relap5 Code.” International Journal of Nuclear 
Energy 2014 (June): e186189. https://doi.org/10.1155/2014/186189. 

SPEC Innovations. n.d. “Innoslate/STK/MATLAB Co-Simulation.” Accessed April 25, 
2024. https://specinnovations.com/blog/innoslate-stk-matlab-co-simulation. 



85 

Todreas, Neil E., and Mujid Kazimi. 2011. Nuclear Systems Volume I: Thermal 
Hydraulic Fundamentals, Second Edition. CRC Press. 

Trivedi, A. K., and D. R. Novog. 2023. “BEPU Analysis of a CANDU LBLOCA RD-
14M Experiment Using RELAP/SCDAPSIM.” Nuclear Engineering and 
Technology 55 (4): 1448–59. https://doi.org/10.1016/j.net.2022.12.028. 

Tsadimas, Anargyros T. 2018. “Model-Based Enterprise Information System Design: A 
SysML-Based Approach.” PhD diss., Harokopio University. http://dx.doi.org/
10.13140/RG.2.2.24781.33765. 

U.S. Nuclear Regulatory Commission. 2021a. “Beyond Design-Basis Accidents.” NRC 
Web. March 2021. https://www.nrc.gov/reading-rm/basic-ref/glossary/beyond-
design-basis-accidents.html. 

———. 2021b. “Design-Basis Accident.” NRC Web. March 2021. https://www.nrc.gov/
reading-rm/basic-ref/glossary/design-basis-accident.html. 

———. 2023. “Fuel Assembly (Fuel Bundle, Fuel Element).” NRC Web. January 2023. 
https://www.nrc.gov/reading-rm/basic-ref/glossary/fuel-assembly-fuel-bundle-
fuel-element.html. 

Wilks, S. S. 1941. “Determination of Sample Sizes for Setting Tolerance Limits.” The 
Annals of Mathematical Statistics 12 (1): 91–96. https://doi.org/10.1214/aoms/
1177731788. 

Wolny, Sabine, Alexandra Mazak, Christine Carpella, Verena Geist, and Manuel 
Wimmer. 2020. “Thirteen Years of SysML: A Systematic Mapping Study.” 
Software and Systems Modeling 19 (1): 111–69. https://doi.org/10.1007/s10270-
019-00735-y. 

Ye, Kenny Q. 1998. “Orthogonal Column Latin Hypercubes and Their Application in 
Computer Experiments.” Journal of the American Statistical Association 93 
(444): 1430–39. https://doi.org/10.1080/01621459.1998.10473803. 

Zhang, J. 2019. “The Role of Verification & Validation Process in Best Estimate plus 
Uncertainty Methodology Development.” Nuclear Engineering and Design 355 
(December):110312. https://doi.org/10.1016/j.nucengdes.2019.110312. 

Zhang, Jinzhao, and Christophe Schneidesch. 2023. “Application of the BEPU Safety 
Analysis Method to Quantify Margins in Nuclear Power Plants.” Nuclear 
Engineering and Design 406 (May): 112233. https://doi.org/10.1016/
j.nucengdes.2023.112233. 



86 

Zhang, Lin, Fei Ye, Kunyu Xie, Pengfei Gu, Xiaohan Wang, Yuanjun Laili, Chun Zhao 
et al. 2022. “An Integrated Intelligent Modeling and Simulation Language for 
Model-Based Systems Engineering.” Journal of Industrial Information 
Integration 28 (July): 100347. https://doi.org/10.1016/J.JII.2022.100347. 

Zhang, Xueyan, Chengcheng Deng, Mengyan Hu, Yixuan Zhang, Cuiting Peng, and Jun 
Yang. 2023. “Streamlined Best Estimate plus Uncertainty Analysis of a GEN III 
+ BWR for a Bottom Drain Line Small Break LOCA.” Annals of Nuclear Energy 
183 (April): 109635. https://doi.org/10.1016/j.anucene.2022.109635. 

 

  



87 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Fort Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	I. INTRODUCTION
	A. OBJECTIVE
	B. BENEFITS FOR STAKEHOLDERS
	C. THESIS ORGANIZATION

	II. LITERATURE REVIEW
	A. THE SYSTEM MODEL AS AN INTEGRATED FRAMEWORK
	B. VERIFICATION PROCESS USING INTEGRATED COMPUTER-AIDED ENGINEERING METHODS
	C. VERIFICATION OF REGULATORY REQUIREMENTS FOR NUCLEAR SYSTEMS

	III. METHODOLOGY
	A. THE MODEL BREAKDOWN STRUCTURE
	B. METHODS FOR DESIGN OF EXPERIMENTS AND UNCERTAINTY QUANTIFICATION

	IV. MODELING AND SIMULATION
	A. SYSTEM DESCRIPTION
	B. FUNCTIONAL ANALYSIS
	C. REQUIREMENT SPECIFICATION
	D. SYSTEM ANALYSIS
	E. INTEGRATION OF MODELS

	V. RESULTS AND DISCUSSION
	A. FINITE ELEMENT ANALYSIS
	B. REQUIREMENT VERIFICATION USING SIMULATION-BASED TESTS
	C. BENEFITS, INSIGHTS, AND TRADE-OFF BETWEEN COMPUTATIONAL TIME AND ACCURACY

	VI. CONCLUSION AND FUTURE WORK
	APPENDIX A.  MATLAB MODEL
	APPENDIX B.  EXPERIMENTAL DESIGN
	APPENDIX C.  ANALYSIS OF VARIANCE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

